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induced bursting possesses two time scales, one for fast spiking and another for slow quies-
cent periods, is shown to exhibit an array of synchronization properties. We discuss several
HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent
neurons, as well as mixed-mode configurations composed of neurons of different type. We
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Synchronization demonstrate that burst synchronization can be accompanied by complex, often chaotic, inter-
Hodgkin-Huxley model actions of fast spikes within synchronized bursts.
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1. Introduction

Synchronization of coupled oscillators is a fundamental phenomenon in nonlinear systems that has been observed in a wide
range of diverse applications [1]. The mathematical concept of synchronization [2], first introduced and developed for periodic
oscillators has been further generalized for other aperiodic systems, including ones with chaotic dynamics. In life sciences, of a
keen interest is synchronization or phase locking among oscillators with multiple time scales. They may include mixed-mode
and slow-fast relaxation-type oscillators [3], whose interaction can give rise to the onset of a variety of synchronization patterns
[4-7]. In neuroscience, a plethora of rhythmic motor behaviors with diverse time scales, such as heartbeat, respiration, chewing,
and locomotion on land and in water are produced and governed by neural networks called Central Pattern Generators (CPGs)
[8,9]. The CPG is a microcircuit of neurons that is able to autonomously generate an array of polyrhythmic bursting patterns,
underlying various motor behaviors.

Endogenous (self-sustained) bursting and network (coupling-induced) bursting are composite oscillatory behaviors, featur-
ing active phases during which a neuron or a group of neurons generates trains of fast action potentials, which are alternated
with long interburst intervals during which it remains inactive or quiescent, until a new cycle of bursting occurs. In this pa-
per we examine synchronization of bursting patterns emerging through interactions of two interneurons coupled reciprocally
by fast inhibitory synapses. This study has been driven by two major motivations: first, a general one concerning questions on
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synchronization of mixed-mode oscillators. The second is a neuroscience related one, aimed at a progress in understanding of
intrinsic mechanisms of rhythmogenesis in CPGs, composed, often symmetrically, of such small networks of interneurons, as
outlined below. It is still unclear how CPGs can achieve the level of synergy, flexibility, and robustness to produce a plethora of
rhythmic patterns observed in nature.

Recent experimental and theoretical studies have disclosed a distinct role of CPGs in generation of adaptive and coordinated
motor activity of animals [9-12]. An important feature of CPGs is their ability to produce various types of rhythmic bursting
activity, what causes flexible and adaptive locomotion of an organism. To robustly govern motor patterns, CPGs are in a position
to flexibly adjust their oscillatory properties (such as bursts duration, frequency of spiking, phase relations of bursts) due to a
feedback from sensory inputs, for example, in response to changes of an environment [9,10]. Up to a certain extent, the flexibility
of CPG behaviors may be attributed to its multistability (of several coexistent attractors representing different bursting rhythms
in a phase space of the dynamical system) allowing for fast switching between operating modes [7,13].

From the theoretical point of view, a CPG is modeled as a small network of coupled oscillatory, or quiescent, interneurons,
each described by a system of nonlinear ordinary differential or difference equations (dynamical system) [11,14,15]. The study
of CPGs allows one to progress in a general understanding of synchronization patterns in mixed-mode oscillators, applicable to
systems of various physical and biological origin.

There is a growing body of experimental evidence that a universal building block of most identified CPGs is a half-center
oscillator (HCO) [16]. AHCO is a pair of reciprocally inhibitory interneurons bursting in alternation. Such a pair can be comprised
of endogenously bursting interneurons, as well as of intrinsically tonic spiking or quiescent interneurons that start anti-phase
bursting only when they are coupled. Theoretical studies [17-21] have indicated that the formation of an anti-phase bursting
rhythm is always based on some slow-time-scale dynamics. In the biophysically plausible models, the slow dynamics is firmly
associated with the slow membrane currents, such as persistent sodium or slow calcium-dependent current (e.g., potassium
after-hyperpolarization current [25]); following [22] we term currents associated with slow-varying concentrations and gating
variables as slow ones. There are three basic mechanisms to generate alternating bursting in the HCO: release, escape, and post-
inhibitory rebound (PIR). The first mechanism is typical for endogenously bursting neurons [4,6,23]. The other two mechanisms
underlie coupling-induced bursting in HCOs comprised of neurons, which are initially depolarized or hyperpolarized quiescent
in isolation [9,18,20,24-26].

The PIR mechanism uses reciprocal inhibition to maintain coupling-induced bursting in otherwise hyperpolarized quiescent
neurons. As such, either neuron of the HCO must receive a sufficiently strong pulse of some external negative current that initiates
the chain reaction in the coupled neurons. PIR triggers an onset of a single or a series of action potentials in the post-synaptic
neuron after it has been prolongedly hyperpolarized and abruptly released from inhibition generated by the pre-synaptic neuron
during an active, tonic spiking phase of bursting. After that, the neurons of the HCO swap their opposite roles to repeat the
PIR mechanism. PIR promotes the action potential generation after a period of sufficiently strong hyper-polarizing (inhibiting)
input, as illustrated in Fig. 2. PIR is often caused by a low-threshold activated calcium current in neurons and their biophysically
plausible models.

Formation of the antiphase dynamics in inhibitory coupled neurons forming homogeneous HCOs has been extensively studied
in Refs. [17-19,21,27]| where the primary scope is focused on the dynamics of identical neurons, which are either intrinsically
excitable or tonically spiking neurons represented by phenomenologically reduced models. Much is yet unknown about the
rhythmogenesis of an anti-phase coupling-induced bursting in heterogeneous HCOs described by biologically plausible models
derived within the framework of the Hodgkin-Huxley approach. We focus our study on the properties of the emergent bursting
in HCOs comprised of non-identical neurons, demonstrating qualitatively different activity types in isolation, i.e. initially chosen
at the opposite sides of the transition thresholds between bursting, tonics-spiking, and quiescent behaviors.

