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Abstract

Proper understanding of the co-existence of multistable rhythms generated by oscillatory neural circuits made up of 4 and
more cells, their onset, stability conditions, and the transitions between such rhythms remains incomplete. This is partly
due to the lack of appropriate visual and computational tools. In this study, we employ modern computational approaches
including unsupervised machine learning (clustering) algorithms and fast parallel simulations powered by graphics process-
ing units (GPUs) to further extend our previously developed techniques based on the theory of dynamical systems and
bifurcations. This allows us to analyze the fundamental principles and mechanisms that ensure the robustness and multi-
functionality of such neural circuits. In addition, we examine how network topology affects the dynamics, and the rhythmic
patterns transition/bifurcate as network configurations are altered and the intrinsic properties of the cells and the synapses
are varied. This study elaborates on a set of inhibitory coupled 4-cell circuits that can exhibit a variety of mono- and multi-
stable rhythms including pacemakers, paired half-centers, traveling-waves, synchronized states, as well as various chimeras.
Our detailed analysis is helpful to generate verifiable hypotheses for neurophysiological experiments with biological central
pattern generators.
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1. Introduction

Rhythmic oscillations underlie a variety of sensory, motor and cognitive functions. Brain disorders such as schizophrenia,
epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease are characterized by dysfunction of neural oscillations. As
such, mechanisms underlying rhythmic activities can help in designing therapeutic interventions for such conditions. Brain
networks are composed of smaller structural and functional building blocks of neural networks called motifs [1, 2, 3, 4].5

Such motifs have been identified in various animal central pattern generators (CPGs), which are biological neural networks
producing rhythmic motor output without sensory feedback or central input. Rhythmic patterned motor activity under the
control of CPGs is widespread across many vertebrate and invertebrate species in a diversity of neural networks including
ones governing locomotion, swimming, respiration and heartbeat [5, 6, 7, 8, 9, 10, 11, 12, 4, 13, 14, 15, 16, 17]. As
networks evolve and become more complex, the existing motifs are preserved while new elements are added to maximize10

the available number of configurations and to support the robustness of the networks [4, 18, 19, 20]. For example, a
common constituent of many known CPGs is a half-center oscillator (HCO) that is made up of 2 bilaterally symmetric
neurons that reciprocally inhibit each other to produce alternating bursting patterns in anti-phase. Multiple HCOs can be
combined using chemical and/or electrical synapses to form complex modular CPG networks such as the well described
swim CPGs in sea slugs Melibe leonina and Dendronotus iris [19, 21, 22, 11, 23, 24, 25, 26]. In order to gain insights into the15

dynamical principles that regulate the behaviors of larger networks, it is essential to understand the workings of individual
neurons as well as the basic motifs. Mathematical modeling studies at multiple levels ranging from isolated neurons to small
networks and populations have resulted in significant understanding of the working principles of biological neural networks
[27, 28, 29, 30, 31, 32, 33].
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Figure 1: (a) The phase space of a weekly coupled generalized Fitzhugh-Nagumo type neuron with the slow recovery variable x and the fast voltage
variable V , superimposed with the corresponding nullclines: slow dx

dt
= 0 and fast dV

dt
= 0, and the limit cycle. The colored dots depict the phase

coordinates of three coupled cells traversing the limit cycle to generate a traveling-wave pattern (Fig.2c). (b) Multistability analysis of the fully connected
3-cell network (Fig. 2a) using the 2D Poincaré return map on a grid of 70×70 initial conditions or phase lags between cell 1 (blue - chosen as the reference
cell) and cells 2 and 3. All the initial conditions that converge to the same attractor are shown in identical colors to visualize the attraction basins of the
five co-existing fixed points (shown as white dots), representing five stable rhythms of the circuit. These are 3 pacemaker (red, green, and blue) and two
travelling wave (pink - clockwise, black - anti-clockwise) rhythms. Fig. 2 shows sample trajectories converging to the blue pacemaker (0.5, 0.5) and the
clock-wise traveling-wave (0.66, 0.34) (pink).

A fundamental challenge in theoretical and experimental research on CPGs is to understand the mechanisms by which20

such neural networks can adapt structurally and functionally to serve as dedicated circuits for monostable rhythms, or as
multifunctional circuits producing several stable rhythmic behaviors [32, 20, 34, 35, 36, 37, 38, 39, 40]. Moreover, intrinsic
capability for rhythm switching, such as gait transitions in locomotion and changes in the direction of blood flow in leeches,
can be accomplished by input-driven perturbations that switch between multiple attractors representing various rhythmic
patterns generated by a multistable CPG [18, 41, 42, 43]. In addition, these attractors, which can be fixed points or periodic25

orbits, can bifurcate – loose stability or vanish, thereby explaining the continuous or the sudden transitions in the system
state due to changes in network connectivity, external inputs and the intrinsic dynamics of individual neurons [44]. The
emergence of stable polyrhythms, and their transitions, exhibited by half-center oscillators and 3-cell motifs, along with
their dynamics under the influence of external input and varying chemical (inhibitory and excitatory) and electrical synaptic
connectivity, have been thoroughly demonstrated using Poincaré return maps for phase lags (described in the next section)30

