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The ability to tackle analysis of the brain at multiple levels simultaneously is emerging from rapid methodological developments. The
classical research strategies of “measure,” “model,” and “make” are being applied to the exploration of nervous system function. These
include novel conceptual and theoretical approaches, creative use of mathematical modeling, and attempts to build brain-like devices
and systems, as well as other developments including instrumentation and statistical modeling (not covered here). Increasingly, these
efforts require teams of scientists from a variety of traditional scientific disciplines to work together. The potential of such efforts for
understanding directed motor movement, emergence of cognitive function from neuronal activity, and development of neuromimetic
computers are described by a team that includes individuals experienced in behavior and neuroscience, mathematics, and engineering.
Funding agencies, including the National Science Foundation, explore the potential of these changing frontiers of research for developing
research policies and long-term planning.

Key words: motor system; mathematical modeling; transformative research neuromorphic chips; hippocampal rhythms; behavior; cog-
nition; engineering

Introduction
“And so these [women and] men of Indostan
Disputed loud and long
Each in his own opinion
Exceedingly stiff and strong
Though each was partly in the right
And all were partly in the wrong!”
The Blind Men and the Elephant, by American poet John Godfrey Saxe, is
based on an ancient Indian fable and remains timely in providing a view
of the daunting task of scientists trying to understand the nervous system.

Fundamental shifts in our history of thinking about the brain, emerg-
ing from major technological and conceptual developments, will enable a
revolutionary change in the kinds of questions that can be asked and the
kinds of answers that can be achieved. These include new directions in
the scope and scale of experimental investigations such that it is becom-
ing possible to start to measure brain structure, chemistry, and activity
simultaneously at many locations with high specificity and spatial/tem-
poral resolution, instead of doing one- or few-at-a-time measurements.

Furthermore, advances in theoretical understanding make it possible to
formulate comprehensive multiscale models that are simultaneously
bottom-up and top-down and include relevant dynamics at different
spatial and temporal scales.

Major aspects of neuroscience research are shifting directions. This is a
consequence, in part of increasing interest in neuroscience among ex-
perts from diverse disciplines, each bringing unique perspectives and
methodologies. Scientists traditionally trained in mathematics, com-
puter science, engineering, as well as biology and psychology study how
brains compute. Behavioral scientists want to understand the neural ba-
sis of language, cognition, and emotion. Physicists seek to understand
general principles of nervous system organization. The origin of thought
and memory is being sought by those trained in chemistry; biologists
study the evolution of simple neural systems into complex systems. In-
creasingly, successful research strategies in neuroscience require that en-
gineers, biologists, and mathematicians among other scientists work to-
gether on challenges that extend from molecules to whole organisms, on
systems that are dynamic and nonlinear. Of course, the tendency toward
intellectual and empirical dominance of teams in producing new, high-
impact knowledge has been the trend not only in neuroscience but also in
other domains of knowledge, including the arts and humanities (Wuchty
et al., 2007). Some of the contributing factors for the importance of
teamwork include the high cost of neuroscientific research, scale and
complexity of the field, the explosion of information, and the tendency
toward increasing specialization. Although key insights and individual
genius will always be treasured, participation in research teams is esca-
lating in importance. In neuroscience, the interplay of empirical experi-
mental studies of the brain with mathematical and engineering tools
brings new opportunities to create deeper knowledge of nervous system
function. Changes of this scope require that the federal agencies, such as
the National Science Foundation, develop and support opportunities
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that can advance research, education, and train-
ing to promote transformational developments
across the disciplines and at the frontiers of
science.

With regard to neuroscience, there is a broad
consensus that the use of previously unattain-
able, non-invasive, multimodal measurement
tools with high temporal, spatial, and chemical
resolution will increasingly reveal the underly-
ing design characteristics of living systems.
Such design characteristics tell scientists and
engineers how living systems solve problems of
form and function and are leading to the devel-
opment of strategies for optimizing the use of
convergent methods to understand the brain
and nervous systems.

This paper describes the ideas and methods
discussed by some of the participants in the
symposium Neurotech for Neuroscience: Unify-
ing Concepts, Organizing Principles, and Emerg-
ing Tools at the 2007 Society for Neuroscience
meeting. True to the interdisciplinary nature of
the questions asked and answers sought, the
contributors represent departments of neuro-
science, mathematics, and bioengineering. The
research strategies used are multimodal and in-
clude “measuring,” “modeling,” and “making”
studies of neural systems (Fig. 1). For each sci-
entist, the program of research requires the in-
corporation of knowledge from disciplines out-
side of their own and often entails collaborative
teams. Grillner describes progress in under-
standing cellular biophysical properties to the
generation of rhythms associated with locomo-
tion, Kopell links cellular biophysical proper-
ties to the generation of rhythms associated with cognitive states in the
central nervous system, and Boahen describes simulation technology
that promises to make the supercomputer-level performance required to
scale-up the models Grillner and Kopell describe more accessible.

Measuring the computational logic of networks in motion
With the development of more powerful computers and effective
software, it has become possible, for the first time, to model large
neuronal networks with biophysically detailed neurons and syn-
aptic properties that approach the numbers and complexity
found in living nervous systems, whether at a cortical or subcor-
tical level. This type of full-scale model now becomes a powerful
analytical tool. We will illustrate this below with the modeling
used to analyze and reproduce the networks coordinating loco-
motion, posture, and steering in the lamprey model system. We
will describe simulations with fairly complex multicompartment
Hodgkin–Huxley neurons that faithfully reproduce the activity
of their biological counterparts. In this case, !10,000 such neu-
rons have been simulated with altogether !500,000 synapses that
approach the numbers found in the biological systems (Grillner
et al., 2007). Very recently, with the same software, a neocortical
simulation of 22 million neurons in layer 2/3 and 11 billion syn-
apses has been performed (Djurfeldt et al., 2007) on the IBM Blue
gene supercomputer. This approaches the number found in these
layers of the mouse neocortex.

This technological development opens up new important possi-
bilities to use neuroinformatics tools, for both modeling and data
basing different aspects of the function of the nervous system (Bjaalie
and Grillner, 2007). The development of this type of critical neuro-
science infrastructure has been initiated by the Allen Institute for
Brain Science (www.brain-map.org) and the International Neuroin-

formatics Coordinating Facility (www.incf.org), an initiative of the
Organisation for Economic Co-operation and Development
(Global Science Forum), a joint effort of several European countries,
Japan, and the United States. Other efforts to share information
and data can be found on the Society for Neuroscience website
(http://www.sfn.org/ index.cfm?pagename"PublicResources&
section"aboutNeuroscience).

The vertebrate motor infrastructure
Vertebrate motor behavior is impressive and can be adapted to
the instantaneous demands of an ever changing environment.
How is this achieved? At the disposal of each species, there is a set
of adaptable motor programs that can be recruited to solve a
variety of standard tasks. We have termed these motor programs,
together with the structures that determine when each motor
program should be called into action, the motor infrastructure
(Grillner, 2003). Fortunately, the design and structure of these
control systems appear to be evolutionarily conserved to a large
degree; this applies from the level of the lamprey nervous system
to that of mammals, including humans. The lamprey diverged
from the main vertebrate line !530 million years ago. What is
common today between lampreys and mammals must have been
available already at that time. The general “bauplan” of the ver-
tebrate nervous system is common from the forebrain to the
brainstem–spinal cord level. This applies to a surprising degree
also to the detailed cellular and synaptic organization of, for in-
stance, the basal ganglia, tectum, and the brainstem–spinal cord
motor structures that control different aspects of vertebrate mo-
tor behavior.

