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Abstract—This paper is concerned with the design of synthetic
central pattern generators (CPGs). Biological CPGs are neural
circuits that determine a variety of rhythmic activities, including
locomotion, in animals. A synthetic CPG is a network of dy-
namical elements (here called cells) properly coupled by various
synapses to emulate rhythms produced by a biological CPG. We
focus on CPGs for locomotion of quadrupeds and present our
design approach, based on the principles of nonlinear dynamics,
bifurcation theory and parameter optimization. This approach
lets us to design the synthetic CPG with a set of desired rhythms
and to switch between them as the parameter representing the
control actions from the brain is varied. The developed 4-cell
CPG can produce four distinct gaits: walk, trot, gallop, and
bound, similar to the mouse locomotion. The robustness and
adaptability of the network design principles are verified using
different cell and synapse models.

Index Terms—central pattern generators, neuronal models,
bifurcation analysis, parameter optimization.

I. INTRODUCTION

ENTRAL pattern generators (CPGs) for locomotion are

[small] neural networks able to produce rhythmic outputs
even in the absence of sensory feedback or higher motor
planning centers inputs [1]-[4]. CPGs are studied at the
crossroad between many diverse disciplines including biology,
neuroscience, robotics, nonlinear dynamics, biomechanics, to
name a few. Each discipline deals with this common topic
using different tools and by pursuing different goals: knowing
their physiological structure, understanding their functional
roles, reproducing their functional mechanisms in developed
mathematical models, or exploiting them in robotics or neuro-
prosthetics applications. Biological CPGs of most vertebrates
are composed of a large number of coupled neurons, which
can be subdivided into smaller clusters or cohorts that behave
coherently. Therefore, the orchestrated activity of each cluster
can be modeled as if it was produced by a single neuron. Such
a cluster is termed in many ways: a neural population, a unit,
a building block, or a cell — the term that we adopt in this
paper. The cells are connected by synapses to create the CPG.
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Our approach to model motor CPGs is based on the theory
of dynamical systems [5], [6], which is well suited for un-
derstanding a multiplicity of nonlinear recurrent oscillations,
their stability conditions and bifurcations that can occur in
such small rhythm-generating neural networks [7]-[10]. In
this paper, we focus on models of CPGs that determine and
control the locomotion of quadrupeds. In particular, we discuss
a set of operating principles that are employed in our design
of synthetic CPGs to reproduce a number of prescribed gaits
specific for the mouse locomotion. Our goal is to derive design
rules for the multi-functional CPGs that can produce distinct
mouse gaits and smooth transitions between them, depending
on some drive or bifurcation parameter. Such a parameter can
represent a control action from the brain or, more precisely, the
brainstem control throughout neurons acting as key intermedi-
aries between higher motor planning centers and the projected
CPGs [11]-[13]. Previously, we proposed the computational
toolkit CEPAGE [15] to analyze dynamics and bifurcations
in simple CPGs emulating quadruped (mouse) locomotion as
the control parameter is varied [14], [16]. Here we present
an advanced 4-cell CPG model that more phenomenologically
fits biological CPGs governing quadruped locomotion, being
able to generate four different gaits: walk, trot, gallop and
bound. We also discuss minimal operating principles as well
as generic properties the adopted models of cells and synapses
should meet to ensure the robustness and structural stability
of the desired CPG functions.

In summary, in this paper we: (i) point out the qualitative
properties that the cell and synapse models must be endowed
with to meet the design goals; (ii) define a sequence of steps
to design a reduced multifunctional CPG model producing
several rhythms and switch between them smoothly with
variations of the control parameter; (iii) demonstrate that our
design approach is quite robust with respect to the choice of
synapse and cell models.

The rest of this paper is organized as follows. Section II
introduces the main features of the developed CPG. Section
III presents in detail the proposed know-how to design a
synthetic CPG with preset thythms. In Section IV we verify
the robustness of the proposed design with respect to changes
in its components (models). Finally, Section V draws some
conclusions.

II. BASIC ELEMENTS

In this section we summarize the pivotal elements of the
proposed CPG design approach.



A. Cell

Our primary goal is better understanding the functional
mechanisms underlying rhythmogenesis in biological CPGs.
Therefore, our description of any cell in this paper is not
meant to provide a 1:1 correspondence to a synchronous group
of neurons, but rather a macro-model for several groups of
interneurons functioning together, like half-center oscillators,
for example. In other words, our CPG models have a level
of abstraction higher than usual. In this perspective, the
hierarchical structures often adopted to represent CPGs [17] or
the functional subnetwork approach proposed in [18] can be
hardly compared to our neural circuits as the CPGs designed
according to the former approaches have a finer granularity,
i.e., they contain a larger number of cells than our reduced
models. The activity of the generic i-th cell is revealed through
a variable representing its membrane voltage V;(t).

B. Phenomenological design outline

Rhythmic movements in animals result from the interplay
between the sensory system (sensor), the musculoskeletal
system (actuator), and the neural system (control). The neural
system, in particular, performs three main control actions [3].
The first, open-loop control action is provided at the level
of the spinal cord by the CPG generating the given pace;
these neural networks include half-center oscillators — a pair of
neural populations reciprocally coupled by inhibitory synapses
that autonomously oscillate in alternation [19], [20]. The sec-
ond, closed-loop control action is provided by a sensory-driven
feedback, which provides information about the mechanical in-
teraction of the animal body with the environment and secures
adaptation to unexpected obstacles and uncertainties during
ambulatory excursions. The third, also closed-loop control
action is ensured by supra-spinal networks, which, based on
sensory information (usually, mainly visual and tactile), timely
inform the CPG about the rhythm (and corresponding gait) to
be imposed, thus changing muscle activity. Here we consider
only the first and part of the third control actions.

