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Design of Synthetic Central Pattern Generators
Producing Desired Quadruped Gaits
Matteo Lodi, Andrey Shilnikov, and Marco Storace , Senior Member, IEEE

Abstract— This paper is concerned with a method for design
and analysis of specific neuronal networks, called central pattern
generators (CPGs), which produce primary rhythmic patterns in
animals. In particular, the paper is focused on synthetic CPGs
made up of few basic elements and governing quadrupeds’ gaits
and gait transitions, under the control of an external drive. The
method combines the principles of bifurcation theory, geometric
properties of symmetry, and numerical analysis based on the
recently proposed toolbox CEPAGE. The method is applied to
two CPGs, one bio-inspired and one purely synthetic. In both the
cases, the method provides a way to obtain a desired sequence of
gaits by continuously changing a bifurcation parameter related
to the external drive.

Index Terms— Central pattern generators, dynamical systems,
bifurcation analysis.

I. INTRODUCTION

THE motor circuits in the spinal cord that control locomo-
tion are commonly referred to as central pattern gener-

ators (CPGs). A CPG is a neuronal network that is capable
of generating an organized pattern of motor activity indepen-
dently of sensory inputs, thus producing primary rhythmic
behaviors such as respiration, mastication, sucking, crawling,
flying, swimming and walking [1]. In vertebrates, the plan-
ning of muscle activity involves many supra-spinal networks,
which activate the CPGs that determine the gaits [2]–[7].
The CPG functions include selecting which muscles are to
be activated, how intensely and for how long, thus allowing
patterns of movements of widely varying strengths and speeds,
whereas the supra-spinal networks drive the outputs from
the CPG (allowing gait changes and adaptation to obsta-
cles and uncertainties during ambulatory excursions [8]) on
the basis of both sensory feedback pathways and vestibular
pathways [9]–[11]. This combination of closed-loop and open-
loop control systems allows obtaining a robust control of
locomotion, characterized by rhythmicity (the specific periodic
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pattern provided by the CPG), stability against perturbations
and noise (the pattern corresponds to self-sustained oscillation
due to a stable limit cycle), adaptability (owing to the feedback
pathways), and variety (by changing the gaits) [12]–[16].

One of the fundamental challenges in motor systems neuro-
science is discovering the intrinsic functional mechanisms of
CPG networks and the way in which they integrate descending
inputs from the brain-stem, which are in turn under the control
of basal ganglia and cortex [3], [17]. This challenge is faced
both by biology and related disciplines – whose main aim
is fully understanding the CPG physiological structure and
functionality – and by nonlinear dynamics, whose main aims
are understanding the functionality of the underlying mech-
anisms and modeling with the simplest dynamical networks
either a real structure (bio-inspired CPG) or just specific
functionalities (synthetic CPG), either by resorting to group
theory [18] or to multi-parameter bifurcation theory [19]–[21].
Moreover, the main aim of engineering is designing and
implementing CPGs on embedded circuits for specific applica-
tions [12], [22], mainly in the fields of bio-robotics [23], [24]
and rehabilitation [25], [26].

Then, the acronym CPG is used to denote both the real
neuronal network (which in vertebrates can be composed
of hundreds/thousands of neurons) and its model. Since in
the real network there are groups of neurons that behave
coherently and whose concerted activity can be modeled as a
unique functional module (called in many ways, e.g., cell, unit,
oscillator, neuron), the CPG intended as model is always com-
posed of few cells. The complete CPG function is the result of
neural circuits containing these modules as elementary blocks.
Henceforth, unless otherwise stated, CPG will denote a model
of a real neuronal network.

In this paper we propose a method for designing and
analyzing CPGs, based on multi-parameter bifurcation theory.
Of course, the method is independent of the tools used to
implement it, but here we will use a recently proposed software
tool (called CEPAGE) [27].

The proposed strategy is illustrated through two case
studies, related to locomotion and gait transitions in
quadrupeds, which are in turn novelty elements of this paper.
The first case study is an 8-cell bio-inspired CPG controlling
gaits in quadrupeds [28]. Despite the complexity of both the
real CPG and its 40-cell model described in [28], the proposed
8-cell CPG model is able to capture the main functional
behaviors of the real CPG. This has a twofold advantage:
firstly, the simplification points out the role played by the main
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components of the network; secondly, the reduced network has
a lower computational complexity and then it can be exploited
to improve simulation speed or to implement an embedded
system able to mimic the network behavior in a real-time
environment.

The second case study is a 4-cell purely synthetic CPG,
which is designed to obtain the same gait transitions as before.
In both cases, by following some prescribed steps, we obtain
the desired gait transitions by acting on a bifurcation parameter
modeling the supra-spinal networks driving.

This paper is structured as follows. Section II briefly
describes the working framework, i.e., how a CPG can be
modeled and the main features of CEPAGE. The proposed
design and analysis strategy is described in Sec. III, whereas
the two case studies are analyzed in Secs. IV and V. Finally,
some conclusions are drawn in Sec. VI.

II. CPGS AND CEPAGE

In this section we briefly describe the building elements
of a CPG model, the phase-difference representation used in
CEPAGE to analyze them, and the main toolbox features.

