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Towards more biologically plausible central-pattern-generator models
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Central pattern generators (CPGs) are relatively small neural networks that play a fundamental role in the
control of animal locomotion. In this paper we define a method for the systematic design of CPG models able
to exhibit biologically plausible gait transitions by implementing short-term synaptic plasticity mechanisms. As
a case study, we focus on a simple CPG for quadruped locomotion. By applying the proposed method, three of
four standard quadruped gaits were correctly reproduced by the obtained CPG model, not only in terms of the
alternating sequence of the limbs but also in terms of frequency, duty cycle, and phase lags.
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I. INTRODUCTION

Central pattern generators (CPGs) are small neural circuits
that can produce rhythmic patterns of activity determining
multiphase locomotion in diverse invertebrate and vertebrate
animals [1], including in the absence of an external drive.
The forms of locomotion that can be observed in animals
vary in many ways in terms of exhibited gaits and posture,
owing to the interplay of mechanical sensors and actuators
(musculoskeletal system) and control (neural system). Mice,
for example, can walk, trot, gallop, or bound [2,3]. This means
that there must be mechanisms to change the synchronization
patterns between the limbs and the limb segments during
locomotion. So it may be reasonable to assume that rather
than having multiple dedicated CPGs for such functions, there
is a single multifunctional or multimodular CPG circuit that is
versatile to coordinate all desired motor patterns [4].

The building module of most symmetric CPGs is the half-
center oscillator, made of two reciprocally inhibited neurons
(or neural pools) to produce antiphase activity patterns of
alternating spike trains or bursts [5,6]. In Ref. [7] we extended
this concept by proposing a generalized half-center oscillator
(gHCO) made of the two neurons or pools (henceforth generi-
cally called cells) coupled reciprocally with inhibitory as well
as with excitatory synapses. We demonstrated that such a
dual connectivity allows for biologically plausible control of
the phase lag between the cells, and thus switching between
in-phase and antiphase by varying an external drive or cur-
rent, without directly manipulating the synaptic conductance
strengths. Indeed, from a biological standpoint, such con-
ductance variations typically result from long-term synaptic
plasticity; therefore, they cannot justify quick switches be-
tween the gaits. Such switches could be ascribed to short-term
synaptic plasticity: Facilitation increases the probability of
neurotransmitter release in a frequency-dependent manner [8],
which was also observed and explored in swim CPGs of some
sea slugs [9].

This paper is focused on quadruped locomotion. Detailed
models of the mouse CPG were cataloged and examined
in the last few years [10–12]. Here we explore the pos-

sibility of using the gHCO in the design of a minimalist
CPG circuit that can stably produce gaits observed in four-
limb animals. The schematic diagram in Fig. 1 is meant
to illustrate two alternative strategies based on the interplay
between network complexity and nonlinear dynamics of in-
dividual cells and synaptic properties. Our aim is to design a
CPG with the simplest network architecture (i.e., minimalist
functional topology)—containing only two gHCOs properly
connected—by finding the parameters of cells and synapses
through an optimization algorithm which accounts for physi-
ological parameter ranges.

This feasibility study is based on three simple corner-
stones: (i) short timescale gait transitions are triggered by
short-term plasticity mechanisms; (ii) the CPG model is able
to reproduce basic quadruped gaits with characteristic qual-
ities; (iii) with bifurcation analysis we can calibrate key
model parameters to meet specific gait features, following the
guidelines in Ref. [13]. According to these premises, we fur-
ther enhance the four-cell CPG model originally proposed in
Ref. [13] by including the gHCO in its structure: In its simple
circuitry, shown in Fig. 2, a pair of fore neurons and a pair
of hind neurons represent essentially two gHCOs, whose cells
are coupled by mixed synapses with different timescales. In
what follows we will demonstrate the validity of our approach
and the methods that let us reproduce three out of the four
target gaits. We will also discuss some critical aspects to be
accounted for in this updated CPG design.

II. FOUR-CELL CPG MODEL

Let us first introduce the abbreviations listed in Table I
for various types of synapses employed in the four-cell CPG
model.