An examination of an set of non-identical neurons gives rise to the following issues: (i) the first one concerns with the dy-
namical robustness and the structural stability (in the parameter space) of the ensemble dynamics against perturbations in the
form of a heterogeneity in the ensemble; (ii) the second problem deals with the phase synchronization of a network of oscillatory
units. In the case of strong heterogeneity, one should expect possible emergence of additional dynamical phenomena occurring
in the system.

Therefore, in this paper, following and capitalizing on the previous studies of PIR mechanisms in homogeneous networks, we
examine how PIR contributes to formation, synchronization and robustness of multiple bursting rhythms in heterogeneous HCOs
with inhibitory coupled neurons. We focus our consideration upon the oscillatory dynamics occurring in a heterogeneous setup
with slightly non-identical neurons, as well as in various mixed-mode HCOs where constituent neurons are chosen to operate in
different dynamical regimes: bursting and tonic spiking, or hyperpolarized quiescence.

In this paper, we employ a modification of the Hodgkin-Huxley-type model introduced in [22] to plausibly describe the PIR
mechanism. Depending on its parameters, the model is known to produce an array of generic neuronal activities such as excitable
dynamics emerging from a hyperpolarized quiescent state, periodic spiking, and bursting.

First, we will examine the conditions that stably reproduce the PIR mechanism in the neurons. We will argue that the PIR
is a pivotal component that promotes an alternating bursting rhythm in the HCO made of intrinsically spiking and excitable
neurons. Finally, we will show that the PIR mechanism enhances anti-phase coupling-induced bursting that occurs in a pair of
endogenously bursting neurons.

Below in this paper we present different dynamical behaviors in coupled neurons, choosing the following structuring: we first
describe the dynamics of lumped neurons, and then separately present studies of pairs with different types of lumped dynamics.
So, we arrange the results not according to the resulting behavior of the CPG, but according to the properties of uncoupled
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units. The paper is organized as follows: in Section 2 we introduce the neuronal model, and discuss its dynamical properties
in Section 3. Section 4 is focused on synchronization properties of a pair of endogenous bursters, while Section 5 examines
anti-phase bursting onset in coupled tonic-spiking neurons. Sections 6 and 7 discuss the PIR-mechanisms of the HCO, and the
coupling-induced dynamics of mixed pairs (a tonic spiking and a hyperpolarized quiescent ones, or a tonic spiking and a bursting
one), respectively.

2. Basic model

In this study we employ a reduced modification of the conductance-based neuronal model proposed in [22] to model rhyth-
mic activity in the isolated thalamic reticular nucleus. The reduced Hodgkin-Huxley type model is a seven-dimensional sys-
tem of ODEs calibrated to accurately replicate the dynamics of the transmembrane voltage and of the gating variables of ionic
channels. The system contains fast Nat* and K™ currents responsible for the spike generation mechanism, along with additional
low-threshold activated calcium current I, which accounts for the mechanism of voltage post-inhibitory rebound in the model.
The basic formulation of the coupled model (full details are given in Appendix A) is the following:

N
GV =18~ fiV) — 3 Lyn(Vi.V)).
=1 (1)

[0 =10 +1Q + 10 + 10 i=1.2.
The variable V;(t) describes evolution of the membrane potential of the ith neuron. The first two terms on the right-hand side

of Eq. (1) govern the intrinsic dynamics of the neuron: Ig()t stands for a constant external current applied to the neuron, while

N

term f;(V;) represents the sum of intrinsic ionic currents. The sum of synaptic currents Y~ Isyn(V;, V;) describes the coupling
j=1.j#

interactions between the neurons. In this study we assume that synapses are instantaneous and non-delayed as in the most CPG

networks, and hence we can model the synaptic currents using the fast-threshold modulation paradigm [28]:

Isyn(vivvj) :G'S(ijesyn) : (Vi*Esyn)- (2)

In Eq. (2), G is the maximal conductance of synaptic current flowing from pre-synaptic jth neuron into the post-synaptic ith
neuron. For inhibitory coupling we set Esy, = —80 mV; the synaptic activity (coupling) function S(V(j)) is given by the following
Boltzmann function:

1

SV = 15 e 10007, Gom)®

3)
with the synaptic threshold sy, =20mV is set at the middle of fast spikes (Fig. 1). It follows from Eqs. (2) and (3) that the
synaptic current flowing into the post-synaptic neuron attains a maximum when the voltage of the pre-synaptic neuron remains
above the synaptic threshold: V> Osyn, and it vanishes otherwise.

As the most Hodgkin-Huxley models, this neuron system (1) has currents (via gating variables) operating on fast and slow
time scales. The dynamics of such slow-fast systems is known to be determined by the geometry of the so-called slow motion
manifolds [15,29,30]. In the context of mathematical neuroscience, these manifolds are called tonic spiking and quiescent, as
they are made of periodic orbits and equilibria of the system, respectively. For the model under consideration, these manifolds,
labelled as M. and Meq, are shown in a 3D projection on the fast (V, n) and slow, hr, variables, see Fig. 1. Whenever the neuron
produces tonic spiking activity, there is a stable periodic orbit on the cylinder-shaped manifold M;.. When the neuron remains
hyperpolarized quiescent, then there is a stable equilibrium state on the low branch (shown by the solid orange curve in Fig. 1,
whereas the unstable branch is shown by the dashed curve) of the S-shaped Meq below the knee-point. If there are neither stable
equilibria nor tonic-spiking periodic orbits on the corresponding manifolds, then the endogenous neuronal bursting is associated
with a stable periodic orbit (blue), which follows the tonic spiking and the quiescent manifolds M. and Meq, and switches
between them. In the case of PIR, a transient of the driven (post-inhibitory) neuron is forced by the driving (pre-synaptic) neuron
to make a single route along the “bursting orbit with fast spikes”, corresponding to turns around M, before it comes back to the
stable hyperpolarized state. This (equilibrium) state is geometrically located at the intersection of the bottom branch of Meq with
the surface labelled by h}. = 0. This surface is called a slow nullcline: for the voltage values above/below it in the phase space,

the slow low-threshold Ca®* current Iy becomes in/activated. The slow motion manifold describing quiescence Meq, and the one
describing tonic spiking M., were obtained using the parameter continuation technique developed for slow-fast systems in [30].
For computations we used the packages CONTENT and MatCont [39].