and other techniques. Note that 4-cell circuits and more complicated CPGs that produce dedicated functionality have also
been studied in real animals as well as computational models [18, 45, 46, 47, 48, 49, 34, 12, 4, 13, 14, 15, 16, 17]. The
basic principles underlying the co-existence and stability of multiple rhythms in 4-cell networks and larger CPGs have long
remained unclear, in part, due to the exponentially increasing algorithmic complexity and computational costs needed to
systemically explore such networks. Another major problem with using the approaches like Poincaré return maps for larger35

networks is that, unlike the 3-cell circuits that are well described by 2-dimensional (2D) maps, the corresponding well
populated maps for larger networks become 3D and higher dimensional, which are hard to analyze visually.

Traditional computational approaches using single threaded computing fall short both in terms of the amount of time
required for the computations as well as the breadth and comprehensiveness that could be achieved. Recent advances in
parallel processing and GPU computing with technologies such as CUDA, OpenAcc, OpenMP and OpenMPI offer tremen-40

dous performance improvements and make it possible to study problems in neuroscience and nonlinear dynamics that could
not be solved earlier [50, 51, 52, 53, 54]. In this study, we will address the lack of such visual and computational tools and
further extend the developed techniques based on dynamical systems theory for neuroscience applications by implementing
elements of unsupervised machine learning for clustering analysis in higher dimensions [55, 56, 57, 58, 59, 60, 61] and GPU
parallelization for faster simulations of densely populated trajectories in such coupled circuits. By combining the analytical45

tools with these computational approaches, we deconstruct the operating rules for the co-existence, stability and robustness
of stable polyrhythms in complex CPGs. We demonstrate the effectiveness of this approach in homogenous 4-cell neural
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Figure 2: (a) A fully connected 3-cell network of the generalized Fitzhugh-Nagumo type cells with mutually inhibitory synapses. Two long trajectories
converging towards (b) the blue pacemaker rhythm (∆θ12 , ∆θ13) = (0.55, 0.55) or (c) the clockwise traveling-wave rhythm (∆θ12 , ∆θ13) = (0.67, 0.33)
are shown. Evolution of the phase lags ∆θ12 and ∆θ13 at those moments when the reference cell 1 (blue) crosses above threshold (vertical dotted lines)
are shown at the top and the bottom, respectively. Here, Iapp = 0.426, ginh = 0.01 and ε = 0.3.

circuits with inhibitory coupling and show how network topologies, intrinsic and extrinsic parameters result in bifurcations
and alter network behaviors. The development and incorporation of such mathematical and computational tools is essential
to unravel the multifarious behaviors arising in neuroscience. The methods developed are interdisciplinary with applications50

to complex dynamical systems and networks of coupled oscillators ranging across (electro)chemical reactions, population
dynamics, electronic circuits, nonlinear optics, regulatory genetic networks and excitatory dynamics of cellular membranes
and heart beats, to name a few.

2. Models and numerical methods

We construct our neural circuits using identical neurons of a generalized Fitzhugh-Nagumo type with a cubic fast nullcline55

and a sigmoidal slow nullcline as described in [43]. The equations are given by:

dVi
dt

= Vi − Vi3 − xi + Iapp +
∑
j 6=i

gjiinh G(Vi, Vj)

dxi
dt

= ε [x∞(Vi)− xi] (1)

The voltage variable Vi and the recovery variable xi together determine the state of the ith neuron. The parameter ε
for time-scale separation determines the slow dynamics of xi with respect to Vi; the slow nullcline dxi

dt = 0 is given by the
sigmoidal function:

x∞(Vi) =
1

1 + e−10 (Vi−Vsh)
where Vsh = 0.

Parameter values are initially chosen so that the system has a unique repelling equilibrium state at the intersection of the
middle, unstable branch of the V -nullcline (where dV

dt = 0) and the slow x-nullcline (where dx
dt = 0), surrounded by a stable

limit cycle, as shown in Fig. 1a. The reciprocal interactions between these two variables result in oscillatory behavior through
dynamical hysteresis where the voltage variable becomes bistable between the active (Vi ≥ Vth) and the inactive (Vi < Vth)60

states for a fixed value of the recovery variable, with the activation threshold given by Vth = 0. Relaxation oscillations are
constituted by the relatively slow transient active and inactive meta-states and the fast switching between the corresponding
branches (for 0 < ε < 1). The external drive Iapp horizontally shifts the position of the V-nullcline and controls the release
and escape mechanisms of the otherwise stationary states of the neuron [43].