The four-cell CPG model is shown in Fig. 2: Here each cell
is modelled by the thalamic reticular burster [14,15] within the
Hodgkin-Huxley (HH) framework (see Appendix A for a list
of all fixed parameters and a description of their biological
relevance). The dynamics of the membrane potential Vi and of
the voltage-dependent state variables yi ∈ R6 (representing
intracellular calcium concentration and gating variables) are

2470-0045/2021/104(6)/064405(10) 064405-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1596-821X
https://orcid.org/0000-0002-0753-7017
https://orcid.org/0000-0003-4958-074X
https://orcid.org/0000-0002-4879-4327
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.064405&domain=pdf&date_stamp=2021-12-08
https://doi.org/10.1103/PhysRevE.104.064405


BARUZZI, LODI, STORACE, AND SHILNIKOV PHYSICAL REVIEW E 104, 064405 (2021)

Neuron/synapse complexity

 kro
wteN

ytixelp
moc

Biological
CPG

Bio-inspired
topology

Minimalist
func�onal
topology

FIG. 1. Comparison diagram of two alternatives to model a bi-
ological CPG: (left) a detailed network architecture with simple
functional units [10]); (right) simplest design with biologically plau-
sible neural and synaptic models.

governed by HH-type ODEs (i = 1, . . . , 4)

d

dt

[
Vi

yi

]
=

[−∑
k Ik + Isyn

i
f (Vi, yi )

]
, (1)

where the sum
∑

k Ik includes the intracellular ionic currents,
along with the current Ic used in this study as the control
parameter; here f (Vi, yi ) is a logistic or sigmoidal function
for the gating variables. This model demonstrates bursting ac-
tivity for Ic ∈ [−0.43, 0.13] ( μA

cm2 ), when the other parameters
are set as in Appendix A [7]. The term Isyn

i groups together

FIG. 2. CPG circuit of four coupled cells labeled as follows: FL
and FR (fore-left and -right), HL and HR (hind-left and -right). The
dashed box includes the gHCO that governs the fore limbs. The
following symbols , , , and denote, respectively, the excitatory E
and inhibitory S, F , and D synapses (see the table above). Each CPG
cell controls flexor muscles regulating the swing phase of a limb,
while D synapses simulate the actions of the neural populations (not
explicitly represented in the given model) controlling the extensor
muscles. The fore and hind gHCOs are coupled through ipsilateral F
synapses.

TABLE I. Synapse types.

Synapse type Abbreviation Symbol

Fast excitatory E
Slow inhibitory S
Delayed fast inhibitory D
Fast inhibitory F

the incoming synaptic currents,

Isyn
i =

4∑
j=1

{
gE

i j[E
E − Vi(t )]sE

j + gS
i j[E

S − Vi(t )]sS
j

+ gD
i j[E

S − Vi(t − δ)]sD
j + gF

i j[E
S − Vi(t )]sF

j

}
, (2)

where Ek (k = E , S) represents the reversal potentials for
excitatory (k = E ) and inhibitory (k = S) synapses, 0 �
sk

j (Vi, t ) � 1 (k = E , S, D, F ) describes the neurotransmitter
release rate of the synapse, gk

i j (k = E , S, D, F ) is the maximal
synaptic conductance or weight, while δ is the time delay
imposed for D-type synapses.

The S synapses are described by a first-order kinetic model
[16–19],

dsS
j

dt
= α

(
1 − sS

j

)
f S
∞(Vj ) − βs j,

f S
∞ = 1

1 + e−ν(Vj−θS )
, (3)

where θS is the synaptic threshold, and α and β are coef-
ficients determining the exponential raise and decay rates,
respectively: The greater the α (β) values, the faster the raise
(decay) rates of sS

j after the presynaptic voltage Vj goes over
(under) θS . The fast E -, D-, and F -type synapses are mod-
eled using the fast threshold modulation approach [16,20],
sk

j = f k
∞(Vj ) (k = E , D, F ).

Let us argue our motivation for choosing these synapses
in the four-unit CPG model under consideration, where each
neural unit controls the flexor regulating the swing phase of
the corresponding limb. Some of these synapses result from
the functional reduction of the detailed, 40-cell mouse loco-
motion CPG proposed in Ref. [10] down to the 4-cell circuit
initially introduced in Ref. [21]. In particular, the F synapses
were introduced to replace inhibitory interneuron populations
that do not introduce significant delay, and the D synapses
simulate the delayed action of the neuron groups controlling
the extensor muscles. Moreover, the nonlinear interplay of
both fast-excitatory and slow-inhibitory synapses is pivotal to
devise our (simple yet functional and flexible) CPG network:
S and E synapses [7] are crucial to model the effect of short-
term synaptic plasticity, as discussed below.

By fitting its key parameters, we aim to make this mini-
malist 4-cell CPG able to generate all four mouse gaits: walk
(W), trot (T), gallop (G), and bound (B). Each gait has specific
quantitative features [2,3] such as the frequency ( f ) and duty
cycle (d) of each rhythmic pattern driving a limb and the phase

064405-2



TOWARDS MORE BIOLOGICALLY PLAUSIBLE … PHYSICAL REVIEW E 104, 064405 (2021)

TABLE II. Quadruped gait features [2,3].