An important question is how the different motor programs
and selection mechanisms operate at the cellular and network
level. Different experimental and computational model systems

Figure 1. Top left, Full-scale network simulation of the network coordinating locomotion in the lamprey–intersegmental
coordination in a complete spinal cord. This large-scale network model consists of approximately the correct number of excitatory
interneurons and commissural inhibitory interneurons (10,000 Hodgkin-Huxley, 5-compartment models) along the entire spinal
cord. The model neurons express the different subtypes of ion channels found experimentally. The excitatory synaptic interaction
is via AMPA and NMDA receptors and the inhibition via glycine Cl # channels. The wave of activity is transmitted from rostral to
caudal, with the left and right sides alternating. Red dots represent actively spiking neurons, yellow ones are depolarized but are
not firing, and blue dots are inhibited cells. The network extends from the rostral (bottom right) to the caudal (top left; segment
100) aspect. Segment 50 is indicated with a hatched line, and the perspective is thus compressed caudally. Top right, Biocytin-
labeled O-LM interneuron in transverse and longitudinal slices of CA3 hippocampus. Note the longer extension in the longitudinal
slice. Bottom right, The network is an abstraction used for numerical simulations to explain how these interneurons, which fire at
a theta (4 –12 Hz) frequency, can coordinate spatially separated cell assemblies firing at the higher gamma band frequencies.
Such analyses permit exploration of emergent properties of interacting neurons and networks of neurons (Tort et al., 2007).
Bottom left, A neuromorphic chip (designed by John Arthur, Stanford University, Stanford, CA) that models 1024 pyramidal cells
and 256 interneurons in the hippocampus. The chip is housed in a black plastic package and mounted on a printed circuit board.
or, Stratum oriens; pyr4, stratum pyramidale; rad, stratum radiation; l-m, stratum lacunosum-moleculare.
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are required depending on the type of process explored. For fine
control of hand and finger movements, primate models may be a
first choice, but simpler vertebrate models may provide a better
alternative for the neural control of the general motor repertoire
common to many vertebrates, such as goal-directed locomotion,
including steering, posture, eye and orientation movements, and
so forth. In these model systems, the chances of unraveling the
basic design of these neuronal networks [central pattern genera-
tor (CPG) networks] are greater. To achieve this, we need to
identify the different neurons within the networks, their cellular
properties, and types of synaptic interaction.

At the cellular level, this type of integrated knowledge is in
itself difficult to obtain experimentally. Furthermore, in most
cases, it is not sufficient to evaluate critically whether or not the
experimental findings can account for the behavior under con-
sideration. This is because, in each case, a great number of dy-
namically interacting processes take place at multiple levels,
within both each neuron and the network itself. Our brains have
difficulty handling or are simply unable to handle this level of
complexity. Modeling, based on a detailed knowledge of the net-
work components, provides an indispensable tool for evaluating
different possible interpretations of the experimental results ob-
tained. Modeling is useful for exploring the neuronal bases of
behavior, ranging from directly observable motor responses to
less directly observable inferred cognitive processes (see below).
Fortunately, the same cellular and molecular building blocks of
networks may serve in circuits having widely different functions,

for instance in the spinal cord and in neo-
cortex (Grillner et al., 2005b; Yuste et al.,
2005).

Intrinsic function of networks in motion,
with special reference to
goal-directed locomotion
By focusing on the knowledge gained in
the lamprey model through an interactive
process between experiments and model-
ing (Grillner, 2003, 2006), we have
achieved a detailed cellular and molecular
understanding of the networks generating
locomotor movements. These include
steering, the control of body orientation
(posture), and also the neural mechanisms
by which the behavior is selected. The em-
phasis here is on the modeling of the dif-
ferent components of the neural systems
underlying goal-directed locomotion,
with reference to detailed experimental
evidence. The overall aim is to account for
this complex set of behaviors, based on an
understanding of the intrinsic cellular
mechanisms determining the operation of
the different neuronal networks. The dif-
ferent subsystems involved in the control
of goal-directed locomotion are repre-
sented in Figure 2A and have been ana-
lyzed experimentally and through
modeling.

Selection of motor programs
At a higher level of organization, there are
neuronal mechanisms that select which
CPG is to be turned on at any given mo-
ment (Fig. 2A). The basal ganglia play an
important role in this contextual control

(Hikosaka et al., 2000; Grillner et al., 2005). Under resting con-
ditions, the output layer of the basal ganglia (pallidum) keeps the
different CPG networks and thalamocortical neurons under
tonic inhibition. For a behavior to be elicited, the particular CPG
(or its input) needs to be disinhibited. Striatal neurons (input
layer of the basal ganglia) can achieve this by inhibiting the cells
within pallidum that are responsible for inhibiting the particular
CPG. The striatal neurons, in turn, can be activated from either
neocortex (pallium in lower vertebrates) or directly from thala-
mus. The responsiveness of striatal neurons to activation can be
markedly facilitated by the dopaminergic input. A deficient do-
pamine innervation produces severe Parkinson-like hypokinetic
symptoms in all vertebrates investigated from lamprey to hu-
mans (Grillner et al., 2005a), whereas enhanced levels of dopa-
mine results in inadvertent initiation of movements (hyperkine-
sias). The striatal microcircuitry underlying the decision and
selection processes for the control of the locomotor CPGs is mod-
eled based on current experiments.

Command systems for locomotion
Two command systems for locomotion, the mesencephalic
(MLR) and diencephalic (DLR) motor regions have been defined
and are present in all vertebrates investigated. They are under
tonic inhibitory control from the basal ganglia output nuclei, and
they can be brought into action by a disinhibition resulting from
striatal inhibition of the pallidal subpopulation. MLR and DLR

Figure 2. Subsystems involved in the control of goal-directed locomotion. A, Selection of a motor program is performed in the
basal ganglia, which receive inputs from the cortex (pallium) and the thalamus. The basal ganglia output stage (pallidum) inhibits
command centers in the DLR and MLR during resting conditions. Through a well controlled inhibition of pallidal regions, the spinal
CPG for locomotion can be activated via the reticulospinal (RS) neurons. In the brainstem, information is further integrated based
on visual, sensory, and vestibular inputs to control both steering and posture. In all vertebrates, the spinal cord CPG neurons are
modulated by local sensory feedback. Generation of locomotor activity in the spinal cord. B, The CPG network is activated from the
locomotor regions via reticulospinal neurons (Ret.sp.) in the brainstem. Excitatory interneurons (E) excite all types of interneurons,
including other excitatory interneurons. The inhibitory glycinergic interneurons (I) provide inhibition to the contralateral side and
are also responsible for the left–right alternation seen during normal swimming. M indicates motoneurons. Some phasic feedback
modulation (both glutamatergic and glycinergic) from the spinal cord network back to the brainstem also occurs. C, Activation of
the spinal CPG by reticulospinal neurons (R). Neurons can drive the local network activity and cause a left–right alternating pattern
over the experimentally observed frequency range in the simulations. L, Lateral interneurons.
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act via a symmetric activation of reticu-
lospinal neurons in the lower brainstem
that turn on the spinal locomotor CPGs
(Fig. 2B).