Inhibitory synaptic coupling between the neurons in a network is modeled using fast-threshold modulation with a sig-65

moidal coupling function. An inhibitory synapse, due to Erev = −1.5, from neuron j to neuron i, with strength gjiinh in
equation (1) is given by

G(Vi, Vj) = (Erev − Vi) Γ(Vj), where Γ(Vj) =
1

1 + e−100 (Vj−Eth)
, and Eth = 0

The voltage variable Vi is driven by a summation of such synaptic inputs from all other neurons j 6= i in the circuit.
Identical values are used for all the synaptic strengths gji within a network, except where specified otherwise. The external
drive Iapp, the time-scale constant ε, and the network coupling strength ginh serve as key bifurcation parameters that70

determine the circuit dynamics. The choice of the model used in the study provides computational simplicity while retaining
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Figure 3: Homogenous network topologies for 4-cell circuits with inhibitory synaptic coupling between neurons: (a) One-way inhibitory loop (b) Two-way
inhibitory loop (c) Mixed (d) Fully connected. In each of these network configurations, all the neurons have identical parameter values and receive the
same number of incoming synapses of identical strengths.

the essential dynamical features and mechanisms of rhythmogenesis seen in the detailed Hodgkin-Huxley type of neuronal
models. Further details of this neuron model and the multistability analysis of 3-cell networks can be found in [43], while
such analysis for detailed Hodgkin-Huxley type of neurons is presented in [18].

2.1. Poincaré return maps for phase lags75

Figure 2a shows a 3-cell motif comprised of generalized Fitzhugh-Nagumo type neurons with mutually inhibitory synapses,
as described by equations (1). Figures 2b,c show two voltage traces that converge to stable pacemaker (blue) and traveling-
wave (clockwise) rhythms with phase-locked states in this network. The possible polyrhythms in such 3-cell motifs have been
previously described using Poincaré return maps for phase lags (see Fig. 1b) to determine the attraction basins, stability and
bifurcations of the fixed points corresponding to phase locked states in the voltage patterns [18, 43, 62, 63, 37, 38]. These80

maps are built using specific events in time when the cells cross the threshold voltage from below. A sequence of phase
lags is defined for each cell, as the delay in the burst initiation of a reference cell with respect to that of this cell, normalized
over the bursting period. Thus, in the 3-cell CPG shown in Fig. 2a, if tn1 , tn2 , and tn3 represent the times at which cell 1 (blue),
cell 2 (green) and cell 3 (red) cross the threshold for the nth time, using cell 1 as the reference cell, the (nth) phase lags are
given by:85

∆θ12 =
tn+1
1 − tn2
tn+1
2 − tn2

and ∆θ13 =
tn+1
1 − tn3
tn+1
3 − tn3

Ordered pairs of phase lags (∆θ12, ∆θ13) are used to construct a Poincaré return map in the 2D discrete phase space.
A sequence of ordered pairs yields a forward phase trajectory on a 2D torus (Fig. 1b), which maps the phases of cells 2
and 3 with respect to the reference cell 1, defined for values between 0 and 1. A phase lag of either 0 or 1 represents an
in-phase relationship with the reference cell while a phase lag of 0.5 represents an anti-phase relationship. A fixed point in
the system corresponds to a stable rhythmic oscillatory pattern that arises out of well defined phase lags between the burst90

initiations of individual neurons of the CPG, which remain phase-locked over time. All trajectories starting from a wide range
of initial phase lags that converge to the same fixed point or stable rhythm are marked by identical colors, depicting the
attractor of the rhythm in the phase space. By analyzing the phase space of the Poincaré map, it is possible to predict the
characteristics of the rhythmic behaviors of the corresponding CPG. The Poincaré map in Fig. 1b reveals the existence of a
penta-rhythmic state in the CPG with 3 pacemakers (blue - Fig. 2b, green and red) and two traveling-waves (pink - Fig. 2c,95

black). The blue, green and red pacemakers correspond to the fixed points on the Poincaré map represented by the ordered
pairs (0.5, 0.5), (0.5, 0) and (0, 0.5) respectively, for the phase lags (∆θ12, ∆θ13), while the clockwise (pink) and anti-clockwise
(black) traveling-waves are represented by (0.67, 0.33) and (0.33, 0.67), respectively. Using Poincaré return maps for phase
lags, the problem of existence and stability of multiple bursting rhythms in the CPG is reduced to the bifurcation analysis of
fixed points, attractors and invariant cycles in the system.100

2.2. Unsupervised machine learning
In order to analyze multistability of larger networks whose corresponding Poincaré return maps are of dimension 3D

and higher, we employ unsupervised machine learning techniques to computationally evaluate the attraction basins of the
stable polyrhythms (read stable fixed points), and analyze their corresponding bifurcations. We investigate multi-stable
dynamics in homogenous networks comprised of 4 generalized Fitzhugh-Nagumo type neurons given by equations (1), with105

identical mutual inhibition between neurons. Such a model provides computational simplicity while showing the dynamics
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Figure 4: A sliced 3D torus of the Poincaré return map for phase lags for the fully connected 4-cell circuit (Fig. 3d) shows the inner structure of the attraction
basins. Green, blue and red attractor basins of the corresponding fixed points (white dots) represent the stable paired half-center rhythms whose phase
lag ordered tuples ( ∆θ12 , ∆θ13, ∆θ14 ) are given by (0.5, 0., 0.5), (0.5, 0.5, 0.), and (0., 0.5, 0.5), respectively. Here ginh = 0.025, Iapp = 0.575 and
ε = 0.5.

topologically similar to more complex models based on the Hodgkin-Huxley formalism [43, 18]. For meaningful application
of Poincaré maps, homogeneity ensures similar bursting periods across different neurons by (1) using identical parameter
values for all the neurons and (2) keeping the sum of the synaptic strengths of all the inputs received by a neuron the
same as those of any other neuron in the network. Figure 3 shows various homogenous network topologies for the 4-cell110

circuits, with gradually increasing complexity, starting from the one-way inhibitory loop (Fig. 3a), to the two-way inhibitory
loop (Fig. 3b), to the mixed network (Fig. 3c), and finally the fully connected network (Fig. 3d).

