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Abstract We employed Poincaré return mappings for a parameter interval to an
exemplary elliptic bursting model, the FitzHugh–Nagumo–Rinzel model. Using the
interval mappings, we were able to examine in detail the bifurcations that underlie
the complex activity transitions between: tonic spiking and bursting, bursting and
mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the
FitzHugh–Nagumo–Rinzel model. We illustrate the wealth of information, qualita-
tive and quantitative, that was derived from the Poincaré mappings, for the neuronal
models and for similar (electro) chemical systems.

1 Introduction

The class of elliptic bursting models is rich and can be found in diverse scientific
studies, ranging from biological systems [37] to chemical processes such as the
Belousov–Zhabotinky reaction [2]. Transitions between activity states for elliptic
bursting models is not common knowledge. Often in the sciences, specialization
leads to discoveries that remain unknown in other branches of science; the recent
reincarnation of mixed-mode oscillations (MMO) in neuroscience, for example. In
neuroscience, transitions in activity revolve around a changing membrane potential
and specific changes in potential may instigate the onset of a seizure in the case of
epilepsy or determine muscle reactions in response to stimulus. The class of elliptic
bursting models needs a more general treatment that can span multiple disciplines.
We propose a case study of the phenomenological FitzHugh–Nagumo–Rinzel model
in order to investigate the mechanisms for state transitions in dynamic behavior.
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Bursting represents direct evidence of multiple time scale dynamics of a model.
Deterministic modeling of bursting models was originally proposed and done within
a framework of three-dimensional, slow–fast dynamical systems. Geometric con-
figurations of models of bursting neurons were pioneered by Rinzel [29, 30] and
enhanced in [5, 16]. The proposed configurations are all based on the geometrically
comprehensive dissection approach or the time scale separation, which has become
the primary tool in mathematical neuroscience. The topology of the slow-motion
manifolds is essential to the geometric understanding of dynamics. Through the use
of geometric methods of the slow–fast dissection, where the slowest variable of the
model is treated as a control parameter, it is possible to detect and follow the mani-
folds made of branches of equilibria and limit cycles in the fast subsystem. Dynamics
of a slow–fast system are determined by, and centered around, the attracting sections
of the slow-motion manifolds [3, 26, 28, 36].

The slow–fast dissection approach works exceptionally well for a multiple time
scale model, provided the model is far from a bifurcation in the singular limit. On the
other hand, a bifurcation describing a transition between activities may occur from
reciprocal interactions involving the slow and fast dynamics of the model. Such
slow–fast interactions may lead to the emergence of distinct dynamical phenomena
and bifurcations that can occur only in the full model, but not in either subsystem of
the model. As such, the slow–fast dissection fails at the transition where the solution
is no longer constrained to stay near the slow-motion manifold, or when the time
scale of the dynamics of the fast subsystem slows to that of the slow system, near
the homoclinic and saddle node bifurcations, for example.

Transformative bifurcations of repetitive oscillations, such as bursting, are most
adequately described by Poincaré mappings [34], which allow for global bifurcation
analysis. Time series-based Poincaré mappings have been heavily employed for
examinations of voltage oscillatory activities in a multitude of applied sciences [1, 12,
18], despite their limitation due to sparseness. Often, feasible reductions to mappings
of the slowest variable can be achieved through the aforementioned dissection tool
in the singular limit [15, 24, 32, 34]. However, this method often fails for elliptic
bursters since no single valued mapping for the slow variable can be derived for the
particular slow motion manifold.

In this chapter, we refine and expound on the technique of creating a family of
one-dimensional mappings, proposed in [6–8], for the leech heart interneuron, into
the class of elliptic models of endogenously bursting neurons. We will show that
a plethora of information, both qualitative and quantitative, can be derived from
the mappings to thoroughly describe the bifurcations as such a model undergoes
transformations. We also demonstrate the power of deriving not only individual
mappings, but the additional benefits of having the entire family of mappings created
from an elliptic bursting model.
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Fig. 1 a Topology of the tonic spiking, Mlc, and quiescent, Meq manifolds. Solid and dashed
branches of Meq are made of stable and unstable equilibria of the model, respectively. The space
curve, labeled by V ∗

max (in green), corresponds to the v-maximal coordinates of the periodic orbits
composing Mlc. An intersection point of y ′ = 0 with Meq is an equilibrium state of (1). Shown in
gray is the bursting trajectory traced by the phase point: the number of spikes per burst is the same
as the number of turns the phase point makes around Mlc. Spikes are interrupted by the periods of
quiescence when the phase point follows Meq after it falls from Mlc near the fold. b A voltage trace
for c = −0.67 displaying the voltage evolution in time as the phase point travels around the slow
motion manifolds