The reciprocal interactions of these basic mechanisms con-
cur to the inter-limb coordination and produce flexible and
efficient locomotion. The detailed biophysical mechanisms
underlying locomotion are yet to be fully understood. There-
fore, the current research focusing on the phenomenologically
reduced CPG design (oriented towards robotic applications)
pursues several development lines based on decentralized
control [21], bottom-up approach with use of functional blocks
[18], nonlinear dynamics and bifurcation theory [16], [22].

C. Effective variables and parameters

The existence and stability of rhythmic patterns gener-
ated by CPGs are analyzed using the so-called phase lags
introduced for oscillatory or bursting cells [7], [24], [25].
All isolated/coupled cells are assumed to have and maintain
relatively close temporal characteristics. In the dynamical
systems terminology, this means that each i-th cell resides
on a structurally stable periodic orbit of period T; in the state
space of the corresponding model. Its current position on the

periodic orbit can be determined using a new phase variable
¢i(t) € [0,1), defined modulo 1, such that ¢, is reset to 0
when the voltage V; increases above some synaptic threshold
Vi, at times tgk). The phase-lag representation of an N-cell
network employs N — 1 state variables describing the phase
lags A1;(t) = ¢i(t) — ¢1(t) between the spike/burst initiations
in the reference cell 1 and the other ones coupled within the
network. The time evolutions of these state variables, being
quite complex due to nonlinear interactions, can be determined
through numerical simulations. For that purpose, we compute
the phase lags between coupled cells in a discrete set of time
instants as:

k) tgk)
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As time progresses, the phase lags Aglf) can converge to a
single or several steady or phase-locked states. The presence
of multi-stability can be evidenced by integrating the system
of equations governing the network densely sweeping initial
conditions for phases.

The locomotion in quadrupeds is produced by the coordina-
tion of limbs movements with specific speed (frequency) and
ratio between the stance and swing phase (duty cycle) and with
the given phases in the repetitive patterns that drive the limbs.
The coordination, i.e., the specific phase lags between the
limbs, determines the animal gait, which usually changes with
the speed. This modeling paper is focused on the locomotion
of mice, which can exhibit four different gaits: walk (W), trot
(T), gallop (G) and bound (B), with frequency f and duty
cycle de ranging in the intervals [2,12] Hz and [0.25,0.6],
respectively [27], [28]. Table I summarizes the characteristics
of mouse gaits, extracted from [27], [28]. Assuming that the
CPG contains one cell per leg with L=left, R=right, F=fore,
H=hind, we take as reference leg LF and compute the phase
lags LF-RF (Alg), LF-LH (A14), and LF-RH (Alg).

At low speed (f < 4 Hz), mice walk: in this gait the swing
phase is shorter than the stance phase and the limbs swing one
at a time. Trot occurs at medium speed (4 < f < 9Hz): in
this gait the stance and swing phases have the same duration,
left-right and fore-hind limbs move in alternation. Gallop is
exhibited at medium-high speeds (9 < f < 10 Hz): in this gait
the swing phase is slightly longer than the stance phase, left
and right limbs move almost together, whereas fore and hind
limbs move in alternation. At high speed (f > 10 Hz) mice
bound: in this gait the swing phase is again slightly longer
than the stance phase, fore and hind limbs move in alternation,
whereas left and right limbs move together.

TABLE I
GAITS CHARACTERISTICS: FREQUENCY (f), DUTY-CYCLE (dc),
PHASE-LAGS BETWEEN LEGS AND CORRESPONDING «-VALUES.

. LF-RF| LF-LH| LF-RH
Gait | f[H?Z] de (A1) (A1) (Ars) @
W | 2.4 <04 05 025 | 075 | [0,0.25]
T 4,9 [0.4,0.51] 0.5 0.5 0 0.25,0.5
G 19,10] > 0.51 0.1 0.6 0.5 0.5,0.75
B [10,12] > 0.51 0 0.5 0.5 [0.75,1]
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Fig. 1. Post-inhibitory rebound mechanism in B-model with the parameters
listed in Appendix A, except gp = 0. Top panels: Post-inhibitory trajectory
(black line) in the phase space superimposed with the the fast V- and slow z-
nullclines (orange and blue, resp.) crossing at the equilibrium state (green dot).
Application of negative pulse (middle panel) causes first hyper-polarization
followed by the post-inhibitory rebound in the cell voltage (bottom panel).

t

Sequential switching from one gait to another is controlled
by the bifurcation parameter o € [0, 1], which represents the
control action provided by supra-spinal networks: the mouse
speed increases with increasing « values. The transitions
between these gaits occur sequentially as the parameter is
increased/descreased; we chose to assign one quarter of the
parameter range to each gait.

III. THE PROPOSED METHOD

In this section, we propose a sequence of operating princi-
ples and steps to design a reduced CPG circuit producing a
desired set of gaits.

