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Abstract—We propose and discuss a digital architecture suit-
able for hardware implementation of multifunctional neural
networks to regulate several gaits for quadruped locomotion.
These circuits have a far-reaching application for various bio-
inspired robotics and synthetic prosthetics. The circuit is tested
by implementing an 8-cell network proposed and analyzed here
for the first time, whose robustness is checked with respect to
parameter mismatching.

I. INTRODUCTION

Animal legged locomotion is governed by complex dynam-

ics. In order to let the animal move in an efficient and stable

way over varied and uncertain terrains, it requires an accurate

control for limbs that is agilely responsive and adaptive to

sensorimotor errors to avoid falls and collisions in habitual

conditions [1]. The locomotion action is tightly coupled with

various bio-mechanical (musculoskeletal structure) and neural

(control action) factors. Therefore, being inspired by Nature,

one has to re-recreate/re-engineer locomotion systems that

combine animal morphology and control by neural mecha-

nisms. Neural circuits known as Central Pattern Generators

(CPGs), being small neural networks usually located along

the spinal column in vertebrates, provide an open-loop control

to stably generate various rhythmic patterns corresponding

to different gaits. Furthermore, locomotion control involves

two mechanisms of closed-loop control, acting at different

timescales [2]. The first one is a sensorimotor control im-

plemented through (spinal) reflexes with fast response times

(in the order of few milliseconds), which allow for reacting

to unexpected events, such as unseen or badly estimated

obstacles causing a sudden lost of balance. The second one

is a predictive planning requiring longer processing (in the

order of seconds) of sensory stimuli in higher brain centers;

this kind of control sets the rhythm generated by the CPG.

In [3] a method has been proposed that allows for designing

the synaptic connections in order to obtain different gaits with

variations of a control parameter α, representing the neuro-

modulation induced on the CPG by the higher brain centers

drive [4], [5]. In particular, the α parameter models the action

of the brain-mediated slower closed-loop control in a synthetic,

biologically-inspired CPG composed of macro-models (cells)

of several subgroups of neurons functioning synchronously.

In [6] a reduced model of the reactive sensorimotor-feedback-

mediated control for similar CPG circuits was proposed. What

should the next step be? We think the digital implementations

for rhythm-generating circuits have far-reaching applications

for bio-inspired robotics [2], [7] and rehabilitation [8], that re-

quire the hardware and software development of these rhythm-

generating circuits. This should let one to implement different

CPG architectures, and various models of cells and synapses,

whose properties (e.g., synaptic weights) vary depending on

the control parameter α.

In the last decades, many neuromorphic architectures have

been proposed to implement neural networks mimicking spe-

cific neural functions [9]–[13], including CPGs [14], [15].

They are often based on “integrate and fire” neuronal models

with limited options. On the other hand, small and hence

specialized neural networks such as CPGs typically require

biophysically plausible and accurate models for their cells.

For instance, CPGs are known to demonstrate the so-called

post-inhibitory rebound of the cell membrane voltage, which

allows reciprocally inhibitory cells to generate self-sustained

oscillations in anti-phase [16].

In this paper, we discuss an easily programmable digital

architecture, which enables the implementation of a range of

synthetic, minimal CPGs that can generate a set of different

prescribed rhythms. The key feature of this architecture is

its easy on-line reprogramming, which, as described above,

allows for embedding neuromodulation in the CPG (through

the external drive α) and switching continuously and reliably

among different gaits as α is changed. To the best of the

authors’ knowledge, the only circuit with similar features

[17] does not allow for implementing complex cell models

and is not portable on different digital circuits, unlike the

architecture proposed here. The digital architecture is based

on a main board that connects together Processing Units (PU)

modeling cells of the CPG. The parameters of individual cells

and their connectivity can be changed at run-time through

the USB connection. To test the functionality of this circuit,

we implement and analyze an 8-cell CPG producing four

gaits. Unlike the CPG considered in [3], this 8-cell CPG

is designed using a distinct network topology allowing for

more biologically-plausible responses of the cells controlling

the flexors. In addition, we test the robustness of the gaits

produced by the CPG under consideration.

