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Abstract—This paper discusses practical approaches for de-
signing reduced synthetic circuits of central pattern generators
(CPGs) for quadruped locomotion using our newly developed
bifurcation toolkit. Specifically, two CPGs containing only four
elements (cells) are proposed that can reliably generate natural
gaits of typical quadrupeds more effectively than large dedicated
complex networks do. In addition, we analyze an enhanced
locomotion system that incorporates a neuromechanical model
for each leg and includes mechanisms of sensory feedback. We
demonstrate how the proposed CPGs produce the desired gaits,
which remain robust with respect to external perturbations.

I. INTRODUCTION

Locomotion in vertebrates with (four) legs is produced by
the coordinated limb movements, which, in turn, are deter-
mined by frequency, duty-cycle and phase of the rhythmic
pattern controlling each limb. The coordination is provided
by specific neuron networks, called central pattern generators
(CPGs). A CPG can generate single or multiple rhythmic
motor activities without sensory feedback, external and/or
pacing inputs [1]. A multifunctional CPG is a neural circuit
designed to produce different rhythmic outcomes depending
on an input coming from the brainstem, which is, in turn,
under the control of basal ganglia and cortex functions [2].
The rhythm produced by a CPG is meant to be robust to
small perturbations and well maintainable and adaptive via
mechanisms of sensory feedback. In other terms, in addition
to the open-loop control provided by the CPG, the locomotion
system has local (in each limb) closed-loop circuits producing
reflexes triggered by environmental interaction. This is one of
the reasons why the locomotion system of vertebrates ensures
both robustness and variety.

A CPG in a complex vertebrate can be composed of
hundreds of neurons grouped in subsets that often behave co-
herently, i.e., in synchrony. Activity in each functional module,
henceforth called a cell, can be represented uniformly and
thus modeled individually. This allows for a drastic functional
reduction of repetitive dynamics from a large CPG network to a
smaller circuit containing a few cells only. Of course, the level
of abstraction of a CPG model can be very different: networks
coming from biological studies often contain too many cells to
be suitable for analysis based on tools within the framework
of dynamical systems theory. There have been many recent
efforts of reductions of large networks to their simplified cores,
while preserving some of their pivotal properties and providing
plausible explanations for experimental observations [3].

In this paper we propose and discuss practical approaches

for designing reduced synthetic circuits of CPGs for quadruped
locomotion using our newly developed bifurcation toolkit [4],
based on the toolbox CEPAGE [5]. In addition, we test the
robustness of these CPGs by adding a neuromechanical model
of each leg, and by introducing a direct sensory feedback to
verify whether the CPG can properly reset the gait after the
occurrence of temporary mechanical perturbations, which can
be an external force holding and accelerating either leg for
some time as in the case of stumbling. Our results prove the
robustness of the CPG rhythmic outcomes.

II. 4-CELL CPGS FOR QUADRUPEDAL LOCOMOTION

In [4] we introduced a bio-inspired 8-cell CPG, which was
derived from a quadrupedal 40-cell CPG [6]. Its rhythmic
capacity was analyzed to show that it can reliably generate
various gaits typical of most quadrupeds. The 8-cell CPG,
shown in Fig. 1(a), has four cells to drive extensor (E)
muscles and four to drive flexor (F) muscles. The temporal
characteristics of gaits – such as the frequency, duty cycle and
phase lags between four legs – are controlled by a parameter
(henceforth denoted as α) representing some input descending
from the brainstem. The basic idea to further simplify the 8-
cell CPG is to remove the extensor cells and their connections:
flexor muscles are still driven by the flexor cells, whereas
extensor muscles are activated when flexor cells are silent.
Properties of cells – such as dynamical model, synapses and
the brainstem input – remain the same as in the original 8-cell
CPG, see [4] for details. Before introducing the reduced 4-
cell CPGs, let us first analyze the behavior of the 8-cell CPG
when all its extensor cells are removed. In what follows we
will refer to this circuit as the CPG-0 (shown in Fig. 1(b)),
which will be below analyzed and compared with the 8-cell
CPG to understand the role played by the extensor cells.

