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Abstract We describe a novel computational approach to reduce detailed models
of central pattern generation to an equationless mapping that can be studied geo-
metrically. Changes in model parameters, coupling properties, or external inputs
produce qualitative changes in the mapping. These changes uncover possible bio-
physical mechanisms for control and modulation of rhythmic activity. Our analysis
does not require knowledge of the equations that model the system, and so provides
a powerful new approach to studying detailed models, applicable to a variety of
biological phenomena beyond motor control. We demonstrate our technique on a
motif of three reciprocally inhibitory cells that is able to produce multiple patterns
of bursting rhythms. In particular, we examine the qualitative geometric structure of
two-dimensional maps for phase lag between the cells.

1 Introduction

A central pattern generator (CPG) is a neural microcircuit comprised of cells whose
synergetic interactions, without a sensory input, can produce rhythmic bursting pat-
terns that determine motor behaviors of an animal, such as heart beat, respiration, and
locomotion [1, 2]. A multifunctional CPG can exhibit distinct rhythmic behaviors
depending on input conditions: for example, switching between trot and gallop gaits
in many mammals [3] or between swimming and crawling in leeches [4, 5]. Although
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such circuits are mostly hypothetical in the central nervous system of mammals, they
have been located in many fish and invertebrates and in the spinal cord or peripheral
nervous systems of mammals.

Switching between motor rhythms in a multifunctional CPG is attributed to
switching between corresponding oscillatory attractors [5]. A key scientific issue
is how modulation and control can switch the system between states, and how the
CPG achieves robustness to noise and heterogeneity. Theoretically, the problem is
therefore how to obtain parsimonious answers to the scientific questions through
mathematical analysis and simulation of these models. A common approach has
been to first reduce each neuron’s activity to a one- or two-dimensional return map
using, for example, phase resetting techniques, and then to compose these maps to
form an approximate representation of the cycle-to-cycle network activity [6, 7].
Instead, we directly analyze a single return map induced by the full dynamics of
a biophysical network CPG model. This map will be defined qualitatively through
numerical simulations and does not require knowledge of explicit phase equations for
the underlying network model. This makes our technique applicable to a wide range
of detailed (high-dimensional) models of rhythmic activity in biological networks,
especially those that are not easily reduced to low-dimensional systems of equations
by explicit means.

Elemental circuit configurations for CPG models are often reduced to three oscil-
lators but their components are typically anatomically and physiologically diverse
[8–11]. We consider a model of endogenously bursting neurons coupled in a ring [12]
using fast reciprocal synaptic inhibition modeled by fast threshold modulation [13].
The neurons are 3-dimensional reduced models of leech heart interneurons, as defined
in ref. [14]. We demonstrate that the duty cycle of bursting, the fraction of the burst
period in which the cell bursts, is a physiologically relevant order parameter that can
be used to control switching between outcomes.

2 Qualitative Analysis of Phase-Lag Maps

We examine polyrhythmic outcomes of the motif for short (∼20 %), medium
(∼50 %), and long (∼80 %) bursting duty cycles. For this we computationally derive
return maps for phase lags Δφ21 and Δφ31 between burst onsets in cell 2 (green)
and cell 3 (red) relative to the reference cell 1 (blue) (Fig. 1). As the period of
network oscillation changes through time, we define the phase between cells to be
relative to the time interval between which the voltage V1 of cell 1 increases through
a threshold of −40 mV. We define Δφ

(n)
i1 ∈ [0, 1) as the phase lag between the nth

consecutive burst onsets in cells 1 and i . As the network evolves from an initial
state, the relative phases of each oscillator on each subsequent cycle n generate a
sequence {Δφ

(n)
31 ,Δφ

(n)
21 }, which we plot within the unit square; for convenience the

iterates are joined with lines to preserve cycle ordering in the phase lag maps (Figs. 2,
3). Thus, the original, continuous-time 9D system is reduced to a 2D stroboscopic
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Fig. 1 Voltage traces: the phase (mod 1) of reference cell 1 (blue) is reset when V1 reaches Θth =
−40 mV. The time between burst onsets in cell 2 (green) and 3 (red) determine a sequence of phase
lags {Δφ

