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Chapter 1

Symbolic representation of neuronal
dynamics

1.1 Abstract

We demonstrate a GPU-based symbolic toolkit to study a whole range of

dynamical behaviors occurring in neuron models. Its algorithms include

periodicity detection, hashing, and Lempel-Ziv complexity to process sym-

bolic sequences extracted from wave-form traces using voltage and time

interval partitions. This aggregated partitioning scheme is well applicable

to a broad spectrum of other dynamical systems across diverse disciplines.

Our approach is motivated by experimental neurophysiology where voltage

wave-forms are often the only observables available. This symbolic toolkit

can offset and complement other computational tools for studying neuronal

dynamics such as spike counting, Lyapunov exponents and parameter con-

tinuation.

1.2 Deterministic Chaos Prospector (DCP)

In our previous studies implementing such a GPU-based (multi-core graph-

ics processing unit) symbolic toolkit, called Deterministic Chaos Prospector

(DCP), we examined several Lorenz-like systems [1, 2] to disclose a wealth

of universal homoclinic and heteroclinic bifurcations of saddle equilibria,

as well as to detect regions of simple and chaotic dynamics in the param-

eter space. Particularly, we relied on the Z2-symmetry of such systems to

generate and associate periodic or aperiodic binary sequences, correspond-

ing to regular or chaotic flip-flop patterns of the outgoing separatrix of the

saddle at the origin. Unlike the case of the Lorenz-like attractors, chaos in

slow-fast models of individual neurons is less typical. It generally occurs

at transitions between bursting and tonic-spiking activity, when the cor-
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Fig. 1.1 (a) Symbolic partitions demonstrated for mixed-mode chaotic bursting, par-
titioned by voltage levels at [−60,−40, 10]mV (red dashed lines), resulting in a set of

4 symbols (a ≤ −60 < b ≤ −40 < c ≤ 10 < d). A short segment showing two spikes
in a burst is magnified in (b). Based on the occurrence of events of maximal and mini-

mal voltage values (red dots) and using voltage partitions, the symbolic representation

of this segment is coded as (dbdb) (in the red color). With time interval partitions
[100]ms between events (gray dashed lines enclosing spikes) resulting in a set of 2 sym-

bols (A ≤ 100 < B), the symbolic representation is given by (BABAB) (in the gray

color). Combining both voltage and interval partitions gives a detailed symbolic sequence
(BdAbBdAbB).

responding orbit in the phase space changes its characteristics or stability

through non-local bifurcations such as spike-adding, for example, through

well-defined homoclinic bifurcations of periodic orbits and equilibria. The

further development and use of the toolkit must, therefore, be motivated

by a neuroscience-specific context based on the voltage wave-forms, with-

out relying on having access to all the phase variables of a Hodgkin-Huxley

model in question, such as the gating variables.

One simple method for constructing a meaningful partition to differ-

entiate between various voltage wave-forms is to break any given one into

small time-bins of an identical size, shorter than the duration of a typical

spike. As these bins sample over the trace, the occurrence of a spike within

a bin is marked with the symbol 1, and otherwise with 0, thus digitizing

the voltage trace into a binary sequence. Alternatively, we can identify

events corresponding to maximal and minimal voltage values on all spikes

in the trace. Whenever a maximum is detected in the trace above some

firing threshold, we mark it with the symbol 1, and whenever a minimum is

detected below this threshold, we mark it with 0. For a typical square-wave

bursting trace (without sub-threshold oscillations), this approach would be

identical to spike counting. To stably identify a diverse set of neuronal
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dynamics including quiescent states, periodic tonic spiking, spike addition,

square-wave bursting, plateau-busting, parabolic bursting, mixed-mode os-

cillations, quasi-periodicity and chaos, one should combine both voltage-

and time-bin approaches, resulting in a minimal information loss algorithm

that basically retains all relevant details, and describes the trace in the

form of a multi-symbol string.

Figure 1.1 illustrates one of the complex bursting traces with an un-

predictable number of spikes within bursts that are separated by slow

amplitude sub-threshold oscillations, also chaotic. Such a trace is typi-

cally recorded in the Plant endogenous parabolic burster [3] at the tran-

sition between bursting activity and the hyper-polarized quiescent state.

To find a symbolic description of this chaotic voltage trace, we first iden-

tify all events corresponding to maximal and minimal voltage values (red

dots), as well as time intervals between them (gray dashed lines). We

then use voltage and time interval partitions, Vbins and Tbins, to symbol-

ically characterize the event and timing information. Using the voltage

partition Vbins = [−60,−40, 10]mV (red dashed lines) results in four sym-

bols (a ≤ −60 < b ≤ −40 < c ≤ 10 < d), representing quiescence or

burst terminations, sub-threshold oscillations, plateau burst, and spiking,

respectively, found in a voltage trace. Similarly, the time interval partition

Tbins = [100]ms results in a set of 2 symbols, (A ≤ 100 < B), represent-

ing successive maximal/minimal events separated by a duration shorter or

longer than 100ms, respectively. Figure 1.1b shows a short segment of two

spikes in a burst within the long voltage trace. The symbolic representa-

tions of this segment using Vbins, Tbins, and a combination of both, are

given by (dbdb) (red), (BABAB) (gray) or (BdAbBdAbB), respectively.

An overbar, like in (abc), is meant to represent the periodic portion of

a repetitive sequence that corresponds to regular tonic-spiking or bursting

traces. For example, a tonic-spiking trace with two spikes like in Fig.1.1b

might be represented by (db), (BA) or (BdAb), respectively, with Vbins,

Tbins or combined partitions. Using just Vbins, spike addition to a burst

starting from single spikes up to a burst with 4 spikes can be represented

by (da), (dbda), (dbdbda) and (dbdbdbda), respectively. A quiescent state

lacking all critical events is marked with the symbol a.