A. CPG-0 circuit

One can see from Fig. 2 that removing the extensor cells
from the 8-cell CPG alters only slightly the duty cycle and
the frequency of the flexor cells. Furthermore, we found
that the extensors play a fundamental role in determining
the quadruped gaits with exact phase lags in the patterns
controlling the limbs [4], [7]–[9]. The bifurcation diagram in
Fig. 3 demonstrates how the phase-locked phase lags (i.e., their
steady-state values), ∆φ1i, between the reference cell 1 (see
the cell number within each colored circle) and other cells
change as the parameter α is increased. The diagram reveals
that the CPG-0, like the 8-cell CPG, can also stably generate
trot (0.14 < α < 0.78) and bound gaits (α > 0.8), but does
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Fig. 1. Circuitries of the 8-cell CPG (a), CPG-0 (b), CPG-A (c) and CPG-
B (d). Gray (black) connections represent inhibitory (excitatory) chemical
synapses, whereas orange connections represent delayed inhibitory synapses.
In the 4-cell CPGs, the cells drive flexor muscles in each leg (L=left,
R=right, F=fore, H=hind), whereas the extensor muscles are activated when
the corresponding cells are silent.
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Fig. 2. Spike frequency, f , (upper panel) and duty cycle, dc, of flexor cells
plotted against the parameter α in the 8-cell CPG (black curves) and in the
CPG-0 circuit (gray curves, plotted underneath the black ones).

not produce the walk gait. We point out that for α < 0.14 and
for 0.78 < α < 0.8 the reduced circuit generates patterns not
matching any gaits natural for quadrupeds. In particular, for
0.14 < α there is bistability, due to a supercritical pitchfork
bifurcation. The cause of such bistability can be explained
by comparing the time evolution of cells 1, 2 and 5 in the
8-cell CPG and of cells 1 and 2 in the CPG-0 at low α-
values, see Fig. 4. The original circuit is designed so that,
whenever the active pre-synaptic cell-1 fires (produces an
action potential), the outgoing inhibitory synapse projected
onto the post-synaptic cell-2 is activated and thus prevents
(delays) the latter from producing any action potential. When
cell-1 becomes quiescent (inactive), cell-5 is active and again
inhibits cell-2, which yet remains inactive in a silent state.
As soon as cell-5 becomes silent, it is the turn for cell-2 to

0 0.2 0.4 0.6 0.8
0

0.5

1

Fig. 3. Bifurcation diagram of the CPG-0 circuit. Phase lags ∆φ1i between
the reference cell 1 and other cells: i = 2 (blue lines), i = 3 (red lines), i = 4
(green lines), plotted against increasing (dark colors) and decreasing (light
colors) the parameter α reveals the presence of hysteresis (i.e., bistability).
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Fig. 4. Time evolution of the membrane potentials in cells 1 (blue), 2 (red)
and 5 (light-blue) of the 8-cell CPG (upper panel) and in cells 1 (blue) and 2
(red) of CPG-0 (lower panel) at α = 0.01.

generate an action potential due to the effect of post-inhibitory
rebound. As the result, the circuit operates as if connections
with extensor cell-5 could have provided a delayed inhibition
between flexor cells 1 and 2.

Removing cell-5 in the reduced CPG-0, lets cell-2, using
post-inhibitory rebound, fire right after cell-1 becomes silent
and turns its inhibition off. Because of the network symmetry,
cells 1 and 2 do not become phase-locked in proper anti-phase;
moreover, with reversed initial conditions the roles of cells
1 and 2 are swapped, i.e., cell-1 would fire right after cell
2 becomes silent and vice versa. This explains bistability of
patters generated by the CPG-0 circuit at low α values. With
higher α values, the duty cycle increases and the inhibition
from extensors to flexors is no longer necessary to ensure their
anti-phase phase locking.

Based upon the above observations, below we will devise
and analyze two 4-cell CPGs (CPG-A and CPG-B) with
additional connections with respect to the CPG-0 circuit. Our
aim is to design minimal rhythmic circuits that, in addition
to trot and bound, can also generate the walk gait, like the
original 8-cell CPG.

B. CPG-A circuit

This circuit (shown in Fig. 1(c)) mimics the action of each
extensor cell and of its delayed inhibition to flexors by adding
four inhibitory synapses with delay (orange connections in Fig.
1(c)) with the following activation function:

hdin(Vi, Vj) =
Ein − Vi(t)

1 + eν(Vj(t−τ)−θ)
, (1)

where τ is the synapse delay, ν = 0.3 [mV−1], Ein = −75
[mV] and θ = −30 [mV]. To evaluate the range of fitting τ -
values, we compute the delay between the activation of flexor
and corresponding extensor in the 8-cell CPG. The results,
depicted in Fig. 5, indicate that τ must range between 80 and
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Fig. 5. Dependence of the time delay between the activation of flexor and
corresponding extensor cells in the 8-cell CPG on the parameter α.
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Fig. 6. Bifurcation diagram of the CPG-A circuit: forward and backward
transformation of phase lags ∆φ1i(α), i = 2 (blue lines), i = 3 (red lines),
i = 4 (green lines), as the bifurcation α-parameter is increased (dark colors)
and decreased (light colors) points out the absence of bistability. Stability
regions of walk (W) trot (T) and bound (B) gaits are evident.