(n)
21 ,Δφ

(n)
31 } normalized to the varying recurrence times of cell 1

Δ φ

Δφ

Fig. 2 Phase-lag map for the homogeneous, medium bursting motif at V shift
K2 = −21.0 mV, showing

five phase-locked (fixed point) attractors: red at ∼ (
0, 1

2

)
, green

( 1
2 , 0

)
, blue

( 1
2 , 1

2

)
, black

( 2
3 , 1

3

)

and gray
( 1

3 , 2
3

)
, whose basins are separated by six saddles (brown dots)

return map for the phase lags defined on a torus [0, 1) × [0, 1), with Δφi1 mod 1.
The maps are not derived as explicit equations, but instead are tabulated on a 40×40
(or more) grid of initial points whose iterates comprehensively reveal the underlying
vector field. We then study the geometric properties of the maps. In particular, we
can locate equilibrium points of the maps, which we refer to as fixed points (FPs).
We evaluate the stability of these objects and characterize bifurcations by using the
methods of the qualitative theory of dynamical systems.
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Figure 2 shows the (Δφ31,Δφ21) phase-lag map for the homogeneous, medium
bursting motif when V shift

K2 = −21.0 mV. The map possesses five stable FPs (color-
coded dots) corresponding to the coexisting phase-locked bursting patterns: red at
(
(
Δφ21 ≈ 0,Δφ31 ≈ 1

2

)
, green

( 1
2 , 0

)
, blue

( 1
2 , 1

2

)
, black

( 2
3 , 1

3

)
and gray

( 1
3 , 2

3

)
. The

attraction basins of these points are divided by separatrices (incoming and outgoing
sets) of six saddle points (brown dots). The saddles separate the basins of attraction
of the 5 fixed points which correspond to phase locked states.

The outcome of the homogeneous motif depends on the initial phase distributions
of the cells. When the cells are about to burst together, their initial phases are near the
origin in the phase plane. In this case, any of the five rhythmic pattern outcomes has
a chance of occurring (Fig. 2). Each rhythm is robust, so well chosen perturbations
are needed to switch the motif between rhythms. An efficient and easy way to perturb
an inhibitory motif is to apply an appropriately-timed hyperpolarizing pulse to the
targeted cell [12, 15]. Figure 4 demonstrates the approach for the homogeneous
motif. The phase-lag maps create a guide for where and how long a hyperpolarizing
pulse is needed to switch between rhythms. For example, if we begin at the FP

( 1
2 , 1

2

)

and perturb cell 2 (green) we change the phase-lags Δφ21 and Δφ31. This changes
the position on the phase lag diagram and moves the phase point into the basin of
attraction of another rhythm, as in Fig. 1.

Δφ Δφ

Δφ Δφ

Fig. 3 Homogeneous phase-lag mapping for V shift
K2 = −18.95 mV motif at V shift

K2 = −18.95 mV,
showing three attractors (blue, red, and green dots). Each corresponds to an anti-phase rhythm
where one cell bursts solo followed by synchronized bursts in the other two cells. The fixed points
for counter-clockwise and clockwise traveling waves (black dots) are unstable. Right Phase-lag map
for the homogeneous, long bursting motif at V shift

K2 = −22.5 mV, revealing two equally dominant
rhythmic attractors: at

( 1
3 , 2

3

)
and at

( 2
3 , 1

3

)
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Fig. 4 Five types of robust bursting rhythms in the medium-length bursting motif, using gsyn =
5 · 10−3 (increased from its nominal value to illustrate stable states without long transients).
Appropriately-timed inhibitory pulses (horizontal bars) temporarily suppress the targeted cells and
switch between the rhythms. Episode (i) shows the