A. CPG Models

A CPG model is basically defined by two elements:
• the cell, which can be a neuron model (e.g., Hodgkin-

Huxley, FitzHugh-Nagumo, Morris-Lecar, Hindmarsh-
Rose, integrate-and-fire models) or another oscillator
(e.g., Kuramoto, Hopf, Van der Pol);

• the connections (synapses) between cells, which define
the CPG topology and can be electrical, chemical
inhibitory or chemical excitatory.

A third possible element (CPG input, when it does not work
autonomously) is the brain-stem drive, which brings an input
to the CPG from supra-spinal networks, allowing gait changes
and adaptation.

CEPAGE models a CPG composed of N cells, each
described by the following dynamical system (i = 1, . . . , N):

żi =
[

V̇i

ẋi

]
=

[
fi (zi , α, I (i)

syn(α))
pi (zi )

]
(1)

Assuming that the cell is a neuron model, Vi is the mem-
brane voltage, xi is a vector containing the other state vari-
ables (whose dynamics are described by the vector field pi ),
α is a parameter related to the brain-stem drive, and I (i)

syn(α)
is the incoming synaptic current, containing the following
contributions:

I (i)
syn =

N−1∑
j=0

gin
i j (α)hin (Vi , Vj , sin

i j )

+
N−1∑
j=0

gex
i j (α)hex (Vi , Vj , sex

i j ) +
N−1∑
j=0

gel
i j (α)(Vj − Vi )

(2)

where hin and hex describe generic chemical inhibitory and
chemical excitatory synapses actions, respectively, and in
general depend on the pre-synaptic and post-synaptic cell

membrane potentials (Vj and Vi , respectively) and on the
state sx x

i j of the synapse of type xx between cells i and j ,
which evolves according to a nonlinear dynamical system
ṡx x

i j = f̂(sx x
i j , Vj ). The functions gin

i j (α), gex
i j (α) and gel

i j (α)

represent chemical inhibitory, chemical excitatory and elec-
trical synapses strengths, respectively, between cells i and j
and in general depend on the brain-stem drive through the
parameter α. If a synaptic strength does not depend on α,
it reduces to a constant coefficient; gx x

i j = 0 means that
cells i and j are not connected by synapses of type xx . In this
paper, the synaptic actions have no dynamics and are modeled
according to the fast threshold modulation paradigm [29],
as follows:

hin(Vi , Vj ) = Ein − Vi

1 + eν(Vj−θ)
,

hex (Vi , Vj ) = Eex − Vi

1 + eν(Vj−θ)
, (3)

where Ein and Eex are the inhibitory and excitatory synapses
reverse potentials, respectively, whereas ν and θ act on the
chemical synapses activation function shape.

B. Analysis Strategy

In this paper the CPG are analyzed following the so-
called phase-lag or phase-difference representation of oscil-
latory or bursting cells coupled in a network [13], [14], [16],
[30], [31], which allows checking the existence and stability of
rhythmic patterns generated by the network by using standard
tools of nonlinear dynamics. A first assumption underlying this
method is that all cells remain oscillatory with relatively close
temporal characteristics. This means that each i -th cell stays
on a structurally stable periodic orbit ẑi (t) of period Ti and
that this orbit can be mapped (through the modulo function)
to a phase variable φi ∈ [0, 1) so that φi is reset to 0 when
Vi grows over a threshold Vth .

The phase difference representation of the network employs
N − 1 state variables describing phase differences between
the reference cell 1 and the other network cells: �φ1i(t) =
(φi (t) − φ1(t)) mod 1 (i = 2, . . . , N). The time evolution of
these state variables is unknown a priori and is usually deter-
mined numerically by integrating multiple initial conditions of
(1) to reveal possible multi-stability.

From a numerical standpoint, the phase differences can be
computed as follows. Let ti (k) be the k-th time at which
the membrane voltage Vi of the i -th cell overcomes the
threshold Vth . The phase lag �φ1i(k) between the i -th cell
and the reference cell 1 can be numerically computed as
follows:

�φ1i (k) = ti (k) − t1(k)

T1
mod 1, (4)

where T1 is the period of the first cell. As the time progresses
these phase lags can converge and stabilize at some stable
phase-locked states, possibly more than one (multi-stability of
the network).

This representation is adopted also in Motiftoolbox [32].
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Fig. 1. Relationships between CEPAGE objects.

C. Toolbox Features

CEPAGE is an object-oriented toolbox for simulation and
analysis of CPGs [27]. It has a two-layer organisation: the
outer layer is a MATLAB interface that makes it easy to spec-
ify the CPG configuration and offers tools for data analysis and
visualization; the inner layer is used for numerical integrations
and is based on Boost C++ libraries and on MEX files.1 The
MATLAB layer provides flexibility to CEPAGE, since it makes
it easy to add new neuron and synapse models to be simulated
and new functionalities to the package by extending the base
classes. Moreover, MATLAB allows the user to write very
concise and clear scripts, which nonetheless retain the full
power and speed of the underlying C/C++ code.

Figure 1 shows the functional relationships between
classes (gray boxes), main methods (solid ellipses) and corre-
sponding output data (white boxes). The dashed ellipses denote
external analysis tools that can be applied to the obtained data.
Parallel computation, MEX files and the Boost C++ libraries
are used to reduce the simulation times. The classes neuron,
synapse and CPG describe a single cell, a synapse and a CPG,
respectively.