Gait f (Hz) d �12 �13 �14

Walk (W) [2 4] <0.4 0.5 0.75 0.25
Trot (T) [4 9] [0.4 0.51] 0.5 0 0.5
Gallop (G) [9 10] >0.51 0.1 0.5 0.6
Bound (B) [10 12] >0.51 0 0.5 0.5

lags,1 �12, �13, �14, between the driving signal generated
by the reference cell 1 and the ones produced by the other
three cells. These features are summarized in Table II. The
spatiotemporal patterns of each mouse gait are depicted in
Fig. 3. Note that walk and trot require that the fore (and
hind) cells burst in antiphase at low burst frequencies, whereas
during bound they become synchronized in phase with higher
burst frequencies.

The thalamic reticular neuron model in isolation exhibits
[7] (see Fig. 4):

(i) high-frequency bursting with low intraburst spike fre-
quency and high duty cycle d at small Ic values;

(ii) slow bursting with high intraburst spike frequency and
low duty cycle d at greater Ic values.
We define a threshold Vt (gray horizontal line in Fig. 4) to
calculate the duty cycle d as the ratio between the time interval
in which Vi(t ) > Vt within a period (red interval) and the
period (red plus blue intervals). Unlike fast synapses, which
do not depend on spike frequency, we need to calibrate slow
synapses in such a way that the spiking frequency of the
burster enables postsynaptic potential (PSP) summation.2 It
was shown in Ref. [7] that such a summation may result in
in-phase synchronization at low intraburst spike frequency
but give rise to antiphase synchronization at high intraburst
spike frequency of the gHCO cells with mixed slow (fast)
inhibitory (excitatory) synapses. In particular, the key param-
eters α, β, and θS , regulating the dynamics of S synapses, can
be calibrated to ensure that the mean synaptic activation s̄S

j
changes significantly when the presynaptic spike frequency
varies. In other words, we want to have small s̄S

j values at low
spike frequency and substantially larger s̄S

j values at higher
spike frequencies. On the contrary, the mean activation of the
E synapse s̄E

j is not affected by spike frequency variations.
When the synaptic weights are properly balanced, this leads
to excitation prevailing over inhibition at low spike frequency,
which makes the gHCO neurons synchronize in-phase. By
contrast, growing inhibition prevails over excitation at high
spike frequencies, forcing the neurons to burst in alternation.
Therefore, variations of the intraburst spike frequency, being
indirectly regulated by the external drive Ic, can trigger transi-
tions from in-phase to antiphase bursting and vice versa. This

1The phase lag �i j (defined on mod 1) between burst initiations in
the cells i and j allows quantifying the phase-locked states produced
by the CPG. In case of synchronous or in-phase bursters �i j = 0 or
1, equivalently. Bursting in alternation with �i j = 0.5 is referred to
as antiphase.

2Temporal PSP summation in a postsynaptic cell is hypothesized
to get triggered by increasing frequencies of action potentials in the
presynaptic cell [22].

FIG. 3. Spatiotemporal patterns of the four mouse gaits (with the
colors matching the cells in Fig. 2): bound, gallop, trot, and walk
with the characteristic phase lags (as listed in Table II) between the
reference cell 1 and the other three cells of the CPG.

explains how the interplay of E and S synapses gives rise
to short-term synaptic plasticity in our model. A convenient
way to illustrate phase transitions in the gHCO is to plot the
locked phase lag �12 against Ic in a bifurcation diagram. We
remark that simulations of the gHCO have to be performed
with various initial conditions of the state variables, to detect
for which ranges of Ic bi- or multistability over different �12

values is present, if any. A monostable gHCO (or CPG circuit)
stably yields the same phase lags �12 (and �13, �14) locked
regardless of initial conditions and without hysteresis effects
due to Ic being increased or decreased.

FIG. 4. Voltage traces of the isolated burster (A1) at three dif-
ferent Ic values: −0.43 ( μA

cm2 ) (left panel), −0.15 ( μA
cm2 ) (center),

and 0.13 ( μA
cm2 ) (right); the other parameters are set as listed in

Appendix A. The threshold Vt (gray horizontal line) is used to cal-
culate the duty cycle d as the ratio between the red interval and the
period (red plus blue intervals).
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III. PARAMETER FITTING TO QUADRUPED
GAIT FEATURES

Let us reiterate that our objective is to devise a CPG model
that can exhibit intrinsic short-term synaptic plasticity in the
form of facilitation (without any changes in synaptic weights)
and is able to generate all desired gaits and trigger gait tran-
sitions. To achieve this goal, we first need to evaluate and fix
a range of several cellular and synaptic parameters that stably
yield the four quadruped gaits with the realistic features listed
in Table II. This task is challenging, mainly due to the high
number of parameters and their balance and to the constraints
imposed on the overall model performance.

