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Abstract

Self-sustained subthreshold oscillations in a discrete-time model of neuronal behavior are considered. We discuss bifurcation
scenarios explaining the birth of these oscillations and their transformation into tonic spikes. Specific features of these transitions
caused by the discrete-time dynamics of the model and the influence of external noise are discussed.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction A simple discrete-time model replicating the spik-
ing-bursting neural activity has been suggested re-
cently in [7]. This model is a 2D map that mimics
rather realistically various types of transitions that oc-
cur in biological neurons. These transitions include
routes between silence and tonic spiking as well as
a triplet: silence< bursts of spikes tonic spiking.

| Such simple phenomenological models bear a high po-
tential for further developments of computationally ef-
ficient methods for studies of functional behavior in
large-scale neurobiological netwoil&.

The bifurcation analysis of the map model carried
out in [9] has shown that the transition from silence
(a stable fixed point) to genation of action potentials
is characterized by a sub-critical Andronov—Hopf bi-
furcation when an unstable invariant closed curve col-
lapses into the stable fixed point. Therefore, the orig-
inal map-mode[7] provides only an abrupt transition

~* Corresponding author. from silence to spiking as a control parameter (e.g., the
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Studies of dynamical behavior of biological net-
works require numerical simulations of arrays con-
taining a very large number of neurons. Despite the
variety of physiological processes involved in the for-
mation of neuron activity, the thorough studies of the
large-scale networks need simple phenomenologica
models that can replicate the dynamics of individual
neurons. Various suggestions for the design of low-
dimensional maps for modeling the neurons’ behavior
have been proposed, see, for examfdle6] and refer-
ences therein. Most of themere focused on the repli-
cation of either fast spikes or relatively slow bursts
while the mechanisms for geration of specific foot-
prints of spikes were neglected.
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old. This scenario is quite typical for most types of bi- question is camouflaged in the functigp(x, y + 8),
ological neurons. However, experimental studies sug- which is given by
gest that some neurons may come out of the silence

softly through the regime of small oscillations below —o?/4— “1+2y +h !]t o f _1_2‘2/2’< 0
the threshold of the spike excitatiph0]. These sub-  fo = O”:rl(jf; R :f 0_<;i/ Ii;ﬂ
threshold oscillations of almost sinusoidal form fa- y_ly ’ if >y+?l).+,8. ’
cilitate the generation of spike oscillations when the 2)

membrane gets depolarized or hyperpolar{add1 2} The graph of this function is pictured iffig. 1

These small oscillations can play an important role The shape of non-linear function is meant to achieve

in shaping specific forms of rhythmic activity that 5 repjication of sharp tonic spikes in the dynamics

are vulnerable to the noise in the network dynam- ¢ the y-variable in the map. The slow-variable

ics[15,16} _ can turn the spike generator on and off. The main

_In this Letter we modify the map model so that gifference between the functi¢®) and that in the map

it can generate stable subthreshold oscillations. We proposed iff7] is its shape on the left-hand side of the

start the discussion of the model dynamics with the discontinuity point, i.e., at < y + 1+ 8. Now the

analysis of local bifurcations of a fixed point of  fynction contains an interval of parabola instead of a

the map. We show that the loss of stability of the pynerhola used ifi7,9]. This modification is crucial

fixed point is accompanied by the birth of the stable tq stapility of subthreshold oscillations. The parabola

invariant circle which initiate a family of canards  resches its minimum at = —1 — /2. At this point

in the map. Further evolution of the circle leads he graph of the function is continued leftward by a

to a breakdown of the invariant circle that gives pqrizontal line, se€ig. 1

rise to chaos. We also elaborate on the mechanism

of the onset of irregular spiking which is due to 51 Fag and 9ow motions of the map

heteroclinic-like crossings between the stable and

unstable invariant sets, which are the images of the  £or map(1), wheny = 0, the slow subsysteifib)

slow motion “surfaces” in the unperturbed map. The s gecoupled from the fast subsystéta), in which y

role played by small subthreshold oscillations in s regarded as a perturbation parameter. One may see

the responsiveness of the map to external noise is from Fig. 1 that depending ory, the fast subsystem

considered. may have two fixed points, one stable and one unsta-
ble, or no fixed points. The transition between these

states occurs via a saddle-node bifurcation. When
2. Map-based model with stable subthreshold

oscillations 2 (%)