A. Choice of the cell model: the PIR mechanism

In the design of a synthetic CPG a proper understanding
of its biological functions helps one to optimize the trade-off
between the unavoidable complexity of biological phenom-
ena and the necessary simplicity of mathematical modeling.
So, the models employed in this study have to possess the
mechanism reproducing the so-called post-inhibitory rebound
(PIR) of the cell membrane voltage, which occurs as soon
as the post-synaptic quiescent cell is abruptly released from
hyper-polarizing inhibition (e.g., due to an external current
pulse) or from another pre-synaptic cell of the network. The
PIR mechanism allows two reciprocally inhibiting cells to
generate self-sustained oscillations [19], [29]. In particular, in
a half-center oscillator made of two cells coupled reciprocally
with fast inhibitory synapses, this mechanism lets the half-
center oscillator generate self-sustained spiking/bursting in
alternation. This effect is qualitatively illustrated in Fig. 1 for
an isolated cell described by model B in Appendix A. The
model has two dynamic variables, V, and x, representing the
fast voltage and slow gating variables, respectively. The top
panel of Fig. 1 shows the (x,V)-phase portrait with the fast
Z-shaped nullcline (orange line) on which V = 0 and the slow
nullcline (blue line) on which & = 0. Their only intersection
point to the right of the knee on the low branch of the V-
nullcline is a stable equilibrium state (marked as the green dot)
of the model, corresponding to the quiescent hyper-polarizing
state of the cell. Due to the slow-fast nature of the model,
its solutions converge to this state following the shape of the

fast nullcline. The negative pulse of external current Iy,
leaving the z-nullcline intact, makes the V-nullcline shift to
the left so that the stable equilibrium state of the unperturbed
system (marked by the purple dot in the top-central panel)
moves below and to the left (green dot) in the V-nullcline
of the perturbed system. Correspondingly, V' (¢) drops down
(bottom panel). We note that the PIR-mechanism requires three
necessary conditions be met: the hyper-polarizing perturbation,
due to either an external pulse or the inhibitory current, must
be (1) strong and (2) long enough and (3) must have a rapid
termination phase. This means that the ascending front of the
pulse must be nearly vertical as one shown in the middle panel
in Fig. 1, and the synapse must be fast, not slow. After I,
is abruptly turned off, the state (x, V') starts from the position
of the disappeared equilibrium point (purple dot in the top-
right panel), follows the upper and lower branches of the V-
nullcline and converges back to the original equilibrium point
(green dot), tracing down a transient excursion (black thick
trajectory in the top-right panel) corresponding to the outburst
in the voltage trace (bottom panel).

In our CPG model, a cell is described by the following state
equation:

7 = m _ [fi(z,fﬁz,%(a)?gDDi(a)(vi -B)] .
T > - 9
X; pi(z;)

where V; is treated as the membrane potential of the i-th cell,
while x; represents its gating variables and . S(L)n is its incoming
synaptic current. The term gpD;(«a)(V; — E.,) describes an
overall influence (modulated through the a-parameter) of the
supraspinal networks on the given postsynaptic cell.

To examine and tune up the CPG outcomes, in this paper we
adopt three models of its cells that all exhibit the PIR. These
are the conductance-based model used in [30] (code-named
model A), a generalized FitzHugh-Nagumo model [8] (model
B), and the adaptive exponential integrate-and-fire model [31]
(model C) that can generate also bursting activity. They are
described in Appendix A.

B. Choice of the synapse model

The synapses in our CPG models are required to demon-
strate a rapid time course [20]. Here, we consider three models
of such fast synapses: the first two ones are represented by the
fast threshold modulation (FTM) synapses [32], with different
activation functions, namely given by the sigmoidal (model
B) and step-wise (model «y) functions; the third model is the
dynamical a-synapse (model ¢) [19], [33], which in general
is not necessarily fast.

In a CPG composed of N cells, we introduce the action of
inhibitory, excitatory and delayed inhibitory chemical synapses
on the i-th cell as follows

Z{gznA
95 AWV, (t = 1), 5ai()(Ein — Vi(t)+
gie;p(a)A(VYj'(t)’ Sea:(t))(Eea: - V;(t))},

i)

where Is(yn is the current injected into the i-th cell, V; and
V; are the membrane potentials in the post- and pre-synaptic

t), 8in (1)) (Bin — Vi(t))+

syn

3)



cells, s, is the synapse state (only for dynamical synapses),
g;;" is the maximal synapse strength, A(V;, s44) is the synapse
activation function (A depends on the state only for dynamical
synapses), ., is the synapse reverse potential, and 7 is the
synapse delay; here in, di and ex stand for inhibitory, delayed
inhibitory and excitatory, respectively.

We notice that, as described in Sec. III-C, the weights
of the excitatory synapses vary with changes in « values
to reproduce the effect of the brainstem on the excitatory
interneuron populations in a real CPG.

C. Network assembly-line: operating principles

Our network governing the mice locomotion results from
a reduction of the 40-cell CPG proposed in [30] to regulate
both speed and gaits of the mouse. The 40-cell CPG is made
of four blocks of rhythm-generators (RG), each driving a
limb, that are all cross-linked through inhibitory and excitatory
interneuron populations. Each RG contains two populations,
flexor and extensor, which inhibit each other and control the
swing and stance phases of the limbs. In particular, when the
flexor (extensor) population is active, the corresponding limb
is in the swing (stance) phase. The gait generated by the CPG
can be controlled through variations of «.