We analyze the Poincaré return maps using hierarchical clustering schemes [55, 56, 57, 58, 59, 60, 61]. We begin by first
identifying multiple initial conditions with varying phase lags for the cells, spread out uniformly across the 3D phase torus on
a (25 × 25 × 25) grid. For each of those initial conditions, we obtain long traces of firing activity of the circuit and compute115

the corresponding phase trajectory of ordered tuples ( ∆θ12 , ∆θ13, ∆θ14 ) of phase lags. Using clustering methods, all the
trajectories from different initial conditions that converge to a very close neighborhood of each other are determined to be
within a cluster. Since the phase lags are defined on the 3D torus with modulo-1, implying the phase lags 0.0 and 1.0 are
identical, the circular mean of all the converging ordered tuples of phase lags of the trajectories within a cluster defines the
fixed point or the stable rhythm marked by the cluster. We also measure the circular standard deviation to reflect the degree120

of variability within a cluster. Circular means and circular standard deviations are rounded up to two decimal points. The
total number of initial conditions whose trajectories converge to each cluster serves as a measure for the relative size of the
attraction basin of the stable rhythm. Numerical integration is performed using the fourth order Runge-Kutta method with a
fixed step size. Computation of neural trajectories and phase lags, and parallelization across GPU threads is achieved using
CUDA and OpenAcc [6]. Clustering analysis and visualizations are done using Python.125

Table 1: Multistability analysis of the fully con-
nected 4-cell CPG (Fig. 3d) with 3D phase torus
of Poincaré maps (Fig. 4) is simplified using clus-
tering to reveal three stable paired half-center
rhythms.

CCM CCSD PC

(0.5, 0., 0.5) (0., 0., 0.) 33.2%
(0.5, 0.5, 0.) (0., 0., 0.) 33.5%
(0., 0.5 ,0.5) (0., 0., 0.) 33.2%

ginh = 0.025, Iapp = 0.575 and ε = 0.5

For example, Fig. 4 represents a Poincaré return map on the 3D phase torus
using multiple 2D slices for the fully connected 4-cell circuit (see Fig. 3d). It shows
three distinct attractors (with green, blue, and red basins) of the paired half-center
rhythms, where two pairs of cells fire in anti-phase while cells within a pair fire
in synchrony (see Fig. 6 paired half-center). The phase lag ordered tuples (130

∆θ12 , ∆θ13, ∆θ14 ) for these rhythms are given by (0.5, 0., 0.5), (0.5, 0.5, 0.), and
(0., 0.5, 0.5) for the green, blue, and red attractors, respectively. Constructing and
decoding such 3D phase space trajectories visually is rather hard and time con-
suming. Table 1 illustrates the results of the clustering approach to automate the
detection of these multistable states (fixed points), the phase relationships of the135

cells at these attractors, the degree of variability in their convergence, and the rel-
ative sizes of the attraction basins of various rhythmic states by means of cluster
circular means (CCM), cluster circular standard deviations (CCSD) and the percentage of convergence (PC). We stress that
GPU parallelization allows this multistability analysis to be performed within just a couple of minutes.
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Figure 5: Multistability and bifurcation analysis of the fully connected 4-cell circuit with varying synaptic strength (ginh) and external drive (Iapp) on a 7×6
grid, at ε = 0.5. Each block in the grid depicts the clusters and the stable rhythms identified for the particular parameter values, shown in different colors in
proportion to the size of their attraction basins in the phase space. Noise within a cluster is proportional to its circular standard deviation. 3D phase torus
and clustering results for some of these parametric blocks are shown in Fig. 4 and Table 1,2. The bifurcation diagram identifies the rich repertoire of stable
rhythms and all their isomorphisms expected from the symmetry of the circuit, including paired half-centers, pacemakers, traveling-waves, synchronization,
stable transitory rhythms, and trajectories with non-converging phase lags (chimeras), as pictured in Fig. 6.

3. Results140

We investigate the multistable rhythms generated by various homogenous network configurations of 4-cell CPGs given
in Fig. 3. We find the network topologies that drive monostable or multistable behaviors. We also identify the transitions
occurring in these networks as parameters such as the synaptic and external drives are varied, to determine the principles
underlying stable polyrhythms in such networks.