II. ARCHITECTURE OF THE CPG CIRCUIT

The i-th cell of the CPG is described by a set of ODEs:

żi =
[
V̇i

ẋi

]
=

[
fi(zi, α, I

(i)
syn(α))

pi(zi)

]
, (1)



Fig. 1. Scheme of the digital CPG circuit. The circuit contains N PUs
(corresponding to the N CPG cells), each one of which computes the time
evolution of zi. The PUs share CPG parameters through I2C bus.

here zi =
[
Vi xT

i

]T
(whose physical dimensions depend on

the chosen cell model) is a state vector with Vi being the

membrane potential directly acting on the legs and on the

synapses, xi is a vector of auxiliary state variables, [fi pT
i ]

T

is the vector field determining the cell dynamics, and α is the

parameter representing the brain control. The term I
(i)
syn(α),

representing the incoming synaptic current, which is due to

chemical (inhibitory and excitatory) or electrical synapses, is

given by

I(i)syn =
N−1∑
j=0

ginij (α)hin(Vj)(Ein − Vi)+

N−1∑
j=0

gexij (α)hex(Vj)(Eex − Vi) +

N−1∑
j=0

gelij(α)(Vj − Vi)

(2)

The inhibitory (excitatory) synapse activation hin (hex) is an

algebraic function of the pre-synaptic cell membrane potential

Vj and ginij (gexij ) is the strength of the inhibitory (excitatory)

chemical synapse between cells i and j. Similarly, gelij is the

strength of the electrical synapse between cells i and j. All

the synaptic strengths are non-negative numbers.

To implement this model into the digital circuit, we adopt

the architecture shown in Fig. 1; it allows building a CPG

composed of up to N cells. The circuit is composed of N
Processing Units (PUs), corresponding to the N CPG cells.

Each unit contains at least one of each of the following

elements: Analog to Digital Converter (ADC), Digital to Ana-

log Converter (DAC), RAM, Direct Memory Access (DMA),

timers and Central Processing Unit (CPU) with floating-point

Arithmetic-Logic Unit (ALU). The i-th CPU computes the

time progression of the state vector zi, while the DAC converts

the cell membrane potential Vi into an analog signal. Each

processing unit receives the analog membrane potentials Vj

(j = 1, . . . , N ) of all cells and converts them into digital

signals through the ADC. Every processing unit is assigned a

unique address (between 1 and N ) that is shared on the I2C
bus; these identifiers are used to configure parameters of the

cells. In particular, a PC sends the control α-parameter value

through USB port to processing unit 1, which next configures

itself and passes the α value to the other cells through I2C bus.

The use of the low-speed (serial) protocol I2C bus justifies the

need of ADCs and DACs. A faster (parallel) protocol could

allow the use of digital signals only, thus avoiding the use

of converters, at the cost of a reduced scalability to larger

networks or to more complex cell models. Both USB and I2C
communications are managed by interrupt. Figure 2 shows a

Fig. 2. Block-scheme of the i-th processing unit. The main CPU task is
to compute the state evolution through the forward Euler’s method. The
communication with the PC and the other PUs is managed by interrupts.

more detailed block-scheme of the i-th processing unit, whose

function is to compute the time evolution of the state vector zi.
A timer interrupt is emitted every Δt seconds. When the k-th

timer interrupt occurs, the DMA moves the sampled membrane

potentials Vj(kΔt) of the other cells from ADC to RAM, and

then the CPU computes the next state sample as follows:

zi((k + 1)Δt) = zi(kΔt) + Δt żi(kΔt) (3)

by integrating Eqs. (1) using the Euler method. The computed

zi((k + 1)Δt) value is stored in RAM and then is moved

to DAC by the DMA when the (k + 1)-th timer interrupt is

emitted. Blocks scale in and scale out depend on the chosen

cell model and provide a linear scaling between ADC and

DAC range to the range of cell membrane potential.

III. CASE STUDY: 8-CELL CPG FOR MOUSE LOCOMOTION

As a case study, we consider the CPG for mouse locomotion

shown in Fig. 3; its circuitry is deduced by applying the syn-

thesis method described in [3] to a bio-inspired CPG [18]. The

CPG behavior is controlled by the parameter α ∈ [0, 1], which

determines both the speed and the gait produced by the CPG.

This CPG can generate the frequency and rhythmic patterns

matching walk, trot, gallop and bound gaits of mice. The CPG

includes four flexor (1-4) and four extensor (5-8, labeled with

E) cells that can be grouped into four flexor-extensor pairs,

Fig. 3. The wiring circuitry of the CPG with mixed, excitatory and inhibitory,
synapses between its constituent cells.



each one driving a limb (L=left, R=right, H=hind, F=fore). The

cells shown in Fig. 3 are coupled by chemical inhibitory (lines

with solid dots) and excitatory (lines with triangle) synapses.