2 FitzHugh–Nagumo–Rinzel Model

We introduce the exemplary phenomenological elliptic bursting model, the
FitzHugh–Nagumo–Rinzel model. The model exhibits all necessary traits for the
class of elliptic bursters: the time series form elliptic shaped bursts and oscillations
begin through an Andronov–Hopf bifurcation and end in a saddle-node bifurcation.
The model exhibits several types of oscillations, including: constant high-amplitude
oscillatory behavior (tonic spiking), bursting, low-amplitude oscillations, and MMO.
The mathematical FitzHugh–Nagumo–Rinzel model of the elliptic burster is given
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by the following system of equations with a single cubic nonlinear term:

v′ = v − v3/3 − w + y + I , (1)

w′ = δ(0.7 + v − 0.8 w),

y ′ = μ(c − y − v);

here we fix δ = 0.08, I = 0.3125 is an applied external current, and μ = 0.002 is a
small parameter determining the pace of the slow y-variable. The slow variable, y,
becomes frozen in the singular limit, μ = 0. We employ c as the primary bifurcation
parameter of the model, variations of which elevate/lower the slow nullcline given
by y ′ = 0. The last equation is held geometrically in a plane given by v = y − c in
the three-dimensional phase space of the model, see Fig. 1. The two fast equations
in (1) describe a relaxation oscillator in a plane, provided δ is small. The fast sub-
system exhibits either tonic spiking oscillations or quiescence for different values of
y corresponding to a stable limit cycle and a stable equilibrium state, respectively.
The periodic oscillations in the fast subsystem are caused by a hysteresis induced by
the cubic nonlinearity in the first “voltage” equation of the model.

Figure 1a presents a three-dimensional view of the slow-motion manifolds in the
phase space of the FitzHugh–Nagumo–Rinzel model. The tonic spiking manifold Mlc

is composed of the limit cycles for the model (1), both stable (outer) and unstable
(inner) sections. The fold on Mlc corresponds to a saddle-node bifurcation, where
the stable and unstable branches merge. The vertex, where the unstable branch of
Mlc collapses at Meq, corresponds to a subcritical Andronov–Hopf bifurcation. The
manifold Meq is the space curve made from equilibria of the model. The intersection
of the plane, y ′ = 0 with the manifold, determines the location of the existing
equilibrium state for a given value of the bifurcation parameter c: stable (saddle-
focus) if located before (after) the Andronov–Hopf bifurcation point on the solid
(dashed) segment of Meq. The plane, y ′ = 0, called the slow nullcline, above (below)
which the y-component of a solution of the model increases (decreases). The plane
moves in the three-dimensional phase space as the control parameter c is varied.
When the slow nullcline cuts through the solid segment of Meq, the model enters
a quiescent phase corresponding to a stable equilibrium state. Raising the plane to
intersect the unstable (inner) cone-shaped portion of Mlc makes the equilibrium state
unstable through the Andronov–Hopf bifurcation, which is subcritical in the singular
limit, but becomes supercritical at a given value of the small parameter ε = 0.002,
see Fig. 1a. Continuing to raise the slow nullcline by increasing c gives rise to
bursting represented by solutions following and repeatedly switching between Meq

and Mlc. Bursting occurs in the model (1) whenever the quiescent Meq and spiking
Mlc manifolds contain no attractors, i.e., neither a stable equilibrium state nor a
stable periodic orbit exist. The number of complete revolutions, or “windings,” of
the phase point around Mlc corresponds to the number of spikes per burst. The larger
the number of revolutions the longer the active phase of the neuron lasts. Spike trains
are interrupted by periods of quiescence while the phase point follows the branch
Meq, onto which the phase point falls from Mlc near the fold; see Fig. 1. The length of
the quiescent period, as well as the delay of the stability loss (determined mainly, but
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Fig. 2 Three sample orbits
demonstrating the
construction of the return
mapping T : Mn → Mn+1

defined for the points of the
cross-section Vmax on the
manifold Mlc. Singling out
the v-coordinates of the points
gives pairs (Vn, Vn+1)
constituting the voltage
interval mapping at a given
parameter, c

not entirely, by the small parameter μ) begins after the phase point passes through
the subcritical Andronov–Hopf bifurcation onto the unstable section of Meq. Further
increase of the bifurcation parameter, c, moves the slow nullcline up so that it cuts
through the stable cylinder-shaped section of the manifold Mlc far from the fold. This
gives rise to a stable periodic orbit corresponding to tonic spiking oscillations in the
model.