The map-based model of spiking-bursting neuron
oscillations, following[7], can be written in the form
of the two-dimensional map

= fulx,y+p), (1a)
y=y—ux+1l-o0), (1b)

where thex-variable replicates the dynamics of the
membrane potential, the parameterso and O<

u < 1 control individual dynamics of the system. = 2
S_0me 'npl_jt par_ametefs ando are employed to pro- Fig. 1. Geometry of the fast subsystem, nfaa), for the parameter
vide coupling with other such models afterwards; both yajues at the tangent bifurcation:= 1 andy = 0. The function
stand for injected current3.he principal distinction is discontinuous at the point=y + 1 4+ g which belongs to the
of the original map analyzed if¥,9] and the one in rightmost interval, se2).
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is varied, the fixed points trace out a parabola in the
(y, x)-plane as shown ifrig. 2 The traces of stable
and unstable fixed points form on the y) stable Sps,

and unstable§y,, branches, respectively.

The point of intersection of these branches with the
nullcline of slow subsystenilb), which is given by
xfp =0 — 1, is a fixed point of the two-dimensional
map (1). It is easy to see that this fixed poidt is
stable if it is located orfps and is unstable if it is on
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2.2. Birth of invariant curve

Next we carry out the bifurcation analysis of the
fixed point O. Our consideration is restricted to the
domaine?/2—a+y+p <x <0, i.e., to the parabolic
segment of function2). This means that the fast
subsysten(1a) is chosen to be close to the tangent
bifurcation. The moment of the bifurcation is pictured
in Fig. L From(1b) one finds thec-coordinate of the

Spu- The case where the nulicline crosses the parabolafixed pointxf, = o — 1. Therefore, the fixed point is

at the fold point requires a more delicate analysis.
The non-standard analydis7] predicts that when
0 < u <« 1, the normally hyperbolic branchégs and
Spu persist in the form of the stable and unstable “slow
motion” setsS; and S, that remainu-close to the
originals, butu®/2-close to them near the fo[d8].
The idea behind generation of tonic spikes in the
map (1) is illustrated inFig. 2. The period of spiking
is comprised of the following phases: the rest phase,
where the phase point slides along the&eét a rate
of order u towards the fold point. Then, the phase
point jumps up indicating the beginning of a spike.
Its upward motion is stopped by a delimiter (the third
segment of functiorf2)) that reflects the phase point
towards the stable slow surfacg through the line
segmenk = —1.

-0‘,3 -O.‘25 -0‘.2 -04‘15 -0‘,1 -0.‘05 ;J 0.05

Fig. 2. (v, x)-bifurcation diagram of the fast subsystem, n{ap),

for @ =1 andp = 0. The branchespy and Sps are traced out by
the stable and unstable fixed paimf the fast map as the parameter
y varies. When O< p « 1, this (y, x) plane becomes the phase
portrait of the 2D map. The shown trajectory of the 2D map is
computed ap = 0.04,« = 0.99 ando = 0. The dashed curves are

the zero level ones for functiof2).

located at the parabolic segment of function when the
parameter values are within the range/2 < o < 1.
The y-coordinate of the fixed point for this range of
parameters is;p = (0 — 1)(1—a) — o — B.

Since fixed pointO is a single fixed point of
map (1), the further stability analysis is reduced to
two possible local bifurcations: a flip where one
of the multipliers of the fixed point equals-1;
and the Andronov—Hopf bifurcation, where the fixed
point possesses a pair of multipliers equal? on
the unit circle. Simple callations reveal that the
flip bifurcation takes place outside of the considered
parameter region.