Lines with the gray dots indicate inhibitory synapses whose

strengths change with α, as described in the Appendix.
The cells are described by the same model proposed in [18]

(and not reported here for conciseness), whereas the synaptic

models are described using the fast threshold modulation

(FTM) paradigm [19] as follows:

hin(Vj) = hex(Vj) =
1

1 + e−ν(Vj−θ)
; (4)

where ν and θ determine the shape of the sigmoidal synaptic

activation function. All parameters are given in the Appendix.
In what follows we argue that our CPG model has certain

advantages to maintain and regulate quadruped locomotion as:

• it contains fewer cells than the CPGs examined in [5],

[18] while generates the same gaits;

• compared to the CPGs proposed in [3], [20], it contains

the same number of cells but is more efficient and

functional, as the α-drive acts on the left (1 and 4) and

right (2-3) flexors uniformly;

• while it contains more cells than the CPGs proposed in

[6], [21], it is more biologically plausible because does

not rely on delayed synapses, which lets the brain drive

influence all the flexors in homogeneous way.

A. Circuit implementation
Figure 4 shows the digital circuit implementation of the 8-

cell CPG. The CPG circuit is implemented on a (copper) main

board equipped with eight STM32F415 micro-controllers (on

the smaller green boards realizing the PUs). Each one (running

at 168 MHz) contains three multiplexed ADCs (reading up

to 16 analog channels with a maximum rate of 2.4 × 106

samples per second), two 12-bit DACs, DMA, 32-bit timers

and a floating point unit. Two AD8608 operational amplifiers,

between DACs and ADCs, in buffer configuration are used to

uncouple the converters. All micro-controllers have a unique

address (1 to 8) and share the I2C bus.

Fig. 4. Implemented 8-cell digital CPG circuit. The main (copper) board
contains 8 PUs (green boards).

IV. RESULTS

First, using the MATLAB-based CEPAGE toolbox [22] we

examine how the 8-cell CPG regulates the locomotion of mice.

Specifically, we evaluate the frequency f (directly related to

the animal speed), the duty-cycle dc (measuring the ratio

between stand and swing phases) and the phase differences

Δ1i between the first and the i-th cells (corresponding to the

synchronization between the limbs) through the computational

method proposed in [20]. The asymptotic phase differences

Δ1i, the frequency f and duty-cycle dc of each cell, computed

for 100 values of α linearly-equally spaced between 0 and 1,

are shown in Figs. 5- 6. For α < 0.2 (green region) the CPG

produces the walk gait with a low frequency (f < 4Hz), the

phase difference 0.5 between alternating cells 1 and 2, while

the phase differences Δ13 and Δ14 are close to 0.25 and 0.75,

respectively. The trot gait is produced when 0.2 < α < 0.9
(light blue region) with cells 1-2 and 1-4 activating in alterna-

tion (Δ12 = Δ14 ≈ 0.5) at the mid frequency range [4, 10]Hz.

In the gray region with 0.9 < α < 0.93 the CPG becomes

bi-stable due to a supercritical pitchfork bifurcation; moreover

the pattern generated in this region does not correspond to any

natural gaits. When α is increased to [0.93, 0.95] (pink region),

the CPG produces the rotatory gallop gait with fore flexors

activating nearly in-phase Δ12 < 0.1 (or Δ12 > 0.9) and in

anti-phase with the hind cells as Δ14 ≈ 0.5. This region also

presents bi-stability with two steady states corresponding to

the same pattern but with reverse activation order between the

cells. Finally, when α > 0.95 (yellow region), the CPG, having

become mono-stable due to another supercritical pitchfork

bifurcation at α = 0.95, produces the bound gait at a higher

Fig. 5. Frequency f (upper panel) and duty cycle dc (lower panel) plotted
against the drive α for four gaits produced by the CPG. Color regions:
combinations of f and dc corresponding to walk (green), trot (light blue),
gallop (pink), bound (yellow) and no biological gait (gray).

