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ABSTRACT

Using the technique of Poincaré return maps, we disclose an intricate order of subsequent homoclinic bifurcations near the primary figure-8
connection of the Shilnikov saddle-focus in systems with reflection symmetry. We also reveal admissible shapes of the corresponding bifur-
cation curves in a parameter space. Their scalability ratio and organization are proven to be universal for such homoclinic bifurcations of
higher orders. Two applications with similar dynamics due to the Shilnikov saddle-foci are used to illustrate the theory: a smooth adaptation
of the Chua circuit and a 3D normal form.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054776

The bifurcation of the Shilnikov saddle-focus is the key for
understanding the origin and structure of deterministic chaos
in diverse systems including diverse applications from (astro)
physics, neuroscience, and economics. This article is meant to
disclose the fine organization of bifurcation unfoldings, includ-
ing multiple shapes of bifurcation curves in a parameter plane
of typical Z2-symmetric systems. We further develop and show-
case the new symbolic approach that lets us disclose a stunning
array of homoclinic and heteroclinic bifurcations of the Shilnikov
saddle-foci in two representative examples.

I. INTRODUCTION

The aim of this paper is twofold: our first goal, follow-
ing the pioneering work of Shilnikov on the saddle-focus1–4 and
the two later papers5,6 on such homoclinic bifurcations, is to
examine the structure(s) of bifurcation unfoldings of the primary
figure-8 connection in a fully Z2-symmetric system. The second
goal is to illustrate computationally the universality and wealth of
such homoclinic bifurcations of the Shilnikov saddle-focus in two
representative ordinary differential equation (ODE) systems. The

second part of his paper is partially an extension of our previous
works7–10 on the so-called Lorenz-like systems11–15 to introduce
and demonstrate a new computational approach16–19 capitaliz-
ing on the symbolic description of homoclinic chaos due to
Shilnikov saddle-foci in symmetric systems. An important fea-
ture of Lorenz-like systems with partial Z2-symmetry, i.e., (x, y, z)
↔ (−x, −y, z), is the universality of complex structures in the
parameter space, which are due to an abundance of homoclinic
bifurcations of the plain (real eigenvalues only) saddle equilibrium
state with a pair of 1D unstable separatrices at the origin. Such
structures are additionally stirred and interconnected by the char-
acteristic Bykov T-points, corresponding to the heteroclinic con-
nections (of codimension-two) between the saddle and a pair of
symmetric saddle-foci. Note that unlike those possessing the full
reflection symmetry (x, y, z) ↔ (−x, −y, −z), a Lorenz-like system
cannot accommodate a saddle-focus specifically at the origin of the
phase space due to the partial Z2-symmetry constraint on the 3D
phase space (not the case in 4D and higher dimensions though).
It is well-known that the occurrence of a single homoclinic orbit
of the Shilnikov saddle-focus can give rise to the onset of chaotic
dynamics, including countably many nearby periodic orbits in the
phase space of such a system. Shilnikov’s theory from the 1960s
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demonstrated the significance of the organizing role of homoclinic
orbits in the hierarchy of deterministic chaos.20–22

Let us re-iterate without excessive details what is well-known
about the Shilnikov homoclinic saddle focus. The reader is wel-
come to consult with Shilnikov’s original papers1–3,23–25 and his
co-authored textbooks,26,27 as well as with other relevant papers on
the theory5,6,28–31 by his students and its various extensions32–36 and
diverse applications.37–47 Figure 1(a) demonstrates the simplest or
primary homoclinic orbit to a saddle-focus of the topological (2,1)-
type; more details including analytical results will be given in Sec. II.
Here, the topological (2,1)-type means that the saddle-focus has a
pair of complex conjugate characteristic exponents (small green dots
in the inset of Fig. 1) in the left open complex half-plane and one
positive real one. The pivotal message of the Shilnikov theorem is
that the global structure of the phase space near the homoclinic orbit
is solely determined by the local qualities, i.e., characteristic expo-
nents of the saddle-focus per se. To be the Shilnikov saddle-focus,
the complex pair is to be the closest to the imaginary axis. Trajec-
tories of a system near such a saddle-focus take a local cross section
5+

1 transverse to the 2D stable manifold Ws
loc and map onto another

cross section 52 transverse to a 1D unstable separatrix 01. Then, the
colored stripes on 5+

1 will be transformed into a spiral, sometimes
called the Shilnikov “snake” with an ordered color pattern on 52.
Next, the global map takes the spiral and maps it back onto the first

cross section as shown in Fig. 1(b). Depending on the ratio of the
local stability to instability at the saddle-focus, there are two generic
options—one is when stability [due to the eigenvalue −ρ in Eq. (3)]
exceeds instability (due to the positive eigenvalue λ), the overall
map is a contraction [Fig. 1(b1)]; otherwise, it is an expansion [see
Fig. 1(b2)]. Formally speaking, the global dynamics is determined by
the sign of the saddle value σ = −ρ + λ or alternatively on whether
the saddle index ν = ρ

λ
is greater/less than 1: it is simple when σ < 0

(ν > 1); otherwise, the dynamics becomes complex if σ > 0 (ν < 1).
In the latter case, the colored (green, blue, and red) stripes in 5+

1 can
be reached from below and crossed, geometrically, by their arched
images on the spiral [see Fig. 1(b2)]. Such crossings are interpreted
as the formation of countably many topological Smale horseshoes
giving rise to countably many unstable periodic orbits, as well as the
onset of complex shift dynamics just near the primary homoclinic
orbit in the phase space of the given system. The corresponding 1D
return maps are shown in Fig. 1(c). These are basically some “param-
eterizations” or “projections” of the spirals on coordinate axes. One
can see from Fig. 1(c1) that the contraction map, when shifted up,
will produce a single stable fixed point (FP) at the intersection with
the 45◦-line from the origin in the 1D return map, which corre-
sponds to the saddle-focus in the phase space. On the contrary, the
expansion map in Fig. 1(c2) with characteristic oscillations gener-
ates countably many crossings, read FPs, on the 45◦-line. When the

FIG. 1. (a) Primary homoclinic orbit 0̄1 of a saddle-focus of (2,1)-type, i.e., with 2D stable manifoldW s and 1D unstable manifoldW u inR
3. The colored stripes on a local 2D

cross section 51 transverse toW
s are taken along the trajectories near the equilibrium state to be transformed into a spiral on the local cross section 52 transverse toW

u.
(b) 2D Poincaré return map 52 → 51 is a contraction in (b1) with a saddle index ν > 1 [corresponding to a 1D map shown in (c1)] or an expansion in (b2) with non-empty
intersections T 6k ∩ 6k giving rise to the onset of countably many Smale horseshoes and saddle POs corresponding to repelling fixed points (FPs) in the 1D map in (c2)
when ν < 1—the so-called Shilnikov condition; from Ref. 23.
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homoclinic orbit in Fig. 1(a) splits above/below Ws
loc, then the 1D

return map, being shifted up/down, nevertheless perseveres most
(countably many) of the unstable FPs (corresponding to saddle peri-
odic orbits in the phase space of the given system). Note that some
of the “oscillations” of the map graph at ν < 1 will become tan-
gent to the 45◦-line to produce new crossings or eliminate them.
Such tangencies cause saddle-node bifurcations, soon to be fol-
lowed by period-doubling ones. This is a reason why the Shilnikov
bifurcation in 3D systems is associated with the so-called
quasi-chaotic attractors22 in which hyperbolic subsets (can) coex-
ist with stable periodic orbits emerging through saddle-node
bifurcations.48,49 This is not necessarily the case in higher domina-
tions where tangencies may give rise to saddle–saddle bifurcations;
see Refs. 25, 50, and 51.

A representative portrait of deterministic chaos due to three
Shilnikov saddle-foci in the phase space (of the smooth Chua model
below) is depicted in Fig. 2. This figure also illustrates the con-
cept of a {0, 1}-based binary symbolic description in application to
symmetric systems with chaotic dynamics.

As pointed out earlier, this paper includes two parts: a the-
oretical one followed by computational sections. First, we extend
the theory to analytically disclose the structure of local bifurcation
unfoldings populated with subsequent homoclinic bifurcations of
the Shilnikov saddle-focus, near the primary one (see Figs. 1 and 5)
in Z2-symmetric systems.

FIG. 2. (a) Homoclinic chaos due to three Shilnikov saddle-foci in the symmetric
3D Chua system (1) at a = 10.16 and b = 14.7. The right 1D separatrix of the
saddle-focusO at the origin (black dot) fills in the double-scroll attractor by making
an unpredictable number of turns around and by switching between two other
saddle-foci O1,2(±1, 0, 0), separated by our key player—the saddle-focus of the
type (2,1) at the origin in the 3D phase space. Its symbolic, binary sequence is
generated using a simple rule: [1] or [0] whenever the trajectory turns aroundO1 or
O2, respectively, or alternatively, when its x-coordinate reaches a next successive
maximum/minimum above/below +1/-1, respectively. See the progression of x(t)
in (B).

The second goal of this study is to reveal computationally the
self-similar, fine organization of the global bifurcation unfolding
of chaos due to the Shilnikov saddle-focus homoclinic bifurcations
in two exemplary, Z2-symmetric systems through detailed visual-
izations with the aid of a newly proposed computational approach
capitalizing on the symbolic description of trajectories on observable
strange attractors.

The first example is a smooth approximation of Chua’s
circuit.52 The circuit, including two capacitors, two resistors, one
inductor, and a nonlinear element, Chua’s diode, is described by
a 3D system of ODEs, with a single nonlinear term. All of its
parameters have specific physical meanings.53 Originally, the non-
linearity was described using a piece-wise function, which was later
replaced with a smooth cubic function in Ref. 54. Both systems were
compared in detail in Ref. 53.

The smooth Chua model with a cubic nonlinearity55,56 is given
by

ẋ = a

(

y +
x

6
−

x3

6

)

, ẏ = x − y + z, ż = −by, (1)

with a, b > 0 being bifurcation parameters. The system is reflec-
tion or Z2–symmetric, i.e., invariant under the involution (x, y, z)
→ (−x, −y, −z). It has three equilibrium states: O(0, 0, 0) can be a
saddle of the topological type (2,1), i.e., with two 1D unstable sep-
aratrices, call them 01 and 02 and a 2D stable manifold Ws, or a
saddle-focus of the same topological type, while O1(−1, 0, 1) and
O2(1, 0, −1) can be stable or saddle-foci of the type (1,2). In the
chaotic region of our particular interest in the parameter plane, all
three equilibria are saddle-foci. Figure 3 illustrates a bifurcation dia-
gram for the equilibrium states in the cubic Chua model (1); see
Refs. 26 and 55 for more details.

The other example employed for the illustration of our sym-
bolic approach to disclose the global organization of homoclinic
and heteroclinic bifurcations of the Shilnikov saddle-foci is an
asymptotic normal form,57

ẋ = y, ẏ = z, ż = −b z − y + a x
(

1 − x2
)

, (2)

with (a, b) > 0 being the bifurcation parameters, describing local
bifurcation unfolding in systems, near an equilibrium state with a
triplet of zero characteristic exponents on a Z2-symmetric central
manifold. Its phase space with three saddle-foci may look simi-
lar to that of the cubic Chua model (1). This normal form, as
well as some other systems were studied in detail in Refs. 32 and
58–60, which along with the Brussels group,28,33,34 were the very first
works in the West that began studying the Shilnikov saddle-focus
and spiral chaos around it. We will refer to Eq. (2) as the cubic
Arneodo–Coullet–Spiegel–Tresser (ACST) model after the authors
of the series of the publications.