In opposite, I7 is inactivated during the fast spiking phase, when the voltage values remain above the surface h}. =0, see
Fig. 1. The full details of the currents representation are given in Appendix A. More details on critical manifolds and bursting in
neuronal models can be found in Refs. [15,29,30]. .

There are two principal control parameters in this system. The first one is the external current, Ig?t, that governs the activity
type in an isolated, uncoupled neuron. The second parameter is the maximal conductance G of the synaptic current introduced
in Eq. (2): it controls the coupling strength. Hence, the constant G is the principle parameter determining the dynamics of the
coupled neurons.



178 R. Nagornov et al. / Commun Nonlinear Sci Numer Simulat 36 (2016) 175-191

60

40

20

I I I I I I I I I I I
0 002 004 006 008 01 012 014 016 018 0.2
h
.

Fig. 1. Bursting orbit (in blue color) recursively switching between two slow-motion critical manifolds: (cylinder-shaped) tonic spiking M), and quiescent Meq
(orange curve), projected onto the fast (V,n) and slow hy variables of the neuron model at Iex; = 0; two other shown surfaces represent the synaptic threshold
Osyn = 20mV and the slow nullcline h}, = 0, above/below which slow low-threshold Ca®*-current I; increases/decreases, respectively. The intersection point of
h} =0 and Meq is an unstable equilibrium state (on the dashed segment) that becomes stable through a super-critical Andronov-Hopf bifurcation after being
shifted below the fold at —80 mV onto the hyperpolarized (solid) section of Meq, after the neuron becomes constantly hyperpolarized by the external current lex,
or temporarily by an inhibitory drive from a pre-synaptic neuron. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

The low-threshold activated calcium current I, modeled by Eq. (10) and regulated by the maximal conductance g¢,, causes the
PIR mechanism in the neurons (1), as illustrated in Fig. 2. Here, a rebound burst is triggered by the injection of a hyper-polarizing
pulse of the external current Ig()t (bottom panel in Fig. 2). If the impact of I current is strong enough (the impact is stronger for
larger values of g¢,), the neuron generates a train of several spikes, after recovering from the hyperpolarized quiescent state (top
panel in Fig. 2).

We would like to clarify that even though the system (1) under consideration was specifically aimed at modeling of the
voltage dynamics of thalamocortical cells in the original paper [22], our study is not meant to refer to a particular part of brain or
nervous system. As such, it is applicable to a broad class of neuronal models of the Hodgkin-Huxley type and an array of PIR based
phenomenological systems as a whole. We treat the conductance-based model (1) with certain electrophysiological properties as
a generic system, which has turned to possess certain dynamical and bifurcation properties, first of all the PIR mechanism, shared
across a large variety of similar systems of diverse biological origins [31]. The features of this single compartment model (1) are
based on its two functional components: (i) the first component represents the classical Hodgkin-Huxley-type mechanism for
fast spike generation typically due to relaxation oscillations; (ii) the second one is in charge of the calcium-based mechanism for
post-inhibitory rebound. Our goal is to understand the “synergetic” interaction of both components: the significance of reciprocal
influence of the post-inhibitory rebounds on the fast spiking oscillatory dynamics, and vice verse, in the system of two coupled
neurons.
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Fig. 2. Abrupt release of a hyperpolarized pulse of the external current Iex (bottom panel) triggers a post-inhibitory rebound of bursting in the quiescent neuron
(top panel). The parameter gc, stated in the legend denotes maximal conductance of the current Ir. When the parameter gc, is relatively small, the effect of the
It current is negligible, what causes absence of PIR in the dynamics of the neuron (dashed green curve in the top panel). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Bifurcation diagram for an isolated neuron (gc, = 1.75 mS/cmz): plotting inter-spike intervals (ISI) against the external current I (this horizontal
axis is broken in the middle to highlight the ranges of nontrivial behaviors) reveals windows of bursting (—0.14 wA/cm? Slexe £05 wA/cm?), quiescence
(0.5 LA/cm? S Iy < 4pA/cm?), and tonic spiking (lexe = 4 JLA/cm?) activity in the neuron. The low ISI branch corresponds to short time intervals between fast
spikes, and the top branch represents long interburst intervals between consecutive spike trains.

3. Dynamics of an isolated neuron

Let us first consider the dynamics of an isolated neuron at Isyy = 0 in Eq. (1). The external current lex is considered to be
the pivotal bifurcation parameter that allows one to examine and plausibly model various neuronal activities and transitions
between them in both computational and biological experiments. We employ the notion of inter-spike intervals (ISIs) quantifying
distances between adjacent spikes generated by the neurons, as the feasible measurement characterizing the types of neuronal
activity. Fig. 3 illustrates how the ISIs can change with variations of lext.