In what follows, we will define and outline our strategy
(summarized in Fig. 5) that further exploits the design meth-
ods proposed previously in Refs. [7,13] to systematically
calibrate both neuronal and synaptic parameters. This strat-
egy includes several steps discussed in detail below. In brief,
the initial steps from 0 through 5 in Fig. 5 deal with the
steady-state behaviors of the network, while possible transi-
tions (transient dynamics) are examined at the final step 6.
It should be quite clear from the beginning that, due to its
high dimensionality, the complex problem of parameter set-
ting cannot be addressed by a monolithic brute-force approach
based on performing exhaustive search.

Therefore, to solve this puzzle, the original problem should
be hierarchically subdivided into consecutive simpler steps.
However, the dynamics of the complete CPG network results
from the interplay of the dynamics of the four individual
cells coupled by mixed synapses with different timescales.
Therefore, given that the correct behavior of the complete
CPG is not guaranteed a priori, the previously found results
should not be tabulated but revisited and verified a posteriori,
as suggested by the last two steps of the proposed strategy.

Step 0—Fixing the key synaptic parameters: This lets
us reduce the dimension of the set of parameters to be opti-
mized, based on preliminary considerations (see Appendix B
for the set values). This includes the time delay δ of the D
synapses, which is set to be half of the bursting period of the
presynaptic neuron since we assume that flexor and extensor
cells are activated in antiphase. The synaptic thresholds, θE ,
θD, and θF , of all fast synapses are set the same so that their
strength does not change with spike frequency variations [7].
The parameter ν is set the same for all synapse types [7]. Also
the weights gD

i j of the delayed D synapses, which are an order
of magnitude weaker than gS

i j of the S synapses according to
Ref. [13], are set all equal. In addition, following Ref. [13],
the ratios gF

41/gF
14 and gF

32/gF
23 (i.e., the ratios of the weights of

fore-to-hind and hind-to-fore coupling) are set the same.
Step 1—Single cell: Its temporal scaling is performed

through the parameter ξ so that the values of the burst fre-
quency f , obtained by varying Ic in the burst region, span
the range required to model all gaits as listed in Table II.
The reference voltage Vt , used to calculate the duty cycle
d , is consequently adjusted to obtain the desired values of
d . The result of this step is a pair of bifurcation diagrams
(see Fig. 6) showing how f (bottom panel) and d (top panel)
are controlled by the drive Ic across all four gaits, labeled
as B[ound], G[allop], T[rot], and W[alk] in the color-coded
intervals.

FIG. 5. Flowchart summarizing the design strategy proposed:
Steps 0 through 5 focus on the steady-state dynamics of the network,
while step 6 verifies the transitions between gaits.

Step 2—S-type synapses: Their key parameters, exponen-
tial factors α, β, and synaptic threshold θS , are identified
through grid search to meet the following two conditions:

(i) the mean synaptic activation s̄S
j (evaluated over the

burst period) is maximized (minimized) at the right (left)
endpoint of the Ic range ([−0.43, 0.13] μA

cm2 );
(ii) ratio ψ = s̄S

j /s̄E
j of mean inhibition and excitation in-

flux is monotonically increased with increasing Ic.
The above simple constraints ensure the most favorable

conditions to obtain the transition of the phase lag �12 from
in-phase to antiphase as Ic is varied, provided that the weights
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FIG. 6. Duty-cycle d and bursting frequency f (Hz) of the neu-
ron model (to be compared to d and f in Table II) against Ic

(μA/cm2). In both panels the horizontal dashed gray lines mark the
d or f ranges corresponding to each gait (see Table II); the dotted
rectangles mark the corresponding Ic intervals for d and f . Observe
that there is no threshold separating B and G duty-cycle intervals as
their ranges overlap. Colored areas highlight the Ic intervals suitable
(in terms of frequency and duty cycle) for each gait, as obtained from
the intersection of the conditions for both features: B (blue), G (red),
T (yellow), and W (green).

gS
i j and gE

i j (set in step 4) are properly balanced. The result is
illustrated in Fig. 7.