3.1. Multifunctionality repertoire of the fully connected network145

Figure 5 is an illustration of the multistability and bifurcation analysis performed on the fully connected 4-cell circuit, as
we vary two parameters of the network, the synaptic strength (ginh) and the external drive (Iapp), on a 7 × 6 grid, while
keeping a fixed ε = 0.5. For each set of parameters in this grid, the clustering analysis of Poincaré return maps of the 3D
torus is performed to identify the stable rhythmic behaviors (clusters). Each block in the grid represents the clusters and
the rhythmic behaviors identified for the particular parameter values. The rhythmic state associated by each cluster is given150

by the cluster circular mean (CCM). The homogeneity and symmetry of the network implies that circular permutations or
symmetric variations or isomorphisms of the rhythms coexist in the network. For example, the orange block marked A at
ginh = 0.025 and Iapp = 0.575 represents the existence of 3 stable isomorphisms of the paired half-center rhythms whose
phase lag ordered tuples (∆θ12 , ∆θ13, ∆θ14) are given by (0.5, 0., 0.5), (0.5, 0.5, 0.), and (0., 0.5, 0.5). Cell 1 could fire in
phase with either of cells 2, 3 or 4, while the remaining two cells fire in anti-phase relationship with cell 1 (and synchronously155

with each other). This is also shown in the clustering results and the 3D phase torus of Fig. 4 and Table 1. For any given
parametric block of Fig. 5, each color indicates the existence of a stable rhythm, along with all of its isomorphisms. Multiple
colors within the same block indicate the co-existence of different stable rhythmic patterns in the phase space. The sizes
of the colored regions proportionally relate to the sizes of the attraction basins of those rhythms, given by the percentage
of trajectories converging to those rhythms (PC). Noise within the colored region representing a cluster is proportional to160
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Figure 6: Rhythmic capacity of the fully connected 4-cell circuit (Fig. 3d), depending on the parameter values (see Fig. 5), includes 3 paired half-centers,
4 pacemakers, a single fully synchronous state, 6 full traveling-waves, 12 mixed traveling-waves, stable transitory rhythms between paired half-centers and
full traveling-waves, and 4 chimera states featuring a 11:10 resonance.

the cluster’s circular standard deviation (CCSD) and is indicative of the variability within the cluster. The clustering analysis
for the network across different ginh vs. Iapp blocks at ε = 0.5 in Fig. 5 shows that the network can exhibit a plethora of
different stable rhythms, pictured in Fig. 6. Clustering details with CCM, CCSD and PC at some of these parametric blocks
are presented in Table. 2. Mixed traveling-waves are seen at a different ε = 0.05 (see supplementary Fig.S2).

3.1.1. Paired half-centers165

This is the most dominant rhythm of the fully connected network as seen from the bifurcation diagram of Fig. 5 (orange
regions such as A) at ε = 0.5, as well as at ε = 0.3 shown in the bifurcation diagram of supplementary Fig. S1. These
2-phasic rhythms are characterized by two pairs of cells that oscillate in anti-phase relationship with each other, while the
cells within each pair oscillate in-phase (supplementary Movie. M2). By virtue of symmetry of the fully connected network,
there exist 3 stable isomorphisms of this rhythm. The phase-lag ordered tuple for one such rhythm is given by (∆θ12,170

∆θ13,∆θ14) = (0., 0.5, 0.5) and is shown in Fig. 6, while the corresponding limit cycle orbit of the voltage and the recovery
variables is represented in Fig. 7 (orange). Note here that the voltage amplitude of the orbit for the paired half-center rhythm
is slightly smaller than that of an isolated cell (grey), due to the continuous inhibition experienced by a cell in its active state
from its phase locked counterpart.

3.1.2. Synchronized state175

Surprisingly, we see that the fully connected network of neurons reciprocally coupled with fast-inhibition can also exhibit
stable synchronization of neuronal activity with (∆θ12 , ∆θ13, ∆θ14) = (0., 0., 0.), for particular values of the parameters:
Iapp = 0.435 and for 0.013 ≤ ginh ≤ 0.025 (see green regions in Fig. 5, and supplementary Movie. M3). The synchronized
state coexists with the 3 paired half-center rhythms at these parameter values. The corresponding orbit for the voltage and
recovery variables is shown in Fig.7 (green). The voltage amplitude of this orbit is even shorter than those of either the180

isolated cell (grey) or the paired half-center rhythm (orange), due to the greater inhibitory push experienced by a neuron in
its active state from the 3 other phase locked counterparts. With increasing ginh in Fig. 5, the size of the attractor for the
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synchronized state gradually increases through ginh = 0.025 (Fig. 5B), beyond which it loses stability and gives rise to a
chimera state at ginh = 0.029 (Fig. 5C). Note that the stable synchronized state is seen in the network only at ε = 0.5 (Fig. 5)
but not at either ε = 0.3 (supplementary Fig. S1) or ε = 0.05 (supplementary Fig. S2). We also note that, as Iapp = 0.435 and185

ginh = 0.025 are kept constant (see Fig. 5B) while ε is gradually reduced from 0.5 to 0.48, the corresponding synchronized
orbit undergoes period doubling such that all the four cells yet continue to maintain phase synchrony, while splitting into
two pairs that continuously alternate between orbits of slightly shorter and longer amplitudes (as depicted in supplementary
Movie. M4).

