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a b s t r a c t 

We present a case study elaborating on the multiplicity and self-similarity of homoclinic 

and heteroclinic bifurcation structures in the 2D and 3D parameter spaces of a nonlinear 

laser model with a Lorenz-like chaotic attractor. In a symbiotic approach combining the 

traditional parameter continuation methods using MatCont and a newly developed tech- 

nique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast 

parallel computing hardware with graphics processing units (GPUs), we exhibit how spe- 

cific codimension-two bifurcations originate and pattern regions of chaotic and simple dy- 

namics in this classical model. We show detailed computational reconstructions of key 

bifurcation structures such as Bykov T-point spirals and inclination flips in 2D parameter 

space, as well as the spatial organization and 3D embedding of bifurcation surfaces, para- 

metric saddles, and isolated closed curves (isolas). 
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1. Introduction 

It is evident today that the incorporation of complex mathematical elements in combination with the latest computa-

tional breakthroughs is the key drive that can further stimulate significant advances in fundamental sciences and cutting-

edge engineering. The development of algorithmically simple and generalizable mathematical methods exploiting fast and

comprehensive massively parallel simulations using graphics processing units (GPU) ensures better quantitative and, more

importantly, qualitative understanding of the nature of complex nonlinear dynamics occurring in various multi-parametric

models originating in applications of physical and living systems. The goal of this paper is to deepen our understanding of

homoclinic bifurcation theory by demonstrating the universality of the causes and the rules underlying deterministic chaotic

dynamics [1–6] using a particular application from nonlinear optics – a reduced laser model [7,8] . 

While basic transition mechanisms of oscillations emerging from stable equilibria through (homoclinic) saddle-node and

Andronov-Hopf bifurcations are well presented in diverse applications, their higher dimensional analogues such as various

homoclinic and torus bifurcations still remain poorly understood. One of the limiting factors behind such inadequacy is

that expert tools for ODE models, i.e., the numerical continuation packages AUTO [9,10] and MatCont [11] , require advanced

knowledge on a user’s part to be able to handle those bifurcations. These tools can detect and analyze the essential ho-

moclinic and heteroclinic structure and bifurcations in the phase and parametric spaces of a system. This allows to identify
� Invited by Cristel Chandre. 
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the primary and codimension-two (cod-2) bifurcations, both local and non-local, and the corresponding curves to assess the

skeleton of the bifurcation diagram for the system. The main shortcoming of this computational approach is that it requires

particular skills and patience to perform a strenuous reconstruction of the “complete” bifurcation unfolding in the 2D param-

eter plane, by individually continuing a few dozens of principal bifurcation curves, one after another [12] , as seen in Figs. 4,

10 b, 12 in this paper. The recent MatCont releases have a strong built-in engine and support for numerical detection and

analysis of typical low-codimension homoclinic bifurcations of saddle equilibria in autonomous systems [13] . Nevertheless,

such studies involving even basic homoclinic structures remain state-of-the-art. One reason is that the built-in algorithms

of a parameter-continuation software package must catch up with the rigorously developed theoretical results that are often

rooted in or inspired by diverse applications with interesting dynamics. An alternative computational approach widely used

in nonlinear dynamics is based on evaluating the maximal or several Lyapunov exponents [14] . Such a largest Lyapunov ex-

ponent approach computes some average rate of change, convergence or/and divergence, of the distance between two close,

long-term transients. By definition, negative, zero and positive Lyapunov exponents are associated with stable equilibria,

stable periodic orbits, and chaotic dynamics in the system, respectively. With a brute-force approach for sweeping 1D para-

metric pathways or 2D bi-parametric planes of the system, one can detect regions of regular/simple and complex/chaotic

dynamics, as well as multistability, if it exists, by employing multiple initial conditions. While this brute-force approach

based on the evaluation of Lyapunov exponents can effectively locate stability windows within regions of chaos [15,16] , it

falls short in disclosing a variety of essential bifurcation structures in the parameter space that play a pivotal role to un-

derstand complex dynamics and their origin. Moreover, very long simulations are needed to reliably estimate the Lyapunov

exponents. Given the current state-of-the-art, there is still a pressing need for tools and detailed evaluations of the global

bifurcation unfolding of any system in question, to elucidate the contributions and multiplicity of the local and non-local

bifurcations detected, and to determine how they shape regions of simple and complex dynamics in the corresponding 2D

or even 3D parameter spaces. The objective of this paper is to somewhat remedy the situation by showcasing our know-how

with an open source GPU-based computational toolkit based on symbolic dynamics, that should be accessible and practical

for the nonlinear dynamics community. 

Over the last several years, we developed a basis for new theoretical and computational approaches to explore the origin

of complex dynamics and the characteristic bi-parametric patterns for so-called Lorenz-like systems [17,18] . Our motivation

is to extend the existing theory of homoclinic bifurcations of low-codimensions [1,3,5,19–28] and to make it accessible

and practical for the nonlinear dynamics community. Recently, we have advanced an approach called the “Deterministic

Chaos Prospector” (DCP) that utilizes symbolic representations of simple and chaotic dynamics [29–32] , based on our earlier

works [18,33] . This allows for fast and effective identification of bifurcation structures underlying and governing determin-

istic chaos in various systems. The ideas of this computational research trend are inspired by and based on the classical

results of L.P. Shilnikov on homoclinic bifurcations [4,24,34] . We introduce and discuss the basic elements of homoclinic

bifurcations in the text later, as well as how short-term symbolic dynamics can be introduced to disclose a stunning ar-

ray of homoclinic structures and their organizing centers in all Lorenz-like systems, including the optically pumped laser

(OPL) model under consideration in this paper. Some pilot results on the use of symbolic dynamics for the OPL model can

be found in [17,30] . In addition to simple dynamics associated with stable equilibria and periodic orbits, this system re-

veals a broad range of bifurcation structures that are typical for many ODE models from nonlinear optics and ones with

the Lorenz attractor [18,29,33,35,36] . These include homoclinic orbits and heteroclinic connections between saddle equi-

libria that are the key building blocks of deterministic chaos in most systems. Their bifurcation curves with characteristic

spirals around T(terminal)-points, along with other codimension-2 points, are the organizing centers that shape regions of

complex and simple dynamics in the parameter space of such systems. Moreover, the latest advances in GPU and parallel

computing techniques have empowered us to achieve a tremendous degree of parallelization to reconstruct highly detailed

bi-parametric sweeps. A remarkable wealth of homoclinic bifurcations are disclosed in such a system, in a matter of just a

few seconds on a desktop workstation powered by an Nvidia Tesla K40 GPU. It is fair to say that currently there is no other

computational technique that is able to reveal the ordered intricacy in these bifurcation diagrams with such a stunning

clarity and speed. Next, one can corroborate the type of homoclinic bifurcations using numerical continuation with AUTO

or MatCont. While we do so in this paper, we underline that DCP performs impressively at just a fraction of the time taken

for traditional continuation and other serial computational approaches. We also demonstrate how DCP can reveal intricate

parametric regions of complex – structurally-unstable dynamics against those with simple – stable dynamics for a system,

by exploiting the sensitivity of deterministic chaos for arbitrary long-term solutions whose symbolic descriptions are pro-

cessed using periodicity-detection and Lempel-Ziv-complexity [30,37] algorithms. The application of these symbolic methods 

with DCP for the studies of Rossler model with a saddle focus is presented in [38] , while those for investigating neuronal

dynamics in single cell models and small neural networks is demonstrated in [31,32,39] . 

The multifarious set of complex dynamics exhibited by the OPL system makes it a prime candidate for this study, and

enables us to demonstrate the versatility of our approach. In this paper, we employ the computational toolkit DCP and the

numerical continuation package MatCont to disclose the remarkable features of the parameter space of the OPL model, due

to various homoclinic and heteroclinic bifurcations that originate and underlie its complex, Lorenz-like dynamics. Specifi-

cally, using DCP we achieve the following objectives: 

(1) We disclose the universal, self-similar fine organization of homoclinic and heteroclinic bifurcation structures in bi-

parametric sweeps using short-term symbolic sequences. The key ones such as T-point spirals, saddles, inclination
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flips, and other codimension-2 bifurcation points, are also validated by MatCont-based numerical continuation, which

provides all the necessary details, coordinates, eigenvalues etc. 

(2) We elaborate on the spatial organization and embedding of the identified bifurcation structures in 3D parameter

space, including two different types of parametric saddles and two different types of isolated closed curves (isolas for

short). To our knowledge, this is the first elaborate 3D computational reconstruction of such bifurcation surfaces. 

(3) We detect regions of simple and chaotic dynamics in the bi-parametric sweeps using a novel approach based on

long-term symbolic sequences, combined with the periodicity-detection algorithms and the notion of Lempel-Ziv-

complexity. 

This paper is organized as follows. First, we introduce the OPL model, and present its key dynamical and bifurcational

features. Next, we give a brief overview of the codimension-2 homoclinic inclination flip bifurcation, as well as a heteroclinic

bifurcation involving all the three saddle equilibria in the phase space that corresponds to the so-called T(terminal)-point in

the parameter plane of the model. This is followed by details of the numerical methods and the results of this study, which

are presented in the order of (i) transient dynamics for global bifurcation structure, (ii) long term simple vs. complex dy-

namics, (iii) detailed examination of transient and long term behaviors near the organizing centers, and (iv) 3D organization

of special structures in the parametric space, including branching and bridging saddles, as well as annular and semi-annular

isolas. 