3 Voltage Interval Mappings

Methods of the global bifurcation theory are organically suited for examinations of
recurrent dynamics such as tonic spiking, bursting, and subthreshold oscillations
[10, 20], as well as their transformations. The core of the method is a reduction
to, and derivation of, a low dimensional Poincaré return mapping with an accom-
panying analysis of the limit solutions: fixed, periodic, and homoclinic orbits each
representing various oscillations in the original model and referenced therein. It is
customary that such a mapping is sampled from time series, such as identification of
voltage maxima, minima, or interspike intervals [11]; see Fig. 1b. A drawback of a
mapping generated by time series is sparseness as the construction algorithm reveals
only a single periodic attractor of a model, unless the latter demonstrates chaotic or
mixing dynamics producing a large set of densely wandering points. Chaos may also
be evoked by small noise whenever the dynamics of the model are sensitively vul-
nerable to small perturbations that do not substantially reshape intrinsic properties
of the autonomous model [8, 35]. Small noise, however, can make the solutions of
the model wander thus revealing the mapping graph.

A computer-assisted method for constructing a complete family of Poincaré map-
pings for an interval of membrane potentials was proposed in [6] following [31].
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Fig. 3 Coarse sampling of the c-parameter family of the Poincaré return mappings T : Vn → Vn+1

for the FitzHugh–Nagumo–Rinzel model at μ = 0.002 as c decreases from c = −0.55 through
c = −1. The gray mappings correspond to the dominating tonic spiking activity in the model. The
green mappings show the model transitioning from tonic spiking to bursting. The blue mappings
correspond to the bursting behavior in the model. The red mappings show the transition from bursting
into quiescence. The orange mappings correspond to the quiescence in the model. An intersection
point of a mapping graph with the bisectrix is a fixed point, v!, of the mapping. The stability of the
fixed point is determined by the slope of the mapping graph, i.e., it is stable if |T ′(v!)| < 1. Nearly
vertical slopes of graph sections are due to an exponentially fast rate of instability of solutions (limit
cycles) of the fast subsystem compared to the slow component of the dynamics of the model

Having a family of such mappings we are able to elaborate on various bifurcations of
periodic orbits, examine bistability of coexisting tonic spiking and bursting, and de-
tect the separating unstable sets that are the organizing centers of complex dynamics
in any model. Examination of the mappings will help us make qualitative predictions
about transitions before the transitions occur in models.

By construction, the mapping T takes the space curve V∗
max into itself after a single

revolution around the manifold Mlc (Fig. 2), i.e., T : Vn → Vn+1. This technique
allows for the creation of a Poincaré return mapping; taking an interval of the voltage
values into itself. The found set of matching pairs (Vn, Vn+1) constitutes the graph of
the Poincaré mapping for a selected parameter value c. Provided the number of paired
coordinates is sufficiently large and by applying a standard spline interpolation we
are able to iterate trajectories of the mapping, compute Lyapunov exponents, evaluate
the Schwarzian derivative, extract kneading invariants for the topological entropy,
and determine many other quantities.

Varying the parameter, c, we are able to obtain a dense family that covers all
behaviors, bifurcations, and transitions of the model (1). A family of the mappings
for the parameter c varied within the range [ − 1, −0.55] is shown in Fig. 3. Indeed,
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for the sake of visibility, this figure depicts a sampling of mappings that indicate
evolutionary tendencies of the model. A thorough examination of the family allows
us to foresee changes in model dynamics. A family of mappings allows us to analyze
all the bifurcations whether stable or unstable fixed and periodic orbits including
homoclinic and heteroclinic orbits and bifurcations. By following the mapping graph
we can predict a value of the parameter at which the corresponding periodic orbit
will lose stability or vanish, for example, giving rise to bursting from tonic spiking.