The main toolbox functionalities are:
-) simulation of CPGs: by using method sim of class CPG,

the user can easily obtain the time evolution of the state
variables describing the network; it is also possible to
start parallel simulations from different initial conditions.
If only one initial condition is considered, it is possible
to use the simplot method, which also plots the state
evolution;

-) limit cycle continuation; this functionality is useful
when one wants to detect limit cycle bifurcations; through
the method writeContinuationInterface, it is possible to
generate AUTO [33] or MATCONT [34] files for the limit
cycle continuation;

-) CPG phase difference simulation: the method get-
PhaseRepresentation of class CPG allows obtaining the

1A MEX file is a type of computer file that provides an interface between
MATLAB and functions written in C, C++ or Fortran. It stands for “MATLAB
executable”. When compiled, MEX files are dynamically loaded and allow
external functions to be invoked from within MATLAB as if they were built-
in functions.

evolution of the phase differences for the CPG cells;
also in this case, parallel computations can be exploited
to integrate the system starting from different initial
conditions. The simulation results can then be plotted
through the plotPhaseSpace method. This functionality
can be used to obtain a brute-force bifurcation diagram
of the phase differences, but turns out to be very time
consuming for relatively large networks;

-) CPG approximate phase difference simulation: the
method computeApproxVectorField of class CPG is use-
ful to carry out brute-force (i.e., based on numerical
integrations and Poincaré sections [35]) analysis of the
phase differences between cells reducing the simulation
times. The approximate solution works accurately only
for weakly-coupled networks and is computed starting
from the so-called Phase Resetting Curve (PRC) [36],
which can be computed through the method computePRC
of class neuron model;

-) phase difference continuation: the approximate for-
mulation allows also knowing the vector field that
describes the phase difference evolution, making it pos-
sible a continuation analysis of the patterns generated by
the network. CEPAGE can automatically generate files
through the method writeApproxVectorField, which can
be used to carry out continuation analysis with AUTO or
MATCONT.

III. SYNTHETIC CPG DESIGN METHOD

CEPAGE can be used as a tool to design a synthetic CPG
able to generate some specific gaits typical of quadrupeds
(i.e., trot, walk, bound, rotary gallop, transverse gallop)
either by varying a bifurcation parameter in an assigned
(e.g., bio-inspired) CPG with fixed structure or by design-
ing (including the structure) a purely synthetic CPG. In both
cases, our goal is finding – for the cells or synapses directly
depending on the brain-stem drive through the parameter α –
proper functions of α that allow obtaining the desired gaits
and gait transitions. To this end, according to the framework
described in Sec. II-A, we introduce an explicit depen-
dence on α of some parameters and we choose piecewise-
linear (PWL) functions, connecting points detected through
bifurcation analysis.

Table I shows the main characteristics of each gait we want
to achieve. The duty cycle properties of each gait are common
for many quadrupeds, whereas gait amplitude and frequency
depend on each specific animal. In this work (case study 1),
we focus on the amplitude and frequency values typical for a
mouse [28]. A representation of the different gaits is provided
as supplemental material.

We assume that each limb is driven by a cell, then we will
consider CPGs containing at least four cells. The proposed
strategy can be used for any gait with left-right symmetry.
It can be applied also to asymmetric gaits (possibly with few
changes, as shown in Sec. V-E).

The proposed design steps to obtain a specific symmetric
gait are as follows:

• Step 1: we analyze a simple structure (which appears
more than once in an assigned CPG or is used as building
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TABLE I

GAIT CHARACTERISTICS IN TERMS OF DUTY-CYCLE (dc) AND
PHASE DIFFERENCES BETWEEN LEGS (L = LEFT,

R = RIGHT, F = FORE, H = HIND)

block in a purely synthetic CPG), typically an half-center
oscillator (HCO). By carrying out a bifurcation analysis,
we can analyze the possible stable behaviors of this
structure with respect to the chosen bifurcation parameter.
The desired behaviors correspond to a specific range of
values of this parameter. Finally, we relate this range to
the external drive α through a PWL function.

• Step 2: we analyze the CPG sub-structure (either the
simple structure of Step 1 or a more complex subset of
CPG elements) which governs left-right (LR) coordina-
tion; this sub-structure usually contains both inhibitory
and excitatory synapses. By choosing the strength of
the excitatory synapses as a proper PWL function of α,
we can vary the phase difference between the patterns
generated by each cell of the sub-structure. CEPAGE is
used to obtain bifurcation diagrams that serve as design
maps.

• Step 3: we analyze the behavior of the complete CPG
(or of a part of it, in the presence of symmetries)
by analyzing the influence of α on the fore-hind (FH)
coordination. Even when changing α, we must ensure
the structural stability of both LR and FH coordinations.
By choosing proper parameter settings (selected through a
bifurcation analysis carried out with CEPAGE), the CPG
can generate robust patterns. By making some parameters
become proper PWL functions of α connecting the robust
patterns, we can also obtain a desired sequence of gait
transitions.

• Step 4: a posteriori analysis of the complete CPG, if not
already carried out in Step 3.

In the next sections, two examples of application of this
strategy will be proposed: the first case study is concerned
with the analysis of a bio-inspired 8-cell CPG with assigned
structure and with the design of a synthetic CPG with the
same (fixed) structure; the second case study is the design of
a purely synthetic 4-cell CPG. In both cases, the main aim is
to generate the cited gaits typical of quadrupeds.

IV. CASE STUDY 1: BIO-INSPIRED CPG

In this section we will show how CEPAGE can be used
to analyze a 8-cell CPG and to set its parameters in order to
generate all the gaits listed in Table I.