3.1.3. Chimera states190

Figure 7: Voltage-recovery phase space shows how the limit cycle of an iso-
lated neuron (grey) changes its shape in a fully connected 4-cell circuit based
on its initial conditions, to produce either a paired half-center rhythm (orange)
or the synchronized state (green) (Fig. 5B). The size of the orbit for the paired
half-center (orange) is smaller than that of an isolated cell (grey) due to the
continuous inhibition from their phase locked counterparts affecting the cells in
their active state (and shortening the corresponding section of the limit cycle).
For the synchronized state, the orbit becomes even smaller (green) due to the
greater consolidated inhibition on a postsynaptic cell by the 3 other cells in sync.

Further increase of ginh through 0.029 at Iapp = 0.435

(see Fig. 5C) shows a non-converging state (black re-
gions) from the clustering analysis of Poincaré maps. De-
tailed inspection reveals the presence of chimera states
characterized by two sub-populations firing at distinct fre-195

quencies. Three of the cells continuously fire in phase,
while the fourth cell experiences phase slipping and syn-
chronizes with the other three once every 10 cycles, when
those cells complete 11 cycles, thereby resulting in a
chimera with a 11:10 resonance as shown in Fig. 6. Note200

the shorter voltage amplitude of the three cells firing in
sync compared to the cell undergoing phase slipping, for
reasons described previously. By virtue of the symme-
try of the network, there exist four isomorphisms of this
rhythm, with any one of the four cells undergoing phase205

slipping while the other three fire in phase. Further in-
crease of ginh to 0.033 (not shown in Fig. 5) results in the
chimera states morphing into pacemaker rhythms. Thus,
the chimera state serves as a transition mechanism be-
tween the synchronized state and the pacemaker pat-210

terns. At other values of the parameters, we also observe
chimera states with different resonances, including 7:8
resonance at ε = 0.55 and 14:16 resonance at ε = 0.56

for ginh = 0.025 and Iapp = 0.435.

3.1.4. Pacemakers215

At small values of external drive Iapp = 0.4, the
fully connected network can exhibit 2-phasic pacemaker
rhythms co-existing with the paired half-center rhythms
(Fig. 5, supplementary Fig. S1). These rhythms are char-
acterized by one cell driving the rhythm and firing in anti-220

phase with three other cells that oscillate in-phase. Four
stable isomorphisms exist for this rhythm, with each of the
four cells capable of driving such a pacemaker pattern.
The phase lag ordered tuple for one such rhythm is given by (∆θ12 , ∆θ13, ∆θ14) = (0.5, 0.5, 0.5) and is shown in Fig. 6,
which also reveals the shorter voltage amplitudes of the three driven cells in comparison to that of the driving pacemaker225

cell.

3.1.5. Traveling-waves
The network can produce 6 isomorphisms of a full 4-phasic traveling-wave rhythm, where the cells fire sequentially one

after the other in a cyclic fashion (see Fig. 5, supplementary Fig. S1, supplementary Fig. S2, and supplementary Movie. M1).
The phase-lag ordered tuple for one such rhythm is given by (∆θ12 , ∆θ13, ∆θ14) = (0.25, 05., 0.75), while the corresponding230

voltage trace is depicted in Fig. 6. We observe that at ε = 0.05 (Supp.Fig. S2), the network can also exhibit a different type
of traveling-wave rhythm that is referred to as a mixed 3-phasic traveling-wave, where two cells fire in phase while oscillating
sequentially with the other two cells. The network can produce a total of 12 isomorphisms of such mixed traveling-wave
rhythms; one is shown in Fig. 6 with the phase lags locked at (∆θ12 , ∆θ13, ∆θ14) = (0., 0.67, 0.33).
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3.1.6. Stable transitions235

Figure 6 shows a stable “transitory” rhythm given by (∆θ12 , ∆θ13, ∆θ14) = (0.41, 0.5, 0.91) at ginh = 0.025 and Iapp =

0.552. Such rhythms serve as stable intermediate states between some of the rhythms previously described. As we move
downward from Fig. 5A where there are just 3 paired half-center rhythms at Iapp = 0.575, the system gives rise to 6 full
traveling-wave rhythms at Iapp = 0.505, in addition to the 3 paired half-centers. Between these values of Iapp, the full
traveling-waves lose stability via a supercritical pitch fork bifurcation and give rise to two such stable transitory rhythms240

(grey). For example, when the full traveling-wave given by (∆θ12 , ∆θ13, ∆θ14) = (0.25, 0.5, 0.75) loses stability, the anti-
phase relationships ∆θ13 = 0.5 and ∆θ24 = 0.5 are maintained, but the active phase of cell 1 could get closer and closer
to that of either of cell 2 or 4, while the phases of the remaining two cells also start getting closer and closer, until they
give rise to either of the paired half-centers given by (0., 0.5, 0.5) (1,2 vs. 3,4) or (0.5, 0.5, 0.) (1,4 vs. 2,3). Therefore, for
intermediate values of Iapp, we could gradually see stable transitory rhythm pairs such as (0.15, 0.5, 0.65), (0.35, 0.5, 0.85),245

and (0.05, 0.5, 0.55), (0.45, 0.5, 0.95).