A fixed point, v!, is discerned from the mapping as an intersection of the graph
with the bisectrix. Visually we determine the stability of the fixed point by the slope
of the graph at the fixed point. If the slope of the graph is less than 1 in absolute
value, the point is stable. When the absolute value of the slope of the graph at the
fixed point is greater than 1, the fixed point is unstable. Alternatively, stability may
be determined from forward iterates of an initial point in the neighborhood of the
fixed point which converges to the fixed point.

4 Qualitative Analysis of Mappings

The family of mappings given in Fig. 3 allows for global evolutionary tendencies of
the model (1) to be qualitatively analyzed. One can first see that the flat mappings
in gray have a single fixed point corresponding to the tonic spiking state. The green
mappings show the actual transition and saddle-node bifurcation after which we
have regular bursting patterns, seen in the blue mappings. We also see the other
unstable fixed point clearly moving to the lower corner. The red mappings indicate
the transition from bursting to quiescence, as the fixed point changes stability.

A major benefit of using the voltage interval mapping is that we are able to
understand transitions between the activity states of the model by analyzing and
comparing the bifurcations between the states. Activity transitions commonly occur
in a slow–fast model near the bifurcations of the fast subsystem where the description
of dynamics in the singular limit is no longer accurate because of the failure of (or
interpretation of) the slow–fast dissection paradigm. This happens, for example,
when the two-dimensional fast subsystem of the model (1) is close to a saddle-node
bifurcation (near the fold on the tonic spiking manifold Mlc) where the fast dynamics
slow to the time scale of the slow subsystem. Such an interaction may cause new
and peculiar phenomena such as torus formation and subsequent breakdown near the
fold on the spiking manifold [21, 33]. We now turn our attention to a more thorough
analysis of the individual mappings.

4.1 Transition from Tonic Spiking to Bursting

We begin where the model is firmly in the tonic spiking regime at c = −0.594355.
Tonic spiking is caused by the presence of a stable periodic orbit located far from
the fold on the manifold Mlc (Fig. 1). The only v-maximum of this orbit corresponds
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Fig. 4 a Poincaré return mapping for the parameter, c = −0.594255. We see a single fixed point,
TS, corresponding to continuous large amplitude oscillations. We also see a cusp which insinuates
a possible change in the mapping shape. b A maximal “time” series obtained from iterating the
mapping, n times. c Return mapping for c = −0.595. We see the cusp has enlarged and intersected
the identity line creating two additional fixed points, UP1 andUP2. The two fixed points are clearly
unstable. d There is no indication in the maximal trace, or model dynamics, that would indicate the
formation of these fixed points

to a stable fixed point, labeled TS in Fig. 4a. The flat section of the mapping graph
adjoining the stable fixed point clearly indicates a rapid convergence to the point in
the v-direction, as shown by the trace in inset, Fig. 4b. Here the slope of the mapping
reflects the exponential instability (stability) of the quiescent (tonic spiking) branch,
made of unstable equilibria and stable limit cycles of the fast subsystem of the model.

The formation of the cusp is an indication of a change in dynamics for the mapping.
Thus the mapping insinuates a transition in dynamics of the model (1) prior to
occupance. Note that the maximal voltage trace provides no indication of any eminent
transition in the model’s behavior. The mapping in Fig. 4a, b, taken for the parameter
c = −0.595, clearly illustrates that after the cusp has dropped below the bisectrix,
two additional fixed points, UP1 and UP2, are created. UP1 and UP2 have emerged
through a preceding fold or saddle-node bifurcation taking place at some intermediate
parameter value between c = −0.594255 and c = −0.595. Again, let us stress that
the singular limit of the model atμ = 0 gives a single saddle-node bifurcation through
which the tonic spiking periodic orbit looses stability after it reaches the fold on the
tonic spiking manifold. We point out that, for an instant, the model becomes bistable
right after the saddle-node bifurcation in Fig. 4 leading to the emergence of another
stable fixed point with an extremely narrow basin of attraction. Here, as before the
hyperbolic tonic spiking fixed point, TS, dominates the dynamics of the model.
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Fig. 5 a Varying the
parameter further to
c = −0.615 we find the
unstable fixed point UP2 has
moved closer to the stable
fixed point, TS. The other
unstable fixed point UP1