100 [ms] for low α values, so we get the mean value τ = 90
[ms]. The bifurcation diagram shown in Fig. 6 displays that
the reduced CPG-A circuit can produce the three desired gaits:
walk, trot and bound, all observed in the 8-cell CPG. The
discontinuities in the trot (T) region are just illusory, due to
the phase lag definition (∆φ1i(t) = (φi(t)−φ1(t)) mod 1).

C. CPG-B circuit

With respect to CPG-0, this circuit (shown in Fig. 1(d)) is
additionally populated with synapses between fore and hind
flexors to generate all gaits. For low α values, it generates
periodically a traveling-wave pattern with cells activating in
the following order: 1-4-2-3. Thus, an alternative way to ensure
that when cell-1 becomes silent cell-4 fires instead of cell-3
is adding to CPG-0 inhibitory synapses between cells 1-3, as
shown in Fig. 1(d). The same holds for cell-2 (which plays the
role of cell-1) and cells 3-4 (which swap their roles).

The bi-parametric bifurcation diagram shown in Fig. 7 lets
us evaluate the synaptic strength gc of these unidirectional
connections and select the piecewise-affine (PWA) function
gc(α) (black line in the diagram) ensuring that cells 1 and 2
always fire in the locked anti-phase state. The PWA function is
chosen so that its effect on the behavior of the CPG is minimal,
while it helps to maintain the synchronization between fore
and hind cells. In other words, the value of gc is chosen as
small as possible to ensure the robust phase lag ∆φ12 = 0.5
in the walking gait. Because for α > 0.14 the CPG-B circuit
can generate the desired gaits without a need for any new
synapses, gc is set to 0. The red line in Fig. 7 demarcates
the border (supercritical pitchfork bifurcation) between two
regions of monostable (yellow region) and bistable dynamics.
It is determined by applying a brute-force criterion (edge of the
yellow region). In the blueish-color region bounded by the red
border, the circuit generates pair-wise rhythmic patterns: one
with phase lag ∆φ12 locked at the value shown in the vertical
bar, while the other with phase lag locked at 1 − ∆φ12, as in
Fig. 3 (low α values).

To elucidate all possible gaits produced by the CPG-B
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Fig. 7. Brute-force bifurcation diagram obtained by varying α and gc in
CPG B. Chosen PWA function gc(α) (black line). Curve marking the edge
between monostability and bistability regions (red line).
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Fig. 8. Bifurcation diagram of CPG-B with synaptic strength of added
synapses gc(α) (see Fig. 7). ∆φ1i(α), with i = 2 (blue lines), i = 3
(red lines), i = 4 (green lines), is obtained by increasing (dark colors) or
decreasing (light colors) the bifurcation parameter α. The bifurcation diagrams
point out the presence of three regions where walk (W), trot (T) and bound
(B), respectively, are the only stable gaits.

circuit, we perform the bifurcation sweep of its state as the
brainstem-drive α is varied and by setting the new synapses
strength according to gc(α). The bifurcation diagram shown in
Fig. 8 confirms that the CPG-B produces all the desired gaits.

III. NEUROMECHANICAL MODEL

In this section we extend the previous model to make
it suitable for applications in quadruped robots. We focus
on CPG-B, as it has the minimum number of cells and
synapses (14 vs 16 of CPG-A). There is a large number of
neuromechanical models with different complexities and levels
of biophysical realism [10]–[14]. Here, we consider only thigh
and hip of each leg and we add to our CPG a very simple
biophysically plausible model derived from [10], [13].

Each limb is modeled as a pendulum, of length L and mass
m, as sketched in Fig. 9. The extensor (flexor) muscle produces
a force FE (FF ) perpendicular to the leg that can move the
limb anti-clockwise (clock-wise). Then, the equation of motion
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Fig. 9. Neuromechanical model of a single limb. Extensor and flexor are
driven by motor-neurons Mn-E and Mn-F (red arrows). The motor-neurons
are driven by the CPG cell (red arrows) and their activity is also influenced
by the feedback from the mechanical model (green arrows). The forces acting
on the limb are represented by black arrows.
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Fig. 10. The chosen functions Fmax(α) for flexor (black line) and extensor
(gray line) muscles.