Step 3—Combined fore and hind gHCOs: They are
coupled in a pairwise manner by the inhibitory F synapses
through cells 1 and 4 and through cells 2 and 3. Consider
�Ic as the difference between the Ic values driving the fore
and hind cells: Ic1/2 + �Ic = Ic4/3, respectively. The bursting
dynamics of the subnetwork (cells 1 and 4 or, equivalently
cells 2 and 3) are simulated over a dense grid of Ic and �Ic

values (within the ranges determined in step 1), matching the
weights gF

i j (whose ratio is fixed in step 0) to identify the
correct fore or hind phase lags (�14 and �23) of the targeted
gaits. The outcome of this simulation step is a set of (Ic, �Ic)

FIG. 7. Bottom: The ratio ψ between mean inhibition or excita-
tion influx through the S and E synapses, plotted against the external
drive Ic (μA/cm2). Top insets showing steady-state time plots of
sS

j (t ) at Ic = −0.43 (left panel), −0.15 (center), and 0.13 (right).

FIG. 8. Color map of the phase lag �14 over a grid of Ic

(μA/cm2) and �Ic (μA/cm2) values, for fixed gF
i j (see Appendix

for numeric values). Red dots mark (Ic, �Ic) pairs that yield �14

values closest to the desired ones for bound, trot and walk in the
proper Ic intervals. Appropriate values of �14 to model gallop are not
achieved in the corresponding Ic interval. Red solid lines denote the
piecewise-linear function �Ic(Ic ) that interpolates the found (Ic, �Ic)
pairs for bound, trot and walk.

pairs that yield the desired �14 values for each gait within
the proper Ic intervals, see the color map shown in Fig. 8.
With this map, a function �Ic(Ic) can be defined through a
piecewise-linear interpolation of the identified (Ic, �Ic) pairs.
Such a function is used to properly drive the control action
through Ic for all the CPG cells and obtain the desired �14.

Step 4—Intra-gHCO synapses: The balanced weights gS
i j

and gE
i j of the intra-gHCO inhibitory and excitatory synapses

are identified through a dense grid search so that they guaran-
tee the desired steady-state �12 phase lag for each gait within
the Ic intervals (determined in step 1).

Step 5—Full CPG model: It is simulated with the param-
eter values determined in the previous steps to verify that, as
a whole, it produces all established gaits regardless of initial
conditions of the four cells.

Step 6—Gait transitions: They are verified while Ic is
varied.

IV. RESULTS: MODELING THE GAITS

The bifurcation analysis of our CPG model was performed
using the toolbox CEPAGE [23], with the parameter values
summarized in the Appendices. Step 3 lets us identify the
synaptic parameters to stably maintain the desired phase lag
�14 near the target values in the bound, trot, and walk regions.
We note, however, that the value of �14 for the gallop gait,
which should be near 0.6, was not as accurately reproduced as
the targeted phase lags for the other gaits. This is evident in
Fig. 8, showing the piecewise-linear function �Ic(Ic) (in red)
that yields the correct �14 values for bound, trot, and walk. We
also examined an extended �Ic range and found that higher
differences in the Ic values for fore and hind cells would cause
self-sustained and irregular oscillations of �14 instead.

According to step 4, we performed a grid search over gS
i j

and gE
i j values to determine which weight combinations give

the desired �12 for each gait. Because modeling the gallop
gait is precluded by the result of step 3, our focus was on
modeling the three remaining gaits: bound, trot and walk.
For each of the corresponding Ic intervals identified in step
1, we examine a fixed Ic value representative of the gait by
prioritizing structural stability of the rhythm generation, i.e.,
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FIG. 9. Bifurcation diagram that shows the phase lag �12 at
steady state of the cells in the gHCO against Ic (μA/cm2). Colored
rectangles highlight the Ic intervals suitable for each gait determined
in step 1: B (blue), G (red), T (yellow), and W (green). The vertical
dashed lines indicate the parameter range where the CPG circuit
becomes bistable.

by choosing Ic sufficiently far from adjacent intervals or from
transition values. For each weight pair and identified Ic value,
we simulated the gHCOs with initial conditions close to 0
and 0.5 (respectively, in-phase and antiphase states) using the
following validation criteria: A gS

i j-g
E
i j pair is considered valid

if it warrants a �12 phase lag close enough to the tabulated
values (see Table II) regardless of initial conditions. Among
all such combinations, we selected the (gS

i j, gE
i j) pair that corre-

sponds to the best bifurcation diagram, guaranteeing the target
�12 values for the gaits, and no multistability for the broadest
stretch in the Ic intervals determined in step 1. This bifurcation
diagram is shown in Fig. 9. It evidences that the Ic range
corresponding to the bistable CPG lies almost completely
outside of the parameter intervals determined in step 1, thus
barely interfering with the network functionality in the trot
region. On the other hand, the presence of multistability is
indicative of the hysteresis associated with gait transitions,
which is a well-known phenomenon in animal locomotion
reported in numerous experimental studies [24,25]. As an
additional consideration, we point out that no weight combi-
nations yielded the desired �12 value for gallop, unlike other
gaits, thus confirming the difficulty in modeling this gait.