remains in approximately the
same location. b Again the
maximal trace shows no
indication of any change in
dynamics
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Figure 5a demonstrates that, as the parameter is decreased further to c = −0.615,
the gap between the new fixed points widens as the point UP2 moves toward the sta-
ble tonic spiking point, TS, indicating a possible saddle-node bifurcation is eminent.
Through this saddle-node bifurcation, these fixed points merge and annihilate each
other; thereby terminate the tonic spiking activity in the FitzHugh–Nagumo–Rinzel
model. Before that happens however, several bifurcations involving the fixed
point, TS, drastically reshape the dynamics of the model. First, the multiplier
becomes negative around c = −0.619, which is the first indication of an impending
period-doubling cascade. This is confirmed by the mapping at c = −0.6193
in Fig. 6a, b, and c showing that the fixed point has become unstable through
the supercritical period-doubling bifurcation. Furthermore, the dynamics of the
mapping is directly mimicked in the full model behavior; see Fig 6d.

The newly born period-2 orbit becomes the new tonic spiking attractor of the
mapping. Observe from the voltage trace in Fig. 6b the long transient bursting be-
havior thus indicating that boundaries of the attraction basin of the period-2 orbit
become fractal. Next, the model approaches bursting onset. Correspondingly, the
FitzHugh–Nagumo–Rinzel model starts generating chaotic trains of bursts with ran-
domly alternating numbers of spikes per burst. The number of spikes depends on
how close the trajectory of the mapping comes to the unstable (spiraling out) fixed
point, TS, that is used to represent the tonic spiking activity. Each spike train is
interrupted by a single quiescent period. The unstable point, UP1, corresponds to a
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Fig. 6 a Poincaré mapping at c = −0.6193 and the voltage trace in b both demonstrate chaotic
bursting transients. c Enlargement of the right top corner of the mapping shows that the tonic
spiking fixed point has lost the stability through a supercritical period-doubling bifurcation. The
new born period-2 orbit is a new attractor of the mapping, as confirmed by the zigzagging voltage
trace represented in b. d The same dynamics found directly from integrating the model. We find
after a short transient (blue) the model dynamics converge to a period-2 orbit (green) as indicated
from the mapping a

saddle periodic orbit of the model that is located on the unstable, cone-shaped section
of the tonic spiking manifold Mlc in Fig. 1. Recall that this saddle periodic orbit is
repelling in the fast variables and stable in the slow variable.

By comparing Figs. 4, 5, 6, and 7 one could not foresee that the secondary saddle-
node bifurcation eliminating the tonic spiking fixed point TS, or corresponding round
stable periodic orbit on the manifold Mlc would be preceded by a dramatic concavity
change in the mapping shape, causing a forward and inverse cascade of period dou-
bling bifurcations right before the tonic spiking orbit TS. The corresponding fixed
point, TS, becomes stable again through a reverse sequence of period doubling bifur-
cations before annihilating through the secondary saddle-node bifurcation. However,
the basin of attraction becomes so thin that bursting begins to dominate the bi-stable
dynamics of the model. Note that the bursting behavior becomes regular as the phase
points pass through the upper section of the mapping tangent to the bisectrix. The
number of iterates that the orbit makes here determine the duration of the tonic spiking
phase of bursting and is followed by a quiescence period initially comprising a single
iterate of the phase point to the right of the threshold UP1. The evolution of bursting
into MMO and on to subthreshold oscillations will be discussed in the next section.
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Fig. 7 a Periodic bursting with five spikes in the Poincaré interval mapping for the FitzHugh–
Nagumo–Rinzel model at c = −0.6215. The single unstable fixed point UP1 separates the tonic
spiking section of the mapping from the quiescent or subthreshold section (left). The number of
iterates of the phase point adequately defines the ordinal type of bursting b. Note a presence of a
small hump around (V0 = 1.6, V1 = −0.5) which is an echo of the saddle-node bifurcation. c
Poincaré return mapping at c = −0.75. Here we find a burst pattern of three spikes followed by two
small amplitude oscillations. The mappings are able to capture all the bursting patterns exhibited
by the model

4.2 From Bursting to Mixed-Mode Oscillations and Quiescence

The disappearance of the tonic spiking orbit, TS, accords with the onset of regular
bursting in the mapping and in the model (1). In the mapping, a bursting orbit is
comprised of iterates on the tonic spiking and quiescent sections separated by the
unstable threshold fixed point, UP1, of the mapping in Fig. 7. The shape of the graph
undergoes a significant change reflecting the change in dynamics. The fixed points in
the upper right section of the mapping disappear through a saddle-node bifurcation.
One of the features of the saddle-node is the bifurcation memory: the phase point
continues to linger near a phantom of the disappeared saddle-node. The mapping near
the bisectrix can generate a large number of iterates before the phase points diverge
toward the quiescent phase. The larger the number of iterates near the bisectrix
corresponds to a longer tonic spiking phase of bursting. Figure 7 demonstrates how
the durations of the phases change along with a change in the mapping shape: from
a single quiescent iterate to the left of the threshold, UP1, to a single tonic-spiking
iterate corresponding to a bursting orbit with a single large spike in the model.