The intrinsic operation of the spinal CPGs
coordinating the locomotor synergy
Segmental and intersegmental networks
constituting the CPG are located at the spi-
nal level. For mammals, there is one CPG
for each limb. The limb CPGs can interact
in different patterns to generate the differ-
ent gaits as in walk and gallop. Each CPG
contains the necessary timing information
to activate the different motoneurons in
the appropriate sequence to produce the
propulsive movements. During swim-
ming, as in the lamprey and other lower
vertebrates, an undulatory wave is propa-
gated along the body with a phase lag be-
tween the activation of each segment
(Ijspeert et al., 2007).

The segmental burst generating net-
work in the lamprey contains excitatory
interneurons (EINs) that provide excita-
tion within the pool of interneurons. The
burst-generating network is turned on by
glutamatergic excitation [AMPA, NMDA,
and mGluRs (metabotropic glutamate re-
ceptors)] from the supraspinal command
system. This drive signal excites the pool of excitatory interneu-
rons, which also provides excitation to other interneurons within
the pool (Fig. 2B). The burst is terminated primarily by intrinsic
membrane properties. The Ca 2$ level increase during activity
attributable to NMDA receptors and voltage-dependent Ca 2$

channels, and this Ca 2$ in turn activates calcium-dependent K$

channels (KCa), which provides a hyperpolarization of the inter-
neurons and thereby a termination of the burst (Fig. 3B). After a
recovery phase, a new burst can be generated. The alternating
pattern between the left and right side of each segment is pro-
vided by reciprocal inhibitory connections between pools of ex-
citatory interneurons on the two sides (Fig. 2B,C). A sensory
control system, sensing the locomotor movements, helps to com-
pensate for external perturbations by a feedback action on the
spinal CPGs.

The neural mechanisms generating a distributed flexible
phase coupling for both rostral and caudal swimming (Fig. 3A)
have been analyzed extensively through modeling with a realistic
number of complex “Hodgkin–Huxley neurons” and synapses
(Kotaleski et al., 1999; Kozlov et al., 2001). A hemisegmental
“biophysically realistic” model network, including the estab-
lished intersegmental connectivity, has been extended in the ros-
tral and caudal direction with up to 100 segments and the EINs
arranged with rostrocaudal connectivity as mentioned above
(Fig. 3C). Such a network can be made to display a constant phase
lag along the spinal cord, similar to that found in the isolated
hemicord. If instead the entire spinal cord is modeled with two
such extended EIN networks in parallel along with reciprocal
inhibitory coupling at the segmental level, the two sides will be
alternating at each segment. In addition, there will be a phase lag
along the simulated spinal cord (Fig. 1, top left; full-scale simu-
lation seen in Fig. 3C). The network can generate the phase lag for
both forward and backward swimming by simply modifying the

excitability in the rostral or caudal part of the spinal cord. A
simplified version of such a network has also been used to control
a neuromechanical model of the lamprey (Fig. 3D). It can simu-
late swimming movements in the water and can turn in three
dimensions, as established experimentally (Grillner 2003). Fi-
nally, swimming has also been implemented in lamprey- or
salamander-like aquatic robots based on the same principles
(Grillner et al., 2007; Ijspeert et al., 2007).

Neural mechanisms underlying steering
Steering commands are superimposed on the basic locomotor
activity and will bias the control signals, so as to steer the
movements to the left or right side or to other orientations.
Such commands are achieved through an asymmetric activa-
tion of reticulospinal neurons on the left and right side, par-
ticularly involving the middle and posterior rhombencephalic
reticular nuclei. This results in longer and more intense bursts
on the side toward which a turning response occurs. The basic
brainstem circuitry for turning is thus comparatively simple
and has been modeled based on detailed experimentation (Ko-
zlov et al., 2001). The above results illustrate the basic neural
machinery for turning but do not in themselves unravel the
mechanisms by which the animal itself performs goal-directed
steering toward a particular object or prey. The tectum (supe-
rior colliculus) is an important structure in the latter context.
It receives input from the eye, which is organized in a retino-
topic manner. It also provides a sensory map that is aligned to
a motor map, which can elicit eye movements to a target,
orientation movements of the body. It also allows for locomo-
tion (Saitoh et al., 2007), seemingly swimming toward an ob-
ject that gave rise to the activation of retina. The tectal cir-
cuitry in interaction with the basal ganglia presumably is
responsible for this action (Fig. 2).

Figure 3. Lamprey spinal cord intersegmental coordination. A, During swimming, a mechanical wave activating the muscles is
transmitted along the spinal cord. When the animal moves forward, there is a lag between consecutive segments in the spinal
cord. This lag is always a certain proportion of the cycle duration (i.e., a constant phase lag). It can be reversed into a wave that is
propagated from tail to head, as during backward swimming. A rostral-to-caudal lag is also seen in the isolated spinal cord
preparation. This pattern can be reversed if, for example, extra excitation is added to the caudal spinal cord. B, Ionic membrane
and synaptic events important during activation within the CPG network. Slower processes can cause spike frequency adaptation,
like Ca 2$ accumulation during ongoing spiking and resulting activation of KCa. LVA, Low-voltage activated; Ipsi, ipsilateral;
Contra, contralateral. C, Raster plots of the rostrocaudal activation of each of the 3000 EIN neurons in the model hemicord network
(corresponding to 100 segments) during spontaneously forming forward swimming. Seg, Segment. D, The model lamprey
swimming in water is simulated using a neuromechanical model of the muscles activated by the output from local CPG neurons.
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Control of body orientation during movements: posture
During locomotion, the body moves with the dorsal side up,
regardless of perturbations. This “postural” control system for
orientation of the body in the gravity field depends on bilateral
vestibular input that detects any deviation from the appropriate
orientation of the head, whether tilt to the left or right or changes
in pitch angle during locomotion. The vestibular input is medi-
ated via interneurons to the reticulospinal neurons in the
rhombencephalon, so that a tilt to the left leads to an enhanced
activity of reticulospinal neurons on the right side of the brain-
stem, and this elicits a correction of the body position (Deliagina
et al., 2006). In both modeling work (Kozlov et al., 2001) and in
an experimental hybrid system (immobilized lamprey), the re-
corded tilt-elicited signals in reticulospinal neurons have been
used to elicit body corrections via an external motor, which was
indeed quite effective (Zelenin et al., 2000). The lamprey is not
able to stabilize its body orientation without the vestibular sys-
tem. The visual system, however, can also provide input to the
reticulospinal neurons and thereby stabilize positions with a cer-
tain degree of tilt, termed the dorsal light response.

In aquatic animals, vestibular signals are sufficient to control
body orientation, but, for land-living tetrapods or bipeds, other
sensors also contribute importantly (Deliagina et al., 2006). Fur-
thermore, brainstem centers controlling posture and muscle tone
receive input from the pallidal output nuclei of the basal ganglia
(Grillner et al., 2005a).

From experiments and modeling to a physical implementation of a
swimming “artifact”
The current knowledge of how the lamprey model coordinates
locomotion, steering, eye movements and the control of body
orientation has evolved through an interaction between different
types of experiments and modeling. To further explore the func-
tion of this control system, we are currently in the process of
developing a swimming artifact with the general properties of the
lamprey together with Paolo Dario and colleagues (Grillner et al.,
2007). This artifact has a reduced number of segments (currently
only five). In each segment/myotome, it has four actuators with
muscle-like properties, two on each side of the “body.” The ar-
rangements of the four actuators can generate left/right alterna-
tion but also an enhanced activation of either the dorsal or the
ventral actuators that will bias the swimming movements for
steering to an upward or downward direction. It swims with
laterally directed undulatory movements and is able to steer to-
ward different targets.