In particular, in [28] a quadrupedal 40-cell CPG is described
and analyzed, which is able to generate trot, walk and bound.
The brain-stem drive acts directly on some CPG cells through
the parameter α, ranging in the interval [0, 1].

Fig. 2. (Color online) Structure of the 8-cell CPG. The central cells (1–4)
drive flexor muscles in each leg (L = left, R = right, F = fore, H = hind),
whereas upper and lower cells (5–8) drive the corresponding extensor muscles.
(Chemical) synapses, either inhibitory (ending with filled circles) or excita-
tory (ending with filled squares), are represented by gray connections. The
excitatory connections depending on the brain-stem drive are shown in black.

With respect to the 40-cell CPG, the proposed 8-cell CPG
(shown in Fig. 2) maintains only the neuron populations
directly driving flexor (central cells, from 1 to 4, where
L = left, R = right, F = fore, H = hind) and extensor (cells
from 5 to 8) muscles in each leg. The other populations are
replaced by fast chemical synapses, inhibitory (ending with
a filled circle) or excitatory (ending with a filled square),
depending on the nature of the replaced population, thus
obtaining the 8-cell CPG. Indeed, the removed populations
basically behave as amplifiers, without introducing significant
delays in the action potential transmission to flexors and
extensors [37], [38].

Since in the 40-cell CPG the brain-stem drive acts on
excitatory neuron populations here replaced by excitatory
synapses, we model this effect by introducing a nonlinear and
monotonically increasing dependence of the corresponding
synaptic efficacies gex

i j on the parameter α, according to Eq (2).
This accounts for another key feature of CPGs, i.e., the dif-
ferential recruitment of cells during various motor behaviors.
In particular, some cells are active during different types of
movement, whereas other cells are selectively recruited for
each task [1], [39]–[42].

The functions gex
i j (α) have been identified through a polyno-

mial fitting, such that the 8-cell network behaves as the 40-cell
CPG with respect to �φ12. The fitting provided 10-th order
polynomials (see Appendix A).

The other synaptic efficacies are assumed to be constant (the
non-zero values are listed in Tab. II in Appendix A). Their
values have been determined by optimization, in order to
reproduce the behavior of the original 40-cell CPG.

Each cell is modeled in CEPAGE through the same neu-
ron model used in [28] (see Appendix A), for the sake of
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Fig. 3. Spiking frequency f (upper panel) and duty cycle dc of each flexor
cell vs. α.

Fig. 4. (Color online) Upper panels: 1D bifurcation diagrams �φ1i (α), with
i = 2 (top panel), i = 3 (middle panel), i = 4 (bottom panel), obtained by
increasing (black lines) or decreasing (gray lines) the bifurcation parameter
α. The bifurcation diagrams point out the regions where walk (W), trot (T)
and bound (B) are the only stable gait. Bottom panels: membrane voltages
Vi (t) (ranging in the interval [−60, −10]mV) for the flexor cells in the three
regions W (left panel), T (central panel) and B (right panel), over a window
of 600ms (the color code is the same as for the cells in Fig. 2).

comparison, where the parameters have the same values as
in [28] and are reported in Appendix A.

About the synapses, here (unlike in [28]) we use the more
biophysically plausible model (2).

A. Analysis

We analyzed the CPG behavior by varying the bifurcation
parameter α, as in [28].

Each flexor cell eventually produces the same periodic
spiking pattern, but with different phase. Figure 3 shows the
spiking frequency f (upper panel) and duty cycle dc vs. α for
each flexor cell. It is evident that both f and dc increase with α
and this is perfectly coherent with the results reported in [28].

The stable phase differences �φ1 j ( j = 2, 3, 4) vs. α are
shown in the three upper panels of Fig. 4. By varying α,
the CPG is able to produce walk (region W), trot (region T)
and bound (region B). These brute-force bifurcation diagrams
have been obtained by using CEPAGE to simulate the CPG by
increasing (black lines) and decreasing (gray lines) α values.
The comparison points out the presence of a bistability interval
between regions T and B. The corresponding membrane

Fig. 5. Stable phase differences/lags �φ12 and �φ13 in the 8-cell CPG.
Upper panels: ablation of cell V 0V in the original 40-cell CPG.
Bottom-left panel: ablation of cells V 0D and V 0V . Bottom-right panel:
ablation of cell V 3. For the bottom panels, �φ12 remains constant at 0 (left)
and 0.5 (right).

voltages Vi (t) for the flexor cells over a window of 600ms
are shown in the bottom panels, where the color code is the
same as for the cells in Fig. 2.

Figure 5 shows how the bifurcation diagram for �φ12
changes by removing some synaptic connections. These results
are coherent with biophysical experiments where some CPG
cells are genetically ablated [43] and are completely similar
to those obtained in [28] for the 40-cell CPG.

Because in our reduced model the cells removed in the
original 40-cell CPG are no longer included, we modified the
synaptic efficacies as follows (the reader not familiar with
physiological details is referred to [28] for deeper insights
about the removed cells/connections):

• V 0V : we decreased the synaptic efficacies of
the inhibitory connections between the flexor
cells 1-2 and 3-4, since the cell V 0V in the 40-cell
CPG is involved in one of the two possible inhibitory
connections (the other connection involves the cell V 0D)
between the considered flexor cells.