First we describe the neuron dynamics at large Iex values. For Iext > 4 LA/cm?2, the neuron produces tonic spiking activity
(corresponding to a stable periodic orbit in the phase space of the model (1)). Here, the value of ISI (which is the period of the
stable orbit) is inversely proportional to the Iexc-value. The period decreases with increase of Iext, and vice versa. As one can see
from Fig. 3, near a critical value Iext ~ 4 WA/cm?, the ISI shows an “unbounded” growth, which is an indication of a bifurcation of
the stable periodic orbit with an arbitrarily long period. Detailed examinations indicate the occurrence of a homoclinic saddle-
node bifurcation [14] underlying the transition from the tonic spiking activity to the hyperpolarized quiescence, represented by
a stable equilibrium state at low values of the membrane potential V. This stable equilibrium state (a node with real and negative
characteristic exponents) persists within the parameter window 0.8 L A/cm? < Iexe < 4 WA/cm2, where the neuron remains ready
for PIRs. Small perturbations of the quiescent state of the neuron have no pronounced effects. Relatively strong perturbations
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can trigger a spike, after which the neuron comes back to the over-damped quiescence state. With a decrease of Iexs from the
threshold Iext ~ 4 jLA/cm?, the steady state becomes a focus. The stable focus loses its stability through a supercritical Andronov-
Hopf bifurcation at lexe ~ 0.8 WA/cm? (see the explanation below). These oscillations are not seen in Fig. 3 because they are
under the threshold of spike generation. The amplitude of the oscillations increases rapidly as lex; is further decreased. At lexc ~
0.5 wA/cm? the shape of the periodic orbit in the phase space changes via the addition of new “turns” around the tonic spiking
manifold through the mechanism of period-adding [32,33]. Such a stable periodic orbit is associated with a robust bursting
activity, and the number of its turns is exactly the number of the spikes within a burst (see Fig. 1). Bursting that includes two
time scales can be recognized in Fig. 3 through two characteristic branches: the bottom branch corresponds to small ISI values
due to fast spiking, while the top branch is due to long inter-burst intervals. More details on geometry of bursting can be found
in [15,30]. Decreasing the external current [ex¢ makes the bursting neuron more depolarized and increases the number of spikes
per burst. Having reached some maximal value of spikes per burst at lext ~ —0.136 uA/cm2, a further decrease of [ext can cause
the neuron to generate bursts with considerably fewer spikes. The value lex¢ ~ —0.14 pLA/cm2 corresponds to the occurrence of
another saddle-node bifurcation of equilibria since the time interval between two consecutive bursts becomes arbitrarily large.
For Iext < —0.14 pLA/cm2 the neuron remains quiescent and excitable.

The examination of bifurcations has been repeated for several values of the maximal conductance gc,, regulating the low-
threshold Ca®* current responsible for PIR in the neuron. We have found that this current bears an insignificant affect on the
intrinsic dynamics of the individual neurons, mainly because the membrane potential does not decrease below the threshold
value to activate the current. As we will see below, this is not the case for coupled neurons, where the parameter gc, has a
pronounced effect on the collective dynamics.

4. Synchronization of two bursting neurons

In this section and Sections 5-7 , we explore a repertoire of rhythmic bursting outcomes generated by a HCO constituted
by two neurons coupled reciprocally by fast, non-delayed inhibitory synapses. The current section deals with the dynamics of
coupled endogenously bursting neurons. Sections 5 and 6 will focus on intrinsically spiking and quiescent neurons, respectively,
that become coupling-induced bursters due to the PIR mechanism. Next, in Section 7 we will consider the mixed-mode case of
coupled neurons with different types of intrinsic activity.

It has recently become known that endogenous bursters, when weakly coupled, can produce a range of synchronous rhyth-
mic outcomes with various fixed phase-lags, due to spike interactions within overlapping bursts, see [6,34] and the references
therein.

First we will examine the cooperative dynamics in the system of two coupled neurons (N = 2 in Eqgs. (1)) with different
182 within the interval [-0.14 pLA/cmz, 0.5 uA/cmz]. This range of the current Iex: corresponds to the endogenous bursting

in both neurons. Due to the difference, Alex = I{}) — I}, the temporal and quantitative characteristics of endogenous bursters
such as their period, duty cycles, the spike numbers per burst, are different. The strength of the coupling is quantified by the
maximal conductance G, of the inhibitory synaptic current Isy,. In what follows, we show that while Alex remains relatively
small, increasing the coupling strength shall give rise to an onset of synchrony between the neurons with the same bursting
period in a rather straightforward way (Section 4.1). However, for larger Alex: values (Section 4.2) also more complex states are

observed. All results in this section are obtained for gc, = 1.75 mS/cm?.
4.1. Nearly identical bursters

While | Alext| < 0.05 wA/cm?, synchronous bursting can already occur at a relatively weak coupling: the burst periods of both
neurons become equal. This observation is supported by Fig. 4, which depicts the dependence of the established (after relatively
long transient) phase lag A¢ on the coupling strength G for several values of the conductance g¢,. Here, A is introduced as the
phase difference:

Ap = g1 — @2, (4)
where ¢, , denote the phases of both endogenous bursters that are defined as follows:

-1 *) T kt1)
¢i=2nWs te[LY,T, . (5)
1 1

Here, Ti(k) is the initiation moment of the kth burst in the voltage trace Vj(t) (i = 1, 2), and k is greater than some N to skip
transients, after which the dynamics settles down onto some fixed phase lag Ag*. As one can see from Fig. 4, such a phase locking
occurs at about the same coupling constant value (identified by a vertical dashed line in the Fig. 4) for different values of gc,.
Near the threshold of the phase locking, the stationary value of Ag is close to 377 /2 (or, equivalently, to — /2); here the neurons
produce out-of-phase bursts. However, with an increase of the inhibitory coupling over a critical value, the phase lag tends
eventually to 7, which indicates the occurrence of proper anti-phase bursting in the HCO. Note that the post-inhibitory rebounds
in the neurons under consideration are due to the slowest, low-threshold Ca**-current Iy, whose magnitude is controlled by the
maximal conductance gc,. It is worth noticing that PIRs occur more reliably with increasing gc,. One can see from Fig. 4 that
an increase of g, (promoting stronger post-inhibitory rebound activity) may lead to the onset of symmetric antiphase bursting



R. Nagornov et al. / Commun Nonlinear Sci Numer Simulat 36 (2016) 175-191 181

1.5 : :
i( : : X go,=1.3 mS/em?
1.41 B¢ SR e 1
'p>§< : | 0 go,=1.75 mS/cm?
| : B go, =23 mS/em?
T . .

i i

9

0. i
0.00 005 010 0.15 020 025 0.30
G(mS/em?)