The lamprey robot is being further developed to adapt to the
environment, select different patterns of motor behavior, swim
in both the forward and backward direction, and avoid obstacles
in a predictable manner. The control system will follow closely
that which is established experimentally. In addition to being an
important research tool, this eel-like artifact may become a
model for swimming robots that should be able to subserve a
number of different engineering tasks. The long-term goal is that
it will be possible to program the artifact to home to a specific area
or to track an object.

In summary, the organization of the vertebrate motor system
from lamprey to primates is to a large extent conserved through-
out phylogeny. Because of the relative simplicity of the lamprey
nervous system, it has been possible to address the neuronal
mechanisms underlying goal-directed motor control and to de-
velop general principles for goal-directed behavior in vertebrates.
Computational approaches are essential tools for analyzing the
dynamically interacting processes at the cellular and network lev-

els that underlie motor behavior. As discussed by Nancy Kopell in
the next section, the most appropriate analysis shifts when the
behavior of interest must be inferred and is not directly observ-
able, as are motor movements. All neurons, however, whether in
cortex or the spinal cord, express a palette of ion channels that
give them their particular properties, and this also holds true for
the types of synapses they establish. Neurons in different net-
works are not identical but the building blocks are the same, and
therefore knowledge can often be generalized (Grillner et al.,
2005b).

Brain rhythms as a scaffold among levels of organization
Although it is undeniably true that there has been an explosion of
techniques in neuroscience, we each still see the field as an analog
of the blind men and the elephant: we see little pieces of what
everyone acknowledges to be a huge entity. For many, however,
an overarching question is the relationship between brain and
cognition. There is a huge amount of work at each of these poles,
but our ability to use information about the biophysical building
blocks of the brain to get insight into cognition is still in its
infancy. A strategy to build conceptual bridges between those
poles that makes use of the spectral content of the electrical ac-
tivity produced by the brain is (Buzsaki, 2006). The study of
neural rhythms provides a framework for correlating the results
of investigations from genetics through behavior. The strategy
used depends heavily on modeling and mathematical analysis
along with empirical experiments making use of new engineering
techniques.

Questions and connections
The attempt to formulate and answer specific questions using this
strategy is a very large program that is still in its infancy, but the
framework is there, and there are enough preliminary projects to
see how the program can work. A few examples can illustrate
some of the questions central to the strategy and the connections
that they illuminate. The examples each give partial answers and
act as a kind of proof of principle. The central questions are as
follows.

What produces the various spectral bands (and combinations of
them) in different neuromodulatory environments? Answers to this
question via modeling connect the anatomy and physiology of
cells and networks to dynamical mechanisms underlying the
rhythms.

How does the brain make use of rhythms? For which functions
and in what ways? These are major questions whose answers pro-
vide one kind of connection between physiology/dynamics and
cognition.

What are the behavioral consequences of pathologies in rhythms?
To date, every mental disorder appears to be associated with pa-
thologies in rhythms of the nervous system (Phillips and Silver-
stein, 2003; Uhlhaas and Singer, 2006), and every psychotropic
drug changes these rhythms (Whittington et al., 2000a). A study
of how rhythms change in mental disorders is a way to connect
underlying genetic and biophysical pathologies with changes in
function.

Classical rhythms and their discontents
The electrical activity of the nervous system has been parsed into
spectral bands for approximately the past three-quarters of a cen-
tury. There is now a large and rapidly expanding literature that
describes the spectral content of electrical activity in different
cognitive states, in different tasks, and in different parts of the
brain (Engel et al., 2001; Tallon-Baudry, 2004). These studies also
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document how spectral content can change over the process of
learning (Ravel et al., 2003). Finally, many studies have docu-
mented how spectral content differs from controls in a variety of
mental disorders (Phillips and Silverstein, 2003; Uhlhaas and
Singer, 2006). This work establishes that neural rhythms are
markers for cognitive state, in ways that are subtle; however, they
do not establish the more compelling claim that the brain makes
use of these rhythms for a variety of functions. How might that be
explored?

The current frequency delineation is crude. One problem is
that it may differ from animal to animal or from task to task in the
same animal. Neural rhythms, as measured non-invasively by
EEG or MEG (magnetoencephalogram), do not address mecha-
nisms, either biophysical or dynamical, for the frequency content
that is seen. Such studies cannot answer the question of whether
activity in the same spectral range but different parts of the ner-
vous system have the “same” features and similarly for activity
found in different tasks. Indeed, these questions are not even well
posed at this level.

Rhythms and biophysics: gamma
Here is where applied math, in particular dynamical systems,
makes its entrance. It starts by asking about the dynamical and
biophysical properties of given parts of the spectral activity, such
as the gamma frequency band. By this is meant which types of
cells are involved, what are the patterns of activity in each of
classes of cells, and what kinds of parameters are critical for emer-
gence of stable population activity in a given frequency range.
This is generally better investigated in vitro, with all the usual and
important caveats about the translation from in vitro to in vivo.

Work in a variety of different slice preparations, mostly in
rodents, has shown that local circuits from hippocampus, neo-
cortex, entorhinal cortex, amygdala, and cerebellum have the
ability to form many of the classical rhythms, and that there are
multiple ways in which a given tissue slice can produce that spec-
tral band. The gamma frequency (30 –90 Hz) has been most stud-
ied, and at least three different versions of gamma have been
found: a rhythm created entirely by inhibitory cells in slices with
blockers of ionotropic excitation and metabotropic activation of
interneurons (ING); a gamma involving both pyramidal cells and
interneurons (PING), produced by initial tetanic stimulation of
the slice at higher frequencies and characterized by a high firing
rate of all the participating cells; and a “persistent” or “weak”
gamma that is created pharmacologically using kainate and/or
carbachol in the bath, characterized by low firing rates of the
pyramidal cells and 20 – 40 Hz rates of the interneurons (Whit-
tington et al., 2000b).

Gamma rhythms and function: is the gamma rhythm just an
index to behavior?
A large literature connects the appearance of gamma rhythms to
attention, awareness, working memory, and other cognitive
states (von Stein and Sarnthein, 2000; Engel and Singer, 2001;
Womelsdorf and Fries, 2007). There are also links between
gamma rhythms and particular biophysical processes, especially
the kinetics of GABAergic cells (Whittington and Traub, 2003;
Bartos et al., 2007). What is missing from those studies is an
explanation for why it is “gamma” rather than any other possible
dynamical marker that appears in the characteristic states associ-
ated with that rhythm. Such an explanation should create a con-
nection between the biophysics of gamma and the functions of
gamma. Two case studies that make such connections are dis-
cussed below.

The first is a study by Olufsen et al. (2003), showing a connec-

tion between the PING form of gamma and cell assemblies. In
this gamma, pyramidal cells fire, causing interneurons [notably
parvalbumin-positive (PV$) basket cells] to fire, which then
temporarily suppress the firing of the pyramidal cells. The firing
starts when the inhibition decreases, making the period of this
gamma rhythm dependent on the excitability of the pyramidal
cells and the amplitude and kinetics of the GABAA pulse. Al-
though many papers using the idea of cell assemblies have in-
voked the involvement of gamma rhythms (Singer et al., 1990;
Engel et al., 1997; Harris et al., 2003), it was not clear why the
biophysical properties of the gamma rhythms should be espe-
cially useful. The Olufsen et al. modeling work showed that an
essential property of the PING form of gamma is that it is shaped
by inhibition, and the GABAA decay time is the slowest relevant
timescale in the network. (For example, some slower currents
that are active in the cells between spikes may be turned off be-
cause of the voltage range in which gamma is active; the mem-
brane time is small because there is a large flow of transmembrane
current during this rhythm.) As a consequence, there is essen-
tially no cellular memory from one cycle to another; a pyramidal
cell that receives tonic excitation will either fire on essentially
every gamma cycle or not fire at all, depending on the level of
input. Thus, the gamma rhythm is perfectly suited to the creation
of cell assemblies: subsets of cells that are temporarily synchro-
nous. The Olufsen et al. study also showed that the addition of
other currents (such as the M-current) could destroy the ability
of the network to produce both gamma rhythms and cell assem-
blies. Thus, changes in membrane properties attributable to neu-
romodulation or pathology can have a significant effect on
function.