• V 0D and V 0V : we removed the inhibitory connections
between the flexor cells 1-2 and 3-4, for the reasons
explained above.

• V 3: we removed the excitatory connections between the
flexor cells 1-2 and 3-4, for similar reasons.

In the upper panels, due to the lower strength of the
inhibitory connections between left and right flexor cells,
region T disappears, whereas region B is larger than in Fig. 4.
Moreover, region TG appears, meaning that the quadruped can
generate a transverse gallop gait. Black and gray lines have
the same meaning as in Fig. 4 and reveal the presence of
bistability in two transition regions.

In the last two cases the interpretation is quite direct: due
to the absence of inhibitory (excitatory) connections between
left side and right side, the CPG is able to generate only
in-phase (anti-phase) patterns. This prevents the quadruped
from producing bound (bottom-left panel) or walk and trot
(bottom-right panel).
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Fig. 6. Step 1 (see the gray dashed rectangle in Fig. 2): asymptotic duty
cycle dc of the fore flexor cell vs. D1.

Fig. 7. Step 1: the chosen PWL function D1(α).

Summarizing, our analysis shows that the 8-cell CPG has
the same behaviors as the 40-cell CPG and can produce up to
four gaits (only three if we keep unchanged the CPG structure),
among those listed in Tab. I. Now, we want to see if it is
possible obtaining all the five gaits listed in the table, by taking
the CPG structure fixed and acting only on the way gex

i j and Di

depend on the brain-stem parameter α. So, after an analysis
problem, now we face a design problem, following the steps
described in Sec. III.

B. Step 1

We analyze a fore flexor-extensor pair (see the gray dashed
rectangle in Fig. 2). Figure 6 shows the asymptotic flexor cell
duty cycle vs. parameter D1 (see Appendix A, last equation
of system (5)) of the same cell.

The minimum and maximum dc values we want to generate
are 0.25 (walk) and 0.65 (bound). Then D1 can range between
0.0043 and 0.09 and we define it as a non-decreasing PWL
function D1(α) . This choice allows obtaining the same duty
cycle for different values of α and, consequently, we can obtain
different gaits sharing the same duty cycle. Figure 7 shows the
chosen function D1(α) in the considered example.

C. Step 2

We analyze the sub-structure within the gray solid box
in Fig. 2, where the fore flexor-extensor pairs are identical.
Through CEPAGE, we carry out a two-dimensional bifurcation
analysis of the stable phase difference �φ12 with respect to
α and gex (= gex

12 = gex
21). Figure 8 shows the obtained

brute-force bifurcation diagram.
In the blue region, the (unique) stable equilibrium point has

a phase coordinate �φ12 = 0 (in-phase). In the yellow region,
the (unique) stable equilibrium point has a locked phase
�φ12 = 0.5 (anti-phase). In the third intermediate region,
instead, two stable equilibria coexist; the diagram shows the
one with phase 0 < �φ12 < 0.5. The second equilibrium (not
shown) has phase 1 − �φ12. This is the reason because of
the diagram colorbar ranging from 0 through 0.5. On the
whole, we can obtain any phase difference between 0 and 1.

Fig. 8. (Color online) Step 2 (see the gray solid box in Fig. 2): brute-force
bifurcation diagram in the parameter plane (α,gex ). Red curves: supercritical
pitchfork bifurcations. Black dots: chosen parameter pairs corresponding to
five different gaits. Black line: chosen path to obtain the sequence of gaits.

Fig. 9. (Color online) Step 3 (see the black dashed box in Fig. 2):
brute-force bifurcation diagram in the parameter plane (α,�D).
Black dots: chosen parameter pairs corresponding to five different gaits. The
white pixels denote parameter pairs corresponding to a quiescent behavior
of the cell (no spiking occurs at regime). Chosen PWL functions �D3(α)
(solid black line) and �D4(α) (dashed red line).

The red curves mark supercritical pitchfork bifurcations,
obtained again through CEPAGE (brute-force approach).

We remark that, despite the fact that the presence of
bistability makes the produced patterns less robust, for the
asymmetric gaits we can obtain mono-stability by breaking
the symmetry, as we will see below. For the symmetric gaits,
the bistability just means that the limbs move in the reverse
order, but the gait remains the same.

At this point, we can define a function gex(α) so as to have
a continuous sequence of gaits. The chosen function is shown
in Fig. 8 (black PWL curve).

D. Step 3

Step 3 is related to the analysis of the CPG sub-network
within the black dashed box in Fig. 2. Cell 1 depends on
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Fig. 10. (Color online) Upper panels: 1D bifurcation diagrams obtained by
applying to the whole CPG the chosen functions of α, providing the sequence
of gaits walk (region W), trot (T), transverse gallop (TG), rotary gallop (RG),
bound (B). Bottom panels: membrane voltages Vi (t) for the flexor cells in the
five regions, over a window of 600ms (color code as for the cells in Fig. 2).

α through D1(α), whereas cell 4 initially depends on two
parameters through D4(α,�D) = D1(α) + �D.

CEPAGE provided the 2D bifurcation diagram shown
in Fig. 9 for the equilibrium values of �φ14 with respect to α
and �D. By properly choosing �D as a PWL function of α
connecting the values selected at the end of Step 1 (marked
by black dots), we can obtain a function �D4(α) ensuring the
desired phase lags �φ14 between fore and hind legs.