Fig. 4. Stationary value of the phase lag Ag (Eq. (4)), plotted vs. the coupling strength G for different values of the maximal conductance gc, (larger gc, values
promote stronger PIRs in the neurons); here I}) = 0.2 pLA/em? and I = 0.15 pA/cm?.
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Fig. 5. Bifurcation diagram for antiphase synchronization regimes: averaged frequency of bursting is plotted against the coupling strength for several increasing
Alex: values. Double overlapping branches are the indication of bursting dichotomy with two slow different frequencies in the two coupled neurons. Note a large
plateau of the pronounced 4:3 frequency locking (indicated by dashed arrows) at Alexs = 0.2 uA/cmz, collapsing into anti-phase synchrony locked at an 1:1 ratio
at higher G values.

even at small values of the coupling strength. This is an explicit manifestation of the contribution of the slow low-threshold
Ca®*-current in fostering the anti-phase synchronization between the bursting neurons in the HCO.

While the in-phase bursting appears to be atypical for neurons with fast inhibitory coupling like in our case, the coexistence
of anti-phase and in-phase regimes has been reported elsewhere [4,6]. However, the in-phase synchrony can prevail whenever
both HCO neurons are driven externally by another inhibiting burster or a HCO [23,35].

4.2. Bursters that far from identical

Increasing Alex¢ in the coupled oscillators leads to an array of pronounced synchronization effects. Fig. 5 represents the slow
(bursting) frequencies plotted against the coupling strength G, for several Ale¢ values. This figure depicts multiple branches of
the synchronization locking frequencies at low G-values. This indicates that the coupled neurons generate bursting activities
at different frequencies, until the coupling is increased over a threshold value at which both branches merge. This threshold
value becomes higher with increasing of Alext, as the individual neurons become more and more distinct. We can see from this
figure that for the largest case Alext = 0.2 MA/sz, the HCO neurons become locked at the 4:3 frequency ratio (see the plateau,
indicated by dashed arrows in Fig. 5), prior to the occurrence of the ultimate 1:1 frequency locking at higher coupling values. It
is worth mentioning that complex phase-locking regimes (similar to the case of 4:3 locking) are typical for oscillatory systems
with relatively large frequency mismatches, and have been identified as high-order locking regimes in various applications [1].
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Fig. 8. Voltage oscillatory activity generated by the HCO at gc, = 1 mS/cm2 and I} =5, and Aley = 0.02 uA/cmzz (a) antiphase spiking at G = 0.2 mS/cmz: (b)

ext —
chaotic spiking activity at G = 0.37 mS/cmz; (c) forced sub-threshold oscillations (red) in neuron 2 due to fast spiking (black) in neuron 1 at G = 2 mS/cmz. (d)
coupling-induced bursting at G = 4 mS/cmz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

These types of phase synchronizations are characterized by commensurable periods of coupled oscillators such as 3T} = 4T,. As
one can see in Fig. 5, for all values of Al there always exists a threshold value of the coupling constant G, beyond which the
anti-phase 1:1 synchronization takes place. Expectedly, the threshold increases with increase of Al The latter properties remain
true even for larger values of mismatch Al so far both neurons are in the range of intrinsic bursting.

Fig. 6 illustrates transitions to synchrony between the neurons in the HCO for the largest case Alext = 0.2 MA/CITIZ. The left
panels depict the established anti-phase bursting in voltage traces produced by the HCO at various values of the coupling strength
G, below and above the 1:1 synchronization threshold. The right panels represent the so-called Lissajous curves, which are para-
metrically traced down by the slow variables h(T” and h}z) of both neurons. These curves help one to interpret the corresponding
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Fig. 9. (a) Diagram representing inter-spike intervals plotted against the coupling constant G for three increasing values of gc, indicated by labels on the corre-
sponding panels. Due to similarity, the diagram is presented for the first neuron. Vertical dashed lines indicate the transition thresholds to emergent anti-phase
bursting. (b) Critical value of the coupling constant G plotted against the maximal conductance of Iy current. For G < Gy, the network stably inhibits antiphase
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Parameters for both panels are Iy 1 = 5 MA/cm2 and Alex = 0.02 uA/cm2 (corresponding to tonic spiking neurons in isolation).

types of frequency locking, including quasi-periodic dynamics. Dots on these curves in the right panels mark timing of individual
spikes in bursts.

It is worth noticing that at larger values of Alex:, the phase difference Ag (Eq. (4)) tends to converge to /2, rather than to
7, as the coupling strength G is increased. With a 7 /2 phase shift, active phases of bursting in the neurons partially overlap (one
expects strong overlap for a zero or small phase shift and no overlap for anti-phase oscillations, i.e. for a phase shift close to ),
showing the emergence of the complex dynamics caused by spike interactions. To understand this dynamics, we evaluated the
distribution of numbers of spikes per burst for several coupling strengths. Our findings are presented in Fig. 7. The analysis of
the bursting frequency (not shown, similar to Fig. 5) reveals that the transition to the 1:1 locking occurs at G ~ 0.045 mS/cm?2.
Moreover, our simulations indicate that there is a small window, AG ~ 1.5 x 10~* mS/cmz, of a hysteresis occurring at the tran-
sition. Fig. 7 reveals a peculiar feature of the synchronous state (in the sense of coincidence of the average bursting periods of
two neurons), occurring at strong coupling G € [0.045 mS/cm?, 0.0485 mS/cm?]: while the spike number in bursts generated by
neuron 2 remains nearly the same, the number of spikes in bursts by neuron 1 shows a large dispersion, before it becomes a
constant at a stronger coupling.