The second study relates the dynamical and biophysical prop-
erties of gamma to selective attention. Borgers and colleagues
(Borgers et al., 2005; Borgers and Kopell, 2007) consider recent
data showing that cell firing is more coherent in the presence of
attention (Fries et al., 2001; Bichot et al., 2005; Womelsdorf and
Fries, 2006). They examined the effect of coherent and less coher-
ent input onto a microcircuit of one pyramidal cell and one bas-
ket cell. They showed that coherent input locks with the target
circuit, and this creates inhibition to the target pyramidal cell that
effectively locks out the less coherent input, even if the latter is
somewhat larger in amplitude (Fig. 4). The effect depends on the
coherent input being in a range of gamma frequencies, because
the GABAA signal from one cycle of the input provides inhibition
until the next gamma cycle, by the nature of the gamma rhythm.
The work shows that, rather than just being a correlate of func-
tion (Womelsdorf and Fries, 2007), the specific biophysical prop-
erties of gamma (e.g., its relationship to the timescale of inhibi-
tory decay) contribute to how the function is performed.

Figure 4. Target network (black, excitatory; white, inhibitory) responds at same frequency
as coherent input (solid line), even in the presence of less coherent distractor input (dotted line)
firing at a different frequency (higher or lower).
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Dynamics and biophysics: the interaction of gamma and
theta rhythms
Gamma rhythms often occur in vivo in the presence of other
rhythms, notably the theta rhythm (4 –12 Hz) (Bragin et al., 1995;
Chrobak and Buzsaki 1998). One question is how the gamma and
theta rhythms interact: do they occur in separate networks or one
network? If the latter is true, is it possible to modulate the gamma
rhythms separately from the theta rhythms? That question can be
approached by relating biophysical and anatomical facts to the
dynamics of gamma and theta. This kind of connection permits
understanding of how pathologies in rhythms can be related to
aberrations in intrinsic and synaptic currents, which can them-
selves occur when there are pathologies in genes that code for
membrane channels (Whittington et al., 2000b; Benes and Ber-
retta, 2001).

Very approximately, rhythms in the 30 –90 Hz frequency
range occur as an interaction between pyramidal cells and PV$

interneurons, in which the pyramidal cells excite the interneu-
rons, which then inhibit the pyramidal cells for a period of time
that depends on the decay time of the inhibition and the excit-
ability of the pyramidal cells. [Variations on this theme include
gamma pacemaker cells in the neocortex (Gray and McCormick,
1996), inhibition of axonal plexus activity (Traub et al., 2002),
and activity in entirely inhibitory networks (Whittington et al.,
1995).]

The 30 –90 Hz gamma rhythm is a network phenomenon de-
pendent on inhibitory currents. In contrast, the theta rhythm can
be produced by individual cells (Klink and Alonso, 1993; Dickson
et al., 2000; Saraga et al., 2003), although a coherent population
rhythm depends on connectivity (Netoff et al., 2005; Rotstein et
al., 2006). In all cases, the rhythm depends on intrinsic currents
that do not seem to be important for the gamma rhythm. These
include the hyperpolarization-activated h-current, the persistent
sodium current, and the M-current and/or the A-current (Klink
and Alonso, 1997; Acker et al., 2003; Saraga et al., 2003).

In vitro work (Gloveli et al., 2005) has shown that brain
slices of the CA3 part of the hippocampus in the transverse
direction give rise to gamma oscillations (with low concentra-
tions of kainate in the artificial CSF); if the slice is in the
longitudinal axis, the same artificial CSF gives rise to a pre-
dominantly theta rhythm. A slice made in an in-between angle
shows the nesting of gamma and theta rhythms, as seen in vivo.
Mathematical modeling (Gloveli et al., 2005) has suggested
that the gamma rhythm comes from the interaction of pyra-
midal cells and PV $ interneurons, whereas the theta rhythm
comes from an interaction of the PV $ cells and oriens-
lacunosum moleculare (O-LM) interneurons (Fig. 1, right).
The power of each rhythm in the slice depends on the strength
of the effects of the O-LM cells on the other cell types, which is
modulated by the angle of the slice, because the O-LM cells
extend further in the longitudinal direction. The same model-
ing shows how the O-LM and pyramidal cells compete for
control of the basket cells, allowing for flexible modulation of
the rhythms by any modulators that separately change the
outputs or synaptic currents of the O-LM and pyramidal cells.
More recent modeling (Tort et al., 2007) shows how the O-LM
cells, which project to the distal dendrites of the pyramidal
cells, can synchronize assemblies of cells firing at gamma fre-
quencies, although those O-LM cells fire at a much lower
frequency. This sheds light on how inputs from the entorhinal
cortex to the distal dendrites can be coordinated.

Gamma, beta, and schizophrenia
The final example uses rhythms to connect pathologies at the
level of cells to pathologies in sensory processing. As discussed
above, the gamma rhythm is believed to be important for atten-
tion, and there are similar studies about other rhythms and other
cognitive states (Tallon-Baudry et al., 1999; Palva and Palva,
2007). Together, they start making a case for the hypothesis that
neural rhythms are important, perhaps even essential, to normal
cognitive function. This line of thought makes it compelling to
study the changes in rhythms in specific mental disorders, to see
what they might say about both the behavioral symptoms and the
underlying pathophysiology of the disease. One situation in
which this has been done is in schizophrenia (SZ), a disease in
which the sufferers often have auditory hallucinations as well as
attention deficits (Phillips and Silverstein, 2003). The symptoms
of SZ are very broad, and changes in tissue structures are found
throughout the brain. A major challenge is to connect at least
some of the physical changes to some of the behavioral changes.

Some studies are suggesting that there are problems with pri-
mary sensory processing (Wilson et al., 2007). For example, pa-
tients with SZ respond differently to auditory inputs consisting of
click trains at 20, 30, or 40 Hz. In EEG studies (Kwon et al., 1999)
and EMG studies (Vierling-Claassen et al., 2006), it was found
that the control subjects respond to 40 Hz click trains with 40 Hz
electrical activity in the primary auditory region. Patients with
schizophrenia, however, respond to the same inputs with a sig-
nificant 20 Hz component. Similarly, with 20 Hz click train, the
controls respond with mixed 40/20 Hz output, and the patients
with schizophrenia respond with a larger amount of 20 Hz (Kwon
et al., 1999; Vierling-Claassen et al., 2006).