2. Optically pumped laser (OPL) model 

The universality of characteristic chaotic oscillations that occur in various models with the Lorenz attractor, originating

from hydrodynamics, magnetodynamics and nonlinear optics, was first shown by H. Haken in 1970s, followed by experimen-

tal demonstrations in Xe , He − Ne, and NH 3 infrared gas lasers [40–45] . Optically pumped, far infrared lasers are known to

demonstrate a variety of nonlinear dynamic behaviors, including Lorenz-like chaos [46] . An acclaimed example of the mod-

eling studies for chaos in nonlinear optics is the two-level laser model proposed by [40] , to which the Lorenz equation can

be reduced. The validity of Lorenz dynamics inherently persisting in three-level laser models was widely questioned back

then. The reduced 6D model of a resonant three-level optically pumped laser (OPL) introduced in [7,8,47] , and described by

Eq. (1) below, was shown to possess a variety of dynamical and structural features of Lorenz-like systems, including station-

ary and periodic behaviors emerging through Z 2 -pitchfork and Andronov-Hopf bifurcations. Specifically, the model demon-

strates Lorenz-like chaotic behavior (see Fig. 1 ), with all the quintessential organizing structures, pivotal to understand its

complex dynamics. These include various homoclinic and heteroclinic bifurcation structures of co-dimensions one and two,

the so-called Bykov T-points with the associated spirals, as well as parametric saddles for switching branches in the pa-

rameter plane of this model, that are also seen in the classical Lorenz and Shimizu-Morioka models [1,12,16–18,23,33,36,48] .
Fig. 1. (a) The Lorenz attractor in the OPL-model: ( −D 23 , β)-projection of the strange attractor (gray background) with the lacuna (associated with a white 

Fig. 8 interior). Two close trajectories (red and blue) that diverge when they come back to the saddle equilibrium state (black dot), their (color matched) 

symbolic representations, and the time-progression of their corresponding β-coordinates (b) are presented. Parameter values: σ = 1 . 5 , a = 3 . 8 , b = 0 . 43858 

(red) or b = 0 . 43855 (blue). 
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Similar structures were also discovered in another non-linear optics model describing a laser with a saturable absorber,

which can be locally reduced to the Shimizu Morioka model near a steady-state solution with triple zero Lyapunov expo-

nents [49,50] . 

The OPL model [8,47] is given by the following six ODEs: 

˙ β = −σβ + gp 23 , 

˙ p 21 = −p 21 − βp 31 + aD 21 , 

˙ p 23 = −p 23 + βD 23 − ap 31 , 

˙ p 31 = −p 31 + βp 21 + ap 23 , (1) 

˙ D 21 = −b(D 21 − D 

0 
21 ) − 4 ap 21 − 2 βp 23 , 

˙ D 23 = −b(D 23 − D 

0 
23 ) − 2 ap 21 − 4 βp 23 , 

where a and β are the Rabi flopping quantities representing the electric field amplitudes at pump and emission frequencies,

respectively; b is the ratio between population and polarization decay rates; σ represents the cavity loss parameter; g is

the unsaturated gain; p ij ’s are the normalized density matrix elements for the transitions between levels i and j ; and D ij ’s

are the population differences between levels i and j . The system parameters a, b and σ can be manipulated experimen-

tally. Furthermore, we set g = 50 , D 

0 
21 

= 1 , and D 

0 
23 

= 0 . In this study, we treat a and b as the key bifurcation parameters

for constructing biparametric scans and parameter continuations, at several fixed values of σ . Several such 2D scans may

also be put together for 3D reconstructions of the parameter space of the model. Note that Eqs. (1) are Z 2 –symmetric un-

der the coordinate transformation (β, p 21 , p 23 , p 31 , D 21 , D 23 ) ↔ (−β, p 21 , −p 23 , −p 31 , D 21 , D 23 ) , similar to other Lorenz-like

systems. 

2.1. Simple dynamics in the OPL-model 

The OPL system (1) has either a single non-lasing steady state O or an extra pair of equilibria P ± that emerge fol-

lowing the loss of stability of O through a pitchfork bifurcation. Some elements of the simple, Morse-Smale dynamics in-

cluding stable equilibria and various periodic orbits are sampled in Fig. 2 at σ = 1 . 5 . It was shown in the original papers

[8,47] , as well as recent ones [17,30] , that the OPL-model is quite rich in bifurcations – the list includes two super-critical

Andronov-Hopf and pitchfork bifurcations, occurring respectively on the curves AH 0 (for O ), AH 1,2 (for P ±), and PF in the

bifurcation diagrams presented in Figs. 3, 4 . The description of simple dynamics starts off with the cod-2 point labeled as

BT which stands for the Bogdanov-Takens bifurcation of an equilibrium state with two zero Lyapunov characteristic expo-

nents. Given that the OPL-model is Z 2 -symmetric, and so is the local central manifold containing such an equilibrium state,

this should be referred to as a Khorozov-Takens bifurcation [5] . Its unfolding includes four bifurcation curves originating

from the BT -point in the parameter plane, AH 0 , PF, AH 12 and H 0 , all of which we indeed computationally retrieve using

Matcont. 

It is convenient to describe the bifurcation unfolding of simple solutions of the OPL model first, starting off with the

trivial equilibrium state O , where β = p 23 = p 31 = 0 . This equilibrium remains stable in the parameter space to the right of

the bifurcation curve labeled AH 0 in Figs. 3 and 4 . The curve AH 0 corresponds to a supercritical Andronov-Hopf bifurcation

that gives rise to a stable figure-8 periodic orbit shown in Fig. 2 b (blue), existing for parameter values to the left of AH 0 .

The curve labeled PF corresponds to a pitchfork bifurcation that gives rise to a couple of additional equilibrium states P ±

with β � = 0 (see Fig. 2 c blue and green dots) emerging from O , which then becomes a saddle. This saddle is of (5,1)-type,

i.e., O has a pair of 1D unstable separatrices �1,2 due to a single positive eigenvalue and a 5D stable manifold due to five

eigenvalues with negative real parts (including a complex conjugate pair). The equilibrium states P ± undergo another super-

critical Andronov-Hopf bifurcation occurring on the curve AH 12 ( Figs. 3 and 4 ) so that a pair of stable periodic orbits emerge

from P ±. In addition, the unfolding of the symmetric codimension-2 BT -point includes another bifurcation curve labeled H 0 .

It corresponds to the occurrence of a homoclinic figure-8 pattern made up of two separatrix orbits �1,2 of O that each turn

once around P ±, respectively (see Fig. 2 c red for �1 ). This is a so-called “gluing” bifurcation: after the stable periodic orbits

on either side become the separatrix loops of the saddle O , they get “glued” to produce a stable figure-8 periodic orbit. Note

that the saddle O included into the homoclinic figure-8, has two leading eigenvalues, the positive and the largest negative

(closest to the imaginary axis), whose sum, known as the saddle-value, remains negative near the BT -point. This condition

assures the stability of the periodic orbits. 

2.2. Cod-2 bifurcations: homoclinic and heteroclinic skeleton 

The system (1) undergoes a homoclinic bifurcation when both unstable separatrices �1,2 of the saddle equilibrium O

come back to itself, along the stable leading directions on the 5D stable manifold ( Fig. 2 c). The primary homoclinic bi-

furcation occurs on the curve H 0 in the 2D parameter diagrams represented in Figs. 3, 4 . The goal of this paper is to

demonstrate the pivotal role of such bifurcations for Lorenz-like systems. Furthermore, we want to disclose the structure

of global homoclinic unfoldings in the 3D parameter space of the OPL-model by illustrating different ways in which the
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Fig. 2. (a) Phase-space projections of the symmetric unstable separatrices ( �1 / �2 ) of the saddle equilibrium (black dot) converging to the stable equilibria 

P + and P − at (a, b) = (3 . 7 , 0 . 52) ; �1 (red) generates the binary sequence {1111...} or { 1 } . (b) Two stable periodic orbits coded as { 01 } (blue) and { 0011 } 
(red) at parameters (4.2, 0.583) and (3.37326, 0.313333), respectively. (c) Primary homoclinic orbit, coded as {1}, making a single turn around P + at (3.827, 

0.51903), with a Lorenz-like attractor in the background. After splitting, when it misses the saddle, �1 will make another turn around P + (blue, {11...}) at 

(3.827, 0.54) or around P − (green, {10...}) at (3.827, 0.50). (d) Heteroclinic connections between the saddle and the two saddle-foci occurring at the T-point 

T 1 (see the bifurcation diagram in Fig. 8 b) are shown. Red curve ( { 10 1 } ) connects �1 and P + , while the symmetric connection between �2 and P − is 

shown in blue. The initially red trajectory is further continued to generate the chaotic Lorenz attractor in the background for (a, b) = (3 . 68199 , 0 . 3517) ; 

Here σ = 1 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

homoclinic curves arrange themselves, morph, and switch branches across saddle points, as well as how such parametric

saddles emerge/disappear as pairs of T-points merge together. 

In his Ph.D. thesis, L.P. Shilnikov generalized the theory of homoclinic bifurcations of saddle and saddle-node equilibrium

states, which would lead to the emergence of a single stable periodic orbit in R 

n , n ≥ 3 [51,52] . Later, in 1968 he published

another paper proving the existence and uniqueness conditions of a saddle periodic orbit emerging from a homoclinic loop

of a plain saddle with a positive saddle value in R 

3 and higher dimensions [34] . In this, he pointed out three specific

conditions giving rise to codimension-2 bifurcations code-named a zero saddle value, a zero separatrix value and the change

of the leading direction at the saddle, that are, respectively, and alternatively known today as a resonant or neutral saddle,

an inclination-flip and an orbit-switch (see Fig. 6 ). Furthermore, it was shown by L.P. Shilnikov that upon the fulfillment

of certain conditions, these bifurcations can lead to the onset of complex dynamics in Z 2 -symmetric systems, specifically,

to the emergence of the Lorenz attractor in the phase space, right next to the homoclinic butterfly occurring near these

cod-2 points on the bifurcation curves in the parameter diagram of such systems [53] , see also [23,50,54,55] . These results

became a scientific folklore long time ago, i.e., lacking the proper acknowledgment of the original author, unlike his famous

Shilnikov saddle-focus [24,25,56] and a lesser known Shilnikov saddle-node or saddle-saddle [20,57,58] . 