Unlike hyperbolic systems with complex dynamics, the Chua
model constantly undergoes abrupt transitions or bifurcations,
including homoclinic, saddle-node, and period-doubling, within a
parameter region of the existence of the three Shilnikov saddle-foci;
see Ref. 5. However, we will not discuss the one-sided chaos due
to the two symmetric saddle-foci because its bifurcation structure is
essentially the same as observed in the Rössler system; see Refs. 46
and 61. Alternatively, we focus on the symmetric and asymmetric
homoclinics generated by the central saddle-focus at the origin, and
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FIG. 3. Bifurcation diagram of the cubic Chua model. Abbreviations AH and H8
stand for, respectively, a supercritical Andronov–Hopf bifurcation of the symmet-
ric equilibria O1,2 and a homoclinic figure-8 connection of the saddle/saddle-focus
O at the origin, while NS, NSF, and S → SF stand, respectively, for a neutral
(resonant) saddle with a zero saddle value (σ1 = 0 or saddle index ν = 1), a
saddle-focus with zero saddle value (σ SF

2 = 0 or saddle index ν = 1) and saddle
⇔ saddle-focus transition with σ1 < 0 (see the panel at the right-bottom corner),
whereas the crossing point of the vertical line σ2 with the curve H8 corresponds to
the Shilnikov saddle-focus with zero divergence. Along the pathway b = 6, first,
the 1D unstable separatrices 01,2 of the origin O converge to stable equilibria
O1,2; next, as the a-parameter is increased, they converge to stable asymmet-
ric periodic orbits (POs) that further lose stability through a first period-doubling
(PD) bifurcation in the forthcoming cascade. The pair of the primary saddle POs
becomes the figure-8 homoclinic connection of the Shilnikov saddle-focusO, thus
giving rise to the onset of homoclinic chaos in the smooth Chua model (1); from
Ref. 26.

how their structures are embedded in the parameter space. We use
binary symbols [0] and [1] to symbolically encode such homoclinic
orbits; see Fig. 4 illustrating the concept. Specifically, [1] is used to
describe the passes of the separatrix 01, while [0] is reserved for
the other symmetric separatrix 02. For example, double or triple
one-sided homoclinic orbits are encoded as [11] or [111] or sym-
metrically as [00] or [000], respectively; see Figs. 4(a) and 4(b). If
01 misses the primary loop and goes underneath the stable mani-
fold Ws

loc before it comes back to the saddle-focus as illustrated in
Fig. 4(c), then its code is [10]. Figure 4(d) depicts a more complex
triple homoclinic orbit encoded as [110].

The paper is organized as follows. In Sec. II, we will present our
analytical results on homoclinic bifurcations of the Shilnikov saddle-
focus in reflection-symmetric systems. Section III will introduce a
symbolic computational tool (see also Refs. 7 and 9) and apply it to
the smooth Chua model (1) to compare numerical findings with the
theoretical results from Sec. II. Section III will focus on the numer-
ical study of bi-parametric sweeps of the normal form (2), which is
followed by conclusions and discussion.

FIG. 4. Secondary homoclinic orbits of a saddle-focus (2, 1) in the phase
space of a Z2-symmetric system: one-sided double (a) and triple (b) homoclinics
encoded symbolically as [11] and [111], respectively. (c) and (d) Figure-8 homo-
clinic orbits (of 01) with encoded as [10] and [110], respectively. The depicted
homoclinic orbits were generated, for the sake of illustration purposes, by solu-
tions of a 4D Z2-symmetric Shimizu–Morioka type model with the Shilnikov
saddle-focus at the origin; see Eq. (C.7.7) on page 924 in Ref. 26.

II. ANALYTICAL APPROACH: A HOMOCLINIC

BIFURCATION STRUCTURE OF THE SHILNIKOV

SADDLE-FOCUS IN SYMMETRIC SYSTEMS

Let us consider the homoclinic Shilnikov saddle-focus of the
(2,1)-type at the origin O of a 3D system with reflection symme-
try. Figure 5 illustrates this where both 1D separatrices 01,2 leave the
saddle-focus symmetrically, and after a short excursion, they come
back to it along its 2D stable manifold Ws

O. This is called a primary
homoclinic figure-8. In what follows, we will consider how small
smooth perturbations of a system with such a figure-8 can gener-
ate longer subsequent homoclinic orbits of the saddle-focus, under
the fulfillment of a single so-called Shilnikov condition.3 We will
also describe how such homoclinic bifurcations are embedded in a
parametric plane.

Following Refs. 1 and 23, we consider a saddle-focus (2,1) at the
origin in the following Z2-symmetric system (Note that unlike the
linearization assumption requiring the absence of resonant terms,
some C

r−1-transformations are proposed in Refs. 30 and 31 of coor-
dinates and time, eliminating no-resonant terms in the right-hand
side of the original C

r-smooth system, let it be written down in a
more suitable form to find its solutions near a saddle equilibrium
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FIG. 5. A pair of the primary homoclinic orbits, symbolically encoded as [1] and
[0], of a saddle-focus at the origin in the phase space of a Z2-symmetric system.
The 1D outgoing separatrices 01 and 02 hit outwardly the top51 and bottom52

bases of a cylinder-shaped cross section enclosing the origin and its sidewall 50

upon their return to the saddle-focus.

state with stable and unstable invariant manifolds straightened in
the affine coordinates; see more in Ref. 26.):

ẋ = −ρ(µ)x − ω(µ)y + F1(x, y, z, µ),

ẏ = ω(µ)x − ρ(µ)y + F2(x, y, z, µ),

ż = λ(µ)z + F3(x, y, z, µ),

(3)

where smooth functions Fi, Fi(·) = −Fi(−(·)) in the Z2-symmetric
case, vanish at O(0, 0, 0) along with their first derivatives for small µ;
the primary homoclinic figure-8 connection occurs at µ = 0. The
characteristic exponents of the saddle-focus are given by −ρ(µ)

± iω(µ) so that ρ(µ) and ω(µ) > 0 and λ(µ) > 0. The so-called
saddle index is given by ν(µ) = ρ(µ)

λ(µ)
< 1; this is the Shilnikov

condition3 needed for complex dynamics of the finite-shift type to
merge in a system with such a saddle-focus. In this normalized
system, the z-axis is the linearized unstable manifold Wu

O, and the
(x, y)-plane is the linearized stable manifold Ws

O of the saddle-focus
at the origin. The solution of the linearized system (3) initiated at a

point (x0, y0, z0) can be written as

x(t) = e−ρ(µ)t [x0 cos(ω(µ)t) − y0 sin(ω(µ)t)],

y(t) = e−ρ(µ)t [y0 cos(ω(µ)t) + x0 sin(ω(µ)t)],

z(t) = eλ(µ)t z0.

(4)

As a transverse cross section, we pick a sufficiently small cylin-
der (see Fig. 5) enclosing the saddle-focus, to construct a Poincaré
return map in cylinder coordinates (r, ϕ, z), following Ref. 28. It
is constructed with a sidewall given by 50 : r = R(−R < z < R),
and top and bottom disks are given by 51 : z = R(0 < r < R) and
52 : z = −R(0 < r < R), respectively; here, R is sufficiently small.

For z0 > 0, the local map T0 : 50 7→ 51((ϕ0, z0) 7→ (r, θ)) is
calculated from Eq. (4), noting that x0 = R cos ϕ0, y0 = R sin ϕ0,
x(t) = r cos θ , y(t) = r sin θ , and z(t) = R. It is given by

T0 :

[

r = R(z0/R)ν(µ),

θ = ϕ0 + (ω(µ)/λ(µ)) ln(R/z0).
(5)

Similarly, when z0 < 0, the local map T′
0 : 50 7→ 52((ϕ0, z0)

7→ (r, θ)) can be calculated from (4) as

T′
0 :

[

r = R(−z0/R)ν(µ),

θ = ϕ0 + (ω(µ)/λ(µ)) ln(−R/z0).

The global map T1 : 51 7→ 50 [which is (x, y) 7→ (ϕ0, z0) or
(r cos θ , r sin θ) 7→ (ϕ0, z0)] along the separatrices 01,2, returning
to the cylinder-shaped cross section, is approximated by its linear
transformation (Likewise, the map obtained by solving the lin-
earized system is a correct approximation of the true local map as
nonlinearities due to Fi vanish identically at small (x, y, z).):

T1 :















ϕ0 = a1µ + a(µ)x + b(µ)y

= a1µ + A(µ)r cos(θ + α1(µ)) + O(r2),

z0 = µ + c(µ)x + d(µ)y

= µ + B(µ)r sin(θ + α2(µ)) + O(r2),

(6)

where A(0)B(0) cos[α1(0) − α2(0)] 6= 0 for a non-degenerate linear
transformation. The map T′

1 : 52 7→ 50 can be derived from T1

using reflection symmetry. For (x, y) ∈ 52, T′
1(x, y) and T1(−x, −y)

are symmetric with respect to the origin; therefore,

T′
1 :

[

ϕ0 = π + a1µ − A(µ)r cos(θ + α1(µ)) + O(r2),

z0 = −µ + B(µ)r sin(θ + α2(µ)) + O(r2).
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Hence, when z0 > 0, the complete return map T = T1 ◦ T0 :
50 7→ 50 is given by

T :































ϕ̄0 = a1µ + A(µ)R(z0/R)ν(µ) cos

(

ϕ0 +
ω(µ)

λ(µ)
ln(R/z0)

+ α1(µ)

)

+ O(z
2ν(µ)

0 ),

z0 = µ + B(µ)R(z0/R)ν(µ) sin

(

ϕ0 +
ω(µ)

λ(µ)
ln(R/z0)

+ α2(µ)

)

+ O(z
2ν(µ)
0 ).

For the case z0 < 0, the corresponding return map T′ = T′
1

◦ T′
0 : 50 7→ 50 is given by

T′ :































ϕ̃0 = π + a1µ − A(µ)R(−z0/R)ν(µ) cos

(

ϕ0

+
ω(µ)

λ(µ)
ln(−R/z0) + α1(µ)

)

+ O(z
2ν(µ)

0 ),

z̄0 = −µ + B(µ)R(−z0/R)ν(µ) sin

(

ϕ0

+
ω(µ)

λ(µ)
ln(−R/z0) + α2(µ)

)

+ O(z
2ν(µ)
0 ).

Let A0 = A(0), B0 = B(0), �0 = ω(0)/λ(0), ν0 = ν(0),
φ1 = −α1(0) − �0 ln R, and φ2 = −α2(0) − �0 ln R. Keeping only
the dominant terms, these maps can be simplified as follows:

T :















ϕ̄0 = a1µ + A0R
1−ν0z

ν0
0 cos(�0 ln z0 + φ1 − ϕ0)

+ O(z
2ν0
0 ),

z̄0 = µ − B0R
1−ν0z

ν0
0 sin(�0 ln z0 + φ2 − ϕ0)

+ O(z
2ν0
0 )

(7)

and

T′ :















ϕ̃0 = π + a1µ − A0R
1−ν0(−z0)

ν0 cos(�0 ln(−z0)

+ φ1 − ϕ0) + O(z
2ν0
0 ),

z̃0 = −µ − B0R
1−ν0 (−z0)

ν0 sin(�0 ln(−z0)

+ φ2 − ϕ0) + O(z
2ν0
0 ).

(8)

A homoclinic orbit that passes l times through the cylinder-
wall 50 is called an l-loop homoclinic orbit, while shorter ones
with two and three passes are called double- and triple-loop homo-
clinic orbits, respectively. Whenever either 1D separatrix 0i hits 50

with z > 0, we extend its encoding with the symbol 1; otherwise,
if z < 0, its code is extended with the symbol 0. For example, a
homoclinic orbit that passes through 50 two times with z > 0 is
called a one-sided double separatrix [11]-loop/homoclinic orbit [see
Fig. 4(a) and 4(b)–4(d) for longer homoclinic orbits and their sym-
bolic codes, respectively]. The µ-parameter is often referred to as a
splitting parameter whose positive/negative variations split the pri-
mary homoclinic orbit, say 0̄1, upward/downward with respect to
the saddle-focus or its stable manifold Ws

loc.

Figure 1(c) presents the truncated 1D Poincaré return map
T : z0 → z̄0

z̄0 = µ − B0R
1−ν0z

ν0
0 sin(�0 ln z0 + φ2) (9)

at µ = 0 and with z > 0. The shape of the map is due to the
sine-wave function, with its amplitude or envelope bounded by
±B0R

1−ν0z
ν0
0 (0 < ν0 < 1), while the frequency of its zeros increases

logarithmically as z approaches 0+. The return map for z < 0 is the
mirror reflection of the map (9). Small variations of µ vertically shift
the map’s graph slightly (Figs. 7 and 8), while z0-variations squeeze
or stretch it horizontally.

Figure 6 demonstrates several 1D return maps for different µ-
values. In particular, Fig. 6(a) and b1,2 illustrate multiple [11]- and
[00]-homoclinic orbits for a fixed value of the saddle index ν0, while
Fig. 6(c) represents terminal triple [111] and [000] orbits (compare
with Fig. 4). In these maps, forward iterates of the origin take it back
(to O) after two or three steps, respectively. One can infer that such
orbits should come in pairs and that the corresponding bifurcation
curves must be of a U-shape, with a critical point associated with
tangency, like the one in Fig. 6(c). Moreover, an examination of the
maps suggests that there are countably many such orbits and bifur-
cations accumulating to µ = 0. Similarly, Figs. 6(d) and 6(e) show
the 1D return maps corresponding to symmetric homoclinic orbits
such as [01]/[10] and [110]/[001] that also come in pairs on every
oscillation of the map. These conjectures will be proved analytically
below.

