
CEPAGE: a toolbox for Central Pattern Generator
analysis

Matteo Lodi∗, Andrey Shilnikov†, Marco Storace∗
∗DITEN, University of Genoa, Via Opera Pia 11a, I-16145 Genova, Italy

E-mail: matteo.lodi@edu.unige.it, marco.storace@unige.it
†Neuroscience Institute, Georgia State University, 100 Piedmont Ave, Atlanta GA 30303, USA

E-mail: ashilnikov@gsu.edu

Abstract—This paper is focused on a new object-oriented
toolbox, called CEPAGE, devoted to simulation and analysis
of Central Pattern Generators (CPGs). A CPG is a little
group of neurons producing periodical patterns, which control
rhythmic activities of animals. CEPAGE is conceived to carry
out brute-force bifurcation analysis, but can also generate data
for subsequent continuation analysis through other widely-used
packages, such as AUTO or MATCONT. Two case studies are
considered, with three and four neurons, with the twofold purpose
of illustrating the main CEPAGE functionalities and provide new
analysis results.

I. INTRODUCTION

Among the many types of biological neural networks, Cen-
tral Pattern Generators (CPGs) are little groups of neurons that
produce rhythmic patterned outputs without sensory feedback
or central input [1]–[3]. CPGs play many roles in animals, ge-
nerating rhythms for locomotion, swimming, breathing, heart
beating, swallowing, and other oscillatory functions. CPG
models are widely used in robotics applications, to control
a variety of different types of robots and different modes of
locomotion mimicking the nature [3]. This is one of the main
reasons why, in the last years, a growing attention has been
devoted to the study of stable rhythmic patterns (or motifs)
generated by this kind of networks [4].

A CPG model requires to specify the general architec-
ture (type and number of oscillators/neurons), the type and
topology of couplings and the waveforms to be generated.
All these elements concur to determine the conditions for
synchronization between oscillators and the resulting gaits,
i.e., the stable phase relations between oscillators.

In this paper we propose a package (called CEPAGE1) for
simulation and analysis of CPG models. CEPAGE has a two-
layer organisation: the outer layer is a MATLAB interface
that makes it easy the CPG configuration and offers tools
for data analysis and visualization; the inner layer is used for
numerical integrations and is based on Boost C++ libraries
and on MEX files.2 The MATLAB layer provides flexibility
to CEPAGE, since it makes it easy to add new neuron and

1The French word “cépage” means “grape variety”.
2A MEX file is a type of computer file that provides an interface between

MATLAB and functions written in C, C++ or Fortran. It stands for “MATLAB
executable”. When compiled, MEX files are dynamically loaded and allow
external functions to be invoked from within MATLAB as if they were built-
in functions.

synapse models to be simulated and new functionalities to the
package by extending the base classes. Moreover, MATLAB
allows the user to write very concise and clear scripts, which
nonetheless retain the full power and speed of the underlying
C/C++ code. The main advantages of CEPAGE (besides the
simplicity of usage provided by the MATLAB interface) can
be then summarized as follows. (i) Computational efficiency.
The inner part of CEPAGE is written in compiled languages
(C and C++) and MEX files, then applications run much faster
than equivalent codes in interpreted languages, such as Python
or Matlab. Moreover, it is based on efficient and actively
developed libraries, which can run also in parallel on multi-
core units. (ii) Flexibility. The object-oriented programming
nature of both the layers greatly facilitates reusability and
development. Moreover, it is easy to vary parameters (of single
neurons or of the synaptic connections) to obtain brute-force
bifurcation diagrams. (iii) Compatibility with other packages.
CEPAGE is intrinsically complementary to numerical conti-
nuation packages such as AUTO [5] and MATCONT [6] and
can be used in combination with these packages.

These features are at least partially shared by other pack-
ages, of course, but CEPAGE is tailored for the analysis and
simulation of CPGs. The only other package with similar
characteristics is motifToolbox,3 which runs under LINUX.

Two case studies are used to illustrate the CEPAGE func-
tionalities. The first one is an already studied three-neuron
CPG: in this case we obtain a new bifurcation diagram. The
second case study is a four-neuron CPG not yet analyzed in
literature, at the best of our knowledge, that can be viewed as
a CPG controlling the gaits of a quadruped. We will show how
the gaits change by varying a bifurcation parameter without
altering the network structure: this corresponds to changing
the locomotion rhythm, e.g., from walk, to trot, to gallop [7].