From the two bottom insets in Fig. 6(c) and (d) one can observe that depending on the coupling strength, the 1:1 locking can
exhibit chaotic and periodic modulations via the slow gating variables of the neurons. Chaotic modulation is depicted in Fig. 6(c).
Here one can clearly see spreading of slow variables on the Lissajous curves, typical for low-dimensional strange attractors
(chaoticity here was confirmed by observation of irregular variations of the number of spikes in bursts: autocorrelation function
of this observable decays for the chaotic case and returns to one for the quasiperiodic dynamics). The number of spikes per burst
in the second neuron varies significantly for chaotic modulation. One can see this in Fig. 7 at the corresponding value of coupling:
atG = 0.464 mS/cm2 the first neuron shows from 13 to 18 spikes per burst. On the other hand, the alternating bursting in the HCO
remains locked at an 1:1-ratio of the bursting frequencies. This is an explicit manifestation of the phenomenon of chaotic phase
synchronization in slow-fast dynamics [5]. Indeed, chaotic phase synchronization is a regime in coupled chaotic oscillators, which
are synchronized in mean periods only (the phases are locked), while amplitudes remain chaotic and non-synchronized. In the
context of our Hogkin—Huxley-type neurons, the slow dynamics just show such a behavior, while the uncorrelated slow chaotic
amplitudes manifest themselves, quite spectacular, in the variations in the number of spikes per burst. Periodic modulation is
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plotted against the maximal conductance of Iy current. For G > G, the system stably exhibits anti-phase bursting regime. Parameters for both panels are

Ié,‘(t’ =2 ;LA/crn2 and Alexe = 0.02 p.A/cm2 (corresponding to both hyperpolarized quiescent neurons in isolation).

depicted at the bottom row of Fig. 6(d). Here one can see that the Lissajous curve splits in two lines. Correspondingly, at this
value of coupling (G = 0.048 mS/cmz) the first neuron, according to Fig. 7, shows alternating bursts with 18 and 19 spikes.

5. Antiphase bursting out of spiking neurons

In this section we study the emergence of alternating bursting in a HCO made of two coupled neurons that are tonically
spiking being in isolation at Ig(g =5 uA/cmz, with relatively small Alext = 0.02 pLA/cmz. Our goal is to reveal how increasing of
the inhibitory coupling strength transforms such tonic spikers into coupling-induced bursters, as illustrated in Fig. 8.

Weak coupling results in a periodic antiphase tonic spiking in the coupled neurons at G = 0.2 mS/cm? (Fig. 8(a)). With further
increase of the coupling strength, the HCO neurons first demonstrate irregular, unreliable spiking around G = 0.37 mS/cmz, as
shown in Fig. 8b. The mechanism of chaoticity here is similar to that for other slow-fast oscillators featuring canards [3]. In
such a system, sensitive irregularity is typically observed whenever its solutions pass nearby the borderline of the slow motion
manifold, and hence, depending on tiny perturbations, can produce an extra spike [36-38]. With further increase of the coupling
strength, an asymmetric dynamics is observed. In this robust regime, either neuron generates tonic spiking activity, while the
other one is forced to produce sub-threshold oscillations of quite a large amplitude, such as ones shown in Figs. 8(b) and (c) at
G=2 mS/cmz. A dramatic increase in the inhibitory coupling strength beyond G ~ 3 mS/cm? finally forces the neurons to begin
bursting in alternation.

Such a bursting activity is often referred to as a coupling-induced bursting, which is the result of strongly reciprocal interac-
tions of two individually tonic spiking neurons. Fig. 3 provides an explanation, why inhibitory coupling must be strong enough to
be able to induce coupling-induced bursting in the given model. There is a wide gap between the values of parameter Iex: corre-
sponding to bursting (at the low end) and to tonic spiking (on the high end). Within this gap, the neurons remain hyperpolarized
quiescent, and hence the bursting can only occur through PIR mechanisms. A strong flux of inhibitory current is required to
originate from the presynaptic, tonic spiking neuron in order to activate the low-threshold I current in the postsynaptic neuron.
The positive exciting effect of the current I can overcome the inhibition and trigger the onset of the post-rebound activity. Then,
the neurons swap the roles of the driving and the driven units in the HCO, so that the process keeps repeating. This assertion
is further supported by Fig. 9(a), showing inter-spike intervals (ISIs) of the neurons vs. the coupling strength for three values of
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Fig. 11. (a) Antiphase coupling-induced bursting through the PIR mechanism is filled out densely by alternating voltage traces without quiescent gaps unlike
the case of coupled endogenous bursters through the release mechanism. (b) Lissajous curve of a figure-eight shape traced down by the slow gating variables of
the models at G = 1.24 mS/cm2 and ge = 1.75 mS/cmz; other parameters the same as in Fig. 10. Circles and crosses in panel (b) mark occurrences of spikes.