The complete CPG was next simulated to test its rhythm-
generation, according to step 5. One can observe from
Figs. 10–12 that the proposed CPG-circuit produces, respec-
tively, bound, trot, and walk correctly with the desired �12,
�13, and �14 phase lags. The phase lags between all cells for
all gaits are in agreement with the results obtained in steps
3 and 4, confirming the reliability of the proposed design
method. Note that, due to reciprocal interactions, the corre-
sponding frequency f and duty cycle d of the network cells
differ from those recorded in the isolated ones for the same Ic

values. Stronger synaptic coupling results in greater f and d
deviations from the values in isolation. Note, however, that
lower synaptic weights would not satisfy the requirements
imposed in steps 3 and 4. The shift from the expected value of
d can be at least partially corrected a posteriori by acting on
the reference voltage Vt used to calculate d , which does not
influence any other aspect in the CPG dynamics.

Last, according to step 6, we verified the transient behavior
of the CPG by varying Ic and �Ic following the piecewise
linear function (shown in red) in Fig. 8 and observing the

FIG. 10. Steady-state bound. Membrane voltage Vi (mV) of each
of the four neurons (colors as in Fig. 2) and synaptic activation sS

i of
the efferent S synapse (black lines).

transitions between gaits. As can be seen in Fig. 13, all
transitions happen promptly (in less than 2 s) and smoothly.
However, when transitioning from trot to walk, we observe
that, during a time transient in the order of tens of seconds
after the transition, neurons 1 and 2 occasionally skip a burst,
momentarily disrupting the alternation sequence, as shown in
Fig. 14. To identify the cause of this behavior, we examined
the influence of inhibitory and excitatory synapses separately.
We found that the same phenomenon still occurs with the
E-type synapses silenced, for weights of the S-type synapses
gS

i j in the order of magnitude determined in step 4. Such a
behavior was not observed for values of gS

i j decreased of more
than two orders of magnitude. This again suggests that lower

FIG. 11. Steady-state trot. Membrane voltage Vi (mV) of each of
the four neurons (colors as in Fig. 2) and synaptic activation sS

i of the
efferent S synapse (black lines).
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FIG. 12. Steady-state walk. Membrane voltage Vi (mV) of each
of the four neurons (colors as in Fig. 2) and synaptic activation sS

i of
the efferent S synapse (black lines).

synaptic weights would be less problematic in terms of any
unwanted behavior caused by the interplay of the different
dynamics within the network. The definition of more efficient
learning strategies (to allow better exploring of the high-
dimensional parameter space) along with the use of different
synapse models (to better meet the design requirements) is a
main priority in future developments of our design method,
that will be discussed in the following section.

V. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a design strategy to devise
CPG models according to our minimalist-functional-topology
approach (see Fig. 1), using a simple network structure
while focusing on realistic modeling of nonlinear cellular and
synaptic dynamics to account for short-term synaptic plas-
ticity. The resulting CPG model can reproduce the sought
locomotion patterns of the mouse rather well and could have
a potential in robotics applications. Indeed, engineering the
modern mobile robots requires a knowledge of a section
of the theoretical biology that is relating to the dynamics
of CPGs [26,27]. Generally speaking, the choice between a
bio-inspired-topology and a minimalist-functional-topology
approach (or an intermediate recipe with a different mix of
levels of abstraction for network structure and elements) is
driven by the specific application or designer interest.