3.2. Robust monostable/bistable network topologies

Table 2: Details of the clustering analysis for multistability of the
fully connected network at three representative parametric blocks
of Fig. 5 at ginh = 0.025 and ε = 0.5.

Iapp CCM CCSD PC

0.4 (0.5, 0., 0.5) (0., 0., 0.) 18.9%
(0.5, 0., 0.) (0., 0., 0.) 8.9%
(0.5, 0.5, 0.5) (0., 0., 0.) 15.8%
(0.5, 0.5, 0.) (0., 0., 0.) 18.8%
(0., 0., 0.5) (0., 0., 0.) 8.9%
(0., 0.5, 0.5) (0., 0., 0.) 18.9%
(0., 0.5, 0.) (0., 0., 0.) 9.3%

0.435 (0., 0., 0.) (0., 0., 0.) 28.5%
(0., 0.5, 0.5) (0., 0., 0.) 23.9%
(0.5, 0., 0.5) (0., 0., 0.) 23.8%
(0.5, 0.5, 0.) (0., 0., 0.) 23.8%

0.54 (0.5, 0.25, 0.74) (-0., 0.02, 0.02) 12.7%
( 0.74, 0.25, 0.5 ) ( 0.03, 0.03, -0. ) 12.6%
( 0.25, 0.5, 0.74) ( 0.03, -0., 0.03) 12.4%
( 0.25, 0.74, 0.5 ) ( 0.03, 0.03, -0. ) 12.9%
( 0.74, 0.5, 0.25) ( 0.02, -0., 0.02) 12.8%
( 0.5, 0.74, 0.25) (-0., 0.03, 0.03) 12.7%
( 0.49, 0.98, 0.49) (0.03, 0.04, 0.04) 4.3%
( 0.95, 0.47, 0.48) ( 0.03, 0.03, 0.03) 2.6%
(0.05, 0.52, 0.53) ( 0.03, 0.03, 0.04) 3.1%
( 0.48, 0.47, 0.95) ( 0.03, 0.04, 0.03) 1.5%
( 0.53, 0.53, 0.05) ( 0.04, 0.04, 0.04) 6%

Multistability and bifurcation analysis for the other 4-cell network
topologies of Fig. 3 (see supplementary Fig.S3,S4,S5) shows that
the two-way inhibitory loop (Fig. 3b) and mixed (Fig. 3c) networks250

exhibit robustly monostable rhythms (their ginh vs. Iapp parametric
sweeps show a single stable rhythm across all parametric blocks)
given by the phase lag ordered tuples (0.5, 0., 0.5) (paired half-center)
and (0.25, 0.5, 0.75) (full traveling-wave), respectively, while the one-
way inhibitory loop network (Fig. 3a) exhibits robust bistability with255

both these rhythms (0.5, 0., 0.5) and (0.25, 0.5, 0.75), as the parame-
ters ginh, Iapp, and ε are varied. Note that no other stable isomor-
phisms of these full traveling-wave and paired half-center rhythms are
stable in these network configurations due to the missing connections
from the fully connected circuit (Fig. 3a). Compare the full traveling-260

wave rhythm of the mixed network (Fig. 3c) with a similar reduced
swim CPG found in the sea slug Melibe leonina (with additional ex-
citatory connections) [39, 25] (see Fig. 3.3 from Ref. [39]). Neuro-
physiological experiments with this CPG reported the occurrence of a
similar full traveling-wave pattern in the voltage traces.265

3.3. Network transitions/rewiring

Our approach can generate verifiable hypotheses for experimental
manipulations and rewiring of real animal CPGs with dynamic clamp-
ing experiments [64]. We can investigate how network topologies
and synaptic changes can alter the rhythmic behavior of the network270

and promote or suppress multistability. Fig. 8 shows the functional
changes in CPG rhythms and their mono/multi-stable behaviors due
to structural changes in network topology. The network on the left is
gradually transitioned into the network on the right by synaptic changes, while the rhythmic behaviors and multistability
are analysed during these transitions. Purple regions represent the full traveling-wave rhythm (0.25, 0.5, 0.75) while orange275

regions represent the paired half-center (0.5, 0., 0.5), with sizes proportional to their attractors in the phase space. Gradual
strengthening of the anti-clockwise inhibitory connections in Fig. 8a converts the bistable one-way inhibitory loop network
into the monostable two-way inhibitory loop network. The paired half-center rhythm is promoted while the traveling-wave
rhythm is suppressed. In Fig. 8b, mutual inhibitions between cells 1,3 and cells 2,4 are gradually strengthened to convert
the bistable one-way inhibitory loop network on the left to the monostable mixed network on the right. The traveling-wave280

rhythm is gradually promoted while the paired half-center rhythm is suppressed. In Fig. 8c, by gradually weakening the
anti-clockwise inhibitory loop and simultaneously strengthening mutual inhibitions between cells 1,3 and cells 2,4, the net-
work transitions from one monostable rhythm (paired half-center) to another (full traveling-wave). At intermediate synaptic
changes, the network is bistable. Also, note that at such intermediate stages, the synaptic strengths in the network are not
all identical, but the homogeneity of the neurons in the network is maintained, with all of them receiving similar total synaptic285