A salient feature of the OPL-model is the inclination-flip bifurcations ( IF -points in Figs. 3 and 4 ) that occur on the primary

homoclinic butterfly unlike the case of the Shimizu-Morioka (SM) model where it occurs on the double homoclinic loops;

however, the SM-model shows the presence of a resonant homoclinic butterfly of the saddle with zero saddle value. Recall

that the saddle value is the sum of the characteristic exponents (or their real values in the complex case) that are the closest

(or leading) to the origin in the complex plane. Its sign determines whether a stable or unstable periodic orbit bifurcates

from the homoclinic loop, or in the symmetric case, whether the homoclinic butterfly bifurcation glues two stable orbits

into the stable figure-8 pattern, or can lead to the emergence of the Lorenz-like attractor near the resonant saddle in the

parameter space. 

Let us go over the sequence of cod-2 bifurcations that occur along the primary homoclinic curve H 0 in the parameter

space. For reference, see Figs. 3, 4 at σ = 1 . 5 (as well as Figs. 10, 11 corresponding to different cuts at σ = 2 and 10)
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Fig. 3. The ( a, b )-parametric sweep of the OPL-model at σ = 1 . 5 using short symbolic sequences { k i } 12 
i =5 to detect homoclinic and heteroclinic bifurcation 

structures (compare Fig. 4 ). Regions of solid colors correspond to topologically identical dynamics while their boundaries represent homoclinic bifurcation 

curves. Superimposed white lines PF, AH 0 and AH 1,2 correspond to pitchfork and supercritical Andronov-Hopf bifurcations of equilibria O and P ± , respec- 

tively. Points labeled by IF 1 , IF 2 correspond to cod-2 inclination flip bifurcations, T 0 is the primary T-point { 1 0 } , and S is a bridging saddle (see Figs. 20 and 

21 ). White box marks the region including T 1,2 that is magnified in Figs. 8 b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the parameter space of the OPL-model. The saddle O is of (5,1)-type, i.e., has the eigenvalues that can be ordered as

follows: . . . < λ3 < λ2 < 0 < λ1 . For such homoclinic saddles we need to evaluate the values of the following quantities:

the saddle value � = λ2 + λ1 whose sign determines the stability of a periodic orbit emerging from a homoclinic loop –

negative/positive � values imply stable/saddle orbits; alternatively, one can use the first saddle index ν = | λ2 | /λ1 > 1 or

< 1. Whenever � = 0 , one needs to evaluate the second saddle index - the smallest quantity μ = | 2 λ2 | /λ1 or μ = | λ3 | /λ1 .

This holds true for the inclination flip case as well, when ν < 1. 

The homoclinic figure-8 connection stands for the case where both the unstable separatrices �1,2 of the saddle O come

back to itself, opposite to each other along the leading Z 2 -symmetric direction on the stable manifold, whereas in the ho-

moclinic butterfly case, both �1,2 come back tangent to each other and to the asymmetric leading direction – the vertical

axis in Figs. 2 and 5 . Near the cod-2 point BT , the homoclinic connection is initially of the figure-8 case, with a stable gluing

bifurcation ( � < 0) occurring in a plane. As the bifurcation curve H 0 is continued further away from BT , Matcont detects the

following sequence of singular homoclinic bifurcations depending on the σ -cut. In case of σ = 1 . 5 in Fig. 3 , they are labeled

as follows: NS corresponds to a resonant saddle with a neutral or zero saddle value � = λ1 + λ2 = 0 or with a saddle index

ν = | λ2 | /λ1 = 1 . After that the homoclinic connection is continued with � > 0, and hence gives rise to unstable/saddle

periodic orbits. This should explain the reason for the presence of a Bautin bifurcation ( GH ) point in this bifurcation puzzle,

near the Bogdanov-Takens phenomenon. Recall that its unfolding includes the saddle-node bifurcation through which stable

and unstable periodic orbits merge and annihilate. The following homoclinic cod-2 bifurcation detected by MatCont is the

homoclinic orbit-switch ( DRS ) due to the change of the leading direction. In Z 2 -symmetric systems like the OPL-model, this

corresponds to the transition from the homoclinic figure-8 to the homoclinic butterfly with with � > 0. It follows from

theory that a thin Lorenz-like attractor, hardly indistinguishable from the homoclinic butterfly without significant magnifi-

cation, can already emerge near this point in the parameter space. One can see a loci of bifurcation curves emerging from

the DRS -point, in a vicinity of the BT -point, in Figs. 4 and 10 , which will be further described later. Table 1 lists the coor-

dinates of the cod-2 homoclinic orbit-switch points in the ( a, b, σ )-parameter space of the OPL-model. Fig. 5 a shows how

the primary homoclinic loop morphs into a double loop as we move along the primary homoclinic bifurcation curve H in
0 
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Fig. 4. Reverse reconstruction of the sweep presented in Fig. 3 using the continuation approach with MatCont. Blue and red curves originating from IF 1 , 

IF 2 and T 0 correspond to homoclinic orbits of the saddle O and the heteroclinic connections between O and the saddle-foci P ± , respectively. PF, AH 0 and 

AH 1,2 stand for pitchfork and Andronov-Hopf bifurcation curves crossing at the Z 2 -symmetric cod-2 Bogdanov/Khorozov-Takens (BT) point. Other cod-2 

points on the primary homoclinic bifurcation curve H 0 include NS for a neutral saddle, DRS for a change of the stable leading eigenvalue, and the point 

GH stands for the cod-2 Bautin bifurcation of the change in super-criticality on AH -curve. Green lines labeled by H 2,3,4 originating from IF 1 correspond to 

single-sided homoclinic orbits coded as {11}, {111} and so forth, see Fig. 6 d. Note that secondary T-points are located within the wedge bounded by two 

red lines corresponding to homo- and heteroclinic bifurcations of the saddle-foci. 

Fig. 5. (a) The primary homoclinic orbit, coding {1}, transforming into a double loop, coding {10}, as the bifurcation parameters are sampled along the 

closed corresponding curve H 0 in Figs. 3 and 4 at σ = 1 . 5 . Between DRS and IF 1 points, �1 tracing out an oriented single loop [light red, (4.124910, 

0.595354)] comes back to O , right-tangent to D 23 -direction on the right; Beyond IF 1 , the homoclinic orbit [dark red, (3.827, 0.51903)] becomes twisted 

(non-oriented) as �1 comes back left-tangent to the leading direction. Between IF 1 and IF 2 , the twisted single loop [green, (3.76, 0.354)] turns around the 

1D stable manifold of the saddle-focus P − (see Fig. 6 ); Beyond IF 2 , the double loop [light blue, (4.125120, 0.479283)] becomes oriented and morphs into 

the homoclinic butterfly [blue, (4.241910, 0.598092)] as we approach the NS point. (b) Transformation stages of the primary homoclinic orbit {1} into the 

heteroclinic connection { 1 ̄0 } [light red (3.701, 0.8734) → dark red (3.321, 0.69885) → green (3.03, 0.39331) → light blue (3.276, 0.5186)] along the 

bifurcation curve H 0 spiraling onto the primary T-point at σ = 2 . 0 , see Fig. 10 . In this case, as we sample the H 0 -curve beyond IF 2 , the twisted loop makes 

more turns around the stable manifold of P −, until it becomes the heteroclinic connection with P − at the T-point. 
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Fig. 6. Geometry and consequences of the cod-2 inclination flip homoclinic bifurcation in a 3D phase space. (a) A section π 1 of a 2D cross-section transverse 

to the stable manifold W 

s of the saddle with a saddle index ν < 1 is taken back along the orientable primary homoclinic loop �̄1 (in black) and a close 

trajectory (red) so that its image (darker wedge) is mapped back onto the original π 1 , whereas in the non-orientable or twisted case (b), it is mapped onto 

the opposite section π2 (dark yellow). This makes the surface “spanned” by the unstable and non-leading stable eigenvectors look like a Möbius band. (c) 

After the IF bifurcation, the flow bends the surface of the local manifold spanned by the unstable and leading stable eigenvectors, so that its image has 

the shape of a hook or a Smale horse-shoe. (d) This gives rise the onset of one of two “one-sided” chaotic attractors in the OPL-model near each primary 

homoclinic loop (at a = 3 . 7 , b = 0 . 48415447 , σ = 1 . 5 ) with a distinct bent horseshoe (red dots) on a cross-section near the saddle in this 3D phase-space 

projection. 

Table 1 

Table of the coordinates of the orbit-switch (DRS) points in the 

3D ( a, b, σ )-parameter space of the OPL-model corresponding 

to double-real stable eigenvalues of the saddle O . 

σ a b 

1.50 4.4309 0.6572 

1.55 4.3394 0.6973 

1.60 4.2382 0.7258 

1.65 4.1333 0.7453 

1.70 4.0291 0.7584 

1.75 3.9285 0.7671 

1.80 3.8325 0.7728 

 

 

 

 

Fig. 4 at σ = 1 . 5 . For a different parametric cut in Fig. 10 at σ = 2 . 0 , it forms a heteroclinic connection with the saddle foci

as shown in Fig. 5 b. 