One very promising new approach to SZ has been the discov-
ery (Lewis et al., 2004) that there is damage in postmortem tissue
to the PV$ inhibitory chandelier cells of the prefrontal cortex. In
that tissue, and possibly other more widespread throughout the
brain in SZ patients, the loss and damage of the relevant inhibi-
tory cells lead to lower amounts of two essential products. One is
GAD-67, a synthesizing enzyme of the inhibitory neuromodula-
tor GABA, and the other is GAT-1, a transporter of GABA. The
loss of the former suggests that people with schizophrenia may, at
least in some parts of their brain, have less inhibition from the
deficit of GABA, but the loss of the transporter can change the
kinetics of the GABA response, prolonging the effective time of
inhibition (Overstreet and Westbrook, 2003). The question is,
can this alone account for the above aberration in primary audi-
tory processing?

Here is where modeling can help, using dynamical systems
describing networks of neurons in the primary auditory cortex.
The reduction of GABA synthesis is modeled by a lower inhibi-
tory effect on other cells, and the change in the transporter is
modeled as increasing the time it takes for the inhibitory effect to
decay. The modeling is done both in detailed representations of a
piece of cortex (although not as detailed as by, for example, Traub
et al., 2005) but also with a much reduced model whose analysis
provides clarity about the dynamical mechanisms underlying the
switch from the gamma to the beta rhythm (Kopell, 2005). Both
versions reproduce the experimental results. This does not yet
account for why specific biophysical deficits should lead to symp-
toms such as auditory hallucinations, but it does allow one to
connect the deficits with changes in dynamics known to be asso-
ciated with the formation of cell assemblies and cortical
communication.
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Scientific strategies
The case studies discussed above illustrate some connections:
between anatomy/physiology of cells and dynamical mechanisms
of rhythms (gamma/theta interaction); between physiology/dy-
namics and behavior (attention); and between pathologies of
synapses and mental disorder, via rhythms (schizophrenia).
These few examples are but the tip of a large emerging literature
considering many other spectral bands, in many parts of the ner-
vous system (Tallon-Baudry et al., 2005; DeCoteau et al., 2007;
Palva and Palva, 2007). To fully exploit this strategy will require
taking advantage of advances in imaging methods and other new
technology, analysis of neural data, and neural dynamics, as well
as new experiments on the relationship of neural rhythms to
behavior. Of particular interest is the growing ability to measure
responses from large numbers of electrodes (Tsytsarev et al.,
2006) to achieve fine spatial resolution of temporal activity and
coherence. Similarly, the new ability to image simultaneously
from EEG and fMRI allows both spatial and temporal resolution
of dynamics in human subjects, as well as opening up the study of
how hemodynamics may alter neurodynamics (Lachaux et al.,
2007). Understanding the implications embedded in the ava-
lanche of these data will require new statistical methods (Kass et
al., 2005), possibly guided by dynamical systems models. Thus,
the study of brain rhythms relates to and requires a large number
of new techniques just now being developed; as these mature, we
can expect that the “scaffold” of brain rhythms will become in-
creasingly useful for relating different levels of organization.

The modeling techniques used in the above examples are sim-
ilar in spirit to those described by Grillner’s delineation of motor
patterns, using biophysically based nonlinear differential equa-
tions to describe electrical activity. One difference in scientific
approach comes from the fact that the function of the swimming
CPG is well understood, and so questions concerning the cellular
basis of such function arrive well posed. In contrast, the roles of
dynamics in cognition are mysterious, and the strategy used is to
tease that out by concurrently studying the origin of the neural
dynamics and how the underlying physiology affects the process-
ing of neural signals. This gives insight into how processes at one
level become integrated to give rise to processes at another whose
function is not well understood; dynamical systems modeling
provides a very flexible platform to pursue this challenge.

Although progress has been made linking cellular biophysics
to the generation of rhythms in the central as well as the periph-
eral nervous systems, the task of linking rhythms to cognition still
remains. Although we have succeeded in putting more of the
pieces together, we are still missing the complete picture, as with
the blind men and the elephant. On one hand, we can manipulate
and measure a limited number of quantities in our experiments.
For instance, we cannot simultaneously access the electrical ac-
tivity of all the cells of all the lamprey segmental networks and
characterize their changes over time. On the other hand, we can
include only a subset of the details uncovered experimentally in
our models. For instance, we limit their scope to a particular
subsystem (e.g., the hippocampus) and focus on the role of a
particular biophysical mechanism (e.g., the kinetics of GABAer-
gic cells). Scaling up these models without sacrificing detail re-
quires us to build more powerful simulation platforms, as well as
to generate sufficient data to constrain such large-scale models by
building high-throughput brain probes. Boahen addresses the
former issue when he describes a simulation technology with the
potential to deliver flexible supercomputer performance on a
manageable budget.

Emulating the brain in silicon
As described in the preceding sections, simulations permit inclu-
sion of molecular-level details while replicating system-level be-
havior, thereby providing insight into how processes at lower
levels become integrated to give rise to processes at higher levels.
To date, however, simulations large enough to accommodate
multiple cortical areas, yet detailed enough to include distinct
cellular properties, remain impractical. For instance, a model
built by Lansner and his colleagues with 8 million neurons con-
nected by 4 billion synapses run 4750 times slower than real time
on a 2048-processor Blue Gene rack (Djurfeldt et al., 2005). It
took 1 h, 20 min to simulate 1 s of the behavior of the model, yet
a model of this size corresponds to just 4% (50 mm 2) of macaque
V1. Simulating an entire cortical area in real time, not to mention
multiple cortical areas, will remain outside the realm of the fastest
supercomputers for the foreseeable future.

Various hardware solutions are being explored to satisfy the
need for more powerful, and affordable, simulation platforms.
Impressive speedups have been achieved with graphical process-
ing units (GPUs) and field-programmable gate arrays (FPGAs).
Sporting 128 general-purpose processors on a single chip, GPUs
have been programmed to run neural simulations 100 times
faster than a personal computer (Paul Rhodes, personal commu-
nication). Sporting 100,000 individually configurable logic gates
on a single chip, FPGAs have been configured to run neural sim-
ulations 2000 times faster than a personal computer (Guerrero-
Rivera et al., 2006). Although rivaling the performance of the
2048-processor Blue Gene rack in the latter case, at a fraction of
the cost, this performance is several orders of magnitude short of
what is needed to simulate multiple cortical areas in real time.

In this final component of our symposium, we highlight a
radical approach to computation that has the potential to per-
form real-time cortex-scale simulations. The fundamental com-
ponent of this neuromorphic chip is not a logic gate, like in a
digital computer, but a silicon neuron: an analog electronic cir-
cuit of transistors that mimic the ion-channel repertoire of a real
neuron. The cellular properties of these silicon neurons and net-
work connectivity are configurable, akin to the logic gates of an
FPGA. To emphasize that this is a physical instantiation of a
neural model that operates in real time, we will use the term
“emulate” as opposed to simulate. This technology, developed
over the past two decades, yields a hitherto unimagined level of
efficiency that makes beyond-Blue-Gene performance affordable
on a Beowulf-cluster budget.

Breakthroughs in neuromorphic engineering
Neuromorphic chips were pioneered by Carver Mead in the late
80s, when he developed the first silicon retina at California Insti-
tute of Technology (Mead, 1989). Extrapolating the doubling in
computer performance that was occurring every 18 months
(Moore’s Law), Mead predicted correctly in 1990 that present-
day computers would use 10 million times more energy (per
instruction) than the brain uses (per synaptic activation) (Mead,
1990). In other words, a computer that executes one instruction
every time the brain fires a synapse would consume 100 MW! He
sought to close this gap by building microelectronic circuits
based on the brain. Inspired by graded synaptic transmission in
the retina, Mead investigated operating transistors in a graded
manner (analog), a radical departure from their on– off opera-
tion in (digital) computers. He showed that analog required far
fewer transistors than digital, resulting in substantial energy
savings.