( 1
2 , 1

2

)
FP interrupted by a pulse to cell 2. On

release of cell 2 from suppression, the clockwise
( 1

3 , 2
3

)
FP is observed. After cell 1 is temporarily

suppressed, the counter-clockwise
( 2

3 , 1
3

)
FP is observed in episode (iii). A pulse releasing cell 3

from inhibition then makes cell 2 lead in the
(
0, 1

2

)
rhythm of episode (iv). After cells 1 and 2 have

been simultaneously hyperpolarized, cell 3 leads the motif in the
( 1

2 , 0
)

in the last episode (v) of
the voltage trace

3 Duty Cycle is an Order Parameter of the Network

The duty cycle (DC) of bursting oscillations is the fraction of the burst period in
which the cell is spiking (Fig. 1), and is a property known to affect the synchronization
properties of coupled bursters [15]. DC can be measured experimentally from voltage
traces in neural dynamics. In this study, we control DC through the intrinsic parameter
V shift

K2 , which measures the deviation from the experimentally identified voltage value
at which the slow K+ current is half-activated [14]. DC depends monotonically on
V shift

K2 . As the activation kinetics of this current are shifted to depolarized voltages, the
cells produce first short, then medium, and then long burst trains before transitioning
to continuous spiking. We consider weak inhibitory coupling determined by the
maximal conductance gsyn, which is set at 5 · 10−4 nS in the homogeneous case.

Comparison of the maps for the homogeneous motifs in cases of medium (Fig. 2),
short (Fig. 3, left) and long (Fig. 3, right) bursting demonstrates that the DC is
an order parameter for such configurations. As such, short bursting (DC ∼ 20%)
makes both traveling waves impossible because the corresponding FPs exist but are
unstable. In contrast, for long bursting (DC ∼ 80%), these patterns equally dominate
the dynamics by narrowing the attractor basin of the other FPs—shrinking the range
of phases that can lead to alternative patterns.

4 Summary

In this work we presented a simple network motif of three bursting cells recip-
rocally coupled by fast inhibitory synapses in a ring. We showed that the model
can generate multiple, coexisting rhythms, selected by the initial conditions of the
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cells. We characterized the essential temporal properties of the coupled system by
measuring just two differences (“lags”) in the phase between the three oscillators
along simulated orbits. By systematic variation of the initial conditions, the com-
putational exploration of the possible rhythmic outcomes led to a reduction of the
original 9D system of differential equations to a graphical and equationless repre-
sentation of the 2D mapping of cycle-to-cycle phase lags. Crucially, a feature of
this reduction is that explicit equations were replaced by a qualitative portrait of the
maps. Nonetheless, the geometric properties of the maps, and how they change as
model parameters are varied, can be understood through standard qualitative tech-
niques of dynamical systems theory. In particular, the rhythmic patterns of the motif
correspond to fixed and periodic attractors of the maps. The basins of attraction for
the rhythms are separated by phase thresholds known as saddles.

The power of our technique is that it avoids the need for equations, and as such
makes few assumptions about the nature of the models of the coupled oscillators
making up the motif or their detailed form of coupling. For instance, the models
may be high-dimensional and possess multiple time scales. In order to define the
phase lags, we only assume that the cells burst regularly. In principle, our technique
can be generalized to a larger number of cells. Problems of human visualization of
higher-dimensional phase-lag maps notwithstanding, the concepts of fixed points
and periodic orbits carry through to higher dimensions.

We discovered that the primary “order parameter” determining the pattern out-
comes is the duty cycle of bursting: short bursting promotes anti-phase rhythms,
while long bursts will self-arrange into one of two traveling wave patterns typical of
unidirectionally-coupled inhibitory rings. The dynamics of the motif with medium-
length duty cycle is richer due to the existence of five competing rhythmic outcomes.
We therefore hypothesize a possible biophysical control mechanism for switching
between CPG patterns: common inhibition or excitation to the circuit, which varies
the duty cycle of all cells simultaneously. For complete details see [16, 17] and
references therein.
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