2.2.1. Inclination-flip homoclinic bifurcation 

Of special interest in this paper is the role(s) of cod-2 inclination flip bifurcations (labeled as IF ) in the parameter space

and how they shape and organize the global bifurcation unfolding of the OPL-model, see Figs. 3, 4, 15 . The IF bifurcation oc-

curs when an orientable stable or unstable manifold transitions to a non-orientable one, when followed along the homoclinic



K. Pusuluri, H.G.E. Meijer and A.L. Shilnikov / Commun Nonlinear Sci Numer Simulat 93 (2021) 105503 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

orbit. Unlike the Shimizu-Morioka model [18] , this bifurcation in the OPL model involves the primary homoclinic butterfly

and not the double homoclinic loops. As mentioned previously, L.P. Shilnikov pointed out the conditions under which the

IF bifurcation gives rise to the onset of the Lorenz attractor in Z 2 -symmetric systems. These conditions helped determine

and verify the regions of existence of the Lorenz attractor, as well as enabled computer assisted proofs of chaotic dynamics

in the canonical Lorenz model, without stable orbits and homoclinic tangencies [59–62] . One such condition showed that

the inclination-switch bifurcation can also lead to the onset of stable orbits nearby in the phase space, even in the case of

an expanding saddle whose saddle index satisfies the condition 1/2 < ν < 1. Below, we will highlight the essence of the

inclination-switch bifurcation. Its in-depth analysis is given in [4,5] . 

3D images in Fig. 6 illustrate the concept of an inclination flip bifurcation that transforms an orientable homoclinic loop

of the saddle ( Fig. 6 a) into a non-orientable one ( Fig. 6 b). This is depicted by a single twist of the surface traced out by a

small, local section of the strongly stable direction, due to the smaller eigenvalue λ3 ( . . . < λ3 < λ2 < 0 < λ1 ) of the saddle.

Let us explore the global return map T that takes a 2D cross-section, π = π1 ∪ π2 , transverse to the stable manifold W 

s of

the saddle with a saddle index ν < 1, onto itself along the homoclinic loop. The 1D outgoing separatrix of the saddle (here

�1 ) comes back along the leading direction (vertical, due to λ2 ). Before the inclination-flip ( Fig. 6 a), the section π1 (the right

half, relative to W 

s ) is mapped back on to the original π1 (darker wedge), along the orientable primary homoclinic loop �1

(in black). A nearby trajectory (red) is also shown. Post the inclination flip ( Fig. 6 b), in the non-orientable or twisted case,

the section π1 is mapped onto the opposite section π2 (dark yellow). This makes the surface “spanned” by the unstable

(due to λ1 ) and the non-leading stable (due to λ3 ) eigenvectors look like a Möbius band. 

Fig. 6 c depicts the action near an IF bifurcation using a 2D local Poincaré map. The map takes a small interval d 1 � 1 on

π into d 2 ∼ d ν
1 

> d 1 . For ν < 1, the local map near the saddle is typically an expansion, stretching phase areas or volumes.

Let us consider a small portion of the local manifold M tangent to the span of the leading stable (due to λ2 ) and the

leading unstable eigenvectors of the saddle O . Near an IF bifurcation, as we take M along the outgoing separatrix loop in

a succession, it bends and hits the cross-section π as a hook, narrowly squeezed due to the strongly stable eigenvalue λ3 .

This hook T π1 of the pre-image π1 looks like a Smale horseshoe on the cross-section (see Fig. 6 c inset). This bending

makes the image of d 2 shorter than the original d 1 , making the global map T a contraction ( T d 1 < d 1 ) as it overcomes the

local expansion near the saddle ( d 2 > d 1 ). Note that the global map T is an expansion prior to the IF bifurcation. Fig. 6 d

illustrates the onset of one of two “one-sided” chaotic attractors in the OPL-model near the inclination flip point on the

primary homoclinic loop (at a = 3 . 7 , b = 0 . 48415447 , σ = 1 . 5 , next to the IF 1 -point in Fig. 3 ) due to the presence of such a

hook/Smale horseshoe (red), filled in with the points of intersection of transverse segments of the outgoing separatrix �1

of the saddle O on a nearby cross-section. The inset depicts a simulated analogue of the bending manifold M sketched in

Fig. 6 c. 

The geometric model of the Lorenz attractor (presented in [59] ) can be elaborated using a 2D return map near the

primary homoclinic butterfly of the two separatrix loops of the saddle. For a system to possess a genuine chaotic attractor

devoid of homoclinic tangencies or stable orbits, this map should satisfy a few analytical conditions. The boundary of its

existence region is marked by a violation of these criteria. The 2D map near the IF bifurcations can be further reduced to a

simplified 1D map ( Fig. 7 ) in the following form [5] : 

x n +1 = 

[
μ + A | x n | ν + o(| x n | 2 ν ) 

]
· sign (x n ) , (2)

where 1 / 2 < ν = | λ2 | / λ1 < 1 is the saddle index, A is the separatrix value, and μ is the splitting parameter of the homoclinic

loop [12] . Near the IF bifurcations when 0 ~ | A | � 1, the term o (| x n | 
2 ν ) is no longer negligible. Fig. 7 demonstrates the bent

shape of such a return map, derived from the simulated 2D map, shown in Fig. 6 d, for the “one-sided” chaotic attractor. As

μ is decreased further, both “one-sided” (left/right) non-oriented attractors merge into a symmetric one. The map illustrates

possible dynamics near the primary IF bifurcation due to period-doubling bifurcations in the 1D Poincaré map, leading to the

emergence of multiple secondary homoclinic curves from this cod-2 point, as well as multiple stable periodic orbits ( Figs. 8,

9, 15, 16 ) when the return map starts bending again and again to resemble the return map of a Shilnikov saddle-focus, but

with a finite number of Smale horse-shoes [18] . 

2.2.2. Bykov “terminal” T-points 

A typical signature for Lorenz-like systems is the complex universal and self-similar characteristic spirals in the pa-

rameter plane, organized around a central point called a Bykov terminal point (T-point) as seen in Figs. 3, 4 and detailed

magnifications are presented in Fig. 8 [30] . Each characteristic spiral around a T-point in the parameter plane corresponds

to a homoclinic loop of the saddle O in the phase space, such that with each turn of the spiral approaching the T-point, the

outgoing separatrix of saddle makes increasing number of loops around a saddle-focus P ±, before finally forming a closed

heteroclinic connection between the saddle and the saddle focus at the T-point. Fig. 2 d shows a one-way heteroclinic con-

nection between the saddle and the saddle focus for parameter values near the T-point T 1 in Fig. 8 b, with ( a, b ) ~ (3.68179,

0.3517). Here, the unstable separatrix �1 (red) of the saddle O makes one loop around P + , followed by another loop around

P −, then merges with the incoming separatrix of P + , thus effectively making infinite loops around P + before emerging out.

The symmetric heteroclinic connection along � from O to P −, is shown in blue. 
2 
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Fig. 7. Unimodal shape of a symmetric 1D map x n → x n +1 derived from the simulated 2D return map in Fig. 6 d to illustrate the dynamics due to 

period-doubling and homoclinic bifurcations occurring in the fitted model (red line) given by Eq. (2) near the primary inclination-flip bifurcation. 

As μ is decreased further, both “one-sided” non-oriented attractors ( Fig. 6 d) merge into one symmetric after the folds of the map cross over the 

x n -axis. 

Fig. 8. (a) Magnification of the vicinity of the primary T-point T 0 from Fig. 3 , using { k i } 12 
i =5 . Multiple secondary inclination-flip points (marked with white 

dots on critical points of homoclinic spirals) originating from IF 2 and passing throughout T 0 give rise to other homoclinic curves spiraling onto secondary 

T-points nearby. (b) Magnification of the white box region in Fig. 3 , using { k i } 10 
i =3 , showing symmetric T-points T 1 { 10 1 } and T 2 { 11 0 } , above and below the 

primary homoclinic bifurcation curve H 0 , respectively. The corresponding phase trajectory at T 1 is shown in Fig. 2 d. 

 

 

 

 

 

 

 

 

Near a T-point, there exist countably many secondary T-points with increasing complexity of heteroclinic connections in

the phase space and with similar bifurcation structures as the central T-point in the parameter plane, although on a smaller

scale (see Figs. 8, 9 ). Multiple inclination flip (IF) homoclinic bifurcations of the saddle occurring along the characteristic

spirals of the T-points (detected with MatCont and shown as white dots in Figs. 8 a, 9 ) give rise to saddle-node and period-

doubling bifurcations of periodic orbits [5,50] . Fine organization of the structure of the chaotic regions and stability windows

near the T-point and surrounding IF points is revealed in greater detail in 9 b. In addition, the unfolding of a T-point also

includes other curves corresponding to the homoclinic connections of the saddle-focus satisfying the Shilnikov condition

[24,56,58] that give rise to a denumerable set of saddle periodic orbits nearby [25] , as well as those corresponding to

heteroclinic connections between both saddle-foci [19,48,63] . 
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Fig. 9. Short-term and long-term sweeps to disclose the multiplicity of basic inclination-flip bifurcation points (white dots) at σ = 1 . 2 . (a) { k i } 9 i =2 sweep 

illustrates a locus of homoclinic curves converging towards the primary and secondary T-points to the inclination-flip points IF 2 (b) Long { k i } 1999 
i =999 DCP- 

based sweep reveals a variety of large and narrow stability windows, also known as the Shilnikov flames , originating below subsequent inclination flip 

points located on the boundary (not shown here) separating the region of the Lorenz attractor (above it) from that of quasi-attractors coexisting with 

stable periodic orbits. 

Fig. 10. (a) The ( a, b )-parametric sweep of the OPL-model at σ = 2 . 0 using short symbolic sequences { k i } 10 
i =3 to detect principal homoclinic and heteroclinic 

bifurcations of the saddle O . (b) MatCont reconstruction depicting the key bifurcations of equilibrium states, multiple cod-2 points (with their labels as 

previously described) on the primary homoclinic bifurcation curve H 0 spiraling onto the T-point T 0 , rather then going back to the cod-2 NS -point as before 

in Fig. 4 . Shown in blue are the curves corresponding to various homoclinic and heteroclinic connections of the saddle. Note that secondary T-points are 

located within the wedge bounded by two red lines (starting near T 0 ) corresponding to homo- and heteroclinic bifurcations of the saddle-foci. 