If we want to obtain symmetric gaits only, we can design the
right part of the CPG as identical to the analyzed subnetwork.
On the contrary, if we want to obtain also asymmetric gaits,
we have to design differently the two sides. In particular, in this
case study, we can define two functions �D3(α) and �D4(α)
(one for each side, right/left) so as to have a continuous
sequence of gaits. The chosen functions are shown in Fig. 9:
the dashed red line is related to the left legs and the black
solid line to the right legs.

E. Step 4

Finally, we check the designed CPG by carrying out the
same bifurcation analysis as in Fig. 4, by setting gex

12 = gex
21 =

gex
34 = gex

43 = gex(α), D2(α) = D1(α), D3(α) = D1(α) +
�D3(α) and D4(α) = D1(α) + �D4(α), by using the PWL
functions of α obtained through the previous steps. The result
is shown in Fig. 10. The upper panels show the bifurcation
diagrams obtained by applying the chosen functions and point
out the correct sequence of gaits. The bottom panels show
the corresponding evolution of the steady-state membrane
voltages Vi (t) for the flexor cells in the five regions, over
a window of 600ms and with voltages ranging in the interval
[−60,−10]mV (the color code is the same as for the cells
in Fig. 2). As pointed out in Sec III, each voltage has its own

Fig. 11. (Color online) 4-unit synthetic CPG. Gray dashed box: half-center
oscillator (see step 1) with standard inhibitory synaptic connections (filled
circles) and additional excitatory synaptic connections (filled squares). The
CPG is completed by the mid-gray (see step 2) and dark-gray (see step 3)
inhibitory connections.

duty cycle, amplitude, frequency, and phase, which determine
on the whole the corresponding gait.

V. CASE STUDY 2: A SYNTHETIC CPG

In this section we show how to design a 4-cell purely
synthetic CPG in order to generate the same gaits as before.

The chosen neuron model is the modified
FitzHugh-Nagumo model described in [21] and reported
in Appendix B for ease of reference. In this model, all
variables are normalized and dimensionless.

We use the synapse model (2), with ν = 0.3, θ = 0,
Ein = −1.5 and Eex = 1.

In this case, we consider only the phase relationships
between limbs for each gait, i.e., we focus on the times of
maximum contact between limb and ground. For the sake of
simplicity, in this example we neglect the duty cycle, which
accounts for the duration of the contact. In other words, this
network is only a rhythm generator, that would require either
a more complex cell model or further cells (e.g., a pattern
formation network and motor neurons, as proposed in [44]) to
become a realistic CPG, able to modulate also duty cycles,
amplitudes and frequencies of the cells driving flexor and
extensor muscles. With this caveat in mind, henceforth the
network will be called anyway CPG.

Our goal in this second case study is to design a synthetic
CPG that, for a given parameter setting, produces only one
stable motif, in order to ensure robustness for the generated
pattern.

Some synapses are fixed whereas others depend on the
bifurcation parameter α ∈ [0, 1], in order to make the CPG
able to switch between the desired gaits.

The complete CPG reference structure is shown in Fig. 11.
Actually, the design strategy starts from a simpler block,
i.e., the HCO within the gray dashed box. With respect
to a standard HCO (containing only inhibitory synapses,
light-gray connections ending with filled circles), here we add
also excitatory synapses (ending with filled squares), whose
strengths gex

i j depend on α.
The second step in the design involves two HCOs (made up

of cells 1-2 and 3-4), that are connected through the vertical
gray inhibitory synapses.
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Fig. 12. Maximum convergence time of the phase difference �φ12 to the
equilibrium point in the HCO for gex

12 = gex
21 = 0.

Fig. 13. (Color online) Step 1: two-dimensional bifurcation diagram for the
excitatory synaptic efficacies of the HCO (gray dashed box in Fig. 11).

Step 3 involves also the dark-gray inhibitory (or excitatory)
synapses, whose strengths gin

i j depend on α. Each step requires
some analysis (carried out with CEPAGE), which is described
in detail in the following.

A. Step 1

First of all, we set the strength of the inhibitory synapses,
which will be taken as a reference for the whole design
process. Since the HCO has always a stable equilibrium point
for the phase difference, we can set the synaptic efficacy gin

(the same for both connections 1 → 2 and 2 → 1) according
to the desired convergence time scale. Figure 12 shows the
maximum convergence time of the phase difference �φ12
to the equilibrium point for gex

12 = gex
21 = 0. We choose

gin = 4 in order to have convergence times in the scale of
some normalized units of time.

Now, we have to set the strengths of the excitatory synapses.
To this end, we obtain a two-dimensional bifurcation diagram
showing the equilibrium phase difference �φ12 with respect
to gex

12 and gex
21 (see Fig. 13). White pixels mark the presence

of multiple stable equilibria. The white region is due to the
presence of a subcritical pitchfork bifurcation along the main
diagonal, which degenerates in a fold bifurcation outside the
diagonal (due to symmetry breaking).

Points W/T, TG, B in the figure mark the pairs chosen to
reproduce different gaits with the complete CPG, on the basis
of the corresponding left-right phase difference (see Table I):
walk and trot (W/T, anti-phase LR alternation), bound
(B, in-phase LR alternation), transverse gallop (TG, almost

Fig. 14. Step 1: chosen PWL functions gex
12 (α) (black solid line) and gex

21 (α)
(gray dashed line).