II. CPG DESCRIPTION

The toolbox models a CPG composed by N neurons
through the following dynamical system:

żi =

[
V̇i

ẋi

]
=

[
fi(z, I(i)syn)

pi(zi)

]
(1)

3Motiftoolbox is freely available at https://github.com/jusjusjus/Motiftoolbox.

978-1-4673-6853-7/17/$31.00 ©2017 IEEE 1266

For the i-th neuron, Vi is the membrane voltage, xi is a
vector containing the other state variables (whose dynamics
are described by the vector field pi) and I(i)syn is the incoming
synaptic current, containing the following contributions:

I(i)syn =
N−1∑
j=0

gini,jhin(Vi, Vj) +
N−1∑
j=0

gexi,jhex(Vi, Vj)+

N−1∑
j=0

geli,jhel(Vi, Vj)

(2)

where hin, hex and hel describe chemical inhibitory, chem-
ical excitatory and electrical synapses actions, respectively,
whereas the coefficients gini,j , g

ex
i,j and geli,j represent chem-

ical inhibitory, chemical excitatory and electrical synapses
strengths, respectively, between neuron i and neuron j; gxxi,j =
0 means that neurons i and j are not connected by synapses
of type xx. The synaptic actions are modeled as follows:

hel(Vi, Vj) = Vj − Vi; hin(Vi, Vj) =
Ein − Vi

1 + eν(Vj−θ)

hex(Vi, Vj) =
Eex − Vi

1 + eν(Vj−θ)

(3)

where Ein and Eex are the inhibitory and excitatory synapses
reverse potentials, respectively, whereas ν and θ act on the
chemical synapses activation function shape.

A. Phase difference representation

A very useful approach in CPG analysis is the so-called
phase difference representation [8]–[11], which allows using
nonlinear systems’ stability analysis tools on the rhythmic
patterns generated by the network. Assuming that the state
of the i-th neuron describes a periodic orbit ẑi(t) of period
Ti, this orbit can be mapped (through the modulo function) to
a phase variable φi ∈ [0, 1) so that φi is reset to 0 when Vi
grows over a threshold Vth.

The phase difference representation uses N − 1 state
variables ∆φ1,i = (φ1 − φi) mod 1 (i = 2, . . . , N) and,
generally speaking, should be computed by numerically
integrating system (1), being not known a priori. In order to
use continuation analysis and also for reducing the simulation
times, under proper assumptions it is possible to approximate
the phase difference vector field through a Phase Resetting
Curve (PRC) [13].

III. TOOLBOX DESCRIPTION

CEPAGE is an object-oriented toolbox for simulation and
analysis of CPGs. Figure 1 shows the functional relationships
between classes (gray boxes), main methods (solid ellipses)
and corresponding output data (white boxes). The dashed
ellipses denote external analysis tools that can be applied to
the obtained data. Parallel computation, MEX files and the
Boost C++ libraries are used to reduce the simulation times.
The neuron class describes a single neuron and the CPG class
represents a CPG. The main toolbox functionalities are:

Fig. 1. Relationships between CEPAGE objects.

-) simulation of CPGs: by using method sim of class CPG,
the user can easily obtain the time evolution of the state
variables describing the network; it is also possible to start
parallel simulations from different initial conditions. If only
one initial condition is considered, it is possible to use the
simplot method, which also plots the state evolution;
-) limit cycle continuation; this functionality is useful when
one wants to detect limit cycle bifurcations; through the
method writeContinuationInterface, it is possible to generate
AUTO or MATCONT files for the limit cycle continuation;
-) CPG phase difference simulation: the method get-
PhaseRepresentation of class CPG allows obtaining the evo-
lution of the phase differences for the CPG neurons; also in
this case, parallel computations can be exploited to integrate
the system starting from different initial conditions. The sim-
ulation results can then be plotted through the plotPhaseSpace
method. This functionality can be used to obtain a brute-force
bifurcation diagram of the phase differences, but turns out to
be very time consuming for relatively large networks;
-) CPG approximate phase difference simulation: the
method computeApproxVectorField of class CPG is useful to
carry out brute-force (i.e., based on numerical integrations and
Poincaré sections [14]) analysis of the phase differences be-
tween neurons reducing the simulation times. The approximate
solution works accurately only for weakly-coupled networks
and is computed starting from PRCs [15], which can be
computed through the method computePRC of class neuron
model;
-) phase difference continuation: the approximate formula-
tion allows also knowing the vector field that describes the
phase difference evolution, making it possible a continuation
analysis of the patterns generated by the network. CEPAGE
can automatically generate files through the method writeAp-
proxVectorField, which can be used to carry out continuation
analysis with AUTO or MATCONT.