 

 

 

 

 

 

 

 

 

 

3. Numerical methods 

3.1. Parametric continuation with MatCont 

We constructed bifurcation diagrams such as Fig. 4 using numerical continuation with MatCont [11] , including homo-

topy to initialize continuation of homoclinic and heteroclinic orbits, shown as blue and red curves, respectively [13] . First,

we locate the local bifurcation curves of the symmetric and asymmetric equilibria. This also involves an Andronov-Hopf

bifurcation. Following the limit cycle, we encounter a homoclinic bifurcation where the period explodes to infinity. In the

region where the inclination flip occurs, O has a single unstable direction. To determine these curves, we use homotopy to

locate the connecting orbits, where we set the distances from the equilibrium to be 10 −3 at most, but typically 10 −4 . Once a

connecting orbit has been located, we continue it with a, b as free parameters and the “period” as auxiliary continuation pa-

rameter. During continuation, we monitor the test functions for various codimension-two bifurcations, including inclination

flip and neutral homoclinic bifurcations. 

While results have only been proven for three-dimensional vector fields, see [6,48,63] , we follow these descriptions. We

consider the following leading eigenvalues ... < λ < λ < 0 < λ . To characterize the type of inclination flip, we define the
3 2 1 
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Fig. 11. The ( a, b )-parameter sweep using symbolic sequences { k i } 8 i =2 for σ = 10 . White circles in it denote selected cod-2 bifurcation points including 

Inclination Flip – IF 2 (see Fig. 16 ); T-points – T 0 ( { 1 0 } ), T 1 ( { 10 1 } ), S – the bridging saddle between a pair of symmetric T-points T 1 2 and T 2 2 below S with 

the identical symbolic coding { 11 0 } (see Figs. 20 and 21 ). Here, T g marks the ghost of the T-point ( { 1 } ) after its spiral structure is devoured by the periodic 

orbit ( { 01 } ); T g and the semi-annular isolas near C are detailed in Fig. 23 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quantities 

ν1 = −λ2 /λ1 , ν2 = −λ3 /λ1 . (3) 

If ν1 < 

1 
2 or ν2 < 1, then there are infinitely many N -homoclinic orbits emerging from this cod-2 bifurcation for each fixed

N ≥ 2. 

3.2. Symbolic dynamics: Deterministic Chaos Prospector (DCP) 

Our idea of symbolic dynamics is similar to the so-called kneadings [64–66] , originally introduced for 1D continuous

unimodal (with a single critical point) maps of an interval, and the binary description of their complex dynamics. A knead-

ing invariant (see ( Eqs. 4, 6 )) was meant to serve as a modulus to topologically conjugate such maps and ODE systems

generating such maps, see [3,5,18,35,67–70] . In order to apply such a symbolic technique to a generic Lorenz-like system

of higher dimensions, only wave forms of a symmetric variable progressing in time, that consistently start from the same

initial condition near the saddle are required. 

The system exhibits the presence of a Lorenz-like attractor which is both dynamically and structurally unstable (see

Fig. 2 c gray background), due to an abundance of homoclinic bifurcations of the saddle equilibrium O . Both the outgoing

separatrices of O , �1 and �2 , densely fill out the two spatially symmetric wings of the Lorenz attractor in an unpredictable

flip-flop pattern. In addition to this, as we vary the parameters of the system, the attractor itself undergoes bifurcations

and reorganizes the flip-flop patterns, resulting in structural instability. Such changes are marked by homoclinic bifurcations

of the saddle O , where the outgoing separatrices, �1 and �2 , after a few flip-flops, merge with the stable manifold of O

(see Fig. 2 c red curve). We make use of this property of homoclinic bifurcations to identify regions of topologically identical

dynamics in parameter space by following the positive unstable separatrix �1 of O and converting the flip-flop patterns of

the trajectory around P ± into a binary sequence { k n } defined as: 

k n = 

{
1 , when �1 loops around the “right” saddle-focus P + , 
0 , when �1 loops around the “left” saddle-focus P −. 

(4) 

This can be simplified by just considering complete or partial loops of the trajectory on the positive or negative side

of β , to be represented by the symbols 1 or 0, respectively. Therefore, the primary homoclinic bifurcation of Fig. 2 c (red)
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Fig. 12. Matching fragment of the ( a, b )-bifurcation diagram done with the MatCont parameter continuation for σ = 10 . Blue and red curves correspond 

to the key homoclinic and heteroclinic bifurcations of the saddle and saddle-foci, respectively. Here, IF 2 stands for the Inclination Flip, and NS for Neutral 

Saddle with zero saddle value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is symbolically represented as {1} since �1 makes one loop around P + before returning to O , while the blue and green

curves are represented as {11...} and {10...}, respectively. Repetitive sequences are represented with an over-bar, as shown

in Fig. 2 a,b,d, showing convergence to a fixed point, periodic orbit, or heteroclinic connection, respectively. For example,

the blue periodic orbit of Fig. 2 b (transient omitted) generates the infinite sequence ({010101010101...}), which is shortly

represented as { 01 } . We use the notation { k i } q i = p , to represent a sequence starting from the p th symbol up-to the q th symbol,

with i, p, q in Z 

+ and 0 ≤ p ≤ q . As we always initiate trajectories along �1 , we consider k 0 = 1 . 

Since a single homoclinic loop, upon change of a parameter, can undergo transmutation into a double loop via an incli-

nation flip, without an underlying homoclinic bifurcation (see Fig. 5 ), the above approach can give rise to artifacts near the

IF bifurcations, e.g. Fig. 8 a, where a single homoclinic loop starts to twist and then makes an extra loop on the left. We can

avoid some of those artifacts by a slightly modified approach, given by: 

k n = 

{
1 , whenever �1 reaches β − maxima and β > 0 and 

dD 23 

dt 
< 0 , 

0 , whenever �1 reaches β − minima and β < 0 and 

dD 23 

dt 
> 0 . 

(5)

With the former approach (4) , the artifacts are confined to a small region near the IF bifurcations, while the modified

approach (5) confines the artifacts to regions away from IF bifurcations. Therefore, we use approach (4) for most of the

biparametric scans ( Fig. 3, 8 etc.), except for close zoom-ins near IF points ( Fig. 15 ), for which we use approach (5) . 

3.2.1. 2D/3D parametric scans 

Topologically identical regions in the parametric plane can be identified by defining a formal convergent power series P

[29,64] for a sequence { k i } q i = p defined as: 

P = 

q ∑ 

i = p 

k i 
2 

q +1 −i 
. (6)

For example, the value of this power series for the sequence {10100101...} with p = 0 and q = 7 can be computed as :

P = 

1 
2 8 

+ 

0 
2 7 

+ 

1 
2 6 

+ 

0 
2 5 

+ 

0 
2 4 

+ 

1 
2 3 

+ 

0 
2 2 

+ 

1 
2 = 0 . 64453125 . The value of the sum P lies between 0 (for the sequence { 0 } ) and 1

(for the sequence { 1 } in the limit as (q − p) → ∞ ). Two different sets of parameter values that show topologically identical

behavior in their trajectories, result in identical sequences { k i }, and thus, have the same P values. Therefore, P serves as a

dynamic invariant, which we can use in the construction of biparametric scans such as Fig. 3 , as follows. The parameter
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σ is kept constant while we vary the parameters a and b (at a resolution of 20 0 0x20 0 0). For each set of values of these

parameters, we follow the right unstable separatrix �1 of O to obtain the sequence { k i } and the power series P . We then use

a colormap to project the P values onto the biparametric plane, where topological similarity between regions is identified by

their equivalent colors, and the boundaries between adjacent regions represent homoclinic bifurcation curves. The colormap

is constructed by discretizing the range of P , i.e., [0,1], into 2 8 bins, and assigning them RGB-color values from 0 through 1,

for each of Red, Green and Blue colors in decreasing, random, and increasing fashion, respectively. Greater weight is assigned

to the symbols towards the end of the sequences { k i } in the computation of P , to maximize the color contrast between

neighboring regions in a scan, that differ in the last symbol, separated by a homoclinic curve at their boundary. Numerical

integration is performed using the classic Runge-Kutta method (RK4) with fixed step size dt = 0 . 01 . The computation of

these trajectories is massively parallelized by running on separate GPU threads using CUDA. This allows for the construction

of bi-parametric scans such as Fig. 11 , in as little as 8 seconds on an Nvidia Tesla K40 GPU. Visualizations are done in

Python. In order to construct complex bifurcation structures in the 3D parametric space, such as Figs. 17 a, 19, 21, we obtain

a large number of biparametric scans in the ( a,b ) parametric plane, as we continuously vary the third parameter σ . Such

arrays of scans are then rendered together using the open source volume exploration tool Drishti [71] , which performed the

best with our huge datasets, compared to other available tools for 3D rendering. 

3.2.2. Long term behavior 

The significance of our DCP tool is that not only can it reveal the short term transient dynamics and the underlying

homoclinic, heteroclinic, saddle, and T-point spiral structures, but it can also be employed to reveal the long term behavior

of the system ( Fig. 14 ). When looking at the long term behavior of a trajectory after omitting a long transient, one should be

aware of the shift-symmetry of periodic orbits. Depending on the length of the initial transient omitted, the same symmetric

8-shaped periodic orbit (Fig. 2b - blue) can be represented by either { 01 } or { 10 } , and hence, needs to be normalized. In

addition, if there is an asymmetric periodic orbit such as { 011 } , the symmetry of the system implies the existence of another

periodic orbit which is its symmetric counterpart, { 100 } . This implies that all six of the periodic sequences { 011 } , { 110 } ,
{ 101 } , { 100 } , { 001 } and { 010 } need to be normalized. We accomplish this by means of an algorithm we call Periodicity

Correction (PC), where we identify the periodic structure within a sequence, along with its symmetric counterpart, and

then normalize the sequence to the smallest valued circular permutation. Thus, both { 01 } and { 10 } are normalized to { 01 }
and all six of the asymmetric periodic orbits described previously are normalized to the lowest valued sequence { 001 } .
PC helps in identifying regions of simple, Morse-Smale dynamics of stable fixed points and periodic orbits by eliminating

artifacts arising from symmetries of the system or the symbolic sequence. Structurally unstable, chaotic regions are marked

by the lack of periodicity in their symbolic representations. Alternatively, we can also employ a compression algorithm, like

Lempel-Ziv-76 (LZ) [37] , to find the complexity of a binary sequence. LZ scans a sequence from left to right, and adds a new

word to the vocabulary every time a previously unencountered sub-string is detected. Since the circular permutations of a

periodic orbit will have identical complexity, this approach can also detect windows of stability amidst structurally unstable

chaotic regions. 