Fig. 6. Asymptotic phase differences Δ1i, with i = 2 (blue), i = 3 (red)
and i = 4 (green). Branching points at α = 0.9 and α = 0.95 are due to
supercritical pitchfork bifurcations. Vertical dashed lines: α-vales used in the
hardware tests. Color regions: Δ1i corresponding to walk (green), trot (light
blue), gallop (pink), bound (yellow) and no biological gait (gray).



frequency (f > 10Hz) so that cells 1-2 and 3-4 activate

together (Δ12 = 0), whereas the phase difference between

alternating front and hind cells is 0.5. We remark that the

obtained results are coherent with the biological data in [23].

To check the robustness of the obtained CPG against

variations in the synaptic strengths, we added a random

mismatch to the non-zero entries of the synaptic matrices:

gxxij = gxxij (1 +N(0, σ)), with xx ∈ {in, ex}. Among all the

CPG parameters, we check the robustness against variations

in the synaptic strengths, as the topology is chosen a priori

as a part of the design procedure while its dependence on

the choice of models is investigated in [21]. The standard

deviation σ was set to the following values: 1%, 2.5% and 5%,

respectively. We analyzed 100 values of α and 100 trials for

each value of α. Mean and standard deviation of the obtained

results were computed. The corresponding asymptotic phase

differences Δ1i are shown in Fig. 7 from the upper to lower

panel, respectively.

The found mean values agree very well with the results

illustrated in Fig. 6. One can see that Δ14 (green line) is the

most resilient compared the other asymptotic phase-differences

for any α value. On the contrary, Δ12 (blue line) is robust

(0.5) only when α < 0.8; this suggests that the fore-hind

connections in this CPG exhibit a greater stability than the

left-right ones. As a consequence, the walk and trot gaits are

the most robust and efficient gaits, which correspond to the

left-right alternation with Δ12 = 0.5.

We measured the flexor cells membrane potentials through a

RIGOL DS1104 oscilloscope for 51 α-values, equally spaced

in the interval [0, 1]. The bifurcation diagram of the steady-

state phase differences Δ1i is indistinguishable from the one

shown in Fig. 6 and therefore is not reported here. The

measured Vi(t) obtained for the four values of α corresponding

to the vertical dashed lines in Fig. 6 are shown in Fig. 8.

From top to bottom, the circuit generates walk (α = 0.05),

trot (α = 0.5), gallop (α = 0.94) and bound (α = 1).

V. CONCLUDING REMARKS

We proposed a circuit architecture specifically tailored

to CPGs implementations targeting robotics and rehabilita-

Fig. 7. Asymptotic phase differences Δ1i, with i = 2 (blue), i = 3 (red)
and i = 4 (green) for standard deviation of the parameter mismatch set to 1%
(top), 2.5% (middle) and 5% (bottom). Dark solid lines: mean values. Shaded
strips indicate the mean ± standard deviation.
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Fig. 8. Membrane voltages Vi(t) generated by the circuit CPG for the flexor
cells for α-values corresponding to the vertical dashed lines in Fig. 6 (color
code as for the cells in Fig. 3). From top to bottom: walk (α = 0.05), trot
(α = 0.5), gallop (α = 0.94) and bound (α = 1).

tion/prosthetics applications. Its main advantage is its high

flexibility, as it lets various models of cells and synapses

be tested by the software tool CEPAGE [22] and chosen to

compose rhythm-generating neural networks. Both cell and

synapse parameters can be easily and dynamically changed on-

line by acting on α, thus making it possible to emulate various

gaits through a brain-mediated closed-loop control without re-

programming the PUs. With respect to single-PU architectures

[24], the proposed distributed architecture exploits parallelism

and can also implement biologically plausible and hence

computationally expensive models, including the Hodgkin-

Huxley types.

APPENDIX

The synaptic weights are listed in Table I. Those depending

on α are shown in Fig. 9.

TABLE I
SYNAPTIC PARAMETERS OF THE CPG.

Connections value [nS] Connections value [nS]

gex12 , gex21 , gex34 , gex43 0.0733 gin15 , gin26 , gin37 , gin48 0.1992
gex36 , gex45 0.0320 gin51 , gin62 , gin73 , gin84 2.5740
gex42 , gex31 0.0602 gin41 , gin32 0.0437
gex24 , gex13 0.1957 gin12 , gin21 , gin34 , gin43 g1(α)
gex18 , gex27 0.4003 gin42 , gin31 g2(α)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0

0.5

Fig. 9. Functions that describe inhibitory synapse strengths.

The other parameters are set to the following values: Ein =
−75 [mV], Eex = −10 [mV], θ = −33.5 [mV], ν = 0.2
[1/mV].
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