To simplify the 40-cell CPG, we employ the strategies
proposed in [14], [16], which can be summarized in three
steps: (A) substitute the interneuron populations with fast
chemical synapses, inhibitory or excitatory, depending on the
nature of the replaced population; (B) remove the extensor
populations; swing phase is still regulated by the flexor units,
whereas the stance phase is activated when the flexor units are
silent; (C) add inhibitory delayed synapses between left and
right cells to reproduce the action of extensor populations.

We remark that step A can be achieved using several
inhibitory pathways, as shown in Fig. 2. In particular, the
simplified two-cell circuit shown in Fig. 2c can model both
the inhibitory pathways shown in Figs. 2a and 2b, which are
commonly found in biological neural circuits [34], [35]. The
resulting simplified CPG circuit is shown in Fig. 3a. It contains
four numbered cells only, each one driving a particular limb,
labeled as follows: L=left, R = right, H = hind, F = fore.
They are cross-connected with fast inhibitory (gray), exci-
tatory (black) and delayed inhibitory (orange) synapses. An
equivalent yet compact notation for the circuit is presented in
Fig. 3b. The circuit in Fig. 3 has a general structure that might
represent not only a simplified biologically-inspired CPG, but
also some generic synthetic CPG (with only homolateral and

(b)

Fig. 2. Reduced circuit (a) representing two typical inhibitory 3-cell pathways
where either cell 1 first excites the middle cell 2 that next inhibits cell 3
(b), or excitatory cell 1 facilitates the inhibition projected from cell 2 onto
the postsynaptic cell 3 (c). Inhibitory and excitatory synapses are marked by
circle o- and triangle /A-shaped terminals, respectively.

(@ (b)

Fig. 3. Proposed 4-cell CPG to govern the mouse locomotion, with the
complete (a) and compact (b) circuitry. The four numbered cells are cross-
connected with synapses: fast inhibitory (marked by grey/black dots e in
(a)/(b)), delayed inhibitoty (orange dots in (a) and marked with D in (b)), and
excitatory (black triangles A).

commissural connections) with four cells to regulate limb
flexors in quadrupeds. Similar spatio-symmetric circuits have
been identified in various biological CPGs, including swim
CPGs in the mollusks Melibe leonina and Dendronotus iris
[36]-[38]. In other words, the CPG topology can be either
bio-inspired or assigned/decided by the designer.

D. Parameter selection strategy

We describe our parameter selection strategy by employing
the same cell and synapse models as in [14]. This allows us
to both illustrate our design method and validate the obtained
results by comparison with this benchmark.

Once the CPG topology is defined (either by simplifying a
bio-inspired model or by making direct reference to a structure
relying on symmetry properties), we first have to choose
which CPG parts depend on the o parameter. In the case
of bio-inspired architectures, this information can be simply
inferred from the original CPG. For synthetic CPGs, we can
follow two guidelines: (i) all cells have to depend on «, in
order to make frequency and duty cycle a-dependent; (ii)
about synapses, we assume as a-dependent those that allow
us to break symmetries, thus enabling gait transitions. Of
course, more refined strategies could be used: for instance,
one can decide that a priori all synapses depend on « and
then check a posteriori which connections show an effective
dependence on the brainstem control. The price to be paid
would be an increase in the computational costs. This is an
open problem, and the solution proposed here is a trade-off
between computational complexity in the design phase and
accuracy of the obtained model.

Summing up, in our case-study we assume that all cells
(through the function D;(«)) and all excitatory synapses
(through the strengths gf7*(cv)) depend on «, as pointed out
in Egs. (2) and (3), whereas we fix the inhibitory synapses
strengths g!% and g/ to the values listed in Appendix B.

For the sake of simplicity, we assume that the functions
Di(c) and g} (cv) are piecewise-linear (PWL). We calibrate
these functions in order to make our CPG able to produce
all gaits listed in Table I. To this end, we make the following
steps, with the aid of the computational toolbox CEPAGE [15].
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Fig. 4. Frequency f (top panel) and duty cycle dc (middle panel) plotted
against the driving function D1 () of the control parameter « (bottom panel).
Dotted lines demarcate the boundaries for each gait (see Tab. I). Crosses
indicated the landmarks used to define the function Dj(a). White regions
correspond to co-existing stable gaits.

Step 1. Clock tuning (acting on the fore cells): Let us
focus on the reference cell 1 isolated from the rest of the CPG.
We first assess spike frequency f and duty cycle dc of the
state variable V] (¢) for a range of D;-values. For instance, the
bifurcation diagram shown in Fig. 4 is built on a 1D 100-long
array of equidistant D1-values. We remark that D; influences
the behavior of cell 1, according to Eqs. (2) and (4). The D,
range is chosen so that the cell is not quiescent. The figure
illustrates how the frequency f (top panel) and the duty cycle
dc (middle panel) of the generated membrane voltage V()
vary as D is increased. These plots (numerically obtained
using the CEPAGE package) are used to identify the D; ranges
corresponding to the different gaits according to Tab. I. For
instance, the green region corresponds to walk, as in the D;
range [0, 0.017] the frequency range is [2, 4]Hz and dc remains
below 0.4. The same holds for the other colored regions.