While PC can detect stable periodic orbits efficiently even at short sequence lengths, LZ requires very long sequences

and is not as effective. Within chaotic regions, on the other hand, PC cannot distinguish between different sequences

while LZ separates very complex strings from not-so-complex strings, akin to Lyapunov exponents. To harness the best

of both worlds, we therefore combine both PC and LZ. For a long term biparametric sweep, we first run the symbolic

sequences through PC to detect the existence of, and to normalize, periodic orbits. The normalized sequences are then

used to compute the power series sum P and colored with the colormap as previously described. We then run the aperi-

odic sequences through LZ to detect their complexity. We color the LZ-complexity values in shades of gray, with darker

gray representing greater complexity. Together, this results in long term bi-parametric sweeps such as Figs. 9, 14, 15 b,

16 b, where darker shades of gray represent greater structural instability and chaotic dynamics, while all other solid col-

ors represent simple Morse-Smale dynamics of stable fixed points or periodic orbits. On the whole, we coin this col-

lection of symbolic tools the ‘Deterministic Chaos Prospector (DCP)’. The open source software developed is available at

https://bitbucket.org/pusuluri _ krishna/deterministicchaosprospector/ . 

4. Results 

Results are presented in the order of global transient dynamics, global long term dynamics, detailed magnifications near

the organizing centers for both transient and long term behavior, followed by parametric saddles, isolas, and their 3D em-

bedding. 

4.1. Transient dynamics and global bifurcation structure 

4.1.1. Case: σ = 1 . 5 

We start this section with σ = 1 . 5 . Fig. 3 shows the bifurcation diagram in ( a, b )-parametric plane at σ = 1 . 5 using

symbolic sequences { k i } 12 
i =5 . Two sets of parameters that result in topologically identical dynamics for the symbolic sequence

under consideration, are colored identically in the bi-parametric sweep. Boundaries between such regions represent a shift in

https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/


K. Pusuluri, H.G.E. Meijer and A.L. Shilnikov / Commun Nonlinear Sci Numer Simulat 93 (2021) 105503 15 

Table 2 

Table listing codim-2 inclination-flip ( IF ) points and the three leading eigenvalues 

λ3 < λ2 < 0 < λ1 of the saddle O . 

σ a b λ1 λ2 λ3 ν

1.50 3.8264 0.5189 1.8954 -.5189 -.7594 ± 7.6491i 0.4 

3.9821 0.4011 1.5603 -.4011 -.6614 0.42 

1.55 3.7616 0.5436 1.9390 -.5436 -.7718 ± 7.5199i 0.4 

3.8950 0.4160 1.6461 -.4160 -.7080 ± 7.7845i 0.43 

1.60 3.7011 0.5663 1.9754 -.5663 -.7831 ± 7.3990i 0.4 

3.8127 0.4284 1.7197 -.4284 -.7142 ± 7.6200i 0.36 

1.65 3.6443 0.5872 2.0059 -.5872 -.7936 ± 7.2856i 0.4 

3.7345 0.4386 1.7833 -.4386 -.6552 0.36 

1.70 3.5907 0.6065 2.0313 -.6065 -.8033 ± 7.1788i 0.4 

3.6601 0.4470 1.8386 -.4470 -.6522 0.35 

1.75 3.5401 0.6246 2.0524 -.6246 -.8123 ± 7.0778i 0.4 

3.5891 0.4536 1.8872 -.4536 -.6491 0.34 

1.80 3.4922 0.6414 2.0699 -.6414 -.8208 ± 6.9820i 0.4 

3.5210 0.4588 1.9298 -.4588 -.6460 0.33 

1.90 3.4029 0.6719 2.0959 -.6719 -.8337 0.39 

3.3928 0.4653 2.0008 -.4653 -.6401 0.32 

2.00 3.5705 0.8120 1.8373 -.7615 -.8120 0.44 

3.3209 0.6988 2.1127 -.6988 -.8182 0.38 

3.5705 0.8120 1.8373 -.7615 -.8120 0.44 

10.0 1.2609 0.4956 0.5175 -.4884 -.4956 0.96 

1.1570 0.1936 0.5710 -.1936 -.4444 0.77 

1.1247 0.1941 0.6225 -.1941 -.4987 0.79 

1.0681 0.1896 0.6969 -.1896 -.5765 0.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the dynamics due to homoclinic bifurcations. The corresponding bifurcation diagram obtained using continuation is shown

in Fig. 4 . Blue curves represent homoclinic bifurcation curves while heteroclinic bifurcation curves are shown in red. 

A homoclinic bifurcation curve of the trivial equilibrium O emerges from BT , which will be of primary interest as we

vary σ . As we follow this primary curve we encounter a codim 2 point DRS with two real stable eigenvalues and the lead-

ing stable direction changes. Here, a double, twisted homoclinic loop emerges. As we move along the primary homoclinic

bifurcation curve H 0 from DRS towards IF 1 in the parametric plane ( Fig. 4 ), in the phase space ( Fig. 5 a) the primary homo-

clinic loop is oriented and approaches O from the right (light red curve). Moving on along H 0 , we find a first inclination

flip bifurcation IF 1 of complex type, where the primary homoclinic orbit approaches O along its stable manifold ( Fig. 5 a -

dark red). As we move further along H 0 , a twisted single loop approaches O from the left (green), and ν1 and ν2 increase

again when we find a second inclination flip point IF 2 . Beyond IF 2 , the homoclinic orbit changes its shape from a single loop

around one non-trivial equilibrium to a double loop configuration around both non-trivial equilibria, that gradually grows

bigger (light blue → dark blue). Finally the primary curve gets close to the DRS point where the continuation terminates.

This corroborates theoretical expectations although verification that the exact end point of this primary homoclinic curve is

at the DRS point, is still open. 

From the eigenvalues (see Table 2 ), we find that the inclination flip at IF 1 and other cases are all of complex type so that

infinitely many homoclinic bifurcation curves emerge from this point IF 1 . The homoclinic bifurcation curves all spiral to the

T-points such as T 0 (marked by the heteroclinic connection { 1 0 } ). From the T-point T 0 , two heteroclinic bifurcation curves

also emerge connecting the saddle-foci P ±. These curves are rather straight and it may be appreciated that the homoclinic

spirals to secondary T-points end up close to these heteroclinic curves. The inclination flip points, T-points, saddles( S ) and

closed loops are further explored in Sections 4.3,4.4 . 

4.1.2. Case: σ = 2 . 0 

The ( a,b )-parametric sweep for σ = 2 . 0 using symbolic sequences { k i } 10 
i =3 and continuation is shown in Fig. 10 . We find

results are globally quite similar for the pitchfork and AH curves. The primary homoclinic bifurcation curve H 0 has some

marked differences though. First, the codimension-two neutral saddle point has disappeared simultaneously altering the

nature of the BT point. Second, the primary homoclinic bifurcation curve no longer ends at the DRS point but spirals towards

the T-point. In this case, as we sample parameters beyond IF 2 , in the phase space the twisted loop starts making more and

more revolutions around the stable manifold of P −, until it forms a heteroclinic connection to P − at the T-point. As shown

in Fig. 5 b, this transfiguration of the primary homoclinic orbit into a heteroclinic connection to P − happens through the

orbits light red → dark red → green → light blue as we move along H 0 . Detailed transition of the behavior of H 0

between σ = 1 . 5 and σ = 2 . 0 is explored further in Section 4.4 . We also note that the second leading stable eigenvalue has

changed from complex at σ = 1 . 5 to real for σ = 2 . 0 . This transition occurs at σ ≈ 1.90. 

4.1.3. Case: σ = 10 . 0 

Moving on to σ = 10 . 0 , the bifurcation diagram using symbolic sequences { k i } 8 i =2 is shown in Fig. 11 . The corresponding

diagram using parametric continuation is shown in Fig. 12 . The inclination flip IF on the primary homoclinic is of a different
2 
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type (type B), see Table 2 for the eigenvalues. This involves small regions with stable limit cycles. Indeed, we find a limit

point of cycles bifurcation (LPC) indicating a small region with stable periodic orbits. These LPCs are only connected to

the primary homoclinic bifurcation. This may not be apparent from Fig. 12 as the primary curve does not seem to make a

loop towards the T-point. Detailed calculations though suggest the primary curve makes a turn near ν1 = 0 . 3 , but accurate

continuation did not succeed in that parameter region. All other inclination flip points are of type C. This implies that only

the primary homoclinic bifurcation results in the emergence of additional stable periodic orbits nearby. The label NS stands

for the neutral homoclinic saddle with a zero saddle value. Here, T 0 ( { 1 0 } ), T 1 ( { 10 1 } ), T 1 
2 

( { 11 0 } ) and T 2 
2 

( { 11 0 } ) represent

various T-points. Note that the T-points T 1 2 and T 2 2 , above and below the saddle S , have identical construction and the same

heteroclinic connection { 11 0 } . T g with the heteroclinic connection ( { 1 } ) is a special case. Although T g resembles a T-point, it

falls in the region of the periodic orbit ( { 01 } ) which devours the spiral structure of T g , leaving behind a ghost of the T-point.