In the case of the Andronov—Hopf (AH) bifurca-
tion, the Jacobian

J— a+20 1
ol
of the map equals 1 at the fixed point, while its

trace equals 2 c@s The equation of the corresponding
bifurcation curve AH is given by

®)

On this curve, the fixed point has a pair of complex
conjugate multipliers:

opH = —20 +1— .

pro=1- % + ’?/M(4— 1) =cosy £isiny. (4)

To determine the stability of fixed poin® right
at the bifurcation state we need to evaluate the sign
of the first Lyapunov coefficienLi. Note that the
absolute value ol.1 is not an invariant as it depends
on coordinate transformations. The critical fixed point
O is stable ifL1 < 0, and unstable if.1 > 0.

Let us introduce new coordinates in which the fixed

point is translated to the origin:
(x) N ( x+1—0 )

y y+@—-D@—-1+o?+8)"
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Now the map looks as follows

F=0—wx+x’+y,  F=y-—pux. (5)

Let us next make another transformation
X\ 0 1 &
y siny 11— cosy n)’

with siny and cos)y defined in(4). This makes the
linear part of(5) a rotation throughy:
)

g cosyr 3

(5)= (0 eoa ) )+
In variablez = & + in the map assumes the complex
form

cosy —1
siny
1

—siny,
cosy,

. c y
7=z + ?12 +c1122% + %Z*Z (6)
with

1 1
c20= é(tan% — l), Cc11 = é (l — tan%),

1 4

=—(tan— —1i). 7

o2 2( : l) (7)

The normalizing transformation

€20 11

2 *
= Z— - . — - Z
LI gl T 1
_ €02 Z*z
e=2Y _ piy

eliminates all the quadratic terms {6) so that the
coefficientL, at the desired cubic term in the resulting
normal form

Z=eVz (14 (L1 +iSDzz") + O(IzI°)

becomes the sought Lyapunov value. Its expression
reads as follows:

Coa@=2eVyem®Vegocrs  enal® |eoal?

L= :
! 21— eiv) 2 4
(8)
Substituting(7) into (8) yields
1 cogy) 2—p 0

T Thdcosy)+1 44—
for all small . Thus, the loss of stability of fixed
point O on the Andronov—Hopf bifurcation curve is
accompanied by the birth of a stable closed invariant
curve emerging fron0. This mechanism of the birth
of subthreshold periodic oscillations is illustrated in
Fig. 3as the parameter increases.
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2.3. Noise and subthreshold oscillations

It was observed recently that subthreshold peri-
odic activity shapes stochastic properties of spiking
in a neuron influenced by noise, see, for example,
[13-16,19,2Q] To illustrate similar properties in our
model let us now consider the regime of subthreshold
oscillations in the map with the presence of noise. For
the sake of briefness we consider only the case when
noise is applied to the fast subsystem. The discussion
of the effects of noise, occurring in the fast and slow
subsystems, can be found elsewH@®E22]. The sys-
tem(1) in presence of noise can be written as follows

Xn1 = fo Xn, Yu + B) + &, (9)
Yn+1=Yn — (xp +1—0), (10)

where¢, is a delta-correlated Gaussian white noise
(GWN) with zero mean value and standard deviation
values.