Next, we choose the monotonically increasing PWL func-
tion Dy () passing through a set of selected landmarks. The
PWL function D;(«) is chosen so that, while « increases
from O to 1, both f and dc increase monotonically between
their minimum and maximum values given in Tab. I: f ranges
between 2Hz and 12Hz, whereas dc varies between 0.25 and
0.65. To this end, we set some landmarks on the plane (D1, «)
(bottom panel): we chose to set them at the transitions between
the gaits, imposing that these transitions happen at the values
a = 0.25,0.5,0.75, according to Tab. I. The PWL function
a(Dy) (black thick curve) is a mere linear interpolation of
these landmarks and its inverse is the desired function D; («).
Finally, we set Dy(a) = Di(«), as cell 2 (when isolated)
is identical to cell 1. Through this step, we exploit brute-
force bifurcation analysis to establish a direct dependence of
f and dc for the fore cells on «, by properly defining the PWL
function D; (), which influences the cell dynamics, according
to Eq. (2).

Step 2. Fore-hind coordination (acting on the hind cells):
Now we consider the neural circuit within the dashed red
rectangle in Fig. 3 and set Dy(a) = Dq(a) + AD(«). Next,
we perform the bifurcation analysis to find the PWL function
AD(a), which ensures the desired synchronization between
cells 1 and 4, i.e., between the hind and fore limbs. To this end,
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Fig. 5. Bifurcation diagram in the (o, AD)-parameter plane. It is color-
mapped according to the values of the phase-locked lag Aj4 (vertical bar
on the right). The CPG is silent in the white regions and generates rhythmic
outcomes in the color regions. Red crosses label the landmarks used to define
the function AD(«) (PWL black line).

we obtain a brute-force 2D bifurcation diagram by plotting the
asymptotic phase-lag A4 for a grid of values of AD and a.
For instance, the bifurcation diagram in Fig. 5 corresponds
to a 2D (a, AD)-parameter sweep on a uniform 200 x 200-
grid of the parameter values. In the white regions the CPG
does not oscillate, as cells 1 and/or 4 remain inactive. In the
colored region, A4 varies in the range [0.25, 0.7]. This means
that the left-hand-side half-center oscillator made of cells 1
and 4 (which is in charge of the front-hind synchronization)
can exhibit a great capacity of asymptotic phase-locked states,
which, in turn, ensures a large variability in the gaits. Next,
we define the function AD(«) so that it passes through a
set of selected points, on the (o, AD)-sweep diagram. To
select the landmarks (indicated by red crosses in Fig. 5), we
focus again on the transitions between different gaits. For
instance, the walk gait corresponds to A4 = 0.25 (see Tab. I).
Therefore, we place two landmarks with « coordinates 0 and
0.25 (bounds of the walk gait, see Tab. I) and AD coordinates
corresponding to dark blue pixels, i.e., to the phase-locked lag
LF-LH A4 = 0.25. Moreover, in order to ensure that the gait
is maintained within the whole «a-interval, we choose the two
landmarks such that the connecting segment lies over dark blue
pixels. By following the same line of reasoning for all gaits, we
define AD(«) as the PWL function connecting the landmarks,
as shown (black line) in Fig. 5: the PWL curve stays within
the color regions in the parameter space and each segment
of AD(«) corresponds to a specific gait (corresponding to a
color) occurring within the given a-window. Finally, we set
Ds(a)) = Dy(e) in virtue of the network symmetry.

Step 3. Left-right coordination (acting on the synapses):
In this step we tune up the neural circuit singled out within
the dashed gray rectangle in Fig. 3 and set g¢57(«)
953 (o) = ¢g°*(«v) (strength of the black synapses), as there
is experimental evidence [3] that the brainstem control acts
in the same way on the synapses connecting cells 1-2 and
3-4. As for the previous steps, the PWL function ¢°*(«) is
defined by exploiting bifurcation analysis, in order to ensure
the desired synchronization between left and right cells. First,
we find the phase-locked lag Ajs for an array of values of
g°* and « to get another brute-force 2D bifurcation diagram.
Figure 6 shows the results of a 2D («, ¢g®*)-parameter sweep
on a uniform 200 x 200-grid for our case-study. In the upper
part of the bifurcation diagram (dark blue region) the cells
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Fig. 6. Bifurcation diagram in the (v, g¢*)-parameter plane, color-mapped
according to the values of the phase-locked lag A2 (vertical bar on the right).
Landmarks (red crosses) are used to define the PWL function g¢*(«) (green
curve).

synchronize in-phase (Aj2 = 0), whereas in the lower part
(yellow region) they synchronize in anti-phase (Ao = 0.5),
according to the color-bar for the phase-lag A;2 on the right-
hand side. In the central region, marked with two red curves,
the network becomes bi-stable and can generate two distinct
rhythmic patterns. This bi-stability is due to two pitchfork
bifurcations, forward and backward, occurring at the parameter
values marked by the red lines, found with a brute-force
numerical analysis through CEPAGE. In this bistability region,
there are two stable equilibrium states: one associated with the
phase-coordinate 0 < Aj, < 0.5, and its mirror-image with
phase (1 — Ajs).

Finally, we define the function g°* () so that it passes through
a set of landmarks in the found bifurcation diagram. Just to set
the ideas (the gait order is unessential, in this step), we start
calibrating the CPG circuit so that it can produce the bound
gait, with the desired phase-locked lags LF-RF (see Tab. I).
This gait requires Aj2 = 0, and therefore the range of the
driving function ¢*(«) must lie within the dark blue region in
Fig. 6. For simplicity, we pick g¢*(«) ~ 0.6 for 0.8 < o < 1.
Next, we select g°*(a) = 0, for 0 < a < 0.5, corresponding
to the walk and trot gaits, characterized by A5 = 0.5. Finally,
for the gallop at the mid speed, we select a set of landmarks
(red crosses) yielding Ajs ~ 0.1 in the central region of the
bifurcation diagram. On the whole, the function g°*(«) is the
PWL green curve shown in Fig. 6.