Neuromorphic chips have had limited utility as simulation
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platforms, however, because they are hardwired to perform a
specific function. For instance, the transistors in Mead’s silicon
retina, which he developed with Misha Mahowald, are wired to-
gether in accord with the synaptic organization of the retina. This
reflects neuromorphic engineers’ historical focus on applications
in autonomous robots and prosthetic implants, in which effi-
ciency and size come first. When seeking support for a hypothesis
through simulation, however, one has to perform controls (rule
out alternative hypotheses), replicate experimental manipula-
tions (block a specific channel or cut a certain connection), im-
plement existing models (for input or benchmarks), and explore
mechanisms (what is necessary and sufficient). This is not possi-
ble when the chip is hardwired.

A second shortcoming prevented neuromorphic chips from
serving as simulation platforms: the physiological properties of
their silicon neurons were fixed. For instance, in the ganglion
cells of the silicon retina, a clever arrangement of transistors
sensed the voltage of a node in the electronic circuit and fed back
a current that mimicked the spike-generating action of sodium
ion channels. These transistors could not, however, be used to
model another type of ion-channel, for example, to generate a
calcium spike. That would require designing an appropriate ar-
rangement of transistors and fabricating a new chip, a severe
impediment to modeling, because the design-fabricate-test cycle
takes several months.

In recent years, neuromorphic engineers have overcome both
shortcomings by combining the real-time operation of analog
with the programmability of digital to reap the best of both
worlds. Instead of hardwiring silicon neurons together, they and
their synaptic targets are assigned unique addresses. Every time a
spike occurs, the chip outputs the address of that neuron (Ma-
howald, 1994). This address points to a memory location (RAM)
that holds the address of the synaptic target. When this address is
fed back into the chip, a postsynaptic potential is triggered at the
target; assigning multiple memory locations to a neuron makes
multiple synaptic targets (divergence) possible (Elias, 1993).
These “softwires” may be rerouted simply by overwriting the
look-up table of RAM. Encoding, translating, and decoding an
address happens fast enough to route several million spikes per
second, allowing 1 million connections to be made among 1000
silicon neurons. In contrast, FPGAs use tracts of metal wires to
connect their logic gates together through programmable
switches, severely limiting the number of connections each gate
can have (typically four); their analog counterparts (field-
programmable analog arrays) face similar wiring constraints
(Hall et al., 2005).

To make cellular properties programmable as well, neuro-
morphic engineers developed an analog electronic equivalent of
the Hodgkin–Huxley model, the gold standard for ion-channel
populations (Hynna and Boahen, 2006). The sigmoid activation
curve and bell-shaped time-constant curve of this electronic cir-
cuit may be adjusted (after it is fabricated) to match any particu-
lar ion-channel type, making it possible to model various types of
neurons with the same chip. The circuit can accommodate the
observed range of voltage levels and timescales, as does the
Hodgkin–Huxley model. For ligand- or calcium-gated ion chan-
nels, charge on a capacitor is used to represent neurotransmitter
in the synaptic cleft or calcium inside the cell; a modified version
of the circuit achieves this. As few as eight transistors can model
an entire ion-channel population, making it possible to fabricate
millions of these silicon models on one chip. This design is the
first to capture the voltage dependence of the temporal dynamics
of the ion channel, while at the same time using fewer transistors

than previous neuromorphic models that do not possess these
nonlinear dynamics (Mahowald and Douglas, 1991; Simoni et al.,
2004; Farquhar and Hasler, 2005; Saighi et al., 2005). Exploiting
parallels in the thermodynamic behavior of ion channels and
transistors, originally recognized by Carver Mead (1989), made
this possible.

With the ability to model various types of ion channels as well
as arbitrary patterns of synaptic connections, the stage is now set
for using neuromorphic chips as a simulation platform. Choos-
ing to use analog to emulate ion-channel activity and to use dig-
ital to realize neuronal connectivity, however, imposes significant
tradeoffs that must be tailored to suit the scientific goals in mind.

Tradeoffs in neuromorphic simulation platforms
Analog computation imposes an upper limit on the number of dis-
tinct ion-channel populations that can be emulated (parallel opera-
tion), unlike digital processors, which simply take longer to run big-
ger simulations (serial operation). The desired number of ion-
channel populations depends on how many neurons are modeled,
on the subcellular compartments of each neuron, and on the types of
ion channels each compartment expresses. Compartments may
range from one, for interneurons that are electrotonically compact,
to 1000, for pyramidal cells with different voltages in each terminal
dendrite. Each compartment may have anywhere from one type of
ion channel, for the passive (cable-like) dendrites of interneurons, to
10, for the active dendrites of pyramidal cells. Hence, a single cell may
have anywhere from 1 to 10,000 distinct ion-channel populations,
each handled by a dedicated analog electronic circuit, millions of
which may fit on a chip. Thus, the number of neurons modeled
drops from millions to hundreds as the number of compartments or
ion-channel types goes up.

Digital communication imposes an upper limit on the num-
ber of synapses that can be activated per second (serial opera-
tion). The desired rate depends on how many neurons are mod-
eled, on the number of synapses each one makes, and on the
number of spikes it fires per second. Cortical cells make thou-
sands of connections and can fire several spikes per second. Mod-
eling 1000 cells requires on the order of 10 million synaptic acti-
vations per second (1000 cells % 1000 synapses/cell % 10 spikes/
seconds, round numbers), a rate that has already been achieved
(Boahen, 2004). With the same activation rate, more cells could
be modeled by distributing them across multiple neuromorphic
chips that encode, translate, and decode addresses in parallel.
Furthermore, the number of connections could be increased by
using local (on-chip) wiring to elicit postsynaptic potentials at
neighboring locations (mimicking an axonal arbor). Both
schemes have been demonstrated (Fig. 5) (Choi et al., 2005).

Neuromorphic engineers are currently exploring how best to
tailor the tradeoff between cell count and compartments per cell
and that between cell count and connections per cell to achieve
the goal of simulating multiple cortical areas in real time. With
respect to the first tradeoff, the interactions between inputs de-
livered to different cortical layers have been replicated in a two-
compartment pyramidal-cell model (Larkum et al., 2004). Fur-
thermore, varying how strongly these compartments are coupled
replicates firing patterns of various pyramidal cell types (Mainen
and Sejnowski, 1996). With respect to the second tradeoff, axonal
ramifications have been found to be patchy, indicating a prepon-
derance of local connections, as expected from the map-like or-
ganization of cortical areas (Amir et al., 1993). Based on these
studies, engineers favor using minimal cell models to maximize
cell count and using local wiring to maximize connectivity, as
described in the next section. In contrast, the Blue Brain project,
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with its complementary focus on model-
ing a single cortical column, uses thou-
sands of compartments per cell (Markram,
2006).a

Modeling the cortex with
neuromorphic chips
In a neuromorphic simulation platform
currently under construction (in the Boa-
hen laboratory), the cell layers of the cor-
tex, which are stacked one atop the other,
are mapped onto 16 identical chips, tiled
in a 4 % 4 grid on a paper-back-sized
circuit board, hence the name Neurogrid
(Fig. 6). Each chip, or Neurocore, mod-
els 65,536 two-compartment cells, tiled
in a 256 % 256 array. Thus, Neurogrid
will have a total of just over 1 million
silicon neurons. Their spikes are relayed
from chip to chip by sending an address
that specifies which chip, which row, and
which column a neuron resides in every
time it spikes (Merolla et al., 2007). By
encoding, translating, and decoding
these addresses in parallelb and imple-
menting patchy arbors with on-chip wir-
ing,c 6 billion synaptic connections may
be maded, 680,000 times more than a
previous silicon cortex (Deiss et al.,
1999).