Fig. 15. Step 2: asymptotic values of the phase difference �φ14 with
respect to g.

in-phase LR alternation). Figure 14 shows the chosen functions
gex

12(α) (black solid line) and gex
21(α) (gray dashed line).

B. Step 2

The bottom HCO is identical to the top one, with
gex

12 and gex
21 set to point A, in order to have left-right

alternation with �φ12 = 0.5. Here, we analyze the CPG
behavior changes with respect to the strength g of the
4 mid-gray inhibitory synapses shown in Fig. 11.

The 1D bifurcation diagram in Fig. 15 shows the equilib-
rium value of the phase difference �φ14 with respect to g. The
bifurcation diagram contains three regions, whose edges are
marked by dashed vertical lines. In the left region there is no
phase locking (i.e., the CPG works out of an Arnold tongue),
due to the too low value of g. In the right region, the g strength
approaches gin = 4 and further stable equilibria appear, thus
producing undesired multi-stability.

Then we set g to a value within the central region. In order
to ensure structural stability, we choose g = 2.

C. Step 3

Now we want to set the strength gc of the two dark-gray
inhibitory synapses shown in Fig. 11 in order to generate all
the desired front-hind alternations, corresponding to different
rhythms.

To this end, Fig. 16 provides one-dimensional bifurcation
diagrams showing the stable equilibrium phase differences
�φ12 and �φ14 with respect to gc, for the HCO config-
ured in the points W, T (black lines), TG (gray lines),
B (light-gray lines) in Fig. 13.

We want to ensure that gc is set to a value that (i) does not
alter the existing LR phase difference and (ii) provides the
desired FH phase difference. The upper bifurcation diagram
in Fig. 16 shows the actual stable equilibrium phase differ-
ences �φ12 versus gc (solid lines) and those set during step 1
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Fig. 16. Step 3: one-dimensional bifurcation diagram showing the stable
equilibria with respect to gc in the case of inhibitory synapses.

Fig. 17. Step 3: one-dimensional bifurcation diagram showing the stable
equilibria with respect to gc in the case of excitatory synapses.

(cross markers). It is evident that for the parameter settings
W, T and TG the desired equilibrium value of �φ12 is kept
for any gc, whereas for the parameter setting B only gc values
lower than about 0.2 allow keeping the desired equilibrium
value of �φ12.

About condition (ii), from the lower bifurcation diagram we
deduce that for the parameter setting W, T (black line) we can
only have a delay between fore and hind limbs (�φ14 > 0.5)
and acting on gc we can control this delay over a reasonable
interval (with �φ14 ranging from 0.5 to about 0.8). On the
contrary, for the other two settings we can only have an
advance of the fore limb with respect to the hind limb
(�φ14 < 0.5) and acting on gc we can control this delay over
a small interval (with �φ14 ranging from about 0.4 to 0.5).

If the nature of the synaptic connections is changed to exci-
tatory, we obtain the bifurcation diagrams shown in Fig. 17.
A direct comparison of Figs. 16 and 17 makes it evident that
the two kinds of connections have a complementary effect.
This suggests that in the case W, T inhibitory connections can
be favorably used to obtain a prescribed delay between fore
and hind limbs, whereas excitatory connections are better to
obtain a prescribed advance. Similarly, in the cases TG and B
inhibitory (excitatory) connections can be used to obtain a
prescribed advance (delay).

Among the allowed gc values, we choose the one corre-
sponding to the equilibrium value of �φ14 closest to the
desired rhythm (see Table I), thus obtaining the functions
gin

13(α) = gin
24(α) (black solid curve) and gex

13(α) = gex
24(α)

(gray dashed curve) shown in Fig. 18.

Fig. 18. Step 3: chosen PWL functions gc(α) in the case of inhibitory
(black solid line) or excitatory (gray dashed line) synapses.

Fig. 19. (Color online) Step 3 (see text). Upper panel: 1D bifurcation
diagrams obtained by applying to the whole CPG the chosen functions of α,
providing the sequence of rhythms walk (region W), trot (T), transverse
gallop (TG), bound (B). Bottom panels: normalized membrane voltages Vi (t)
for the CPG cells in the four regions, ranging in the interval [−1, 1] over a
window of 50 units of time (color code as for the cells in Fig. 11).

D. Step 4

Figure 19 shows the stable equilibrium values of the phase
differences (upper panel) and the time evolution of the nor-
malized membrane voltages (lower panels) by changing α
to obtain the desired rhythms: walk (region W), trot (T),
transverse gallop (TG) and bound (B).

The width of the time axes in the lower panels is 50 units of
time (notice that the model used in this case study, described in
Appendix B, is normalized and uses dimensionless variables).

E. Asymmetric Rhythms

If we want to add to the rhythm sequence also asymmetric
rhythms, the procedure described for step 3 in the case
of symmetric rhythms must change. In the complete CPG,
cells 1 and 2 are initially assumed to be not connected,
in order to avoid LR synchronization, whereas cells 3 and 4
remain connected through the synapses with PWL functions
gex

34(α) = gex
12(α) and gex

43(α) = gex
21(α) (see Fig. 14).

Now we obtain again a bifurcation diagram with respect
to gc (as in Figs. 17 and 18), to choose proper values of gc

and a proper PWL function gc(α).
Finally, we choose proper values of gex

12 and gex
21

(as in Fig. 13) and related PWL functions gex
12(α) and gex

21(α)
(as in Fig. 14), by keeping unchanged gex

34(α) and gex
43(α).