Waveforms of map mode(1l) operating in the
regime of subthreshold oscillations and the influence
of noise are shown irFig. 4. Four traces plotted
in the figure correspond to different values of the
standard deviation,, of GWN. The top trace presents
the case where the level of noise is insufficient to
induce an action potential (a spike). When the level of
noise exceeds a critical level the map starts producing
occasional spikes. Such spikes are more likely to occur
at the top of oscillation. This behavior results in the
formation of a multi-hump structure in the probability
distribution function of interspike intervals (ISls), see
histograms shown iRig. 5(a), (b)

—
0.4 Spikes 7
% Silence Subthreshold
3 oscillations
E -0.6 B
=
S
_1'—60.007 —0.005 —0.003 —-0.001 0.001 0.003
(o)

Fig. 3. Bifurcation diagram illustrating the birth of “small” sub-
threshold oscillations transforming into spikes as parameter-
creases. Top and bottom branches corresponds to the highest and
lowest values of the-variable for a given value of parameterThe

other parameters of the map are set as follews0.99, 8 = 0.0 and
w="0.02.
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Fig. 4. Four waveforms of iteratag versus the discrete timeshow

the influence of an external Gaussian white noise with standard
deviations on the map oscillations. The control parameters of the
map arex = 0.99,0 = —0.0001 andu = 0.02.

A further raise of the noise level increases the
probability of the action potentials. As the result,
spikes occur almost every period of the subthreshold
oscillation (see the bottom trace Fig. 4 and the
distribution of probability density of I1SIs transforms
into a single hump structure, sddg. 5(c) These
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ter values deviate from the Andronov—Hopf bifurca-
tion curve and approach theitical values where the
invariant circle breaks dow Such extreme sensitiv-
ity to slight parameter deviations hamper the detailed
analysis of bifurcations assiated with the circle as it
breaks.

The breakdown of the stable invariant circle leads
to an interesting situation depicted kig. 7(a) One
can observe the co-existence of two kinds of special
solutions following the unstable slow branc$),.
They are called canards with a head (a spike) and
ones without it[17]. A canard is characterized by a
growing level of exponential instability with respect
to nearby solutions. This instability is a necessary
first component of chaotic behavior observed in a
system. In addition, the presence of two types of
canards creates mixing anmcertainty, which is the
second important ingredient for the onset of chaos.
This type of chaos in the neuron mod@él) appears
as small subthreshold oscillations alternating with
sporadic spikes, sd€g. 6.

To understand the dynamical mechanism behind
the splitting of canards to two types, we conducted
a numerical analysis of the behavior&f andS,, for
various parameter values seted close to the thresh-
old for the breakdown of the stable invariant circle. To

results are in good agreement with the results obtainedplot S;, we iterated forward a large number of phase

from ODE based neuron modégls3,20].

3. Tangles of critical curvesand chaos

In the numerical simulations of mgg) we found
that subthreshold oscillations may be interrupted by ir-
regular spiking even in the absence of external noise.
An example of such a behavior is presenteéig. 6.
This intermittent dynamics is observed only within a

points initiated from a relatively short interval on the
stable branct,, chosen as an initial approximation.
Fig. 7(b)shows how the connected forward images of
this interval become non-smooth, generating growing
wiggles around the unstable s&t. Note that the un-
stable setS; is easily computed using inverse map-
ping, seeAppendix A The insert inFig. 7(b) shows
the zoomed-in wiggles. One can see fréig. 7(a)
and (b)that upon entering the wiggling area, the phase
point can land back in the stable st thereby com-

rather thin parameter interval at the border between the pleting another round of sutnteshold oscillations, or

regimes of continuous suireshold oscillations and
tonic spike generation. To understand the dynamical
mechanisms behind this sporadic spiking we numeri-
cally studied the evolution of an invariant circle as the
parameter values vary within thin region.

It follows from the theory of canards that the pa-
rameter domain for the existence of a stable invariant
circle is a narrow strip of the order @ (x) that ad-
joins the bifurcation curve AH. Furthermore, the size

of the circle increases abnormally fast as the parame-

jump up to make a spike. Such a situation is referred to
as dynamical uncertainf25]. Loosely speaking, the
place onS, where the wigglesé&come noticeable in-
dicates the threshold beyond which the behavior of the
map becomes uncontrollable.