A. [11]-double homoclinic orbits and bifurcations

Figure 4 illustrates a [11]-double homoclinic orbit where the
1D unstable separatrix 01 slightly misses the saddle-focus above its
2D manifold Ws

loc after the first loop. It comes back by intersecting
the cross section 50 at (ϕ0, z0) = (a1µ, µ), where µ > 0. According
to the map (7), the next intersection point of 01 with 50 is found
from these equations

ϕ1 = a1µ + A0R
1−ν0µν0 cos(�0 ln µ + φ1) + O(µ2ν0),

z1 = µ − B0R
1−ν0µν0 sin(�0 ln µ + φ2) + O(µ2ν0),

(10)

where the small term ϕ0 = a1µ can be omitted.
The [11]-double homoclinic orbit occurs when z1 = 0; i.e.,

µ + O(µ2ν0) = B0R
1−ν0µν0 sin(�0 ln µ + φ2), (11)

which is equivalent to

µ1−ν0 + O(µν0) = B0R
1−ν0 sin(�0 ln µ + φ2). (12)

As long as µ is sufficiently small and ν0 < 1, then we
can assume B0R

1−ν0 sin
(

�0 ln(µ) + φ2

)

= 0. The solutions of this

equation are µ
(n)
1 = e

− 2nπ
�0

−
φ2
�0 and µ

(n)
2 = e

− 2nπ
�0

± π
�0

−
φ2
�0 for suffi-

ciently large n. In this expression, “+” is used for B0 > 0, and
“−” for B0 < 0. Without loss of generality, B0 > 0 is assumed. Note

that if z1 < 0 for µ ∈ (µ
(n)
1 , µ(n)

2 ), then 01 goes underneath Ws
loc of

the saddle-focus after the second loop, and therefore, no sequen-
tial one-sided [11 . . ..] homoclinic orbits or bifurcations can occur
when µ ∈ (µ

(n)
1 , µ(n)

2 ). This situation is illustrated by the 1D maps
presented in Figs. 6(b1) and 6(b2), between which the separatrix
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FIG. 6. 1D Poincaré return maps associated with the subsequent homoclinic orbits of the saddle-focus in the phase space shown in Fig. 4: the forward iterates of the origin
correspond to the 1D unstable separatrices returning to the saddle-focus. (a) and (b) Multiplicity of symmetric double homoclinic orbits encoded with [11] and [00] is due to
countably many zeros in the 1D oscillatory map near such a saddle-focus. (c) Triple homoclinic orbits encoded with [111] and [000], like the homoclinics shown in Fig. 4(b).
(d) and (e) Unlike one-sided orbits, these 1D maps generate multiplicity of more complex pairs of figure-8 orbits such as [10]/[01] and [110]/[001], similar to those shown in
Figs. 4(c) and 4(d), respectively.

falls down below the two zeros of the given U-shaped section of the
oscillatory return map.

Figures 7(b) and 8(b) depict the organization of [11]-
homoclinic bifurcation curves in the (µ, ν0)-parameter plane. Ver-
tical ∩-shaped (rounded) bars filled with blue color represent the
parameter regions subject to the condition z1 < 0, whereas their
borderlines correspond to the [11]-homoclinic bifurcations; i.e.,
they are the corresponding bifurcation curves of the [11]-orbits. The
widths wn and the distances dn between any two closest ∩-shaped

bars, evaluated as wn = µ
(n)
2 − µ

(n)
1 and dn = µ

(n)
1 − µ

(n−1)
2 , respec-

tively, decrease proportionately as n → ∞ (µ → 0), as given by the
following ratios:

wn+1

wn

=
µ

(n+1)
2 − µ

(n+1)
1

µ
(n)
2 − µ

(n)
1

= e
− 2π

�0

and

dn+1

dn

=
µ

(n+1)
1 − µ

(n)
2

µ
(n)
1 − µ

(n−1)
2

= e
− 2π

�0 .

Hence, both distance and width shrink exponentially fast as
they accumulate to the primary homoclinic bifurcation—the vertical
line µ = 0 in the (µ, ν0)-diagram [see Figs. 7(b) and 8(b)].

When ν0 → 1, the term µ1−ν0 is no longer negligible but sig-
nificant in Eq. (12). In this case, solving µ1−ν0 = B0R

1−ν0 sin(�0 ln
µ + φ2) or equivalently µ = B0R

1−ν0µν0 sin(�0 ln µ + φ2) gives
z1 = 0. These equations can also be interpreted geometrically,
see Figs. 7(a) and 8(a), respectively, for the cases B0 < 1 and
B0 > 1. Specifically, the sought condition z1 = 0 needed for a [11]-
homoclinic orbit to close is fulfilled at all intersections of the “sine”
function y = B0R

1−ν0µν0 sin(�0 ln µ + φ2) and the line L0 : y = µ.
As such, the union of all blue intervals [Figs. 7(a) and 8(a)] gives
the range of µ-values for which z1 < 0 for a given constant ν0.
As ν0 → 1, the amplitudes/envelopes C1,2 : y = ±B0R

1−ν0µν0 of the
sine function B0R

1−ν0µν0 sin(�0 ln µ + φ2) flatten and transform
into the two lines L1,2 given by y = ±B0µ eventually.

If B0 < 1, the blue µ-intervals start shrinking and vanish after
the local maximums of the sine function are lowered below the line
L0; see Fig. 8(a). The closer such a µ-interval is placed to µ = 0,
the larger value of ν0 is needed for the interval to vanish. In the
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FIG. 7. Panels illustrating the causality and structure of the bifurcation unfolding of the 1D Poincaré return map (9) in the region of z1 < 0 when B0 < 1. (a) Condition z1 < 0
is fulfilled on the graph segments where the sine function is above the line L0. The union of the projected (blue) intervals yields the range ofµ-values resulting in z1 < 0. The
interval end points correspond to the formation of the double [11]- and [00]-homoclinic orbits. As ν0 → 1, the amplitude C1,2 of the sine function flattens to two lines, L1,2,
causing the blue intervals to vanish. (b) Sketch of the (µ, ν0)-plane with the colored regions, also known as blue ∩-bars, in which z1 < 0. The outlines of the blue ∩-bars on
the µ > 0-side correspond to the double [11]/[00] homoclinic orbits. The outlines of the blue ∩-bars on the µ < 0 side correspond to the double [10]/[01]-orbits. The blue
bars are bounded from above by the C3,4-curves; wj and dj stand for the widths and the distances between the bars, respectively.

(µ, ν0)-parameter diagram, the corresponding region looks like a
vertical u-bar with the tipping point cut out when µ = B0R

1−ν0µν0

or ν0 = 1 −
ln B0

ln µ−ln R
. This equality is held on the red dash C3-curve

in the (µ, ν0)-parameter diagram in Fig. 7(b). This (cusp-shaped)
C3-curve approaches the level ν0 = 1 from below as µ → 0. The ver-
tical bars that terminate before reaching the horizontal line ν0 = 1
all have the ∩-shape.

In the case B0 > 1, the bars and the intervals between them
become narrower as ν0 → 1, but they persist [Fig. 8(a)]. In the
(µ, ν0)-parameter diagram, the condition z1 < 0 is held in the union
of all blue u-shaped bars below the level ν0 = 1; see Fig. 8(b).

B. [10]-double homoclinic bifurcations

A typical [10]-double homoclinic orbit is illustrated in Fig. 4(c).
The corresponding 1D return map is shown in Fig. 6(d). By con-
struction, after the separatrix 01 runs a single [1]-loop on its way
back to the saddle-focus, it goes underneath its stable manifold Ws

loc

and hits the cross section 50 at (ϕ0, z0) = (a1µ, µ) with µ < 0, and
then it completes the second [0]-loop heading toward the equilib-
rium state. It hits 50 for the second time at some point (ϕ1, z1),
which can be found by the return map as follows:

ϕ1 = π + a1µ − A0R
1−ν0(−µ)ν0 cos(�0 ln(−µ) + φ1)

+ O((−µ)2ν0),
(13)

z1 = −µ − B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2)

+ O((−µ)2ν0).

The condition z1 = 0, i.e.,

−µ + O((−µ)2ν0) = B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2),

corresponds to the occurrence of a [10]-double homoclinic orbit.
One can observe that this condition is similar to the case of [11]-
homoclinic orbits where µ is replaced with −µ. Therefore, the
structure of the bifurcation unfolding for [10]-homoclinic orbits
is flip-symmetric (µ → −µ) to the bifurcation diagram for the
[11]/[00]-homoclinics; see Figs. 7(b) and 8(b).

Now, we arrive at the following theorem for double homoclinic
orbits.

Theorem 1. Let a reflection-symmetric system have a pair
of primary homoclinics to the Shilnikov [ν(µ) < 1] saddle-focus at
µ = 0. Then, double homoclinics occur at values

|µ| = B0R
1−ν0 |µ|ν0 sin(�0 ln |µ| + φ2),

where B0, R > 0 are constants. If B0 < 1, then the (µ, ν0)-parameter
diagram includes countably many ∩-shaped bifurcation curves cor-
responding to double homoclinics that are topped up by the curve,

ν0 = 1 −
ln B0

ln |µ|−ln R
, converging to 1 as µ → 0. All such double-

bifurcations accumulate to the primary one from both sides with a

scalability ratio e
− 2π

�0 for both the width and the distance between the
bifurcation curves.

C. [111]-triple homoclinic orbits and bifurcations

A typical [111]-triple homoclinic orbit of the saddle-focus in
the phase space is illustrated in Fig. 4(b). Recall that such orbits,
[111. . .], are all one-sided, so to say. The corresponding 1D return
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FIG. 8. Panels illustrating the causality and structure of the bifurcation unfolding of the 1D Poincaré return map (9) in the region of z1 < 0 when B0 > 1. (a) z1 < 0 is
fulfilled on the graph segments where the sine function is above the line L0. Blue intervals on the µ-axis are where z1 < 0. The interval end point is the bifurcation µ-values
corresponding to one-sided [11]/[00] homoclinic orbits. As ν → 1, the envelopes C1,2 of the sine function flatten to the L1,2-lines, thereby making the blue intervals shorten
to the green intervals. (b) The plot sketches the regions in the (µ, ν0)-parameter plane—blue 5-bars—where z1 < 0. The outlines of the blue 5-bars on the µ > 0-side
are the bifurcation curves of the double [11]/[00]-orbits. The outlines of the blue 5-bars on the µ < 0-side correspond to [10]/[10] double homoclinic orbits; here, wj and dj
stand for the widths and distances between the bars, respectively.

map for a critical [111]-orbit is shown in Fig. 6(c) where the ori-
gin is taken back to zero, here single or critical, meaning that such
a homoclinic orbit may no longer occur for the given map, should
the splitting parameter µ be increased. This tangency at zero in the
map corresponds to the turning point of a ∩-shaped homoclinic
bifurcation curve, like ones shown in Fig. 7(b).

Therefore, let the unstable separatrix 01 make three such loops
prior to its returning to the saddle-focus along its Ws

loc. Then, the
corresponding truncated map, accounting for the dominant terms
only, is given by

z1 = µ − B0R
1−ν0µν0 sin(�0 ln µ + φ2) + O(µ2ν0),

z2 = µ − B0R
1−ν0z

ν0
1 sin(�0 ln z1 + φ2) + O(z

2ν0
1 )

(14)

(equations for ϕ-variables are omitted). To find the bifurcation
curves corresponding to [111]-triple homoclinics, one must first
identify the µ-range where z2 < 0.

The first part in Eq. (14) implies that z1 ∼ µν0 , and therefore, z1

is small when µ is small. The second equation in (14) can be further
reduced to sin(�0 ln z1 + φ2) = 0, assuming that µ is small enough.

Its solutions are z1 = e
− 2mπ

�0
−

φ2
�0 or e

− 2mπ
�0

+ π
�0

−
φ2
�0 ; here, m ∈ Z is

sufficiently large. Denote by Im all intervals of z1 for such z2 < 0.
It can be deduced from the mth period of the sine function that the
sought intervals are given by

Im ≈ (e
− 2mπ

�0
−

φ2
�0 , e

− 2mπ
�0

+ π
�0

−
φ2
�0 ),

with m ∈ N being sufficiently large and µ is assumed to be small.
Figure 9 illustrates such an interval Im for some small fixed µ: it is
highlighted in green on the z1-axis within which the mth period of

the sine function, y = B0R
1−ν0z

ν0
1 sin(�0 ln z1 + φ2), is greater than

the given µ. Assume that Dm is a local maximum on the mth period
of the sine function whose graph is a dashed-line in Fig. 9(b). If
Dm < µ, then any such interval Im shrinks and collapses as ν0 → 1.
If Dm > µ, in contrast, then Im narrows down to some (orange)
interval that persists in the limit ν0 → 1; see Fig. 9(b).

Let us first discuss the case B0 < 1. The first equation (14) can
be written as follows:

µ − z1 = B0R
1−ν0z

ν0
1 sin(�0 ln z1 + φ2) + O(z

2ν0
1 ).