Zca- To the left of the vertical dashed line the system is either in the regime of anti-phase tonic spiking (voltage traces are similar
to Fig. 8(a) and (b)), or in the regime of tonic spiking of only one neuron, and suppression of another one (Fig. 8(c)). Here one
can see, that for all three values of gc, the system switches to the bursting mode, which is characterized by two branches of
inter-spike intervals (on the right of the vertical dashed lines in Fig. 9(a)). In all cases the latter regime is anti-phase synchronous
bursting depicted in Fig. 8(d). As one can see, the value of g¢, drastically changes the threshold, at which bursting stably oc-
curs (compare positions of the vertical dashed lines at different panels in Fig. 9(a)). Indeed, Fig. 9(b) summarizes the qualitative
role of the slow low-threshold Ca?*-current I7: an increase of the corresponding rebound parameter gc, lowers the threshold of
coupling-induced bursting, and narrows the parameter interval of hyperpolarized quiescence in the neurons.

We would like to emphasize that in this section we have considered intrinsically spiking neurons. Here anti-phase bursting
appears as a result of strong synaptic coupling, which is sufficient to switch the neurons from the spiking mode to the bursting
regime. Hence, parameter Al and difference in spiking frequencies do not play a crucial role here, and can be relatively large in
order to get anti-phase bursting.

6. P.L.R. mechanism for antiphase bursting
In this section we examine the emergence of coupling-induced anti-phase bursting through the PIR mechanism. Here, it is

imperative that both neurons remain hyperpolarized quiescent within a parameter window 0.5 LA/cm? S lexe S 4WA/cm?2, as
seen from Fig. 3. It is also necessary for PIR coupling-induced bursting, that the initial states of the neurons must be different:
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a b
60, 60,
20/
20}
£ S AN/ / ;
g g HH
s : : - 6682 ~%%sz 7404
t(ms) t(ms)
C
60,
20
=
g
5

~%9% 7000
t(ms)

Fig. 13. Voltages patterns generated by the HCO neurons: (a) tonic spiking (black) in neuron 1 and inhibition induced subthreshold oscillations (red) in neuron
2atG=1 mS/cmz: (b) periodic antiphase spiking with a 2:1 locked ratio at G = 1.8 mS/cmz: (c) chaotic antiphase bursting near the threshold at G = 2 mS/cmz.

one at tonic spiking and one being hyperpolarized quiescent. An alternative is an application of a negative pulse of the current to
trigger a PIR in the targeted neuron. In addition to the above constrains, the coupling strength must exceed a certain threshold,
as indicated by the vertical dashed lines in Fig. 10(a).

One can see from this plot, that relatively weak coupling cannot initiate PIR coupling-induced bursting. Rather, some sub-
threshold oscillations are generated in the post-synaptic neuron, which extinct as soon as the pre-synaptic neuron ends its
active spiking phase, and becomes hyper-polarized quiescent as well. For each set of the parameters, numerical simulations
depicted in Fig. 10(a) clearly show that there is a threshold for the coupling strength, beyond which the HCO robustly produces
anti-phase bursting. Figure 10(b) also demonstrates that the PIR mechanism of coupling-induced bursting becomes more reliable
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Fig. 14. Bifurcation diagram of ISI plotted against the coupling parameter G indicates the threshold around 0.5 mS/cm? beyond which the system made of the
bursting neuron 2 and the hyperpolarized quiescent neuron 1 begins to generate anti-phase bursting; here g¢, = 1.75 mS/cmz.

with increasing g¢,, which lowers the threshold value of inhibitory coupling. The PIR bursting is illustrated in Fig. 11(a). Fig. 11(b)
reveals a quasi-periodic modulation of the slow gating variables; here the Lissajous curve forms a band of a characteristic figure-
eight shape.

7. Coupling of neurons in different regimes

In this section we consider the dynamics of two coupled neurons operating in different modes. Specifically, the neurons are
set close to “quiescence-spiking” and “quiescence-bursting” transitions, respectively. As Fig. 3 suggests, we choose the following
values of the external driving current: Ig(t) =41 uA/cm2 and Ig(g =37 uA/cmz. This means that in isolation neuron 1 produces
tonic spiking activity, while neuron 2 is hyperpolarized and ready for the PIR mechanism. Our simulations of two such neurons
are summarized in Figs. 12 and 13. We can conclude that while coupling remains weak, neuron 1 tonically spikes (Fig. 13(a)).
Above a threshold, G ~ 1.75 mS/cm?2, neuron 2 begins spiking as well. Fig. 13(b)) depicts alternating spiking at G = 1.8 mS/cm?
with the locking ratio 2:1, which means that two spikes in neuron 1 are followed by a single spike in neuron 2. The system
begins to burst in antiphase, first with irregularly varying numbers of spikes per bursts as G exceeds 2 mS/cm?, as illustrated in
Fig. 13(c). Further increase in the coupling strength above G = 2.5 mS/cmz, regularizes bursting that becomes stable and similar
to the pattern shown in Fig. 11.

Figure 14 represents the bifurcation diagram for the endogenous burster - neuron 2 at Iéz(t) =04 uA/cmz, coupled with neu-

ron 1 remaining hyperpolarized at Ig(z =1 MA/cmz. Because the quiescent neuron 1 initially remains below the synaptic thresh-
old, anti-phase bursting may only start when the PIR mechanism is induced by the endogenous burster. This explains a qualitative
resemblance of the diagram in Fig. 14 to that in Fig. 12, for the HCOs made of tonic-spiking and quiescent neurons.

8. Conclusions

This study is focused on the mechanisms of rhythmogenesis of anti-phase bursting in HCO consisting of two reciprocally
inhibitory coupled neurons. Such HCOs are primary building blocks for larger neural networks, including CPGs controlling a
plethora of locomotion behaviors in spineless and non-invertebrate animals. There is a growing consensus in the neuroscience
community that CPGs of various animals may share same universal principles of their functioning.