Figure 20 shows the stable equilibrium values of the phase
differences (upper panel) and the time evolution of the neuron
voltages (lower panels) by changing α to obtain the desired
rhythms: walk (region W), trot (T), transverse gallop (TG),
rotary gallop (RG), and bound (B).
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Fig. 20. (Color online) Step 3 for asymmetric rhythms (see text). Upper
panel: 1D bifurcation diagrams obtained by applying to the whole CPG the
chosen functions of α, providing the sequence of rhythms walk (region W),
trot (T), transverse gallop (TG), rotary gallop (RG), bound (B). Bottom panels:
normalized membrane voltages Vi (t) for the CPG cells in the four regions,
ranging in the interval [−1, 1] over a window of 50 units of time (color code
as for the cells in Fig. 11).

We remark once more that in this case (contrary to the first
case study), we focused on the phase differences only, since
amplitudes, frequencies and duty cycles of the cell voltages
can be properly modulated only by using a more complete
CPG model. Inasmuch as this paper is focused on the design
method, the cell model was used as is and the method was
applied in order to make the CPG generate the correct phase
differences. This is the reason why in this case the voltages
Vi (t) differ in the phase only.

VI. CONCLUDING REMARKS

While papers devoted to the analysis of CPGs are quite
common in the scientific literature, there is a lack of papers
mainly focused on their design. This paper aimed to bridge this
gap, focusing on the case of locomotion control of quadrupeds.
The main features of the proposed design strategy can be
summarized as follows:

• parallel development of analysis and design, based on
multi-parameter bifurcation theory;

• combination of local analysis (and related design of
some local properties/parameters of the CPG) and global
analysis, to ensure structural stability of the overall
system;

• use of a bifurcation parameter modeling the brain-
stem drive coming from the supra-spinal networks to
properly govern gait transitions through the nonlinear
functions gex

i j (α).
The method has been applied to model with relatively sim-

ple dynamical networks either a real structure (first case study,
reduced-complexity version of a bio-inspired CPG) or just
specific quadrupeds’ functionalities (second case study, syn-
thetic CPG), by resorting to the toolbox CEPAGE for efficient
numerical analysis. After proper robustness analysis with
respect to cell and synapse models and after properly relating
the parameter α to sensory inputs (in order to introduce
also an effective closed-loop control, besides the open-loop

TABLE II

SYNAPSES EFFICACIES OF THE 8-CELL CPG

control provided by the CPG), the obtained results can find
applications in the fields of bio-robotics [23], [24] and rehabil-
itation [25], [26]. Moreover, we will have to introduce a direct
sensory feedback to properly adjust the gait in the presence of
mechanical perturbations, for instance, if one leg cannot find
a foothold [45], [46].

To conclude, we briefly address the physical implementation
problem related to applications. As pointed out in [12],
a CPG-based locomotion control is usually programmed in
software and running on hardware (microcontroller, DSP,
FPGA or dedicated hardware). Providing an overview on
possible hardware implementations, which (except purely
digital solutions) depend on the specific choice of cell and
synapse models, is out of the scope of this paper. About
this issue, the reader is kindly referred to surveys such
as [12] and [47] or to specific studies related to the cited
applications [48], [49].

APPENDIX A
CASE STUDY 1

The model employed in the first case study is [28]

C
dVi

dt
= −INa − IL − I (i)

D (α) + I (i)
syn

τ
dh

dt
= h∞ − h

IL = gL · (Vi − EL)

INa = gNa · m · h · (Vi − ENa)

m =
(

1 + e
Vi −Vm

km

)−1

h∞ =
(

1 + e
Vi −Vh

kh

)−1

τ = τ0 + τM − τ0

cosh( Vi−Vτ
kτ

)

I (i)
D (α) = gD · Di (α) · (Vi − Eex) (5)

where C = 10pF, gL = 4.5nS, EL = −62.5mV, gNa = 4.5nS,
ENa = 50mV, Vm = −40mV, km = −6mV, Vh = −45mV,
kh = 4mV, τ0 = 80ms, τM = 160ms, Vτ = −35mV, kτ =
15mV and gD = 10nS, D5 = D6 = D7 = D8 = 0.1, D1 =
D2 = 0.1α + 0.0023 and D3 = D4 = 0.104α + 0.0010

The synapses parameters are ν = 0.3 mV −1, θ = −30 mV ,
Eex = −10 mV and Ein = −75 mV , whereas the constant
synaptic strengths are listed in Tab. II.
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The synaptic strengths of the excitatory synapses depend on
α as follows:

gex
12(α) = gex

21(α) = 115.98α10 − 231.71α9 + 25.54α8

+ 329.37α7 − 407.13α6 + 235.88α5 − 76.053α4

+ 13.751α3 − 1.1155α2 + 0.11545α + 0.16808

gex
34(α) = gex

43(α) = 3058.8α10 − 13011α9 + 23662α8

− 23916α7 + 14651α6 − 5568.3α5 + 1292α4

− 172.9α3 + 12.005α2 − 0.25126α + 0.1689 (6)

APPENDIX B
CASE STUDY 2

The model used in the second case study is [21]

dVi

dt
= Vi − V 3

i − xi + I + β I (i)
syn

dxi

dt
= ε

(
1

1 − e−10Vi
− xi

)
(7)

where I = 0.5, β = 10−3 and ε = 0.3.
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