T g and the semi-annular isolas near C are detailed in Fig. 23 . Further details of the special organizing structures are provided

in the following sections. 

4.1.4. Summary: σ variations 

We conclude this section by presenting a summary of the bifurcation diagrams for varying σ -values. This also serves

as a precursor for the construction of 3D parametric sweeps of Section 4.4 . Fig. 13 (a-h) reveal variations in the bifurcation

structure using { k i } 11 
i =4 for σ -values 1.2, 1.32, 1.5, 1.72, 1.76, 2.0, 6.0, 7.375 and 10.0. See also supplementary Movie M1

that reveals these variations in further detail. Between σ = 1 . 72 ( Fig. 13 d) and σ = 1 . 76 ( Fig. 13 e), the primary homoclinic

bifurcation curve branches and starts spiraling on to the primary T-point T 0 . As we increase σ further, the inclination flip

IF 1 and the homoclinic bifurcation curves from IF 1 to T 0 change their orientation. Between σ = 6 ( Fig. 13 g) and σ = 7 . 375

( Fig. 13 h), H 0 branches again to separate from T 0 . 

4.2. Global long term dynamics 

To study the long term behavior of the system with DCP, we use long symbolic sequences { k i } 1999 
i =999 , omitting the first 999

symbols as transients. Fig. 14 shows such long term behavior at σ values: 1.2, 1.5, 7.375 and 10 in panels (a) - (d) , respectively.

Simple, Morse-Smale dynamics of stable equilibria or periodic orbits are identified using Periodicity Correction and shown

in solid colors. Distinct colors represent sequences with distinct periods. Structurally unstable, chaotic dynamics are identi-

fied by their lack of periodic structure, processed using LZ-complexity, and colored such that darker gray regions indicate

greater LZ-complexity of the sequences, and therefore, increased structural instability and chaos. Between Fig. 14 (a,b) vs.

Fig. 14 (c,d) note the change in orientation of the inclination flip IF 1 and the stability windows emerging from it. This is also

in agreement with the change in orientation of the transient dynamics as seen in Fig. 13 for the corresponding σ -values. 

4.3. Transient and long term behavior near the organizing centers 

In this section, we will present the detailed behavior of both short and long term dynamics near the organizing centers

of T-points and inclination flips. 

4.3.1. T-points 

For all three sigma values of 1.5 ( Fig. 3 ), 2.0 ( Fig. 10 ) and 10.0 ( Fig. 11 ), the primary T-point T 0 is marked by the symbolic

sequence { 1 0 } . The phase trajectory at T 0 is as shown by the light blue curve of Fig. 5 b, where �1 makes one loop around

P + , followed by a heteroclinic connection to P −. The trajectory effectively makes an infinite number of loops around P −,

before leaving the neighborhood of P −. Fig. 8 a shows a magnification near T 0 for σ = 1 . 5 using { k i } 12 
i =5 . It also shows multiple

secondary T-points surrounding the primary T-point. Fig. 8 b with { k i } 10 
i =3 shows a zoom of a small region with an analogous

pair of T-points T 1 and T 2 , above and below H 0 , respectively, for σ = 1 . 5 (see Fig. 3 white box). The heteroclinic connection

at T 1 is shown in Fig. 2 d. Here �1 makes one loop around P + , followed by one loop around P −, and then forms a heteroclinic

connection to P + . Hence, the symbolic representation of { 10 1 } . Similarly, the heteroclinic connection at T 2 is given by { 11 0 } .
Such T-points always come in pairs on either side of a homoclinic bifurcation curve. Such a T-point pair can also be seen for

σ = 10 . 0 ( Fig. 11 ), with T 1 ( { 10 1 } ) above H 0 , and T 1 
2 

( { 11 0 } ) below it. The T-point T 2 
2 

below the saddle S , also has the same

structure in the parametric plane and the same heteroclinic connection ( { 11 0 } ) as T 1 
2 

. This is explored further in Section 4.4 .

4.3.2. Inclination flips 

Next, we show how the inclination flip points serve not only as the confluence of infinitely many homoclinic bifurcation

curves, but also as the originators of multiple windows of stability with respect to long term dynamics in the system.

Fig. 8 a ( σ = 1 . 5 ) shows several inclination flips (white dots), starting from IF 2 and leading all the way beyond T 0 , from

which the homoclinic bifurcation curves arise leading up to the secondary T-points surrounding T 0 . The specific values

of IF bifurcation points are obtained with continuation. Fig. 15 shows the behavior near the inclination flip point IF 1 at

σ = 1 . 5 for both transient (compare Fig. 3 ) and long term dynamics (compare Fig. 14 b). Fig. 15 a ( { k i } 12 
i =5 ) reveals multiple

homoclinic bifurcation curves that converge to IF 1 , while Fig. 15 b ( { k i } 1999 
i =999 with DCP) shows the convergence of multiple

stability windows (solid colors) towards IF , interspersed within regions of structural instability and chaos (darker gray
1 
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Fig. 13. Metamorphoses of global bifurcation structures in the the (a,b)-parameter plane as σ is increased from 1.2 (a), 1.32 (b), 1.5 (c), 1.72 (d), 1.76 (e), 

2.0 textbf(f), 6.0 (g), 7.375 (h) through 10.0 textbf(i), using { k i } 11 
i =4 . Note that between (d) and (e), the primary homoclinic bifurcation curve H 0 (which is 

the borderline between the red and purple solid regions) switches to spiraling onto T 0 , while between (g) and (h), the reverse phenomena occur so that 

H 0 no longer ends up at T 0 . (see also supplementary Movie M1). 

 

 

 

 

 

 

 

 

implies greater LZ-complexity and therefore, greater instability). Similar transient and long term behavior near IF 2 for σ =
10 . 0 (compare Fig. 11,14 d) is summarized in Fig. 16 a ( { k i } 23 

i =16 ) and Fig. 16 b ( { k i } 1999 
i =999 with DCP), respectively. 

4.3.3. Summary at σ = 1 . 2 

Finally, we magnify the behavior at σ = 1 . 2 which nicely summarizes the behavior of the inclination flips and secondary

T-points for short term ( Fig. 9 a, { k i } 9 i =2 ) and long term dynamics ( Fig. 9 b, { k i } 1999 
i =999 with DCP). Several inclination flips (white

dots) close to the primary T-point T 0 are clearly seen as the congregation centers of homoclinic curves leading up to sec-

ondary T-points vis–vis transient dynamics, while those same inclination flip points also give rise to stability windows in

the long term, amidst regions of structurally unstable and chaotic dynamics. See Fig. 13 a, 14 a for the corresponding global

dynamics. 

4.4. Parametric saddles and isolas 

In this last section, we present a discussion of more complicated organizing structures in the parameter space. Specif-

ically, we describe the 3D structures of two types of parametric saddles and two types of isolas (isolated closed curves).
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Fig. 14. Long term behavior of the OPL-model at different σ -values, revealed using the DCP-algorithm with { k i } 1999 
i =999 . Solid colors represent regions of sim- 

ple dynamics with stable equilibria or periodic orbits, computed using the periodicity correction (PC). Gray-sh noisy regions represent regions of structurally 

unstable, chaotic dynamics: the darker areas correspond to the greater LZ-complexity values for the corresponding binary sequences. Primary T-point T 0 
and inclination flip points IF 1 and IF 2 for σ = 1 . 5 are marked with white dots in (b) for reference, along with the white box enclosing a vicinity of IF 1 
which is expanded in Fig. 15 b. Observe the narrow Shilnikov flames emerging below secondary IF -points (located on homoclinic bifurcation spirals such as 

ones shown in Fig. 9 ) in the chaos-land. Parameters: (a) σ = 1 . 2 ; (b) σ = 1 . 5 ; (c) σ = 7 . 375 and (d) σ = 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

Such structures have been theoretically described previously [50,72–74] . To our knowledge, this is the first detailed three

dimensional computational reconstruction of such bifurcation surfaces in parameter space, made possible by the fast parallel

computation of trajectories on GPUs. 

4.4.1. Branching saddle for homoclinic bifurcation curves 

In this section, we describe a saddle in the parameter space that causes branch switching between homoclinic bifurcation

curves. As seen in Fig. 4 and Fig. 10 , between σ = 1 . 5 and σ = 2 . 0 , the primary homoclinic bifurcation curve shifts from a

complete loop towards the codimension-2 point DRS , to a spiral organization around the primary T-point T 0 . This implies

the existence of a saddle in between the two σ values that branches the primary homoclinic bifurcation curve H 0 , as seen in

Fig. 13 d,e. Fig. 17 (left) shows a detailed 3D ( a, b, σ ) bifurcation diagram close to this saddle. It is constructed using 100 bi-

parametric sweeps in the ( a, b )-plane with 1.7418 (top surface) ≤ σ ≤ 1.7439 (bottom surface), using { k i } 7 i =0 and 3D volume

is rendered with Drishti software [71] . This branching of H 0 occurs at σ ≈ 1.7428 and is marked by P . Detailed zooms close

to P , shown in Fig. 19 , further unravel this 3D organization of the homoclinic bifurcation surface at the homoclinic branching

saddle P . A similar 3D bifurcation surface with a saddle in the Shimizu-Morioka system is presented in [12] and shown in

Fig. 18 . Fig. 17 (right) shows the homoclinic bifurcation curves close to the branching saddle P obtained with continuation at

σ values of 1.73 (top), 1.74 (middle) and 1.75 (bottom). 
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Fig. 15. Short-transient and long-term dynamics near the inclination flip point for σ = 1 . 5 . (a) { k i } 12 
i =5 sweep detects a locus of homoclinic bifurcation 

curves originating from IF 1 (compare Fig. 3 ) (b) { k i } 1999 
i =999 sweep with DCP aimed for long-term behaviors reveals multiple stability windows (of solid colors) 

quickly expanding away from IF 1 (not shown here, see near white box in Fig. 14 b). Solid color regions correspond to the existence regions of stable periodic 

orbits detected by periodicity correction (PC) algorithm, while increasingly dark gray regions represent greater structural instability and chaos, obtained 

using LZ-complexity. 