The proposed design or learning strategy relies on tuning
the parameters of a model whose topology is given a priori
through extensive simulations and optimizations. The strategy
described in the paper hierarchically subdivides the high-
dimensional problem of parameter setting into consecutive
simpler steps, each one giving as output the optimal subset of
parameter values to be used as footprint for the following step.
Dividing the problem in steps, not only makes it approachable
in terms of dimensionality reduction, but also gives insight
into the role of each subsystem and its interplay with other
model elements. The success of each step depends of course

on the neuron and synapses models adequacy in fulfilling the
requirements for the target gaits. We also remark that the
dynamics of the final CPG network depends on the interplay
of all model elements; therefore, the correct behavior of the
complete CPG cannot be guaranteed a priori and should be
verified and revised a posteriori, as suggested by the last
two steps of the proposed strategy. Moreover, the strategy
described in the paper is not recursive in nature. Recursion can
be nonetheless integrated into this learning strategy by replac-
ing steps 4 and 5 with steps 4B and 5B as in Fig. 15. Starting
from null gHCO synaptic weights (gS

i j=gE
i j = 0), in step 4B

the weights gS
i j (identical, to maintain the gHCO symmetry)

are increased until the CPG is able to produce the desired
gaits with �12 close to 0.5 (trot and walk, in the considered
case) for sample values of Ic and �Ic representative of the
gaits, regardless of initial conditions. If the obtained CPG is
not able to model the desired gaits with �12 close to 0 (bound,
in our case), step 5B is performed. In step 5B the weights gE

i j
(identical) are increased until the CPG is able to produce the
desired gaits with �12 close to 0 for sample values of Ic and
�Ic representative of the gaits, regardless of initial conditions.
If the new CPG is not able to model the desired gaits with �12

close to 0.5, then step 4B is repeated.
The steps are reiterated until all gaits are modeled correctly.

Since the success of the strategy is not guaranteed a priori, the
iterations should be stopped when the weights reach unrealis-
tically high values.

Usually, the outcomes of both the original and the alterna-
tive strategy are equivalent, since both strategies will yield a
gHCO weight pair gS

i j , gE
i j that leads to excitation prevailing

at low spike frequency (causing the neurons of the gHCO to
synchronize) and inhibition prevailing at high spike frequency
(causing the neurons to alternate). Steps 4B and 5B are less
computationally demanding than the grid search in step 4 of
the original strategy but do not span the complete parameters
domain, possibly leading to a local minimum. Moreover, the
grid search in step 4 can produce more than one valid weight
pair, giving the possibility of selecting the most favorable pair
based on additional considerations on the bifurcation diagram.
For example, one could select the bifurcation diagram where
no multistability is present for the longest stretch in the Ic

intervals determined in step 1.
Future advances in this line of work will focus on integrat-

ing machine learning methods in the CPG design strategy, to
further improve its efficiency and reliability. An example that
goes in this direction is the design strategy for a spike-based
hexapod CPG that employs supervised learning, proposed in
Ref. [28]. The strategy has the advantage of being based on
a very simple learning rule but has the drawback of being
structurally bounded to learn at most three given gaits and
does not take into consideration additional gait characteristics
other than the legs activation sequence.

The proposed bio-inspired 4-cell CPG is indeed able to
model gait transitions in a biologically plausible way, through
varying external currents only, while synaptic conductances
and time constants remain fixed. Following the proposed
design strategy, we reproduced correctly three desired gaits
(bound, trot, and walk) of the four, as well as smooth and
prompt transitions between them. We failed to find the pa-
rameter values to obtain gallop, which confirms the difficulty
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(a)

(b)

(c)

(d)

FIG. 13. Membrane voltage Vi (i = 1, 2, 3, 4) of the four neurons (colors as in Fig. 2) and phase lags �1 j ( j = 2 solid line, j = 3 dashed
line, j = 4 dotted line) during the transitions between bound and trot (a), trot and walk (b), walk and trot (c), and trot and bound (d). The
transitions are obtained by varying the values of Ic and �Ic following the red piecewise-linear function shown in Fig. 8.

in obtaining the corresponding phase lag �12 using fast ex-
citatory synapses and slow inhibitory synapses in the given
CPG. This observations suggest the need of revisions of the
network to remedy this issue in future work. For example, one
option is to consider a network configuration where each cell
is composed of a spiking and a bursting neuron to factually de-
couple the intraburst spike frequency and the burst frequency
of the cell. Then, fast inhibitory synapses and slow excitatory
synapses in such a CPG could provide the desired phase lag
�12 more affordably.

Other improvements could include adopting different net-
work connectivity and other dynamical models of neurons and

slow synapses to warrant a greater contrast in mean activa-
tion at low and high spiking frequency values. This should
potentially facilitate the demanding and complex process of
parameter optimization.
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FIG. 14. Fragment of the time interval where neurons 1 and 2
skip a burst after the transition from trot to walk. Membrane voltage
Vi (mV) of each of the four neurons (colors as in Fig. 2) and synaptic
activation sS

i of the efferent S synapse (black lines).