In order to perform a complete bifurcation analysis of a
CPG, all the tools described above should be employed, as
shown in the next section.

1267

IV. CASE STUDIES

A. 3-neuron CPG

As a first test bench, we consider a CPG already analyzed
in [13]. This CPG is composed by 3 neurons (see Fig.
2a), described by a modified FitzHugh-Nagumo model, with
parameters Ein = −1.5V , Eex = 0V , ν = 100V −1, θ = 0V
and synaptic coupling only inhibitory with4

gin = 10−3

0 1 g

g 0 1

1 1 0


where g is the bifurcation parameter and varies in the range
[1, 4]. Figure 3 shows the obtained bifurcation diagram in
the control space: the solid curves have been obtained by
CEPAGE through brute-force analysis, whereas the dashed
curves have been obtained through AUTO-07P, by using
the PRC approximation and the starting data generated by
CEPAGE. It is apparent that the two analysis results match
better for lower values of the bifurcation parameter, since for
stronger couplings the PRC approximation looses its accuracy.
This is an original result, which corroborates the analysis
carried out in [13]. In the same figure, the plane for g = 1
shows a state portrait with five stable equilibrium points,
corresponding to coexisting motifs. The basins of attractions
of the five stable equilibria are shown with the same color
code. For larger values of g, four of them undergo fold (SN)
bifurcations with as many unstable equilibria and the CPG
generates only one stable (gray) pattern.

(a) (b)

Fig. 2. Analyzed CPGs.

B. 4-neuron CPG

In this section we analyze the 4-neuron CPG (a variant
of the CPG studied in [10]) shown in Fig. 2b, in order to
highlight the main features of CEPAGE. The proposed results
are new. The four neurons are described by the reduced
leech heart interneuron model [16], with synapses parameters
Ein = −0.0625V, Eex = 0V, ν = 1000V−1, θ = −0.03V
and synaptic coupling matrices as follows:

gin = 2.5 · 10−3


0 1 0 0.25

1 0 0.25 0

0 0 0 g

0 0 g 0


4Each conductance is expressed in µS/cm2.

Fig. 3. Bifurcation diagram of the 3-neuron CPG obtained by brute-force
(solid lines) and AUTO-07P continuation (dashed lines).

gex = 2.5 · 10−3


0 0 0 0

0 0 0 0

0.25 0 0 0

0 0.25 0 0



gel = 2.5 · 10−3


0 0.25 0 0

0.25 0 0 0

0 0 0 0.5

0 0 0.5 0


where the bifurcation parameter g ranges in [1.4, 4].

Figure 4a shows the asymptotic membrane voltages Vi(t)
(i = 1, . . . , 4, the line colors correspond to the neuron colors
in Fig. 2b) obtained by simulating the CPG for g = 1.68.
The corresponding phase differences ∆φ1,i (i = 2, . . . , 4)
are shown in panel b. The behavior of the invariant sets in
a projection of the control space is shown in Fig. 5, where
the brute-force bifurcation diagram (black and blue curves)
is obtained by simulating the CPG for different values of g.
∆φ1,2 remains fixed to 0.5 and is not shown. By increasing g,
the stable motif (black curve) asymptotically reached in Fig. 4b
undergoes a fold bifurcation for g = 3.65 and disappears. For
higher values of g, the CPG loose phase locking (blue points),
i.e., it is no more in an Arnold tongue. The transition between
these stable invariant sets is shown in Fig. 6, where the gray
torus represents the “circular” state variables ∆φ1,3 and ∆φ1,4.
A similar behavior is observed by decreasing g: in this case the
fold bifurcation happens at g = 1.43. The stable equilibrium in
Fig. 5 has been continued through AUTO-07P by exploiting
the files provided by CEPAGE with the approximate vector
field. The result is shown in Fig. 5 and is accurate only for
low values of g, due to the PRC approximation.

1268

(a)

(b)

Fig. 4. Vi(t) (a) and ∆φ1,i(t) (b) for g = 1.68. The line colors correspond to
the neuron colors in Fig. 2b. The network starts from random phase differences
and converges to a phase-locked state.

Fig. 5. CEPAGE (black and blue curves) and AUTO-07P (red curves)
bifurcation diagrams in a projection of the control space showing stable
(solid curves with filled markers) and unstable (dashed red curves) motifs
and absence of phase locking (blue points).