TABLE I. PARAMETERS OF THE NEUROMECHANICAL MODEL.

L 0.3 m qmin −0.0873 rad (−5◦)
m 300g qmax 0.1396 rad (8◦)

b 0.2 kgm2

s · rad νA 5 mV−1

νq 50 rad−1 θA -43 mV

of each thigh is given by:

Iq̈ = FF
L

2
− FE

L

2
− mg︸︷︷︸

Fg

sin(q) − bq̇, (2)

where q is the angle between the leg and the normal to ground,
I = mL2

3 is the momentum of inertia and b is the angular
viscosity of the joint. The force of each muscle is evaluated as
F = FmaxA, where A is the activation of the driving motor-
neuron, that is a number ranging in the interval [0, 1] and
related to the muscle activation level. We design a neuronal
network driving the limbs subjected to three constraints: (1)
each leg must be synchronized with the corresponding CPG
cell when no external force is applied; (2) each leg must
oscillate within the range [qmin, qmax]; (3) when an external
force is applied and next released, the leg should be able to
re-synchronize with its driving cell.

The designed network employs CPG-B to drive (with the
i-th cell) the two motor-neurons, which, in turn, drive the mus-
cles (Fig. 9). Moreover, we add two sensory feedback loops
from hip to motor-neurons, whose activation properties are
borrowed from [10] and described by the following equation
(a completely similar equation holds for f (i)max):

f
(i)
min =

1

1 + eνq(q
(i)−q(i)min)

. (3)

The motor-neuron activation A(i) for the i-th leg is computed
as an algebraic function of the CPG cell membrane potential
Vi and the feedback from the hip (Eq. (3)) as follows (blue:
flexor, red: extensor, black: both):

A
(i)
F
E

= max

(
1

1 + e
−
+νA(Vi−θV )

− 2f
(i)
max
min

, 0

)
, (4)

where all parameter values are listed in Tab. I; in particular, the
mechanical parameters are chosen to be identical to those of
the Oncilla robot [10]. Here, function Fmax of α is chosen on
the basis of extensive simulations with CEPAGE, thus ensuring
that q(i) varies between qmax and qmin (see Fig. 10).

The fulfillment of constraint (1) follows from the bifurca-
tion diagram, shown in Fig. 11, obtained in the absence of any
external force. It demonstrates that the legs synchronize with
the driving cells, as we expect. Figure 12 shows the maximum
and minimum angles for different values of α; it is evident
that the constraint (2) on angle range ([−5◦, 8◦]) is satisfied.
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Fig. 11. Upper panel: bifurcation diagram of the neuromechanical model
showing the locked phase lags ∆φ1i(α), with i = 2 (blue lines), i = 3 (red
lines), i = 4 (green lines), between CPG-B cells’ membrane potentials (solid
lines) or limbs’ angles (dashed lines) in the absence of external force. The
diagram evidences again three stability regions corresponding to walk (W),
trot (T) and bound (B) gaits. Lower panels: angles q(i)(t) for the four legs
(color code as for the corresponding cells in Fig. 1(d)).

Fig. 12. Maximal and minimal values (black dots) for the angle q for different
α values. Dashed lines represent constraints imposed on q.
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Fig. 13. Stable periodic orbits (black lines) and perturbed trajectories (gray
lines) of a single leg for walk (W), trot (T) and bound (B). The red dots mark
the perturbations applied.

To measure the robustness of the whole system, we perturb
a targeted limb with an external force of about 0.1N for 0.1
seconds at various limb angles and speeds in case of all three
gaits generated by the CPG circuit. One can see from the
phase-space panels in Fig. 13 that as soon as the external
force is removed, every leg quickly re-synchronizes with the
corresponding CPG cell in all three cases examined.

IV. CONCLUSIONS

The modeling of CPGs requires a trade-off between two
conflicting interests: simplicity of the circuit for its analysis and
implementation against its fidelity to biophysics to reproduce
the original gaits not only qualitatively but also quantitatively
in practical applications. This paper presents another step
forward in this direction: the technique proposed in [4], with
the use of the Ockham’s razor, let us stably re-create some
desired gaits in two simplified CPG circuits. Furthermore, the
addition of a neuromechanical model brings the synthetically
developed CPGs taking into account local feedback loops even
closer to engineering robotic applications [10].

Acknowledgments: Work supported by University of
Genoa, by NSF (grant IOS-1455527) and by Lobachevsky
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