The transition from bursting to quiescence in the model is not monotone because
the regular dynamics may be sparked by episodes of chaos. Such subthreshold chaos
in the corresponding mapping at c = −0.9041 is demonstrated in Fig. 8a. This
phenomena is labeled MMO because the small amplitude subthreshold oscillations
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Fig. 8 a Chaotic MMO and bursting in the mapping at c = −0.904 caused by the complex recurrent
behavior around the unstable fixed pointUP1. b Subthreshold oscillations are disrupted sporadically
by large and intermediate magnitude spikes thereby destroying the rhythmic bursting in the model.
c Poincaré return mapping for the FitzHugh–Nagumo–Rinzel model shows no bursting but complex
subthreshold period-2 oscillations at c = −0.908. d After the peak in the mapping decreases in
amplitude, high amplitude spikes become impossible. Here, chaos is caused by homoclinic orbits
to the unstable fixed point UP1, just prior to this figure

are sporadically interrupted by larger spikes (inset b). Use of the mapping makes
the explanation of the phenomena in elliptic bursters particularly clear. In Fig. 8a,
after the mapping (or the model) fires a spike, the phase point is reinjected close
to the threshold point, UP1, from where it spirals away to make another cycle of
bursting. Note that the number of iterates of the phase point around UP1 may vary
after each spiking episode. This gives rise to solutions that are called bi-asymptotic
or homoclinic orbits to the unstable fixed point UP1. The occupancy of such a ho-
moclinic orbit to a repelling fixed point is the generic property of a one-dimensional
non-invertible mapping [25], since the point of a homoclinic orbit might have two
pre-images. Note that the number of forward iterates of a homoclinic point may
be finite in a non-invertible mapping, because the phase point might not converge,
but merely jump onto the unstable fixed point after being reinjected. However, the
number of backward iterates of the homoclinic point is infinite, because the repelling
fixed point becomes an attractor for an inverse mapping in restriction to the local
section of the unimodal mapping; see Fig. 8a, b. The presence of a single homoclinic
orbit leads to the abundance of other emergent homoclinics [13] via a homoclinic
explosion [34].

A small decrease of the bifurcation parameter causes a rapid change in the shape
of the mapping, as depicted in Fig. 8c, d. The sharp peak near the threshold becomes
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Fig. 9 a and c Show stable period-4 and period-2 orbits (green) of the interval mapping at c =
−0.906 and c = −0.9075. Shown in light-blue are the corresponding mappings T 4 and T 2 of
degrees four and two with four and two stable fixed points correspondingly. The traces of the orbits
are shown in insets b and d

lower so that the mapping can no longer generate large amplitude spikes. As the
parameter is decreased further, the unstable fixed point, UP1, becomes stable through
a reverse period-doubling cascade. The last two stages of the cascade are depicted in
Fig. 9. Insets a and c of the figure show stable period-4 and period-2 orbits, and their
traces in insets b and d, as the parameter c is decreased from −0.906 to −0.9075.
Here we demonstrate another ability of the interval mappings derived directly from
the flow. In addition to the original mapping, T, in Fig. 9 we see two superimposed
mappings, T 2 and T 4, (shown in light blue) of degrees two and four respectively. The
four points of periodic orbit in inset a corresponds to the four fixed points of the fourth
degree mapping T 4 at c = −0.9075, whereas the period-2 orbit in c correspond to
two new fixed points of the mapping T 2 in c at c = −0.9075. We see clearly that both
periodic orbits are indeed stable because of the slopes of the mappings at the fixed
points on the bisectrix. Using the mappings of higher degrees we can evaluate the
critical moments at which the period-2 and period-4 orbits are about to bifurcate. We
point out that a period-doubling cascade, beginning with a limit cycle near the Hopf-
initiated canard toward subthreshold chaos has been recently reported in slow–fast
systems [38, 39].