Using the same strategy, we can independently calibrate the
subnetwork controlling the phase lag LH-RH A3y by selecting
the corresponding PWL functions ¢57(a) = g¢55(«). The
results are completely similar (even if not equal, as D;(«) #
Ds(a)) to those found in Fig. 6 and hence are not discussed
here for the sake of conciseness.

Step 4. Complete CPG (a posteriori validation): Since the
previous steps, acting locally, do not fully guarantee that the
complete CPG dynamics is as desired, in the last step we need
to verify the overall CPG behavior. To do that, we simulate the
CPG performance by employing the PWL function selected in
the previous steps for a grid of values of o and we compare
the obtained asymptotic phase lags with the values in Tab. 1.

The top panel in Fig. 7 shows the desired (dashed lines)
phase-locked lags Ay; from Tab. I plotted against the control
parameter « for our case-study: Ajs (blue lines), Ajs
(red lines) and A, (green lines), between the cells of the
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Fig. 7. Top panel: desired (dashed lines) and simulated (solid lines) phase-
locked lags Aj;, with ¢ = 2 (blue lines), ¢ = 3 (red lines) and i = 4
(green lines), plotted versus o. The colors evidence the existence windows
corresponding to the four gaits: walk, trot, gallop and bound. Bottom panel:
enlargement with o € [0.475,0.775] demonstrating bistability for the gallop
gait due to the forward and backward pitchfork bifurcations that give rise to
two possible asymptotic phase-lag A1; (shown as dashed and solid lines), for
4 = 2 (blue) and ¢ = 4 (red). For ¢« = 3 (green) there is only one steady-state
phase-lag.

CPG. They overlap almost everywhere with the simulated
ones (solid lines) for all four gaits: walk, trot, gallop, and
bound. One can easily verify that the phase lags meet the
requirements (legs’ movements) described in Sect. II-C: for
instance, in the walk gait the four cells activate sequentially
in the order 1-4-2-3, as shown in the top panel of Fig. 8.

As we pointed out above, at the transitions from trot to gallop

5 ; ; '
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Fig. 8. Time-plots of the “membrane potentials” V;, and phase-lags A;, at
gait transitions: from walk to trot (top), from trot to gallop (middle), and from
gallop to bound (bottom). The colors of the V;(¢) curves are matched with
those of the corresponding cells in Fig. 3.



and from gallop to trot, two pitchfork bifurcations occur.
This causes the effect of bistability in the gallop region,
as magnified in the bottom panel of Fig. 7. Both stable
equilibrium states in the 3D (Ajs, Ays, Aj4)-phase space
of the network system correspond to the same gallop gait,
though with reverse order of moving limbs.

To check that the CPG switches smoothly between gaits,
Fig. 8 shows the time evolution of the membrane voltages V;
and of the phase-lags Aj; of the network when « is increased
smoothly across the edge between: walk and trot (top), trot
and gallop (middle), gallop and bound (bottom) regions. It is
apparent (from both the time and phase-lag plots) that all gait
transitions are smooth.

In summary, the original CPG circuit can be effectively
reduced at the cost of a reasonable complication of the synaptic
connectivity. The desired gaits are achieved by affecting the
reference cell and its synaptic connections with other cells
of the network. The synaptic strengths and each cell model
depend on the single control parameter «.. The specific profiles
of these dependences are chosen through a design strategy
based on the methods of nonlinear dynamics and bifurcation
analysis. The network symmetry allows us to use many
simplifications to calibrate the CPG step-by-step, first at the
cellular and further at the network level. We set the reference
cell (here 1) to define the dependence of the spike frequency f
and duty cycle dc on the single control parameter o.. Then, we
find the conditions to maintain the proper phase-locked lags
among all four cells for the given gait.

We remark that this design strategy cannot ensure a priori
to obtain all the desired gaits, as pointed out in the next
section: therefore, the behavior of the resulting CPG must
be always checked a posteriori (step 4). Moreover, many
parts of the method can be changed, as there exist multiple
ways to realize this process. For instance, the choice of the
interpolation strategy or of the reference cell.

Finally, we remark that this strategy is suitable for networks
with a limited number of cells. By construction, the principal
limitation of our method is that we have to verify that the CPG
under design keeps the features learned during the previous
steps. For CPGs with large cell numbers, it would become
increasingly difficult to obtain through our local strategy func-
tions of « that well capture the behavior of the network. On
the other hand, the prime focus of our approach is designing
simple CPGs with the basic functional mechanisms underlying
locomotion. Therefore, from this standpoint, the fact that our
method works well for simple CPGs is hardly a limitation but
a gain.

IV. ROBUSTNESS OF THE DESIGN STRATEGY

This section is a showcase of the results obtained for four
further CPGs, with the same wiring diagram in Fig. 3, that are
made of different cell and synapse models, see Appendices
A and B. While preserving the network topology, we test
different synapse and cell models to verify the robustness of
the proposed design strategy.