One can observe that the right-hand side of the equation above
is the sine function, like the one shown in Fig. 10(a). Its sections
above L0, which are filled in blue, are the same ones shown in
Fig. 7(a), and the boundaries of the blue ∩-shape bars in Fig. 10(b)
are the [11]-homoclinic bifurcation curves [Fig. 7(b)], which are
elaborated on in Sec. II A. Let us examine [111]-homoclinic
bifurcations occurring only on one period of the sine function
y = B0R

1−ν0µν0 sin(�0 ln µ + φ2). The chosen period is labeled by
end points, A and B, in Fig. 10(a). Consider the nth period given

by µ ∈ (e
− 2nπ

�0
− π

�0
−

φ2
�0 , e

− 2nπ
�0

+ π
�0

−
φ2
�0 ). Assume that the function has

a local minimum mn at µmin and a local maximum Mn at µmax.
After the bent envelops C1,2 are rectified and become the straight
lines L1,2 at ν0 = 1, the new local minimum and maximum on the
given period are denoted by m′

n and M′
n. Consider [111]-homoclinic

bifurcations occurring between two blue bars, an and an+1 (corre-
sponding to the occurrence of two consecutive [11]-orbits on the
same or similar interval) in the bifurcation diagram in Fig. 10(b).

Recall that z2 < 0 when z1 ∈ Im, with m ∈ N being sufficiently
large. By construction, y = µ − Im represents a strip bounded by
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FIG. 9. The graph (solid line) of the sine function y = B0R
1−ν0 z

ν0
1 sin(�0 ln z1 + φ2) bounded by the C1,2-curves/envelopes. Its section above the horizontal line y = µ is

painted green. The dashed graph is given by the sine function y = B0z
ν0
1 sin(�0 ln z1 + φ2) bounded by the L1,2-lines. The dashed graph is completely below the line y = µ

in (a), whereas its crossing with the line y = µ occurs on an orange interval nested within the green interval Im on the z1-axis in (b).

two lines nearly parallel for large enough m ∈ N; see Fig. 10;
actually, any two successive lines are no longer parallel if we take
into account smaller terms that were neglected earlier. Therefore,
the range of µ-values corresponding to z2 < 0 is a union of all
the interception intervals of (colored) strips y = µ − Im, with the
curve y = B0R

1−ν0µν0 sin(�0 ln µ + φ2) projected on the µ-axis. All
such strips line up under and accumulate from below to L0 as m

increases. They become narrower while approaching L0 so that
|Im+1|

|Im|

= e
− 2π

�0 . Six such colored strips labeled by S1, . . . , S6 are sampled in
Fig. 10(a) corresponding to multiple distinct [111]-triple orbits and
their homoclinic bifurcation curves in the (µ, ν0)-parameter plane
[Fig. 10(b)].

Let the purple strip S1 at the bottom be the very first
one that intercepts the oscillatory graph of the sine function
y = B0R

1−ν0µν0 sin(�0 ln µ + φ2). The projection of this overlap
onto the µ-axis, say p1, is the µ-interval where z2 < 0 for a given
constant ν0. It is located in between two blue intervals, on which the
sine function is greater than L0 [Fig. 10(a)]. In the limit ν0 → 1, the
bent envelopes C1,2 straighten up and become the L1,2-lines, which
makes the given p1-interval collapse and vanish. The correspond-
ing image of p1 is the purple ∩-shaped solid bar, say bn1, located
in the middle of the two blue ∩-shaped bars, an and an+1 (corre-
sponding to the condition z1 < 0) in the (µ, ν0)-parameter plane in
Fig. 10(b). In the case of S2 or S6, we have the following inequalities
mn < (µ − Im)|µ=µmin < m′

n or M′
n < (µ − Im)|µ=µmax , respectively;

i.e., the stripes are bounded by the old and new local minima and
maxima on the nth period of the sine function. Figure 10(b) gives
an interpretation of these inequalities in the (µ, ν0)-bifurcation dia-
gram: the corresponding (reddish) region, say bn2, is formed through
a merger of two bending vertical bars forming a bridge- or arch-like

connection atop the ∩-shaped one bn1; the same is true for the
green bending bridges, say bn2 and b1

n6 due to the S6-strip, which
are placed on top of the blue bars, an and an+1. The geometric
explanation of such a ∩-shape is the same: the graph of the sine
function no longer crosses S2 or S6 as ν0 is increased or decreased
beyond some thresholds corresponding to critical tangencies with
these stripes. Clearly, there can be more such bridge-shaped regions
in the bifurcation diagram if there are more such strips fitting these
conditions.

In addition, a top strip like S6 can give rise to extra narrow
(green) ∩-bars located inside every bridge (such as bn6 and b1

n6)
in Fig. 10(b) provided that it is (i) close to L0 and (ii) is narrow
enough to shrink and vanish before the corresponding two bending
bars merge, forming a bridge-like object in the bifurcation dia-
gram in the limit ν0 → 1 . Otherwise, if the following inequalities
m′

n < (µ − Im)|µ=µmin and (µ − Im)|µ=µmax < M′
n are fulfilled, say

for the S4-strip in Fig. 10(a), then no bridge- or arch-shaped region
will be formed through a merger of two bending bars. Alternatively,
the corresponding (yellow) structure will look like either a 5-bar
(b1

n4) or a ∩-bar (b2
n4 to the right from b1

n4) in the (µ, ν0)-parameter
plane in Fig. 10(b). The shape of such bars, 5- or ∩-like, is deter-
mined by whether the width of the strip or, equivalently, the width
of the Im-interval remains small but finite as in Fig. 9(b) or it col-
lapses as depicted in Fig. 5(a) in the limit ν → 1. Since a narrower
strip is likely to vanish, therefore, the yellow ∩-bar resides closer
to the blue [11]-orbit bars. If m′

n or M′
n happens to be inside the

given strip, like S3 or S5, then two of its sections intercepting the
graph of the sine function will merge after the minimum or maxi-
mum of the sine function moves inside S3 and S5, with changes in
µ. Meanwhile, both S3 and S5 keep narrowing as ν0 → 1. Therefore,
the extreme (min/max) points can slip away from overlapping with

Chaos 31, 073143 (2021); doi: 10.1063/5.0054776 31, 073143-10

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 10. The case B0 < 1. (a) The solid graph of the sine function y = B0R
1−ν0µν0 sin(�0 lnµ + φ2) bounded by the curves C1,2 : y = ±B0R

1−ν0µν0 . The dashed graph
of the sine function y = B0µ sin(�0 lnµ + φ2) bounded by the lines L1,2 : y = ±B0µ. The interceptions of the solid color strips S1 − S6, parallel to the line L0 : y = µ,
and the sine function are projected to the µ-axis. The closer a strip is to L0, the narrower it becomes. (b) (µ, ν0)-parameter plane sketching a bifurcation unfolding including
∩-bars [color matching panel (a)] such as an and an+1 (in blue) outlining the double [11]/[00] homoclinic orbits and bnj for triple [111]-orbits. Around each blue bar, there are
a pair of narrow ∩-bars and a bridge due to the strip S6 in (a). Besides, shown are a few Y-shaped bifurcation objects due to intersections of the sine function with the strips
S3 and S5 and a pair of yellow ∩-bars and a pair of 5-bars generated by strip S4, as well as a reddish bridge due to the crossing with S2. Shown in the middle is a purple
∩-bar bn1, which is the widest domain for triple homoclinics orbits; other such regions fit narrow in the parameter space.

S3 or S5, which result in the corresponding bridge-like region decou-
pling into two “Y”-shaped objects. These are depicted in Fig. 10(b)
as yellow pair-wise bars, like bn3 due to S3, atop bn2, and greenish
Y-shaped bars like bn5 due to S5. Both branches remain left-open
as they may end up differently with parameter variations. Either
branch of a Y-shaped bar can bridge with the symmetric one or
they both terminate prior to merging into one. A bar like bn3 can
also morph into the shape of the bar next to it, of the 5- or
∩-shape. Thus, the Y-shape can be viewed as a transition between
the bridge and the ∩-bar. It is easy to argue that there can be a sin-
gle Y-shaped region or none generated by each strip like S3 or S5.
Let bn1, . . . , bn6 be referred to as [111]-triple homoclinic zones. One
or more of such zones would be absent in the bifurcation diagram
sketched in Fig. 10(b) if there were no strips passing throughout the
corresponding position in Fig. 10(a) and so forth. For example, the
bn1-zone may no longer be present if the strip S1 were positioned to
go through the sine function in the way the strip S2 does. Another
example is S4: if the relative positions of µ and the z1 sine function
for all S4 strips were such as shown in Fig. 9(b), then the b2

n4-bars
would not be spotlighted in Fig. 10(b).

Note that a [111]-zone in Fig. 10(b) becomes the thicker, the
further it is away from the closest blue ∩-bars an and an+1. Therefore,
bn1, if it exits, is significantly larger than others because the strip S1

intercepts the graph of the sine function at its flattest section near
the critical point. Actually, by computing the derivative of the sine

function y = B0R
1−ν0µν0 sin(�0 ln µ + φ2), we obtain

d y

dµ
=

N2

µ1−ν0
sin(�0 ln µ + φ2 + θ0), (15)

where N2 = B0R
1−ν0

√

ν2
0 + �2

0 and cos θ0 = ν0/
√

ν2
0 + �2

0. For a

fixed ν0 < 1,
dy

dµ
is large because µ is small. Therefore, the graph

of the sine function looks as if it is made of vertical (and horizon-
tally dense) lines except for small neighborhoods of critical points
of y = B0R

1−ν0µν0 sin(�0 ln µ + φ2). The overlapping of S1 with the
sine function is one such neighborhood. Therefore, the width of bn1

is to be significantly larger compared to those of other [111]-zones.
On the other hand, the width of a [111]-zone increases with

increasing µ because
dy

dµ
decreases in Eq. (15); see such zones on

the right from bn1 sketched in Fig. 10(b), which should look slightly
wider than the symmetric zones on the left from bn1. We conclude
by remarking the very middle zone—the purple bar bn1 being fur-
thest from an and an+1 is sketched to be of the largest width. Note
that in computational sweeps, such an associated purple bar or a
reddish bridge if the former one does not exist can be the only vis-
ible or recognizable [111]-zone, as all others might be too narrow
to detect. We reiterate that the borderlines of such zones in the
(µ, ν0)-parameter plane are the bifurcation curves corresponding to
[111]-triple homoclinic orbits.

Chaos 31, 073143 (2021); doi: 10.1063/5.0054776 31, 073143-11

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 11. B0 > 1. (a) The sine function is y = B0R
1−ν0µν0 sin(�0 lnµ + φ2) bounded by C1,2 : y = ±B0R

1−ν0µν0 . The dashed sine function is bounded by L1,2 :
y = ±B0µ. The interceptions of the strips S1 − S4 and the sine function are projected onto the µ-axis. The strips are parallel to the line L0 : y = µ. The closer a strip is
to L0, the narrower it is. (b) Two blue (1, 1) double-loop bars, an and an+1, are drawn on the (µ, ν0)-plane. The (1, 1, 1) triple-loop bars fit in between and match the color
of the strips in the plot (a) that they are derived from. We describe it in the order from the close region of a blue bar to its furthest. Close to the blue bar, there are a pair of
yellow ∩-bars and a pair of yellow 5-bars that are derived from the strip S4. Then, there is a pair of “Y” shapes that are derived from S3. Then, there is a reddish bridge that
is derived from S2. In the middle of the two blue bars, there is a purple ∩-bar bn1 that is the widest triple-loop piece. The closer to the blue bar, the narrower the triple-loop
piece is. Taking bn1 as the center, the left pieces are slightly narrower than the right pieces.

Figure 11 is meant to aid with describing the region where
z2 < 0 and hence with detecting [111]-homoclinic bifurcations
when B0 > 1. Unlike its predecessor, it does include the strips S5

and S6 and the corresponding bifurcation zones. One can see that
the bifurcation diagram in Fig. 11(b), still featuring the bridges atop
bn and an+1 along with transitional Y-shaped bars, is similar to that
in the case B0 < 1.

D. [100]-triple homoclinic orbits and bifurcations

A similar, [110]-triple homoclinic orbit is pictured in Fig. 4(d).
Unlike it, the unstable separatrix 01 makes one loop above and
two loops underneath the stable manifold Ws before it returns to
the saddle-focus to complete a [100]-homoclinic orbit. The cor-
responding z-return map with the dominant terms only is given
by

z1 = −µ − B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2) + O((−µ)2ν0),

(16)

z2 = −µ + B0R
1−ν0(−z1)

ν0 sin(�0 ln(−z1) + φ2) + O((−z1)
2ν0),

where µ < 0. As before, we seek the range of µ-values such that
z2 < 0 for a fixed ν0. By varying ν0, we identify the regions in the
(µ, ν0)-bifurcation diagram corresponding to the condition z2 < 0.
The boundaries of these regions are the bifurcation curves associated
with [100]-homoclinic orbits.