(a) (b)

Fig. 6. Phase difference evolution over the torus for g = 3.5 (a) and g = 3.7
(b). Phase lags converge to (a) a stable fixed point (phase-locking state) or
(b) an invariant cycle (phase-slipping state).

V. CONCLUDING REMARKS

The results proposed in this paper point out the CEPAGE
good features for the analysis of CPGs. From the efficiency

standpoint, the simulation of the 3-neuron CPG for 10s starting
from 900 initial conditions (to generate the gray state portraits
shown in Fig. 3) takes about 15s on a processor intel i7 8-
core equipped with 12GB RAM. The brute-force bifurcation
diagram of Fig. 3 can be obtained in few minutes (31 values of
g). The simulation of the 4-neuron CPG for 10s starting from
1000 initial conditions takes few minutes and the bifurcation
diagram (brute-force part) shown in Fig. 5 about 3 hours (50
values of g). The toolbox is still in development and some
capabilities will be added, e.g., parallel simulation through
GPU computing. From the analysis standpoint, if we imagine
that each neuron of the 4-neuron CPG controls the gaits
of a quadruped’s locomotion, the proposed results could be
interpreted as follows: with the same CPG configuration,
for lower values of synaptic strength (e.g., g = 1.68) the
quadruped walks; by increasing g (e.g., for g = 3.4), it
breaks into a gallop; by further increasing the synaptic strength
(g > 3.7), we would have an uncoordinated movement.

ACKNOWLEDGMENTS

Work partially supported by the University of Genoa, by
NSF BIO-DMS (grant IOS-1455527), and by Lobachevsky
University of Nizhny Novgorod (RSF grant 14-41-000440).

REFERENCES

[1] S. L. Hooper, Central Pattern Generators. John Wiley & Sons, 2001.
[2] E. Marder and D. Bucher, “Central pattern generators and the control

of rhythmic movements,” Curr. Biol., 11, pp. 986 – 996, 2001.
[3] A. J. Ijspeert, “Central pattern generators for locomotion control in

animals and robots: a review,” Neur. Netw., 21, pp. 642–653, 2008.
[4] D. M. Abrams, L. M. Pecora, and A. E. Motter, “Introduction to focus

issue: Patterns of network synchronization,” Chaos, 26, p. 094601, 2016.
[5] E. J. Doedel, “AUTO: A program for the automatic bifurcation analysis

of autonomous systems,” Congr. Numer, 30, pp. 265–284, 1981.
[6] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, “MATCONT: a MAT-

LAB package for numerical bifurcation analysis of ODEs,” ACM Trans.
Math. Softw., 29, pp. 141–164, 2003.

[7] S. Coros et al, “Locomotion skills for simulated quadrupeds,” in ACM
Trans. Graph., 30, 2011, p. 59.

[8] L. Zhao and A. Nogaret, “Experimental observation of multistability and
dynamic attractors in silicon central pattern generators,” Phys. Rev. E,
92, p. 052910, 2015.

[9] R. Barrio, M. Rodrı́guez, S. Serrano, and A. Shilnikov, “Mechanism
of quasi-periodic lag jitter in bursting rhythms by a neuronal network,”
Europhys. Lett., 112, p. 38002, 2015.

[10] S. Jalil, D. Allen, J. Youker, and A. Shilnikov, “Toward robust phase-
locking in melibe swim central pattern generator models,” Chaos, 23,
p. 046105, 2013.

[11] J. Wojcik, J. Schwabedal, R. Clewley, and A. L. Shilnikov, “Key
bifurcations of bursting polyrhythms in 3-cell central pattern generators,”
PloS one, 9, p. e92918, 2014.

[12] J. Wojcik, R. Clewley, and A. Shilnikov, “Order parameter for bursting
polyrhythms in multifunctional central pattern generators,” Phys. Rev.
E, 83, p. 056209, 2011.

[13] J. T. Schwabedal, D. E. Knapper, and A. L. Shilnikov, “Qualitative and
quantitative stability analysis of penta-rhythmic circuits,” Nonlinearity,
29, pp. 3647–3676, 2016.

[14] D. Linaro and M. Storace, “BAL: A library for the brute-force analysis
of dynamical systems,” Comp. Phys. Comm., 201, pp. 126–134, 2016.

[15] V. Novičenko and K. Pyragas, “Computation of phase response curves
via a direct method adapted to infinitesimal perturbations,” Nonlinear
Dyn., 67, pp. 517–526, 2012.

[16] A. Shilnikov, “Complete dynamical analysis of a neuron model,” Non-
linear Dyn., 68, pp. 305–328, 2012.

1269