Each CPG is symbolically labeled as [z/y] with the em-
ployed cell/synapse models (see Appendices A and B). In

the first two CPGs with the tandems: [B/f] and [C/f], we
consider two alternative cell models, whereas in the other
two CPGs, namely [A/v] and [A/J], we examine how two
alternative synaptic models can alter the network dynamics.
We remark that the parameters of the dynamical synapse
model § are chosen in order to ensure fast dynamics, according
to Sec. III-B. To build these CPGs we follow the checklist
described in Sec. III-D.

As pointed out in Sec. III-D, our method to set the land-
marks and obtain the required PWL functions does not need
a high resolution of the bifurcation diagram. It is sufficient
to get a rough idea of the color regions. This is of course
an advantage, from a computational standpoint, and for this
reason the bifurcation diagrams in this section are quite rough.

Step 1. The starting point is the calibration of the cell model.
Fig. 9 shows a 1D bifurcation sweep (on an array of 100
uniformly spaced D; samples) of the spike frequency f and
duty cycle dc that are plotted against D7 in models B and
C. As far as model C is concerned (Fig. 9b), variations of D,
properly influence both the frequency (top panels) and the duty
cycle (middle panels) of every cell of the network. However, in
model B (Fig. 9a), the ranges of the frequency and duty cycle
do not cover all the values necessary for the CPG-network
to produce all four gaits (see Tab. I). So, [B/B]-CPG can
only produce walk (left light green region) and trot (central
light-blue region in Fig. 9a). For this reason, we select the
PWL function D;(«) only for « € [0, 0.5]. On the contrary,
model C' can well generate all the required f and dc values
when we choose the PWL function D;(«) as described in
Sec. III-D. The obtained results are coherent with the model
complexity and biological plausibility levels. We remark that
the parameters of model C are set in order to have bursting
activity, instead of spiking as in the other cases.

Step 2. Bifurcation diagram in Fig. 10 is the (a, AD)-
parameter sweep of Aj4 on a grid of 100 x 100 parameter
values. The white spaces correspond to the regions where
cells 1 and/or 3 become quiescent. Therefore, we focus on the
colored regions. All the proposed CPGs are able to generate
for each value of v an asymptotic phase lag A4 in the range
[0.25,0.65], so cells 1 and 4 can regulate front and hind
limbs to move with a plethora of phase lags, thus producing
different gaits. To select the landmarks and the PWL functions
in Fig. 10 we employ the strategy described in Sec. III-D.
We remark once more that for CPG[B/f] (see Fig. 10a) we
compute the diagram only for o € [0,0.5] because this CPG
can only produce walk and trot gaits.

Step 3. The bifurcation diagram depicted in Fig. 11 is the
bi-parametric sweep on a grid of 50 x 50 (¢, g¢*) pairs. One
can observe a similarity in all panels, particularly, in the upper
part (dark blue region) where the cells synchronize in phase
with Ajo = 0, whereas in the lower part (yellow region)
they synchronize in anti-phase with Aj2 = 0.5. The red lines
mark pitchfork bifurcations bounding bistability regions in the
diagram. Overall, we can obtain any phase lag, A, ranging
from 0 to 1. All CPG circuits, except for the [A/~] tandem,
can generate the necessary phase-lags Ajs. Specifically, the
[A/~]-CPG does not yield A1z = 0.5 (as a unique solution)
when « € [0.3,0.4], and therefore it does not produce the trot
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Fig. 9. Step 1. Frequency f (top panels), duty cycle dc (middle panels) plotted against D; for cell models B (a) and C (b). Dotted lines demarcate the
boundaries for each gait (see Tab. I). Crosses indicate the landmarks to define and calibrate the functions D1 (), whose inverse functions «(D1) are shown

in the bottom panels. Gray regions do not correspond to any mouse gait, while
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Fig. 10. Step 2. Bifurcation diagrams in the (a, AD)-parameter plane for cell-synapse models: [B/] (a), [C/B] (b), [A/7] (c), and [A/§] (d). White spaces

are composed of parameter pairs corresponding to quiescent cells. Red crosses

represent the landmarks to define and calibrate the function AD(«) (PWL

black graph). Gray region in panel (a) denotes a not feasible interval of a-values.

gait. This limitation is due to the synapse y-model, which is
not continuous. On the contrary, the more realistic §-model
provides the results shown in Fig. 11d, that are coherent with
those shown in Fig. 6. We re-iterate that the methodology to
define the PWL functions ¢g°*(«) (green lines in Fig. 11) is
the same as in Sec. III-D.

Step 4. The four panels in Fig. 12 show the desired (dashed
lines) phase-locked lags Aj; overlaid with the simulated ones
(solid lines) for the four CPG models. The [C/f]- and [A/d]-
CPGs can generate all four gaits within the whole range of
a values. As expected, [B/S]-CPG generates only walk and
trot gaits because, as described in Step 1, it is out of reach of
the frequency and the duty cycle associated with gallop and
bound. [A/~]-CPG, as described in Step 3, does not generate
trot as a unique gait within « € [0.3, 0.4] (gray region on the
left in Fig. 12a). Moreover, this CPG cannot generate gallop,
probably due to the excessive roughness of the synapse model.

The results obtained on the complete CPGs are indicative
that their dynamics are not strongly dependent on the synapse
or/and cell models employed, provided that they are not too
oversimplified.