Fig. 16. Transient and long-term dynamics near the inclination-flip point IF 2 for σ = 10 . (a) { k i } 23 
i =16 sweep discloses an abundance of homoclinic bifurcation 

curves originating from IF 2 . (b) { k i } 1999 
i =999 DPC-sweep for long term behavior shows multiple stability windows converging towards IF 2 ; solid colors corre- 

sponds to stability windows of periodic orbits (PC) while gray areas correspond structural unstable, chaotic dynamics generating poorly LZ-compressable 

binary sequences. 

 

 

 

 

 

 

 

 

 

 

 

4.4.2. Bridging saddle between T-points 

We now focus on another kind of saddle ubiquitous to parametric sweeps, serving as a bridge between two identical

T-points, marked S in Figs. 3, 11 . The interesting feature of such a saddle is that the T-point spirals above and below have

identical construction and the same heteroclinic connections, as described previously in Fig. 11 for σ = 10 , with T 1 2 above

and T 2 
2 

below S . In order to see how such T-points on either side of a saddle are related to each other, we run multiple

sweeps with closely varying σ values and observe the structural changes in the spiral organization. Fig. 20 shows such

chaotic mixing close to the saddle S as σ values are varied from (a) σ = 1 . 372 , (b) σ = 1 . 352 , (c) σ = 1 . 288 , through

(d) σ = 1 . 264 . As σ changes, the T-points above and below the saddle appear to be merging together, as depicted in the

transitions: Fig. 20 a → b and Fig. 20 c → d. 

The 3D scrolling structure of the bifurcation surface around the hyperbolic saddle S for 1.344 ≤ σ ≤ 1.374985 constructed

using 20 0 0 bi-parametric sweeps using { k i } 11 
i =4 and rendered with open-source scientific visualization software Drishti 1 is

shown in Fig. 21 . Fig. 21 a,b,c reveal with gradually increasing depth, the continuous structural connections between the T-

points on either side of this bridging saddle S . As we move along the T-point curve by varying σ , the curve undergoes a
1 Drishti is available at https://github.com/nci/drishti . 

https://github.com/nci/drishti
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Fig. 17. Bifurcation diagram in ( a, b, σ )-parameter space showing the transformation of the primary homoclinic bifurcation curve H 0 , when it starts to 

spiral towards the primary T-point T 0 (see Fig. 10 ) instead of going to DRS (see Fig. 3 ). This 3D reconstruction (with σ being on the vertical axes) is made 

of 100 sweeps with { k i } 7 i =0 in the range 1.7418 (top) ≤ σ ≤ 1.7439 (bottom). The P -points marks the location of the branching saddle near σ ≈ 1.7428. 

MatCont-made bifurcation curves are shown on the right for three σ -values: 1.73 (top), 1.74 (middle) and 1.75 (bottom). 

Fig. 18. Sketch of a bifurcation surface featuring a saddle causing the homoclinic bifurcation branching in the 3D parameter space of the Shimizu-Morioka 

system (courtesy A.L. Shilnikov et. al., 1993 [12] ). 

 

 

 

 

 

 

 

 

 

change in orientation and re-enters the bifurcation planes of previous T-points, giving birth to the saddles in between them.

Note that each sweep has a 20 0 0x20 0 0 resolution. All 20 0 0 such produced slices imply a total computation of 20 0 0 3 =
8 × 10 9 trajectories. Despite being computationally heavy, this was achieved in just about 8 hours on a single Nvidia Tesla-

K40 GPU. 

4.4.3. Annular isolas from a bridging saddle 

As seen in Fig. 20 , as the T-points on either side of a bridging saddle merge together with varying σ , it results in the

formation of isolas of homoclinic bifurcation curves resembling concentric annular structures. This is due to the fact that the

T-point curve changes its orientation with respect to the bifurcation planes and the T-point becomes non-transverse to this

plane, which was described as a codimension-two-plus-one event [72,73] . This also becomes clear in Fig. 22 which shows

the top and bottom surfaces (rotated through 90 ◦) of the 3D T-point curve in Fig. 21 . As we slice several ( a, b ) bi-parametric

sweeps for changing σ -values, moving towards the bottom surface in Fig. 22 b, the T-points appear to be merging as they

become non-transverse to the bifurcation plane and we can only observe isolas made of homoclinic bifurcation curves. 
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Fig. 19. Magnifications of the saddle P in Fig. 17 to better reveal the organization of the homoclinic bifurcation surface H 0 and how it branches to originate 

from 1D IF 1 -curve and scroll onto the primary T -line in the ( a, b, σ )-parameter space. 

Fig. 20. Chaotic mixing near the bridging saddle S (white dot in panel (a)) (see Fig. 3 ) is revealed using four { k i } 11 
i =4 -sweeps for varying σ values: (a) 

σ = 1 . 372 , (b) σ = 1 . 352 , (c) σ = 1 . 288 and (d) σ = 1 . 264 . As σ is changed, the symmetric T-points (with an identical binary coding) above and below 

the saddle merge all together, giving rise to annular isolas. Compare with Fig. 21 and watch the supplementary movie in the Appendix. 
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Fig. 21. 3D bifurcation structure near the bridging saddle S (see 2D bifurcation diagrams in Figs. 3 and 20 ) in the ( a, b, σ )-parameter space is rendered 

using 20 0 0 { k i } 11 
i =4 -sweeps (each of 20 0 0x20 0 0-resolution) in the σ -range: 1.344 ≤ σ ≤ 1.374985. Top and bottom surfaces are shown in Fig. 22 (rotated 

through 90 ◦). It reveals the connectivity between two identical T-points on either side of the saddle, with a gradually increasing depth, as a bending T-curve 

with the saddle S in the middle. Depending on how these strictures are sliced, they will look like spirals or concentric circles/isolas in the corresponding 

2D parametric sweeps shown above and below. 

Fig. 22. (a) Top sweep (before T-points merge) and the bottom sweep (b) (after T-points and the saddle merge) of Fig. 21 are shown (rotated clockwise 

through 90 ◦). As the 3D structure in Fig. 21 is sliced to obtain theses ( a, b )-parametric sweeps, then the the orientation of both T-points changes from 

horizontal to vertical so that they appear as they would have merged in the 2D sweeps and given rise to the onset of closed loops or annular isolas 

depicted in Figs. 20 and 22 b. 

 

 

 

 

 

 

 

 

4.4.4. Semi-annular isolas from the ghost of a T-point 

We end this section with a description of isolas of a different nature with semi-annular structure as seen near the point

C of Fig. 11 . The T-point T g (with the heteroclinic connection) next to C is of particular interest with respect to these isolas.

To understand the relation between these isolas and T g , we vary σ in Fig. 23 through (a) 11.1253 (b) 11.2459 (c) 11.4501 and

(d) 11.5522. As σ increases, T g starts crossing the boundary between the stable periodic orbit (green region) and structurally

unstable chaotic regions in the parametric plane, the semi-annular isolas start merging around T g to gradually reveal the

full spiral organization of homoclinic bifurcation curves around the T-point in Fig. 23 (d). This explains how in Fig. 11 , when

the T-point falls inside the region of the periodic orbit, the spiral structure of T g is devoured by the periodic orbit, leaving

behind the remnants of the spirals surrounding the ghost of the T-point T g , in the form of semi-annular isolas near the
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Fig. 23. Transformation of a T-point structure as it moves over the stability boundary of the periodic orbit { 10 } in the parameter plane, is visualized with 

four { k i } 9 i =1 -sweep as σ changes from 11.1253 in (a), next 11.2459 (b), 11.4501 (c) through 11.5522 in (d). With increasing σ , the ghost of the T-point T g 
(see also Fig. 11 ) crosses the boundary between the stable periodic orbit (green region) and structurally unstable chaotic regions in the parameter plane, 

the semi-annular isolas wraps and merge to form the proper spiral organization of homoclinic bifurcation curves around the T-point in (d). 

 

 

 

 

 

 

 

 

 

 

 

 

boundary. Note that when we say periodic orbit { 01 } , for the sake of simplicity, we only mean an orbit that produces a

periodic sequence in its symbolic representation. Its trajectory may still be chaotic but follow a periodic symbolic sequence

as also seen in Fig. 6 d for a one sided chaotic trajectory, whose symbolic representation would still be periodic { 1 } . In fact,

the region surrounding T g seems to be the two sided chaotic trajectory following the periodic sequence { 01 } . 
5. Conclusions 

In this paper, we presented a novel framing combining applied dynamical systems, GPU-based parallel computation, and

2D and 3D parameter space visualization to extend the theory of non-local homoclinic bifurcations of lower codimensions.

With this approach we explore and determine key universal rules of complex dynamics in diverse systems. Using the tech-

nique of symbolic dynamics with DCP, in corroboration with the parameter continuation methods powered by MatCont,

we could identify regions of simple and chaotic dynamics in the parameter space of a classic nonlinear laser model with

a Lorenz-like attractor, as well as disclose key underlying bifurcation structures, including Bykov T-point spirals and incli-

nation flips. We performed detailed computational reconstruction and visualization of the three dimensional embedding of

bifurcation surfaces, parametric saddles and isolas. The knowledge and the methodology created in this study should further

advance new ideas and approaches for a better understanding of cross-disciplinary nonlinear phenomena at large, while the

generality of our modeling approaches makes them applicable to other biological, medical, and engineering systems [32] . 
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