In this paper, to study the HCO dynamics, we have used the biophysically plausible Hodgkin-Huxley-type model. Its main
feature is the post-inhibitory rebound dynamics: a quiescent neuron is able to produce a single or series of spikes after it has
been quickly released from inhibition by another pre-synaptic neuron, or by a hyperpolarized pulse of external current. The PIR
mechanism allows a pair of naturally quiescent neurons to stably generate anti-phase oscillations, initiated by virtue of external
perturbation(s).

In this study, we have investigated properties of anti-phase bursting through PIR mechanisms, by considering neuro-
physiologically feasible models. Unlike reduced PIR models, such as 2D slow-fast relation oscillators, the given 7D model with
multiple time scales can exhibit a range of complex oscillatory activities. This makes its analytical treatment hardly possible to
perform. Instead, we have performed a series of numerical simulations aimed at a quantitative assessment and a qualitative in-
terpretation of the observed dynamical regimes from the viewpoint of general theory of nonlinear dynamical systems. We expect
that similar regimes can be observed in other models of Hodgkin-Huxley type, apart from some quantitative differences.
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We have considered several configurations of HCOs including coupled endogenous bursters. We have also discussed HCOs
comprised of tonic spiking and quiescent neurons, that become coupling-induced bursters when coupled by fast inhibitory
synapses. In our examination of synchronization properties of bursting, we have found that, in all considered cases, the system
of two coupled neurons can reliable achieve synchrony in anti-phase bursting. We have described some particular configura-
tions leading to incomplete synchronization, where the neurons become partially synchronized through slow-varying currents.
Meanwhile, cross-correlations in their fast voltage dynamics are not always obvious. This fast voltage dynamics may give rise to
the emergence of really complex states, including chaos in the neural ensemble.

We have found that while enhancing the PIR mechanism does not always lead to drastic changes in the dynamics of the
individual neurons, it can cause significant modification of the dynamics under coupling. Specifically, we have detected that
the windows of anti-phase bursting rhythms can be extended in the parameter space of the system, when increase of the PIR
mechanisms in individual neurons becomes more prominent. This suggests that PIR is a key component for robust and stable
anti-phase bursting in HCOs. In the future, we plan to examine specific networks constituted by several coupled HCOs, which
have been identified in swim CPGs of specific sea mollusks.
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Appendix. Conductance based model

The model in this study is adopted from Ref. [22]. The dynamics of the membrane potential, V is governed by the following
equation:

Cmvl = Iext - IT - Ileak - INa - IK - Isyns (6)

here, Cyy = 1 WF/cm? is the specific membrane capacity, lex; is the external current in wA/cm?, Iy is the slow low-threshold
Ca®*-current, Ijq is the leakage current, Iy, is the Nat-current, I is the K*-current and Iy is the synaptic current from other
neurons.

The leak current I,y is given by

Ileak = &Na (V - Eleak)v (7)

with Ej,, = —78 mV being the reversal potential for leak current, and maximal conductance g; = 0.05 mS/cmz. Dynamics of the
fast Na*-current Iy, = gngm3h(V — Epg) is described by the following equations:

)_032(3-V) o 0.28(V —40)
e025(13-V) _ 1 e02(V=40) _ 1

. 4
W=0.128.e® (1-h) - mh’

(8)

where gy, = 100 mS/cm2 is the maximal conductance of Nat-current, Ey, = 50 mV is the reversal potential for Na*-current, m
and h are the gating variables describing activation and inactivation of the current. Dynamics of the fast K*-current Iy is described
by

Ix = gxkn* (V — Ex),

, 0.032(15-V)
T Te02(15-V) _ 1

(9)

(10-v)
o n,

(1-n)—-0.5e
with n being the gating activation variable; here Ex = —95 mV and gx = 10 mS/cmz. Dynamics of the slow low-threshold Ca®*-
current I7 is modeled as follows:

It = geamhr (V — Eca). (10)

with gcq = 1.75 mS/cmz.
The equilibrium potential E¢,, which depends on the intraneuronular concentration of Cat, is found from the Nernst
equation:

_ -R-T [Calo
Ecq = I<2Fln< ) (11)

[Ca]
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here R = 8.31441 ] K/mol, T = 309.15 K, dimensionless constant k = 1000 for E¢, is measured in millivolts, the extraneuronular
concentration of calcium ions is [Ca]g = 2 mM.
The gating activation m and the inactivation h are given by

_mr—mre V) b= hre (V)

m/ = N = 12
L (2 T Ao (79 12
with
1
mro (V) = P
1 74
0.15
Trm(V) = 0.44 + N S N
(e e~ 15 )
1 (13)
hroo(V) = —
1+es
0.27
Trm(V) =62.7 + m.
These constants were taken at temperature 36 °C and extraneuronular calcium concentration [Ca]y = 2 mM.
Dynamics of intraneuronular concentration of calcium ions [Ca] is described via
kI Kr|Ca
[Ca]/ _ T T[ ] (14)

" 2Fd  [Cal+ Ky’

where the first term is an inflow through thin membrane due to a low-threshold Ca?*-current, and the second term is a contri-
bution of Ca?* ion-pump. Here the parameters are the following: F = 96,469 C/mol,d = 1m, k= 0.1, K = 10~% mM/m s~!
and K; = 10~4 mM.

Synaptic currents are modeled using the fast-threshold modulation paradigm [28]:

Isyn(vi’ Vj) =G- S(V] - esyn) . (V, - Esyn)s (15)

where G is the maximal conductance of synaptic current flowing from pre-synaptic jth neuron into the post-synaptic ith neuron.
For inhibitory coupling we set Esy, = —80 mV; the synaptic activity function S(V) is given by

1

S(V) = T

(16)

with the synaptic threshold 65y, = 20 mV set in a middle of fast spikes.
In numerical simulations of the described model we used the 4th order Runge-Kutta method with time step 0.01.
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