Equation (16) implies that −z1 ∼ (−µ)ν0 ; hence, z1 is small
when −µ is small. Omitting the small term −µ, the sec-
ond equation in (16) can be further simplified: sin(�0 ln(−z1)

+ φ2) = 0; i.e., −z1 = e
− 2mπ

�0
−

φ2
�0 or e

− 2mπ
�0

−
φ2
�0

+ π
�0 with m ∈ Z large

enough. The interval Im of −z1-values such that z2 < 0, derived
from the mth period of the sine function, can be estimated as
(

e
− 2mπ

�0
−

φ2
�0 , e

− 2mπ
�0

−
φ2
�0

+ π
�0

)

. As was discussed previously, Im is

actually µ-related if we consider some negligible small µ-term. The
length of Im can either decrease to zero [Fig. 9(a)] or decrease to a
small fixed number [Fig. 9(b)] as ν0 → 1.

Let us first elaborate on the case B0 > 1. The first equation of
the system (16) can be written as

−µ − z1 = B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2) + O((−µ)2ν0).

The right-hand side is the sine function of −µ, whose graph is
depicted in Fig. 12(a), with −µ being on the x axis. Its graph sec-
tions, painted in blue, above L0 : y = −µ let the µ-intervals be
identified within which [10]-homoclinic bifurcations occur, as dis-
cussed previously. Recall that z2 < 0 when −z1 ∈ Im (here, m ∈ Z is
to be large enough), and therefore, the range of µ-values such that
z2 < 0 is the projection of the interceptions of the line y = (−µ)

+ Im with the graph of y = B0R
1−ν0 (−µ)ν0 sin(�0 ln(−µ) + φ2)

onto the (−µ)-axis. Then, for each m, the quantity y = (−µ) + Im

is geometrically interpreted as a strip that is parallel to and above
the line L0. The domain of −µ such that z2 < 0 is the projection
of the overlaps of all such strips and the graph of the sine function
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FIG. 12. B0 > 1. (a) The x axis is (−µ)-axis. The solid sine function is bounded by two curves C1,2, and the dashed sine function is bounded by two lines L1,2. The parts
below the solid sine function and above the line L0 are painted blue. Four strips S1–S4 line up above L0. Their interceptions with the solid sine function are projected to the
(−µ)-axis. (b) Inside the blue Pi-bar, (1, 0, 0) triple-loop pieces are drawn to match the strips in the plot (a) that they are derived from. From the middle to both the sides of
the blue bar, it lists a green bar, a brown bridge, a pair of yellow “Y” pieces, a pink Pi-bar, and a pink ∩-bar. The width of the green bar in the middle is much larger than the
rest. The width of the pieces is decreasing from the middle green bar to the side boundaries of the blue bar. The pieces on the right of the green bar are slightly wider than
the pieces on the left.

onto the (−µ)-axis. Four such strips S1–S4 are sampled in Fig. 12(a)
to help us examine [100]-homoclinic bifurcations. Start with the
interception of the top (green) strip S1 and the sine-function graph:
its projection is an interval on the (−µ)-axis that collapses to zero
as ν0 → 1 that makes the envelope C1,2 converge to the lines L1,2.
Its image in the (µ, ν0)-diagram shown in Fig. 12(b) is a ∩-shaped
(green) bar in the middle of the blue wide 5-bar corresponding to
all homoclinic orbits starting with the [10]-code. The brown strip
S2 (located above the dashed graph of the sine function) overlaps
with the blue zone (on period A–B) on two µ-intervals, which merge
and then vanish when ν0 → 1. Its image in the bifurcation diagram
in Fig. 12(b) is a (brownish) bridge or arch above the green ∩-
shaped bar. Let the strip S3 cover the local maximum of the dashed
sine function in Fig. 12(b). Such an intersection infers, respectively,
that its corresponding images in the bifurcation diagram can be a
pair of Y-shaped branches within the blue bar; see Fig. 12(b). The
pink strip S4 is placed under the local maximum of the dashed sine
function. Therefore, its two overlaps cannot merge, and therefore,
they correspond to a pair of narrow (pink) 5-bars or ∩-bars in
Fig. 12(b). Observe that the ∩-shaped bars are located closer to the
border of the enclosing blue 5-bar. As argued previously, there can
be only one such green ∩-bar in the middle and a single pair of
Y-shaped branches, if any, unlike the bars of other shapes for [100]-
homoclinics that are not shown in Fig. 12(b) to make it visually less
busy. Note that the green ∩-bar is wider than others because it is due
to the overlap of the strip S1 with the flattest part of the sine function
near its local max. To conclude, let us recap that all [100]-homoclinic
bifurcation objects fit inside the [10]-region. As such, one can likely
notice regions associated with the green bar for [100]-homoclinics

in bi-parametric sweeps of real applications, as we will demon-
strate in the second computational part of our paper. All other bars
are probably too slim compared to the principle one, in the given
scale, as they originate in the region where the applied sine function
looks as if it is composed of nearly vertical oscillatory segments. We
emphasize that the borderlines of the bars described and sketched in
Fig. 12(b) correspond to the [100]-homoclinic bifurcations.

In the case B0 < 1, the dashed sine-function graph resides fully
outside of the blue regions. This case is somewhat similar to the case
of B0 > 1 except that there are no yellow Y-shaped (due to obvious
reasons by their construction) and pink 5-shaped bars in the bifur-
cation diagram presented in Fig. 13(b). The pink 5-like bars (not
the ∩-shape) cannot exist when B0 < 1 because the blue 5-shaped
region morphs into the ∩-shape. One can deduct from Fig. 13(a) that
all overlaps and interceptions within the blue domain first shrink
and then disappear after the dashed graph is lowered further below
some point.

E. One-sided [111. . .]-homoclinic orbits and

bifurcations

A one-sided [111. . .]-homoclinic orbit of the saddle-focus is a
longer extension of the [111]-triple homoclinic orbit as one depicted
in Fig. 4(b). The corresponding 1D return maps are somewhat sim-
ilar to that presented in Fig. 6(c), with the difference that it takes
more forward iterates of the origin to come back to zero.

Let us consider the case where the right unstable separatrix 01

of the saddle-focus of the origin orbits, say l (l > 3), one-sided loops
before it touches the stable manifold Ws. Its symbolic representation
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FIG. 13. B0 < 1. (a) The x axis is (−µ)-axis. The solid sine function is bounded by two curves C1,2, and the dashed sine function is bounded by two lines L1,2. The parts
below the solid sine function and above the line L0 are painted blue. Three strips S1, S2, and S4 line up above L0. Their interceptions with the solid sine function are projected
to the (−µ)-axis. (b) Inside the blue 5-bar, (1, 0, 0) triple-loop pieces are drawn to match the strips in the plot (a) that they are derived from. From the middle to both the
sides of the blue bar, it lists a green bar, a brown bridge, and a pink ∩-bar. The width of the green bar in the middle is much larger than the rest. The width of the pieces is
decreasing from the middle green bar to the side boundaries of the blue bar. The pieces on the right of the green bar are slightly wider than the pieces on the left.

is coded as [111 . . . 1]l. The system of the Poincaré map accounting
for the dominant terms only (equations for ϕs are omitted) can be
written as follows:

z1 = µ − B0R
1−ν0µν0 sin(�0 ln µ + φ2) + O(µ2ν0),

z2 = µ − B0R
1−ν0 z

ν0
1 sin(�0 ln z1 + φ2) + O(z

2ν0
1 ),

...

zl−2 = µ − B0R
1−ν0z

ν0
l−3 sin(�0 ln zl−3 + φ2) + O(z

2ν0
l−3),

zl−1 = µ − B0R
1−ν0z

ν0
l−2 sin(�0 ln zl−2 + φ2) + O(z

2ν0
l−2).

(17)

Our goal here is to determine the structure of the correspond-
ing bifurcation curves, assuming that we have already known all
unfoldings for the shorter loops up to order l − 1. The equivalent
problem is to find Rl = {µ|zl−1 < 0} given that Ri = {µ|zi−1 < 0}
(2 ≤ i ≤ l − 1). Obviously, zi−1 > 0 (2 ≤ i ≤ l − 1) for µ ∈ Rl; see

Eq. (17). Therefore, Rl disjoints
⋃l−1

i=2Ri; i.e., Rl ⊂
⋃l−1

i=2Ri. This guar-
antees that bifurcation curves for the right l-loops fit into the gaps
between all other one-sided (left/right) homoclinic orbits of lower
orders.

System (17) can also be recast as

z1 = µ − B0R
1−ν0µν0 sin(�0 ln µ + φ2) + O(µ2ν0),

zl−1 = fµ(z1),

where fµ(·) is a smooth function. With a constant ν0 < 1, the range
of z1, such that zl−1 < 0, can be determined through the condi-
tion fµ(z1) < 0. It is represented by a union of countable disjoint
positive (µ > 0) intervals for a fixed µ value. These intervals of
one-sided [111 . . . 1]l homoclinic orbits then correspond to new

colored strips such as ones shown in Fig. 10(a) for B0 < 1 or
Fig. 11(a) for B0 > 1 that cannot overlap the strips generating
similar orbits of lower orders. The shape of the corresponding
bifurcation curves in the (µ, ν0)-parameter plane is, respectively,
determined by the positions of the generating strips as we discussed
previously. We point out that the intervals are µ-value related, and
therefore, the sides of those strips are not “perfectly” parallel in
general. This observation, barely influencing the results, may nev-
ertheless break some symmetry arrangements for long one-sided
orbits. For example, in Fig. 10(b), there may be more yellow bars
on the left from the purple ∩-shaped bar than on the right from it.

However, the intervals due to the condition fµ(z1) < 0 may
merge as ν0 → 1 provided l > 3. As a result, a bridge can occur
at a wrong position; for example, see the bridge associated with
the yellow bar (region) in Fig. 6(b) if l > 3. In the case l = 4,
this can be explained by solving system (17) for the range of µ-
values for which z3 < 0. We start off by solving the last equation
to determine the range of z2 such that z3 < 0. This range is given
by a union of the purple intervals on the z2-axis as shown in
Fig. 14(a), where the longest interval I is labeled for further expla-
nation. The range of z2 is then used in the second last equation

z2 = µ − B0R
1−ν0z

ν0
1 sin(�0 ln z1 + φ2) + O(z

2ν0
1 ) to find recursively

the range of z1 for which z3 < 0. It is represented by another
union of countable intervals, among which the intervals J1 and
J2 of z1 are derived from the interval I of z2 on one period of
the sine function of z1 depicted in panel (b) of Fig. 14. Finally,
the range of z1-values is then employed into the first equation
z1 = µ − B0R

1−ν0µν0 sin(�0 ln µ + φ2) + O(µ2ν0) to obtain the
µ-values for such z3 < 0, which is a union of countable µ-intervals.
Here, intervals such as k11 and k12 are derived from the interval J1

of z1 on one period of the sine function of µ shown in Fig. 14(c),
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FIG. 14. (a) The positive parts of the sine function of z2 are projected onto the z2-axis and painted purple. One of them is notated as I. (b) A purple interval from (a), I,
corresponds to a strip that intercepts the sine function of z1. The purple intervals on the z1-axis are the projections of the intercepts, and they are notated as J1 and J2.
(c) The intervals from (b) correspond to two strips that intercept the sine function of µ. The purple intervals on the µ-axis are the projections of the intercepts, and they are
notated as k11, k12, k21, and k22, respectively.

while intervals such as k21 and k22 are derived from the interval J2 of
z1 on the same period. In the limit ν0 → 1, both intervals J1 and J2

will merge; see Fig. 14(b). If intervals J1 and J2 merge before k11 and
k12 do, then intervals k11 and k21 coalesce to generate a bridge section
on the bifurcation curve corresponding to a [1111]-homoclinic orbit
and so do k12 and k22 as well; see Fig. 14(c).

F. [100. . . ]–homoclinic bifurcations

Next, consider the configuration where the 1D unstable separa-
trix 01 first makes a single loop on one side of the stable manifold Ws

and then l − 1 one-sided loops (µ < 0) on its opposite side before
it returns to the saddle-focus. Its symbolic code is hence written as
[100 . . . 0]l. Such an orbit may be viewed as a longer version of the
inverted homoclinic connection depicted in Fig. 4(d).

The Poincaré map with only the dominant terms (equations for
ϕs are omitted) can be written as follows:

z1 = −µ − B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2)

+ O((−µ)2ν0),

z2 = −µ + B0R
1−ν0(−z1)

ν0 sin(�0 ln(−z1) + φ2)

+ O((−z1)
2ν0),

...

zl−2 = −µ(±B0R
1−ν0)(−zl−3)

ν0 sin(�0 ln(−zl−3) + φ2)

+ O((−zl−3)
2ν0),

zl−1 = −µ(±B0R
1−ν0)(−zl−2)

ν0 sin(�0 ln(−zl−2) + φ2)

+ O((−zl−2)
2ν0),

(18)

with alternating (+/−) in the equations above.