Decreasing c further, the period-2 orbit collapses into the fixed point, UP1, which
becomes stable. The multiplier, first negative becomes positive but is still less than
one in the absolute value. In terms of the model, this means that the periodic orbit
collapses into a saddle-focus through the subcritical Andronov–Hopf bifurcation.
After that, the equilibrium state, located at the intersection of the manifold Meq

with the slow-nullcline (plane) in Fig. 1, becomes stable and the model goes into
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quiescence for parameter values smaller then c = −0.97. The stable equilibrium
state corresponds to the fixed point, Q, which is the global attractor in the mapping.

5 Quantitative Features of Mappings: Kneadings

In this section we discuss a quantitative property of the interval mappings for the
dynamics of the model (1). In particular, we carry out the examination of complex
dynamics with the use of calculus-based and calculus-free tools such as Lyapunov
exponents and kneading invariants for the symbolic description of MMOs.

Chaos may be quantitatively measured by a Lyapunov exponent. The Lyapunov
exponent is evaluated for the one-dimensional mappings as follows:

λ = lim
N→+∞

1

N

N∑

i=1

log |T ′(vi)|, (2)

where T ′(vi) is the slope (derivative) of the mapping at the current iterate vi corre-
sponding to the ith step for i = 0, . . . ,N . Note that, by construction, the mapping
graph is a polygonal and to accurately evaluate the derivatives in (5) we used a cubic
spline. The Lyapunov exponent, λ, yields a lower bound for the topological en-
tropy h(T ) [19]; serving as a measure of chaos in a model. The Lyapunov exponent
values λ � 0.24 and λ � 0.58, found for the interval mappings at c = −0.9041
and c = −0.90476, respectively, show that chaos is developed more in the case of
subthreshold oscillations than for MMOs.

The topological entropy may also be evaluated though a symbolic description
of the dynamics of the mapping that require no calculus-based tools. The curious
reader is referred to [14, 23] for the in-depth and practical overviews of the kneading
invariants, while below we will merely touch the relevant aspects of the theory. For
unimodal mappings of an interval into itself with a single critical point, vc, like for the
case c = −0.90476, we need only to follow the forward iterates of the critical point
to generate the unsigned kneading sequence κ(vc) = {κn(vc)} defined on {−1, +1}
by the following rule:

κn(vq) =
⎧
⎨

⎩

+1, if T n(vc) < vc

−1, if T n(vc) > vc;
(3)

here T n(vc) is the nth iterate of the critical point vc.
The kneading invariant of the unimodal mapping is a series of the signed kneadings

{κ̃n} of the critical point, which are defined through the unsigned kneadings, κi , as
follows:

κ̃n =
n∏

i=1

κi , (4)
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Fig. 10 a Graphs of the three polynomials, P10(t), P60(t), and P110(t) defined on the unit interval,
and generated through the series of the signed kneadings at c = −0.90476. Inset b shows the
corresponding interval mapping. The iterates of the critical point, vc, determine the symbolic
dynamics for the unsigned kneading symbols: −1 if the phase point lands on the decreasing section
of the mapping graph to the right of the critical point, and +1 if it lands to the increasing section of
the mapping, which is to the left of the critical point

or, recursively:

κ̃i = κi κ̃i−1, i = 2, 3, . . . . (5)

Next we construct a formal power series;

P (t) =
∞∑

i=0

κ̃i t
i . (6)

The smallest zero, t∗ (if any), of the series within an interval t ∈ (0, 1) defines
the topological entropy, h(T ) = ln (1/t∗). The sequence of the signed kneadings,
truncated to the first ten terms, {− + + + − + + + −+} for the mapping in Fig. 10b,
generates the polynomial P10(t) = −1 + t + t2 + t3 − t4 + t5 + t6 + t7 − t8 + t9.
The single zero of P10(t) at t∗ ≈ 0.544779 yields a close estimate for the topological
entropy h(T ) ≈ 0.6073745, see Fig. 10a.