inputs.
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Figure 8: Structural changes in a network promote or suppress rhythmic behaviors. Gradual strengthening or weakening of the synapses converts the
circuits on the left into the circuits on the right. Purple regions represent the 4-phasic full traveling-wave rhythm of (0.25, 0.5, 0.75) while orange regions
represent the 2-phasic paired half-center (0.5, 0., 0.5), with sizes proportional to their attractors in the phase space. One-way inhibitory loop network
exhibits robust bistability with both these rhythms while two-way inhibitory loop and mixed networks show robust mono-stability with the paired half-center
and the traveling-wave pattern, respectively. (a) Transition from bistability to monostable paired half-center rhythm while the traveling-wave rhythm is
gradually suppressed. (b) Bistable network transitions to monostable traveling-wave rhythm. (c) Transitions from one monostable rhythm (paired half-
center) to another (full traveling-wave). At intermediate synaptic changes when not all synapses between the neurons have equal strengths, the network is
bistable. Here, gNetwork

inh = 0.029, Iapp = 0.54 and ε = 0.3

4. Conclusions and future directions

In summary, we combine the existing techniques of dynamical systems theory with modern computational approaches
such as unsupervised machine learning (clustering) algorithms and faster GPU-parallelized simulations of heavily populated
trajectories to reveal the rhythmic capacities of homogenous 4-cell networks. This study extends our knowledge of the basic290

principles guiding multi-stable rhythmic behaviors in such neural networks and allows us to predict the changes in patterns
of activity and multistability, based on changes in the network configurations and external inputs. We demonstrate how
inhibitory coupled 4-cell networks can exhibit a plethora of monostable or multistable rhythmic states composed of pace-
makers, paired half-centers, full and mixed traveling-waves, synchronized states, and chimeras. We identify the transitions
and bifurcations that occur with changing network topologies, intrinsic cellular properties, synaptic and external drives to295

identify factors promoting or suppressing monostable/multistable rhythmic output. This can generate verifiable hypotheses
for neurophysiological experiments and manipulations of real animal CPGs with dynamic clamp technique. We identify
network topologies that produce robust monostable rhythms and are resilient to external perturbations.

Our analysis can help non-biological systems from engineering, economics, and environmental studies, where loss of
resilience is a challenge to predict and can cause catastrophic effects. Such understanding is also essential to study motor300

control, dynamic memory, information processing, and decision making in animals and humans [65]. It also has implications
for gaining insights into complex neurological phenomena in higher animals along with neurological disorders related to
CPG arrhythmia, and the development of mechanisms to treat such disorders. Before such techniques can be applied to
humans, we need to achieve a comprehensive understanding of the working of these modular networks in lower animals
and through computational models. While this project deals with networks of single neurons, the methodology might also305

be applied to study networks of brain regions or neural populations that synergistically excite or inhibit each other and
produce rhythmic patterns of firing [66, 67]. The insights in CPG multistability gained from this research might help in the
design and development of more efficient robot locomotion [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. An important
aspect of these analytical and computational techniques is their validity across a wide range of oscillatory networks without
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dependence on the underlying mathematical equations. Hence they are applicable to a variety of rhythmic neuronal and310

non-neuronal activities beyond motor control and will benefit a wide audience of interdisciplinary researchers for studies of
diverse nonlinear applications.
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Movie M1: Full travelling wave rhythm seen in the fully connected 4-cell circuit at Iapp = 0.505, ginh = 0.025 and ε = 0.5

Movie M2: Rhythm converging to a paired half-center in the fully connected 4-cell circuit at Iapp = 0.435, ginh = 0.025

and ε = 0.5 (Fig. 5B)
Movie M3: Rhythm converging to the synchronized state in the fully connected 4-cell circuit at Iapp = 0.435, ginh = 0.025

and ε = 0.5 (Fig. 5B)475

Movie M4: Period doubling of the orbit for the synchronized state in the fully connected 4-cell circuit, resulting in phase
synchronization of all the 4 neurons, but with pairs of cells alternating between orbits of smaller and larger amplitudes.

Figure S1: Multistability and bifurcation analysis of the fully connected 4-cell network at ε = 0.3 shows similar rhythmic capacity as Fig.5 (at ε = 0.5),
except for the lack of stable synchronized state.
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Figure S2: Multistability and bifurcation analysis of the fully connected 4-cell circuit at ε = 0.05 shows the dominant expression of the traveling-wave (full
and mixed) rhythms, compared to the paired half-centers.

Figure S3: Robust bistability of the one-way inhibitory loop network with the full travelling wave rhythm of (0.25, 0.5, 0.75) and the paired half-center
(0.5, 0., 0.5). No other stable isomorphisms of these rhythms exist due to the missing synaptic connections compared to the fully connected network.
ε = 0.5.
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Figure S4: Robust monostability of the two-way inhibitory loop network with the paired half-center rhythm (0.5, 0., 0.5) (no other stable isomorphisms).
ε = 0.5.

Figure S5: Robust monostability of the mixed network with the full travelling wave rhythm of (0.25, 0.5, 0.75) (no other stable isomorphisms). ε = 0.5.
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