To determine the bifurcation unfolding of such homoclinic
orbits, one evaluates the range, say Ll, of µ-values for which zl−1 < 0.
It is evident that Ll ⊂ Ll−1 because zl−2 < 0 in Eq. (18). Therefore,
the set {Li}

∞
i=2 decreases for any 0 < ν0 < 1. System (18) can be

recast as

z1 = −µ − B0R
1−ν0(−µ)ν0 sin(�0 ln(−µ) + φ2)

+ O((−µ)2ν0),

zl−1 = gµ(z1),

where gµ(·) is a smooth function. The range of z1-values for which
zl−1 < 0 is a union of countable disjoint negative (µ < 0) intervals
for a fixed µ. As discussed previously, the bifurcation unfolding cor-
responding to [100 . . . 0]l-homoclinic orbits can be illustrated using
Figs. 12 and 13: the same structures re-emerge within the middle
green ∩-shaped bar, while narrow bridges and bars re-emerge inside
bridges and bars, respectively, except for the center green bar. How-
ever, starting with l > 3, new bridges can reside inside bars and new
bars can reside within a bridge, and so forth.

G. Mixed multi-loops

Let us finally discuss mixed multi-loops—informally, those are
longer homoclinic orbits that are neither solely left nor right sided
at the end. Each such corresponding map will be a mix of equa-
tions from systems (17) and (18). By omitting small term µ for
simplification, define these two sine functions,

f0(x) = ±B0R
1−ν0(−x)ν0 sin(�0 ln(−x) + φ2),

f1(x) = −B0R
1−ν0xν0 sin(�0 ln x + φ2).

Then, the map for a [1α1α2 . . . αl−1]-homoclinic orbit is given by

z1 = fα1(µ), z2 = fα2(z1), . . . , zl−2 = fαl−2
(zl−3),

zl−1 = fαl−1
(zl−2),

(19)
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FIG. 15. The oscillating function is assumed to be zl−2 = F(µ) whereµ > 0. The regions of zl−2 < 0 are marked blue. Their projections on theµ-axis are marked as blue
intervals. Points C and D are the end points of one of the intervals. (a) In the case of αl−1 = 0, the strips of zl−1 = fαl−1

(zl−2) < 0 are beneath the µ-axis. The projected

intervals of the interceptions of the strips and the oscillating function are inside the blue intervals. (b) In the case of αl−1 = 1, the strips of zl−1 = fαl−1
(zl−2) < 0 are above

the µ-axis. The projected intervals of the interceptions of the strips and the oscillating function fall in the gaps of the blue intervals.

where αi ∈ {0, 1} for 1 ≤ i ≤ l. Let us recast Eq. (19) as

zl−2 = F(µ) = fαl−2
◦ fαl−3

◦ · · · ◦ fα1(µ),

zl−1 = fαl−1
(zl−2).

(20)

We showed earlier that both
df0
dx

,
df1
dx

≈ ∞ except for within

small regions near their extreme points. Therefore, dF
dµ

=
dfαl−2
dzl−3

·

dfαl−3
dzl−4

· · ·
dfα1
dµ

≈ ∞ except for small regions around critical points.

Thus, the graph of F(µ) is a collection of nearly vertical line
segments, which is obviously bounded. It has an abundance of

extreme points because dF
dµ

= 0 where
dfαi

dzi−1
= 0 (1 ≤ i ≤ l − 2 and

z0 = µ). Figure 15 illustrates such oscillating graphs of the function
zl−2 = F(µ) when µ > 0; it remains similar if µ < 0. For the sake
of structural visibility, the graph per se and monotone parts are
sketched not as steep as they should be in the theory. The blue pro-
jection intervals on the horizontal axis represent all µ-values for
which zl−2 < 0; i.e., they represent parameter intervals correspond-
ing to [1α1α2 . . . , αl−2]-mixed homoclinic loops.

If αl−1 = 0, then without loss of generality, we can assume that

fαl−1
(zl−2) = −B0R

1−ν0 (−zl−2)
ν0 sin(�0 ln(−zl−2) + φ2).

The solutions satisfying the condition zl−1 = fαl−1
(zl−2) < 0 are

given by zl−2 ∈ (−e
− 2mπ

�0
+ π

�0
−

φ2
�0 , −e

− 2mπ
�0

−
φ2
�0 ) = Im, where m ∈ Z

is large enough. Let the interval between Im and Im+1 be notated

as Jm = (−e
− 2mπ

�0
− 2π

�0
−

φ2
�0 , −e

− 2mπ
�0

+ π
�0

−
φ2
�0 ). It is easy to see that

Im+1/Im = Jm+1/Jm = e
− 2π

�0 ; here, {Im} are the colored strips accu-
mulating to the µ-axis from below in Fig. 15, where only three such
strips are sampled. The projection intervals of the interception of

the colored strips with the graph zl−2 = F(µ) are the sought for the
[1α1α2, . . . , αl−1]l-orbit intervals on the µ-axis; they reside inside the
blue intervals corresponding to the [1α1α2 . . . αl−2](l−1)-orbits. The
[1α1α2 . . . αl−2](l−1)-homoclinic orbits occur at the end points of the
blue intervals, such as the points C and D indicated in Fig. 15. Inside
the blue region [CD], the green interval is much wider than the rest
of the corresponding intervals because it is due to one of the extreme
points of the function zl−2 = F(µ), whereas smaller intervals are due
to nearly vertical oscillation of the given sinusoidal function.

If αl−1 = 1, then the solutions satisfying the inequality zl−1

= fαl−1
(zl−2) < 0 are positive (µ > 0) intervals, and therefore, the

intervals for [1α1α2 . . . αl−1]l-orbits are located within the gaps
between the intervals for the shorter [1α1α2 . . . αl−2](l−1)-orbits, as
seen from Fig. 15(b). Note from this figure that the middle inter-
val for a l-long orbit is significantly wider than the rest of such
ones because it is resulted from a flatter section of the graph of the
function zl−2 = F(µ).

It will be shown below that basic biparametric sweeps of sys-
tems with saddle-foci visibly reveal some of the largest or principle
homoclinic bifurcation structures, which are likely due to such flat
regions of the function zl−2 = F(µ), while ones due to steep oscil-
latory graph sections are often too narrow to be well detected and
require some parameter recalling.

In a small neighborhood of an end point of each interval for
[1α1α2 . . . αl−2] − (l − 1)-orbits, such as C or D in Fig. 15, the oscil-
lating function zl−2 = F(µ) is nearly linear. Therefore, near the end
points, the parameter intervals for the [1α1α2 . . . αl−1]l-homoclinic

orbits hold a scalability ratio e
− 2π

�0 for both width and distance,

following from the relationship: Im+1/Im = Jm+1/Jm = e
− 2π

�0 .
The following theorem concludes our arguments and reckon-

ing above:
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FIG. 16. (a) Short bi-parameter sweep of the cubic Chua model using the original parameters. The curves NSF and NS correspond to zero saddle value σ1 = 0 or ν = 1
(ν > / < 1 on the left/right of these curves); NDSF and NDS correspond to zero divergence σ2 = 0 or the saddle index ν = 1/2 at the saddle-focus. The yellow S–SF
curve marks the transition of the origin between a saddle and a saddle-focus. All three curves cross near the point (1.6458, 1.3934). The solid color regions correspond to
trivial dynamics with constant kneadings. The narrow colorful wedge is the region of double-scroll chaotic dynamics due to homoclinic bifurcations. The sector bounded by
the white curves with the tip point near (1.8623, 1.8743) is unfold in panel (b). (b) Short bi-parameter sweep of the model with new (α, L)-parameters revealing the stunning
complexity and universality of homoclinic bifurcations of the Shilnikov saddle-focus at the origin of the Chua model; here, [2-12] and [6-15]-long binary sequences are used
for A and B, respectively.

Theorem 2. Under the conditions of Theorem 1, in the
(µ, ν0)-parameter space, all bifurcation curves corresponding to
[α1α2 . . . αl]l- homoclinic orbits, where αi ∈ {0, 1}, 1 ≤ i ≤ l, (i)
are embedded between the bifurcation curves corresponding to
[α1α2 . . . α(l−1)](l−1)-homoclinic orbits provided that αl = 0 or (ii)
they reside within the gaps between the bifurcation curves correspond-
ing to [α1α2 . . . α(l−1)](l−1)-homoclinic orbits if αl = 1. The scalability
ratio for both the widths and the distances of the curves is given by

e
− 2π

�0 , near the bifurcations of [α1α2 . . . α(l−1)](l−1)-orbits.

III. HOMOCLINIC BIFURCATIONS IN THE SMOOTH

CHUA CIRCUIT

Let us get back to the smooth Chua model (1) and discuss
the bifurcations of its equilibria. The summary can be found in the
(a, b)-bifurcation diagram shown in Fig. 3. Recall that the system (1)
has three equilibrium states located at O(0, 0, 0), O1(−1, 0, 1) and
O2(1, 0, −1). The curve labeled by NSF, standing for “neutral” sad-
dle, with the saddle index ν = 1 or zero saddle value σ1 = 0, at

the origin is given by b = (a2−33a+36)(a−6)
36(3−a)

. The NDSF curve of O is

given by a = 6; this abbreviation stands for the saddle-focus at 0
with zero divergency σ2 = 0 or ν = 1/2 for saddle-foci; the sum of

all three characteristic exponents is negative below this level where
the system remains dissipative, whereas it becomes positive above
it, making the space volume expand near the origin. While there
is no curve corresponding to ν = 0 at the origin O, however, the

curve for ν = ξ at O is given by b =
(

7a(a−6)
12

− ξ(a−6)3

36(1−2ξ)2

)

/(aξ − 3)

for ξ 6= 1/2 and 0 < ξ < 1. It has an asymptote a = 3/ξ , and there-
fore, we can approximate the curve ν = ξ using a = 3/ξ . The curve
µ = 0 defined for modeling the 1D map (9) must be associated with
the H8-curve in Fig. 3 that corresponds to the primary homoclinic
bifurcation in the system (1), as illustrated in Fig. 5. It is easy to
see the correspondence between the (µ, ν0)-parameter plane and the
(a, b)-parameter plane; therefore, the system (1) is an ideal example
to showcase the theory built in Sec. II.

A. Symbolic computational method

Bi-parametric sweepings of the system (1) are done by using the
computational methods originally introduced in our earlier papers7,9

with a few changes; see also the following papers.8,10,16–19

We follow the trajectory that initiates from the right unstable
separatrix 01 of the origin and record “1” when it loops around
the right equilibrium O2(1, 0, −1) and “0” when it loops around the
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FIG. 17. (a) (α, L)-biparametric sweep using [1-2]-long binary sequences reveals the primary homoclinic bifurcation curve [1], separating the red and blue regions (see a
homoclinic trajectory in the bottom inset). The trajectories in the red region have symbolic encoding of the form {1, 0, . . .} (see trajectory in the top left inset) and those in the
blue region have {1, 1, . . .} (top right inset). (b) [1-3]-long binary sequence reveals two further homoclinic bifurcation curves, [10] (with the black and green points) and [11]
(with the gray and yellow points). The positions of the black, green, gray, and yellow points in the α − l plane are given by (0.876898493756, 9.995), (0.91631772114, 9.995),
(0.921727874, 9.995), and (0.991649733, 9.995), respectively, and the corresponding homoclinic orbits are shown in (c).

left equilibrium O1(−1, 0, 1); see Fig. 2(a). Alternatively, we can use
x-traces to convert into binary sequences so that “1” stands for a
positive maximum greater than 1 and record “0” when x reaches a
negative minimum smaller than −1; see Fig. 2(b). We can skip the
very first symbol as it is always “1” by construction. Such a binary
sequence, also known as a kneading sequence, is recorded for a pair
of a- and b-parameter values to create a bi-parametric sweep. Next,
the binary sequence is converted to a decimal number by using this
following rule:

K(a, b) =

j
∑

n=i

κn q(j−n+1),

where {κn}
j
n=i is the corresponding binary sequence with κn = {0, 1}

and i, j are positive integers with i ≤ j (the first i − 1 binary symbols
are skipped). 0 < q < 1 is chosen for such a formal power series to
converge. In this study, we set q = 0.5 and keep K(a, b) in the range
[0, 1]. This decimal number is known as the kneading invariant. By
construction, the K-values range between 0 and 1. The boundary val-
ues are set by the periodic sequences {0} and {1}, respectively, for
infinitely long sequences.