Omitting some long transient lets us examine long-term behaviors of so-

lutions of the model in question. We normalize all shift-symmetric periodic

sequences by designing a one-way hash function that produces identical

hash value for all circular variations of a periodic sequence [4]. In simple

terms, all four circular variations of the periodic sequence (abcd), (bcda),
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(cdab), or (dabc) result in the same numerical hash value. For aperiodic

strings representing chaotic traces, we use the LZ compression algorithm

implemented in [2] for deterministic chaotic systems, to measure its com-

plexity. As the string is scanned, new words are continuously added to the

vocabulary. Eventually, the size of the LZ-vocabulary normalized by the

length of the string is used as the complexity measure.

Fig. 1.2 Bi-parametric sweeps for the Hindmarsh-Rose model (a), the bull-frog hair cell

model (b), and the leech interneuron model (c) using DCP reveal universal and diverse
features. The HR model (a) demonstrates plateau-bursting and square-wave bursting

in addition to tonic spiking (purple) and chaos (darker shades of gray imply greater

LZ complexity). The bifurcation diagram is identical with V -bins [−1.2] or τ -bins [25].
Staircase-like patterns in (a) at the boundaries of spike adding transitions within the

region of square-wave bursting are indicative of multi-stability. The hair cell model (b)

shows tonic spiking (olive), quiescence (white), or bursting regions with spike-adding
transitions between solid color stripes, same as in the bifurcation diagram of the leech

interneuron model (c). Addition of noise in (c) widens the regions of chaos at the

boundaries of spike addition.

1.3 Bi-parametric sweeps

Next, we demonstrate the benefits of this toolkit through highly detailed

reconstructions of biparametric sweeps, shown in Fig.1.2, for three neu-
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ronal models: (a) a mathematical three-dimensional (3D) Hindmarsh-Rose

model of a square-wave burster, (b) a highly detailed 12D bull-frog hair

cell model featuring quasi-periodic oscillations, and another (c) 3D leech

heart interneuron model featuring various bi-stable states and the blue-sky

catastrophe bifurcation on the border of tonic-spiking and bursting activity;

see Refs. [5–9] and the references therein, for details of the models and pa-

rameters. The biparametric sweeps are obtained by computing long traces

using identical initial conditions as the two parameters are varied across

a grid of size 1000 × 1000. Numerical integration is performed using the

fourth order Runge-Kutta method with fixed step size. The computation

of these solutions is massively parallelized by running on separate GPU

threads using CUDA, which results in fast computation of the sweeps such

as Figure 1.2a in about 200s. Visualizations are done in Python. A com-

bination of Vbins and Tbins is employed to obtain symbolic sequences for

events corresponding to the maximal and minimal voltage values, and/or

time intervals. To study long-range dynamics of solutions of the models,

a sequence of the first 2000 symbols is omitted as transient. The follow-

ing sequence of 2000 symbols is then analyzed to detect the existence of

periodicity (or lack thereof). If detected, the hash function generates the

shift symmetric hash value of the periodic sequence, which is projected to a

color map to obtain a color value. Parameter values that result in topolog-

ically identical periodic behavior in their solutions result in identical hash

values, and thus, have identical color in the sweep. Aperiodic sequences

are processed through the LZ-algorithm to detect their complexity. Lack of

periodicity is indicative of structurally unstable, chaotic dynamics. They

are represented in the bi-parametric sweeps in gray shades, with greater

LZ-complexity shown in darker gray to represent greater instability.

The bi-parametric sweeps shown in Fig. 1.2 reveal a rich variety of dy-

namics in three typical neuronal models. Figure 1.2(a) being a sweep of the

Hindmarsh-Rose model, demonstrates regions of the plateau- and square-

wave bursting in addition to tonic spiking (purple) and chaos (gray shades).

The bifurcation diagram remains identical with either Vbins = [−1.2] or

τbins = [25]. At the boundaries of spike-adding bifurcations, one can spot

a staircase-like pattern due to bi-stability of coexisting bursting solutions

with distinct spike numbers, whose emergence depends on the choice of ini-

tial conditions. Figure 1.2(b) shows regions of tonic-spiking (olive), quies-

cence (white), or bursting with spike adding transitions between solid-color

stripes in the bull-frog hair cell model. The boundary of the quiescent

region (white) is due to the Andronov-Hopf bifurcations, while the bound-
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ary between tonic-spiking (olive) and bursting regions is due to torus and

period-doubling bifurcations [8]. The leech interneuron model is also known

to have regions of quiescence (white), tonic-spiking (purple) and bursting

partitioned by spike-adding transitions within (other solid colors). Adding

small noise to this model amplifies chaos at spike-adding bifurcations and

widens its boundaries. [10].

1.4 Conclusions and future directions

We showed how a novel design of multi-bin voltage and time interval parti-

tions enhancing the previously developed DCP-toolkit expedites examina-

tions of dynamics of simple and biologically plausible models of individual

neurons, and the sweeps of their parameter spaces, to a few seconds. It

also provides the flexibility of minimal loss of voltage and timing informa-

tion. While this study employs manually built partitioning schemes, fu-

ture development of the algorithms could apply statistical post-processing

of event data to achieve scale-invariance and to enrich the high-resolution

sweeps with additional temporal information concerning bursting and tonic-

spiking activity. We also plan to extend these techniques for studies of the

dynamics of neural networks.
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