FIG. 15. Recursive flowchart that summarizes the alternative
steps 4B and 5B.

APPENDIX A: THALAMIC RETICULAR NEURON MODEL

The thalamic reticular neuron model [14,15] is defined by
the following state equations:

ξ
dV

dt
= −IT − IL − INa − IK − Ic + Isyn

C
,

ξ
dCa

dt
= − kIT

2FD
− KT Ca

Ca + Kd
,

ξ
dy

dt
= y∞ − y

τy
, y = {h, m, n, mT , hT }, (A1)

where V is the membrane potential of the neuron, Ca is
the intracellular calcium concentration, and y is the generic
gating variable. The only difference with respect to the orig-
inal model is the presence of the dimensionless coefficient
ξ , which scales the time variable t and thus determines the
burst frequency f (obtained in step 1 by varying Ic in the
burst region) so that it spans the range required to model
the desired gaits. The ion currents IT (calcium), INa (sodium),
IK (potassium), and IL (leakage) evolve according to the fol-
lowing equations:

IT = gCam2
T hT (V − ECa ), IL = gL(V − EL ),

INa = gNam3h(V − ENa ), IK = gK n4(V − EK ),

which depend on V , Ca, and on the gating variables h (inacti-
vation variable of the Na+ current), m (activation variable of
the Na+ current), n (activation variable of the K+ current), mT

(activation variable of the low-threshold Ca2+ current), and hT

(inactivation variable of the low-threshold Ca2+ current). All
gating variables evolve according to the differential equations
written above for y, where

y∞ = ay/(ay + by), τy = 1/(ay + by) (y = {h, m, n})

ah = 0.128e
17−V

18 , bh = 4

e−0.2(V −40) + 1
,

am = 0.32(13 − V )

e0.25(13−V ) − 1
, bm = 0.28(V − 40)

e0.2(V −40) − 1

an = 0.032(15 − V )

e0.2(15−V ) − 1
, bn = 0.5e

10−V
40

m∞
T = 1

1 + e− V +52
7.4

, τmT = 0.44 + 0.15

e
V +27

10 + e− V +102
15

,

h∞
T = 1

1 + e
V +80

5

, τhT = 62.7 + 0.27

e
V +48

4 + e− V +407
50

.

In the above equations, the leakage current IL has conduc-
tance gL = 0.05 ( mS

cm2 ) and reversal potential EL = −78 (mV);
INa and IK are the fast Na+ and K+ currents responsible
for the generation of action potentials, with conductances
gNa = 100 ( mS

cm2 ) and gK = 10 ( mS
cm2 ) and reversal potentials

ENa = 50 (mV) and EK = −95 (mV); IT is the low-threshold
Ca2+ current that mediates the rebound burst response, with
conductance gCa = 1.75 ( mS

cm2 ) and reversal potential ECa =
k0

RT
2F log( Ca0

Ca ); Isyn is the synaptic current Eq. (2) in the paper.
When the control current Ic is in the range [−0.43, 0.13] ( μA

cm2 )
the neuron exhibits bursting behavior. The other parameters
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TABLE III. Parameter values set in each step.

Parameter Value Parameter Value

Step 0
θE −50 mV gD

i j 0.0119gS
i j

θD −50 mV gF
41/gF

14 2.3327
θF −50 mV gF

32/gF
23 2.3327

ν 10 mV−1 δ Half of burst period
Step 1

ξ 3.0303 Vt −50 mV
Step 2

α 0.7543 kHz θS 17.5 mV
β 0.0391 kHz

Step 3
gF

41 0.0048 nS/cm2 gF
32 0.0048 nS/cm2

gF
14 0.0111 nS/cm2 gF

23 0.0111 nS/cm2

Step 4
gS

12 0.1207 nS/cm2 gE
12 0.0052 nS/cm2

gS
21 0.1207 nS/cm2 gE

21 0.0052 nS/cm2

gS
34 0.1207 nS/cm2 gE

34 0.0052 nS/cm2

gS
43 0.1207 nS/cm2 gE

43 0.0052 nS/cm2

are set as follows: C = 1 ( μF
cm2 ), Ca0 = 2 (mM), D = 1 (μm),

KT = 0.0001 (mM ms), and Kd = 0.0001 (mM). F = 96.489
( C

mol ) is the Faraday constant, R = 8.31441 ( J
mol K ) is the uni-

versal gas constant, and the temperature T is set at 309.15 (K).

APPENDIX B: CPG PARAMETER VALUES

The numerical values of all the CPG parameters set follow-
ing the proposed strategy are listed in Table III.
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