This situation is similar to the case of a periodically
driven pendulum near a homoclinic orbit associated
with the saddle point at the top. Such a system is typi-
cally studied using a Poincaré return mapping defined
over the period of the external force. Under proper
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Fig. 5. Histograms of the interspike interval (18listribution computed for the waveforms showrFig. 4. (a) s = 0.0002; (b)s = 0.002 and
(c) s =0.02.

L 1 1 " 1 1
0 5000 10000 n 15000 20000
Fig. 6. Sporadic spiking in the mdf) computed withe = 1.25,0 = —0.13 andu = 0.02. The phase portrait of these oscillations is shown in

Fig. 7(a)

conditions, the saddle fixed point of the mapping will some exotic features prohibited in the invertible maps,
possess transversal crossings between its stable andee more irf23]. One of those features is that the set
unstable sets (formerly, the stable and unstable separasS; may self-cross (so does the sgtin the backward
trices of the saddle equilibrium in the autonomous sys- time). This situation is sketched Fig. 8(a)and also
tem). These crossings generate the Smale horseshoean be seen on the trajectories’ behavior in the lower
and, therefore, symbolic shift-dynamics in the system, left corner of the attractor shown kig. 7(a) One can

see details if17,23,24]and references therein. By assume that these self-crossings can stimulate the con-
construction, this type of Poincaré mapping is a diffeo- ditions for the onset of a topological Small horseshoe
morphism. However, our mgR) is an endomorphism,  (seeFig. 8(b), whose presence is a de-facto proof of
e.g., anon-invertible one, and as a result it may possesscomplex chaotic dynamics.
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2] (b)

-0.2 0 0.2 0.4

Fig. 7. (a) Chaos in the noiseless m@pcomputed withw = 1.25,0 = —0.13 andu = 0.02 The corresponding waveform is showrFig. 6.
(b) Forward iterates of a small interval of the stable critical&eteveal increasing wiggles occudraround the unstable critical s8f.

Fig. 8. Heteroclinic-like crossings of the critical s&ls andS,,. Self-crossings of the s&, which are one of the features of non-invertible
maps, may generate a topological Smale horseshoe.

4. Conclusion important when a time dependent input is considered,
see[7] for detail. We would like to note that for

It is shown that a simple map can be employed to studies of non-autonomous dynamics of this map
replicate the behavior of neurons with self-sustained model one needs to modify functiof2) to insure
subthreshold oscillations. These oscillations are a- that no trajectory of(1) gets locked in the interval
chieved by a special selection of a non-linear func- 0 <x < y+ 1+ g asp or y increase. The discussion
tion in the fast subsystem. The dynamical mecha- on suggested alterations of the function to resolve this
nisms behind the transitions from silence to subthresh- problem can be found elsewhdi@.
old oscillations of small amplitude and then to spik-
ing activity are explained using the bifurcation ap-
proach.

Here we focused mostly on the individual dynamics
of the map-based model. As a result we considered
only the case whep ando are constants. One may N.R. was supported in part by US Department of
notice from(1) that the parametet can be eliminated  Energy (grant DE-FG03-95ER14516). A.S. acknowl-
by using the variable transformation + g +— y. edges the RFBR grants Nos. 02-01-00273 and 01-01-
However, the role of input parametgt becomes  00975.
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Appendix A. Inverse map

To locate the unstable s&* which is a surface

of slow motion one should consider the inverse map

Fnv : (x,y) — (x,y) € D defined inD := {-1 —
/2 < x < 0}. Within D the inverseFj,, assumes the
following form

f=ax+x+12+y+58, (A1)

y=y—pnkx+1l-o). (A.2)
SubtractingA.2) from (A.1) one gets

F-y=ax+(x+ D3+ pu+1-0)+p.  (A3)

Solving it for x one can findx as the following
function inx andy

x=—Q+a+un)/2

+y@+atwd— A4 p+ud—o)—T+5.
(A.4)

To get the equation for the-variable expressiofA.4)
must be plugged int¢A.2).
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