Numerical integration is performed using a 4th-order Runge–
Kutta method with a fixed step-size. The computation of trajecto-
ries across different parameter values is parallelized using graphic
processing units (GPUs). Data visualization is done in Python. A
colormap takes K-values into 28 discrete bins of RGB-color values,
assigned from 0 through 1 for each channel of red, green, and blue
colors in decreasing, random, and increasing order, respectively.
With such a colormap, we can assign a unique color to a single
kneading invariant to produce a colorful sweep with 1000 × 1000
points in the biparametric plane, as shown in Figs. 16–26. Param-
eter values that produce topologically similar trajectories result in
identical sequences {κn} and, therefore, have the same K-values and
colors in a biparametric sweep. We employ two symbolic approaches
using (i) short, 1 ≤ i ≤ j ≤ 10, binary sequences to detect a plethora

of homoclinic bifurcations (see Figs. 16–24) and (ii) long, typically
600 ≤ n ≤ 1000, ones to detect stability windows within chaos-land
in the parameter sweeps (see Fig. 26). The computation of these
trajectories is massively parallelized by running on separate GPU
threads using CUDA. On a Tesla K40 GPU-powered workstation,
a 4000 × 4000 resolution sweep takes from merely a few seconds to
several minutes depending on the sequence length and the sweep
resolution.

Let us first discuss the first approach. By construction, a bor-
derline between distinct colored regions in sweeps employing short
sequences is a homoclinic bifurcation curve in the parameter space.
In theory, one can detect up to 210 homoclinic bifurcations in such
sweeps with 10 binary symbols.

Figure 16(a) represents a short (a, b)-parameter sweep of the
cubic Chua model (1). It is overlaid with the neutral saddle-
focus bifurcation NSF-curve, the saddle-to-saddle-focus transition
(S–SF)-curve, and the zero divergence NDS/NDSF curve (ν = 1/2).
Of our interest is the narrow wedge in the diagram that embraces
many homoclinic bifurcation curves (of various colors), thus sug-
gesting the onset of chaotic dynamics as it is located between the
NSF and the S–SF curves, where the origin is the Shilnikov saddle-
focus with ν < 1. The solid colors, blue and brown, indicate the
regions of simple, Morse–Smale dynamics with stable equilibria
and/or periodic orbits; see trajectory snapshots on the pathway
b = 6 in Fig. 3.

For a better look inside the wedge, we will apply a param-
eter transformation to widen this region. First, let us identify a
sector in Fig. 16(a), which is bounded by white curves, with its
tip located at (1.8623, 1.8743). Let us introduce two new polar-
coordinates/parameters: α and L; here, α is an angular variable
inside the sector and the positive axis and L is the length of the
sector, i.e., the radial variable. The transformation is then given by

a = 1.8623 + L cos(α), b = 1.8743 + L sin(α), (21)
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FIG. 18. A series of biparametric sweeps with longer binary sequences reveal an increasing hierarchy of bifurcation curves of one-sided homoclinic orbits beginning with
(a) the primary one; (b) two identified curves for double [11]/[00]-loops; (c) bifurcation curves for triple [111]/[000] (wide white), and [1111]/[0000]-orbits (narrow dark red)
and longer one-sided orbits in (d) and (e). (f) Magnified inset from (e) revealing various ∩-shaped and “Y”-shaped secondary bifurcation curves (here, corresponding to
[111111]-homoclinic orbits) as predicted by the theory.

where α ∈ [0.8, 1.05] and L ∈ [0, 15]. The sweep using new (α, L)-
parameters is shown in Fig. 16(b). It shows a plethora of bifurcation
curves representing various one-sided and mixed homoclinic orbits.
In what follows, we will attempt to figure out the ordered intricacy
and universality of the organization of such bifurcation curves in the
Chua model and other such Z2-symmetric systems.

Figure 17(a) represents the shortest sweep of length 2 to reveal
the primary homoclinic bifurcation H1 [1] of the saddle-focus at the
origin. It occurs on the borderline of two regions: red and blue where
the binary sequences start with [10 . . .] and [11 . . .], respectively.
Increasing the length lets us disclose at least two pairs of bifurcation
curves in the parameter diagram [Fig. 17(b)], corresponding to the
double homoclinic loops [10] and [11] [see Fig. 17(c) for phase tra-
jectories]. Arguably, they all have a U-shape, stretched horizontally.
These bifurcation curves for double loops lie on both sides of the pri-
mary one H1 (µ = 0), as the sweep discloses. Here, the left-side of H1

corresponds to µ < 0 and the right side corresponds to µ > 0 if we
refer to the modeling 1D maps studied above. Figure 17(b) detects
well two principal bifurcation curves (labeled with black and yel-
low dots) away from H1 on either sides (two other curves labeled
with green and gray dots are immediately next to H1 and are not
seen clearly). They correspond to the largest blue ∪-shaped bars in
Figs. 7(b) or 10(b). The rest of the countably many curves are too
close to H1 to be identified in the sweep of the current scale; we
discussed the reasons in Sec. II above.

The sweep utilizing progressively longer, [2–4], binary
sequences exposes bifurcation curves corresponding to various
triple loops and so on. The longer the kneading sequence used, the
higher the order of homoclinic orbits and bifurcation curves that can
be revealed. For example, the sweep shown in Fig. 16(b) utilizes sym-
bolic subsequences of the [6–15]-range, revealing several thousands
of bifurcation curves, limited due to scaling factors.
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FIG. 19. Three snapshots of the (α, L)-biparametric sweeps of the Chua system with increasing length of symbolic sequences from [2,4] in (a) to [2,5] and [2,9] in (b) and
(c), respectively, reveal the complexity and organization of mixed multi-loop homoclinic bifurcation curves of the system.

B. [111. . . ] or one-sided homoclinic orbits and

bifurcation curves

The detailed sweep in Fig. 16(b) discloses bifurcation curves
corresponding to all homoclinic orbits of the saddle-focus, using
[6–15]-long binary sequences. Next, we would like to see what the
typical bifurcation unfolding of the generic Shilnikov saddle-focus
may look like. To do so, we modify the approach to focus only
on one-sided homoclinic orbits and the corresponding bifurcation
curves. This is accomplished by obtaining for each (α, L)-parameter
pair, symbolic sequences containing the same symbol (say, [111 . . .])
until the very first occurrence of the other symbol (“0”). If the num-
ber of “1”s in a symbolic sequence for some one-sided orbit is n, then
the corresponding kneading invariant is defined as K(α, L) = n/r,
provided r is the total length of such sequence.

The results of such one-sided symbolic approach are sum-
marized in Fig. 18. Using sequences up to two symbols long, we
identify the primary homoclinic bifurcation shown in Fig. 18(a).
With an additional symbol, the well-visible [11]-bifurcation curve
in Fig. 18(b) is revealed. This curve corresponds to the largest and
furthest blue ∩-shaped bar on the right in Fig. 7(b) or 10(b). The
two white U- or ∩-shaped regions seen in Fig. 18(c) are due to
the right triple [111]-orbits that correspond to the large purple
∩-bar in the center of Figs. 9(b) and 10(b), which are due to the
intersections of the sine function with the strip S1 in Figs. 9(b)
and 10(a). All other such triple orbits occur near the primary one,
and their bifurcation curves are hardly detected in such sweeps at the
given scale, as discussed in Sec. II C. The bifurcation curves corre-
sponding to [1111]-homoclinic orbits fill in the gaps between those
for triple orbits; see Fig. 18(c). This is also the case with the nar-
row bifurcation curves for longer orbits, see Figs. 18(d) and 18(e),
which are harder to observe in sweeps at the given scale. To rem-
edy this, we magnified a small region [the white inset in Fig. 18(e)]
of interest near the curve terminals in Fig. 18(f). According to its
relative position, it must be derived from the strip S3 in Fig. 10(a).

This magnified sweep can well depict a pair of visible yellow regions
whose boundaries correspond to [111111]-homoclinic orbits. There
is a single (yellow) “Y”-shaped region for the same [111111]-orbits
near the [111] U-shaped zone, similar to ones due to the strip S1,
which are shown in Figs. 10 and 11. One can also see a bridge on the
top of a yellow piece that was determined earlier to be derived from
the strip S4 in Fig. 10, as was discussed in Sec. II.

C. Mixed multi-loop homoclinic bifurcation curves

Figure 19 demonstrates four progressive (α, L)-parameter
sweeps of the Chua model with an increasing length of sym-
bolic sequences: from [1,4] to [1,7]. Shorter sweeps are depicted in
Figs. 17(a) and 17(b) revealing the primary and double homoclinic
bifurcations of the central saddle-focus in the system. One can see
that the double bifurcation curves reside on either side of the pri-
mary one. In these parametric sweeps, the bifurcation curves for
longer orbits squeeze into the gaps between or fall inside the lower
order bifurcation regions. It seems likely that the most principle
bifurcation structures and boundaries, which are visible in all the
sweeps, are derived from the strips that intercept the flat extreme
point regions, such as the green strip in Fig. 10. All other count-
ably many curves according to the analysis done in Sec. II are too
slim to be identified. Nevertheless, some interesting details can yet
be pointed out. For example, the progression from panel (a) to panel
(b) of Fig. 19 reveals two visible bridges near the bifurcation curve
for double one-sided orbits, which would have to be derived from
the strip S2 in Figs. 10 and 11. There are also two symmetric ∩-
shaped bars added to the picture in the left double-loop HB piece,
and they must be derived from the strip S4 from the same theoret-
ical constructions. One can see many such similarities between the
theoretical and computational bifurcation diagrams.

We may assume that further detailed discussion of the bifur-
cation unfolding, with the quickly growing complexity presented
in Figs. 16(b) and 19, is unnecessary or even unrealistically
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FIG. 20. (a) A biparametric [7-17]-long sweep made of 42 sub-panels, each with 1000 × 1000 points, showing a T-point—the black dot (0.9971, 15.2888)—at the center of
the characteristic spiral. (b) A two-way heteroclinic connection at the T-point (black dot in panel A): the separatrix 01 of the saddle-focus at the origin O terminates at the left
saddle-focus O2, whereas an outgoing trajectory spiraling away from O2 converges to O.

comprehended, as Ovsyannikov, Shilnikov’s student and
co-author,30,31 joked more than three decades ago: “the saddle-focus
is as inexhaustible (infinite) as the electron.”

IV. BYKOV T-POINTS

Figure 20(a) presents another bi-parameter sweep of the Chua
model. There are two new patterns in it that have not been well
recognized in the other sweeps. The first pattern is a family of
(yellow-red) nested closed circles, while the second pattern is due
to several characteristic spirals stretched nearly vertically in the
sweep. Such a spiral is the distinguished feature converging to the
so-called T-point of codimension-two, corresponding to a two-way
heteroclinic connection between a saddle and/or saddle-foci of dif-
ferent topological types. Such a heteroclinic connection between
the central saddle-focus O of (2,1)-type at the origin and the left
saddle-focus O2 of (1,2)-type is shown in Fig. 20(b). Due to the
symmetry, there are always two such connections. In this phase
space projection, the 1D unstable separatrix 01 of O and one of
two 1D stable separatrices of O2 coincided in the 3D phase space
of the Chua model. This constitutes a one-way heteroclinic con-
nection. Meanwhile, the 2D unstable manifold of O2 and the 2D
stable manifold of the origin cross along a trajectory connecting both
the saddle-foci; see Fig. 20. This makes this heteroclinic connec-
tion a two-way one. According to the original research by Bykov,38,62

the occurrence of a single primary T-point implies that there are

infinitely many T-points nearby. A few other T-points with char-
acteristic spirals can also be recognized in the sweep in Fig. 20(a).
Moreover, by virtue of the theory, unlike the case of the T-point of
the saddle—saddle-focus connection with a single principal spiral
terminating in it, the unfolding of the T-point of two saddle-foci
includes two “transverse” spirals in the parameter plane, each repre-
senting the bifurcation curve of either Shilnikov saddle-focus with
a homoclinic orbit with incrementally increasing the number of
turns around the other saddle-focus as the center of the spiral is
approached with each revolution. As the Chua model is a dissipative
system, we cannot employ our method to detect such bifurcation
curves related to the saddle-foci 01,2 to integrate solutions backward
in time. Alternatively, one should use parameter continuation soft-
ware, such as MatCont, that is designed to solve both initial- and
boundary-value problems to continue unstable solutions. We reem-
phasize that according to Bykov,63 there are infinitely many T-points
in a symmetric saddle-focus system such as the Chua model
and various Lorenz-like systems; see Refs. 7–10 and 16 includ-
ing 3D parameter space reconstructions near T-points examined
in Ref. 19.