User-programmable lookup tables
stored in RAM allow software-like flexi-
bility. These tables identify where spikes
should be delivered and specify the ana-
tomical (e.g., basal/apical) and physio-
logical (e.g., excitatory/inhibitory)
properties (Lin et al., 2006) of each con-
nection. A common set of ion-channel
parameters is also specified for all cells
on the same chip. Thus, Neurogrid can
accommodate as many distinct cell types
as it has Neurocores. It is possible to have a unique set of
parameters for each cell, or even each compartment, by stor-
ing this information on floating gates, which provide compact
nonvolatile memory, an approach being pursued in another
project (Farquhar et al., 2006). The user enters anatomical and
physiological properties using a graphical user interface and
views simulation results in real time on an interactive display.
She or he can select a single cell in the network and plot its
firing pattern, observe the activity of an entire layer, or exam-
ine any level of complexity in between.

When it is completed in 2 years, Neurogrid will emulate 1
million neurons in the cortex in real time, rivaling 200 Blue Gene

racks.e Based on its similarity to GRAPE-6, an affordable super-
computer with 32 chips mounted on a desktop-sized circuit
board that has transformed astrophysics (Normile, 2001), Neu-
rogrid will cost $60,000 (estimated) to produce in large quanti-
ties, &1⁄1000 the cost of the 200 Blue Gene racks. Larger versions of
Neurogrid could be built by expanding the chip size, by expand-
ing the grid size, or by squeezing more silicon neurons on a chip.
Doing all three should make it possible to scale up the current
design to 64 million neurons in the next few years.

A transformative technology?
The digital technique used to simulate neural activity has not
changed since Hodgkin and Huxley pioneered ion-channel
modeling in the 1950s. Since then, progress has come incre-
mentally, from the doubling in computer performance every
18 months (Moore’s Law). However, performance has pla-
teaued in recent years, putting real-time cortex-scale simula-
tions outside the realm of the fastest supercomputers for the
foreseeable future. Fortuitously, the analog technique devel-
oped by neuromorphic engineers over the past two decades

aBlue Brain’s column, with 10,000 multicompartment neurons and 10 –100 million plastic synapses, will be up and
running soon on a 23-teraflop, 8192-processor, four-rack IBM Blue Gene supercomputer.
bA total of 681 million spikes will be delivered per second, 15 times the 45.4 million (M) spikes per second rate
reported by Merolla et al. (2007), by broadcasting a spike to 15 chips in the same amount of time it takes to send the
spike to a single chip.
cThe local arbor of a projection will contact !100 cells; synaptic strength will decay exponentially with distance,
with an electronically adjustable space constant.
dWith the assumption that each projection is activated 10 times per second, we have (6.81 % 10 8 spikes/s)/(10
spikes/s/projection) % (100 synapses/projection) " 6.81 % 10 9 synapses.

eAt 8M neurons % 6 compartments in 80 min for a Blue Gene rack (Djurfeldt et al., 2005) and 1M neurons % 2
compartments in 1 s (real time) for Neurogrid, the speedup is (1M % 2/8M % 6) % (80 min/1s) " 200.

Figure 5. A multichip model of orientation hypercolumns. Four Gabor chips (top), each with a 64 % 128 array of silicon
neurons, receive spikes from a silicon retina, encoded as addresses that are decoded to retinotopic locations, in which postsynaptic
potentials are elicited such that alternating stripes of On and Off ganglion cells drive each neuron. Receptive fields of neurons at the
center of each array are shown on the bottom (black, on; white, off). Other neurons are tuned to the same orientation but to
different visual locations. For details, see Choi et al. (2005).

Figure 6. Neurogrid, a platform for cortical simulations. Cortical cell layers (left) are mapped onto chips (right) with arrays of
silicon neurons. Silicon analogs of the Hodgkin–Huxley model emulate the repertoire of ion channels of each cell type. Spikes are
relayed from chip to chip, routed using information stored in on- and off-chip RAM, which specify targets of vertical and horizontal
projections (black and purple), respectively. Cable-like on-chip wiring (with adjustable electrotonic spread) models the local arbor
of a projection (brown). A version of Neurogrid with a 4 % 4 grid of chips, each with a 256 % 256 array of two-compartment cells,
is currently being built.
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has now matured, with the recently developed ability to pro-
gram various types of ion channels as well as arbitrary patterns
of synaptic connections.

How will the availability of affordable supercomputers capa-
ble of performing real-time cortex-scale simulations impact neu-
roscience? One of the biggest stumbling blocks to understanding
the cortex is feedback. Virtually every cortical area projects back
to the areas that feed it, making these feedback projections ap-
proximately half the total, yet they remain mysterious. The pre-
ponderance of feedback poses several conundrums. Why is the
brain stable, yet plastic? Why is noise, which is rife,f not ampli-
fied? Answers to the first question would yield insight into epi-
lepsy (Cossart et al., 2005); answers to the second question would
yield insight into schizophrenia (Winterer and Weinberger,
2004). Shedding light on these fundamental questions calls for
simulations large enough to include interactions between multi-
ple cortical areas yet detailed enough to account for distinct cel-
lular properties, which give rise to the rhythms that appear to
modulate corticocortical interactions dynamically (Womelsdorf
et al., 2007). Neuromorphic platforms promise to perform such
large-scale simulations affordably.

Promise of interdisciplinary neuroscience research
Scientists and engineers, like the subjects in The Blind Men and
the Elephant, have as a goal “that each by observation might
satisfy his [or her] mind.” The progress of science has often
been hastened by communicating and applying findings and
insights, tools and techniques from one discipline to new
questions and to new experimental paradigms. In this article,
experimenters with significantly different research interests
and methodologies point to emerging opportunities in neuro-
science to measure, model, and make exciting new tools, tech-
nologies, and concepts from multiple disciplines. Progress in
understanding emergent properties of nervous systems of the
type they envision will require that scientists, mathematicians,
and engineers work together in an environment conducive to
the integration of education, training, and research across the
disciplines and at the frontiers of science. Such progress must
be actively encouraged and fostered. One strategy used by the
National Science Foundation has been to host workshops to
mine the knowledge at the frontiers and to look ahead to the
next generation of breakthroughs. Meeting participants saw
broad areas of opportunities for exploring grand challenges of
mind and brain; they saw mutual scientific benefit between
brain sciences and the physical and mathematical sciences,
computer science, and engineering. These included possibili-
ties for developments in instrumentation and measurement,
data analysis, statistical modeling, and informatics, concep-
tual and theoretical approaches, building brain-like devices
and the longer-term goal of understanding how cognition
emerges from the physical matter of the brain (see http://
www.nsf.gov/od/oia/activities/neuroscience/). The promise is
that here, as in other endeavors, investigators from many dis-
ciplines will strive to understand how organisms sense and
adapt to changing environments, how they control move-
ment, how they can think, and what makes them resilient and
robust, durable, and flexible. Discovery will be hastened by
each of us groping a piece of Saxe’s elephant while attending to
what the rest are seeing and hearing.
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