The advantage of an approach based on the kneading invariant to quantify chaos is
that evaluation of the topological entropy does not involve numerical calculus for such
equationless interval mappings, but relies on the mixing properties of the dynamics
instead. Moreover, it requires relatively few forward iterates of the critical point to
compute the entropy accurately, as the polynomial graphs in Fig. 10 suggest. Besides
yielding the quantitative information such as the topological entropy, the symbolic
description based on the kneading invariants provide qualitative information for
identifying the corresponding Farey sequences describing the MMOs in terms of
the numbers of subthreshold and tonic spiking oscillations.
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6 Discussion

We present a case study for an in-depth examination of the bifurcations that take place
at activity transitions between tonic spiking, bursting, and MMOs in the FitzHugh–
Nagumo–Rinzel model. The analysis is accomplished through the reduction to a
single-parameter family of equationless Poincaré return mappings for an interval of
the “voltage” variable. We stress that these mappings are models themselves for eval-
uating the complex dynamics of the full three-dimensional model. Nevertheless, the
dynamics of the single accumulative variable, v, reflects the cooperative dynamics of
other variables in the model. The reduction is feasible since the model is a slow–fast
system and, hence, possesses a two-dimensional, slow-motion tonic-spiking mani-
fold around which the oscillatory solutions of the models linger. We have specifically
concentrated on the dynamics of the voltage [7, 8], as it is typically the only mea-
surable, and thus comparable, variable in experimental studies in neuroscience and
physical chemistry.

It is evident that no one-dimensional return mapping of the interval is intended
to detect a torus in the phase plane, whereas the pointwise mappings generated
by a forward time series of the voltage can identify the torus formation in the
phase space. Note that the torus has a canard-like nature, that is the torus exists
within a narrow parameter window. A torus formation in a three-dimensional model
with two slow variables near the fold was reported also in [17]. Another parallel of
the FitzHugh–Nagumo–Rinzel model with electrochemical systems, including the
Belousov–Zhabotinky reaction, is that the latter also demonstrates a quasiperiodic
regime [2]. The emergence of the torus near the fold of the tonic spiking manifold
first described in [9, 33] has turned out to be a generic phenomenon observed recently
in several plausible models [22], including a model for the Purkinje cells [4, 21], and
in a hair cell model [27].

A minor drawback of the approach is a small detuning offset in parameter values
at which the model and the mapping have nearly the same dynamics, matching orbits,
or undergo the same bifurcations. This is caused by the fact that a one-dimensional
mapping for a single voltage variable does not fully encompass the dynamics of other,
major and minor, variables of the corresponding model. In general, most features
of a dissipative model with a negative divergence of the vector field that results
in a strong contraction of the phase volumes, are adequately modeled by a one-
dimensional Poincaré mapping. However, this is not true when such a contraction
is no longer in place, for example, when the divergence becomes sign-alternating.
There are two such places near the manifold Mlc in the model (1): one is near the
fold, the second is close to the cone-shaped tip. The sign alternating near the tip of
the cone is where the model has an equilibrium state of the saddle-focus type with
a pair of complex conjugate eigenvalues with a small positive real part and a real
negative eigenvalue due to the Andronov–Hopf bifurcation and the smallness of ε.

The algorithm for interval mapping construction has two stages. First, one needs to
identify the tonic spiking manifold in the phase space of the slow–fast neuron model
in question. This is accomplished by either using the geometric dissection method, or
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the parameter continuation technique. The more accurately and completely the first
stage is performed the more natural and smooth these numerically derived mappings
will be. The second stage is to build the mappings for a range of parameter values. The
analysis of such mappings lets one identify not only attractors, but more importantly,
the unstable sets including fixed, periodic, and homoclinic orbits, which are known to
be the globally organizing centers governing the dynamics of any model. In addition,
having computationally smooth mappings allows one to create symbolic descriptions
for dynamics, compute kneading invariants, evaluate Schwarzian derivatives, etc., as
well as estimate other quantities measuring the degree of complexity for the trajectory
behavior like Lyapunov exponents and topological entropy.

Our computational method allows us to thoroughly describe the bifurcations that
the model (1) undergoes while transitioning between states: from tonic spiking to
bursting and then to quiescence. Taken individually, each mapping offers only a
glimpse into the system behavior. However, with an entire family of mappings we
obtain deep insight into the evolution of the model’s dynamics though the interplay
and bifurcations of the fixed points and periodic orbits. This allows for not only the
description of bifurcations post factum, but to predict the changes in the dynamics
of the model under consideration before they actually occur. For additional analysis
on elliptic bursters including torus formation, we refer the reader to [37].
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