Concerning the nested circle pattern in Fig. 20(b), this happens
when the bi-parameter sweep cuts a higher, say, three-dimensional
parameter space not throughout a T-point (it becomes a space line
in 3D) but only slices 2D spiraling surfaces wrapping around it at a
different angle; see more in Ref. 19. This is also called a “non-
transverse” T-point in Ref. 64.
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FIG. 21. Bi-parametric sweeps with the increasing length of symbolic encoding, from 2 to 9 in panels (a)–(f), respectively, of the separatrix 01 of the saddle-focus at the
origin in the ACST-model using the original (a, b)-parameters. In the red regions, the 1D unstable separatrix 01 of the origin escapes to infinity after a few or multiple turns
around the saddle-foci O1,2. One can observe several formed and forming T-points with characteristic spirals and nested circles around. A vicinity of the T-point is magnified
in Fig. 25(a).

V. SYMMETRIC ACST-MODE WITH CUBIC

NONLINEARITY

Let us finally consider a second example to showcase the sym-
bolic approach and to disclose the universality of homoclinic and
heteroclinic patterns due to Shilnikov saddle-foci. The model (2) is
the Z2-symmetric extension of the generic asymptotic normal form,
called the quadratic ACST-model,

ẋ = y, ẏ = z, ż = −y − b z + a x (1 − x) , (22)

with (a b) > 0 being bifurcation parameters, describing locally
occurring bifurcation in systems, near an equilibrium state with
three zero characteristic exponents. Using the cubic term x3 instead
of x2 in system (22), let us worry less, computationally, about homo-
clinic orbits running away from the Shilnikov saddle-focus at the
origin. Still, we can examine the basic homoclinic bifurcations in
full generality if we focus on one-sided orbits only in Eq. (2). This
model also has three equilibria: the origin O can be saddle-focus of
the topological (2,1)-type, while O1,2(0, 0, ±1) becomes saddle-foci
of the (1,2)-type after a supercritical Andronov–Hopf bifurcation
following the period-doubling cascade initiating the onset of chaos
in it; see Fig. 3.

Several snapshots of bi-parametric sweeps with an increasing,
from 2 to 8, length of symbolic encoding of the ACST-model with
the original (a, b)-parameters are shown in Fig. 21. The area painted
in red color in panel (e) is where the solutions of the model escape to
infinity. One can observe from this figure that the ∩-shaped bifur-
cation curves of longer homoclinic orbits are revealed in matching
pairs in a similar fashion as the smooth Chua model. The sweeps in
Figs. 21(d) and 21(e) also disclose the location of several formed and
forming T-points with their characteristic spirals and nested circles
corresponding to heteroclinic connections between the saddle-foci.

Following the same approach as before, by introducing two
new parameters, c and d with the aid of this transformation,

a = 0.24 + 1.76c + 0.55d, b = 1.24c + 0.81d, (23)

we can widen up the parameter sector to provide better insights into
the homoclinic unfoldings due to asymmetric one-sided or generic
orbits and those due to the symmetry of the model.

With the new parameters, the sweeps better illustrate the intrin-
sic organization of the Shilnikov homoclinic bifurcations in the
cubic ACST-model. Let us first consider the series of sweeps shown
in Fig. 22 representing the building hierarchy of the bifurcation
unfolding representing one-sided [11 . . .] homoclinic orbits in the
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FIG. 22. The biparametric sweeps of the cubic ACST-model with the new (c, d)−parameters revealing the ordered intricacy of homoclinic bifurcations of one-sided homoclinic
orbits encoded with [111 . . .], using [3,3]- through [3,8]-long symbols from (a) to (f). Panels (b)–(f) depict how new bifurcation curves corresponding to longer homoclinic
orbits progressively fill in the gaps between ones corresponding to the shorter one-sided homoclinic orbits, to the left of the primary [1]-curve, as follows from the theory;
compare with Figs. 10(b) and 11(b) and the sweep for the Chua circuit in Fig. 18.

Z2-symmetric model (2), which would be equivalent to the generic
ones occurring in system (22) with x2-term. Figure 22(a) depicts the
primary [1]-homoclinic bifurcation curve and three ∩-shaped ones
(red boundaries) corresponding to the double [11]-orbits, while
Fig. 22(b) adds up several (green) curves corresponding to the triple
[111]-homoclinic orbits. One can observe from the next panels in
Fig. 22 that the new ∩-shaped curves for longer one-sided orbits
such as [1111] and so on fit in between the preceding ones corre-
sponding to shorter orbits, as predicted by the theory; see Figs. 7(b)
and 11(b) above and a similar sweep in Fig. 18 for the Chua circuit.

Next, let us discuss how the ∩-shaped [11]-regions in Fig. 22(a)
are populated by bifurcation curves corresponding to left-sided
homoclinic orbits encoded as [1100 . . .]. This is illustrated by a
series of such sweeps in Fig. 23 of an increasing length to reveal
up to six [0]s following the initial block [11]. The corresponding
symbolic ranges are given by [3,4]- through [3,9]. One can see
from the initial sweep in Fig. 23(a) that the largest [11]-region now
includes two (yellow) islands whose boundaries correspond to the
[110]-homoclinic orbits. The lower one is of the ∩-shape, while the
one above is of the Y-shape, just like in the bifurcation sketch in
Fig. 12(b). As the sweeping length is increased, more complex bifur-
cation structures for orbits such as [1100] and so on start filling in

the spaces between the matching borders for shorter orbits. We let
the reader to figure out a self-similar order, if any, of this puzzle.

Finally, the sweeps in Fig. 24 amalgamate step-by-step all iden-
tified bifurcation structures corresponding to one-sided and mixed
homoclinic orbits in the cubic ACST-model. While one can easily
follow the first building steps in panels 24(a)–24(d) incorporating
large structures discussed above, the last two panels [24(e) and 24(f)]
can only be inspected visually by merely stating that they incorpo-
rate smaller self-similar ones corresponding to more complex orbits.
In addition, one can also spot several families of nested circles due
to non-transverse T-points for heteroclinic connections that inter-
fere with our primary targets—homoclinic bifurcations—to further
recursively complicate this overall global bifurcation unfolding,
beyond feasible limits.

Figure 25(a), concluding this section, magnifies the vicinity
of the primary Bykov T-point shown in Figs. 21(d)–21(f) near
(0.642, −0.15) in these new (c, d)-parameters introduced in Eq. (23).
This figure also reveals multiplicity of secondary T-points squeezed
between the spirals corresponding to homoclinic orbits with shorter
encodings [1000 . . .] of the origin. The demarcation curve ending
at the T-point is an artifact due to the coding and color-map algo-
rithms: with each revolution, the number of zeros in the binary
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FIG. 23. The biparametric sweeps of the cubic ACST-model with the new (c, d)-parameters revealing how the bifurcation curves of longer “left”-sided [110 . . .] homoclinic
orbits are nested within the larger structures corresponding to double [11]-orbits, beginning with [110], [1100], and [11000] in (a)–(c). Panels (b)–(f) depicting how new
left-sided bifurcation curves corresponding to longer homoclinic orbits progressively fill in the gaps between ones corresponding to the shorter one-sided homoclinic orbits
below the [11]-curve, as follows from the theory; compare with the theoretical diagrams in Figs. 10(b) and 11(b) and the bi-parametric sweep of the Chua circuit in Fig. 18.
Here, panels (a)–(f) are obtained using symbolic sequences [3,4]- through [3,9].

sequence increases incrementally by one, which makes the color
change.

VI. LONG-TERM SYMBOLIC APPROACH TO DETECT

STABILITY WINDOWS WITHIN CHAOS-LAND

We have recently developed an approach called the “Determin-
istic Chaos Prospector” (DCP) (available as an open source tool-
kit at https://bitbucket.org/pusuluri_krishna/deterministicchaospros
pector/) whose significance for the study of homoclinic bifurcations
is that not only it can reveal the short term transient dynamics and
the underlying homoclinic, heteroclinic, saddle, and T-point spiral
structures, but it can also be employed to examine the long-term
behavior and to detect the regions of simple dynamics due to stable
equilibria and periodic orbits and ones corresponding to chaos in
the Chua, ACST, and other systems such as the various Lorenz-like
and Rössler models.16–19,46 The underlying idea is that a trajectory
integrated long enough for some parameter values may eventually
converge to an exponentially stable attractor with a non-changing
symbolic encoding that occupies some existence region filled out
with a solid color in the parameter sweep (see Fig. 26). On the con-
trary, by virtue of structural instability, this is not the case for the

(grayish) regions of deterministic chaotic dynamics. Such sweeps
are obtained by computing trajectories from the same or different
initial conditions long enough so that after skipping some initial
transients, we can still generate sufficiently long binary sequences,
say, of [600–1000]-length.

The sweeps are constructed by first analyzing each long binary
sequence (after omitting a transient) to detect periodicity. Periodic
sequences (corresponding to simple, i.e., stable dynamics and struc-
turally stable) of different periods are marked with different solid
colors in the sweep. Aperiodic sequences (complex, structurally
unstable dynamics) representing chaotic trajectories are processed
using the Lempel–Ziv (LZ) compression algorithm to measure their
complexity.65 Greater LZ-complexity indicates greater instability
and is shown in darker gray. Further details of DCP can be found
in Refs. 16, 19, and 46.

The long-term sweeps of the Chua circuit and the ACST-model
are demonstrated in Figs. 26(a) and 26(b), respectively. Both reveal
exceptionally well a plethora of stability windows (solid color) with
distinct periodic orbits and regions of chaos shown in gray colors.
Moreover, we re-emphasize that the darker gray pixels are associ-
ated with more developed chaos in the given models. Note that some
stability windows are known as “shrimps” due to their shape. Such
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FIG. 24. The (c, d)-parameter sweeps of the cubic ACST-model to disclose the combined bifurcation unfoldings with self-similar, scaled-down organization, due to a plethora
of homoclinic orbits in its phase space; compare with Fig. 21 using the original parameters and the sweeps of the Chua circuit in Figs. 16(b) and 19. Panels (a)–(f) are obtained
using symbolic sequences [3,3]- through [3,8].

FIG. 25. (a) The (c, d)-parameter sweep of the cubic ACST-model to reveal the primary T-point corresponding to the heteroclinic connection, [1000, . . . ,∞] connecting the
saddle-focusO(0, 0, 0) of (2,1)-type with the saddle-fociO1 (andO2 due to the symmetry) of (1,2)-type in the phase space of the cubic ACST-model at (c, d) ' (0.642,−0.15)
as panel (b) depicts; compare with Fig. 21 using the original parameters and the sweeps of the Chua circuit in Figs. 16(b) and 20.
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FIG. 26. Long [601–1000]-symbol DCP-sweeps on a 5000 × 5000-size grid to reveal stability windows (also known as “shrimps”) (in solid colors) due to saddle-node
bifurcations of periodic orbits and chaos-land (grayish regions—with darker gray implying greater complexity) due to the Shilnikov saddle-focus in the parameter space of the
Chua circuit (a) and the cubic ACST-model (b) with the transformed parameters. In the red region in (b), the solutions of the ACST-model run to infinity.

a shrimp is formed by transverse saddle-node bifurcations of peri-
odic orbits that are typically caused by homoclinic tangencies due to
spiraling saddle-foci in these and other systems. In the blue regions
on opposite sides in Fig. 26(a), the binary sequences for the sepa-
ratrix 01 include periodic blocks {1} and {10}, respectively. While
{1} may correspond to a stable equilibrium state O1 and stable peri-
odic orbits around it or even a chaotic attractor emerging through
a period-doubling cascade of the former, the block {10} may be
associated with various symmetric and asymmetric stable figure-8
periodic orbits. In Fig. 26(b), red color marks the region where the
trajectories escape to infinity.

VII. CONCLUSIONS AND DISCUSSIONS

We developed a general theory of homoclinic bifurcations of
the Shilnikov saddle-focus in Z2-symmetric systems. It discloses the
ordered intricacy of corresponding structures and their organization
in the bifurcation unfoldings of such systems, including the scalabil-

ity ratio e
− 2π

�0 of the width and distance between two sequentially
close l- and (l + 1)-homoclinic orbits.

The theoretical foundations were implemented using a novel
algorithm of symbolic, binary description to examine and demon-
strate the universal organization of Shilnikov homoclinic bifur-
cations in two symmetric systems: the smooth Chua circuit and
the cubic asymptotic normal form—the Arneodo–Coullet–Spiegel–
Tresser model.

We demonstrated how recently developed toolkit, Determin-
istic Chaos Prospector with GPU parallelization, can quickly reveal
the regions of simple and chaotic dynamics in the parameter space

of the selected models. One of the objectives of this paper is to show-
case our know-how with an open source GPU-based computational
toolkit based on the symbolic framework that should be broadly
accessible (see below) and practical for the nonlinear dynamics com-
munity to analyze homoclinic bifurcations and structural in/stability
in various systems.

The theory and the methodology created in this study can fur-
ther advance new theoretical ideas and computational approaches
for a better understanding of the origin and the universal structure of
deterministic chaos in full generality, including diverse applications
from mathematical, physical, and biological sciences.
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