V. CONCLUSIONS

We proposed a 4-step method for the design of synthetic
CPGs able to produce a prescribed set of gaits. Our strategy
requires that both cells and synapses meet some generic
assumptions: each cell has to possess the PIR mechanism and
each synapse must be fast, even if it is delayed. In the absence
of the PIR mechanism, A4 would span smaller ranges, thus
making the dynamics of the CPG less controllable. In turn,
this makes it more difficult to stably realize all the prescribed
gaits. Moreover, obtaining the small phase lags needed to
produce some gaits is more problematic with slow synapses
[20]. The “richness” of the cell models plays another key role:
more accurate and adequate models allow one to accomplish
the design priorities more easily. For instance, with model B
(simpler than model A), the occurrence of two out of the four
prescribed gaits happened to be unmanageable.

Our method can be applied either to reduce a biological
CPG or to an assigned CPG topology. Generally speaking,
with our method one can reduce any biological CPG to its
synthetic surrogate with similar rhythm generation. Alternative
reduction strategies can be further developed by resorting to
cluster synchronization methods [39], for instance, provided
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Fig. 11. Step 3. Bifurcation diagrams in the (v, g°%)-parameter plane for cell-synapse CPG tandems: [B/f] (a), [C/8] (b), [A/~] (c), and [A/4] (d). Red
crosses indicate the landmarks to define the function g¢* () (PWL green graph). Red lines mark the pitchfork bifurcations bounding the bistability regions.
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Fig. 12. Step 4. The desired (dashed lines) and simulated (solid lines) phase-locked lags A1;, ¢ = 2 (blue), ¢ = 3 (red) and ¢ = 4 (green) for cell-synapse
model tandems: [B/8] (a), [C/B] (b), [A/~] (c), and [A/6] (d). The bifurcation diagram is subdivided into four regions corresponding to the desired gaits:

walk, trot, gallop and bound. Gray regions are a-intervals without stable gaits.

that they are applicable for heterogeneous networks. Other
methods, particularly, those based on the mathematical theory
of groupoids, aim to find the minimum-size network architec-
ture producing formal phase-locking patterns [40], regardless
of stability and particularities of cell and synapse models. For
instance, the minimum-size CPG model for quadrupeds re-
quires eight cells and overall six underlying assumptions [41].
Note that gait transitions, often depending on the specifics of
cell and synapse types, are typically ignored or neglected a
priori by these methods. Other approaches for managing gait
transitions are discussed in [42].

The principal limitation of our method is that it relies
on local properties of the CPG at each step. While this
deterministic approach works well for simple CPGs, it may
become less manageable for larger networks that are expected
to produce more complex multi-phase dynamics. On the other
hand, one of the main aims of our approach is the development
of the design principles for simple CPGs, with the focus on
the basic functional mechanisms underlying locomotion.

The main applications of our reduced models (in addition

to their contribution in understanding the basic mechanisms
producing locomotion in living beings) are in the field of
robotics [42], [43] and rehabilitation [44], [45].

APPENDIX A
CELL MODELS

A. A-model

This model, used in [30], is described by the following
equations:

dvi A
CE = 7IN¢1 - IL - gDDZ(Oé)(‘/Z - Eem) +I§;)n?
dh;
T dt =hoo —hiy, I :gL(‘/Z _EL)7
V=V \ —1 (4)
INa:gNamhi(‘/ifENa% m:(1+6 km, ) s
™ — T0

V=V -1
hoo =(|14+e€e Fn , T=T0+—————,
«=( ) T cosh(BEE)

where C' = 10pF, g, = 4.5nS, £, = —62.5mV, g, = 4.5nS,
En, = 50mV, V,, = —40mV, k,, = —6mV, V;, = —45mV,



kn, = 4mV, 79 = 80ms, 7y = 160ms, V., = —35mV, k, =
15mV and gp = 10nS.

B. B-model

This generalized FitzHugh-Nagumo model proposed in [8]
is described by the following equations:

Vi = Vi = Vi =i+ 1 = gpDi()(Vi — Eea) + Iijn

2 = e(Xoo — Xi), Xoo:ﬁa
&)
where 7 = 6.75ms, I = 0, gp = 10, B,z = 115, ¢ =
0.15ms 1.
C. C-model

This adaptive exponential integrate-&-fire model [31] is
described by the following equations:

dVi V=V,
Ot = (Vi = L)+ gee =+
—gpDi(a)(V; = Eeg) —us + I +1(),,  (6)
du;
wa;; =a(Vi — Er) — uj,
subject to the reset rule
ViV,
if V> 20, then & %
U; < U; + b,

where C' = 501.8pF, g, = 30nS, E; = —70.6mV, Vp =
—50.4mV, A = 2mV, E., = 20mV, 7, = 71.4ms, a = 4nS,
b = 100pA, V, = —45mV, I = 800pA, g = 25pA and
gp = 10nS.

APPENDIX B
SYNAPSE MODELS

A. B-model

Model B follows the fast-threshold modulation (FTM)
paradlgm [32] A(V) = m
B. ~y-model

In this model, the activation (non state-dependent) is
A(V)=H(V —0.,), where H(-) is the Heaviside function.

C. 0-model

This dynamical so-called a-synapse model [33], [46] has a
state equation given by:

1

5 = a(l — S)—l n e—l/a(V—H(;) —

bs, ®)

a+b

with the activation function given by A(V,s) = s.
D. Synapse parameters

The synapse strengths are listed in Tab. II, whereas the
values of the other parameters are listed in Tab. III.
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