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Abstract

Self-sustained subthreshold oscillations in a discrete-time model of neuronal behavior are considered. We discuss b
scenarios explaining the birth of these oscillations and their transformation into tonic spikes. Specific features of these t
caused by the discrete-time dynamics of the model and the influence of external noise are discussed.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Studies of dynamical behavior of biological ne
works require numerical simulations of arrays co
taining a very large number of neurons. Despite
variety of physiological processes involved in the f
mation of neuron activity, the thorough studies of t
large-scale networks need simple phenomenolog
models that can replicate the dynamics of individ
neurons. Various suggestions for the design of lo
dimensional maps for modeling the neurons’ behav
have been proposed, see, for example,[1–6]and refer-
ences therein. Most of themwere focused on the repl
cation of either fast spikes or relatively slow bur
while the mechanisms for generation of specific foot-
prints of spikes were neglected.

* Corresponding author.
E-mail address: ashilnikov@gsu.edu (A.L. Shilnikov).
0375-9601/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2004.05.062
A simple discrete-time model replicating the sp
ing-bursting neural activity has been suggested
cently in [7]. This model is a 2D map that mimic
rather realistically various types of transitions that
cur in biological neurons. These transitions inclu
routes between silence and tonic spiking as wel
a triplet: silence↔ bursts of spikes↔ tonic spiking.
Such simple phenomenological models bear a high
tential for further developments of computationally
ficient methods for studies of functional behavior
large-scale neurobiological networks[8].

The bifurcation analysis of the map model carr
out in [9] has shown that the transition from silen
(a stable fixed point) to generation of action potentials
is characterized by a sub-critical Andronov–Hopf
furcation when an unstable invariant closed curve c
lapses into the stable fixed point. Therefore, the o
inal map-model[7] provides only an abrupt transitio
from silence to spiking as a control parameter (e.g.,
depolarization current) passes the excitability thre
.

http://www.elsevier.com/locate/pla
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old. This scenario is quite typical for most types of
ological neurons. However, experimental studies s
gest that some neurons may come out of the sile
softly through the regime of small oscillations belo
the threshold of the spike excitation[10]. These sub-
threshold oscillations of almost sinusoidal form
cilitate the generation of spike oscillations when
membrane gets depolarized or hyperpolarized[11,12].
These small oscillations can play an important r
in shaping specific forms of rhythmic activity th
are vulnerable to the noise in the network dyna
ics [15,16].

In this Letter we modify the map model so th
it can generate stable subthreshold oscillations.
start the discussion of the model dynamics with
analysis of local bifurcations of a fixed point
the map. We show that the loss of stability of t
fixed point is accompanied by the birth of the sta
invariant circle which initiate a family of canard
in the map. Further evolution of the circle lea
to a breakdown of the invariant circle that giv
rise to chaos. We also elaborate on the mechan
of the onset of irregular spiking which is due
heteroclinic-like crossings between the stable
unstable invariant sets, which are the images of
slow motion “surfaces” in the unperturbed map. T
role played by small subthreshold oscillations
the responsiveness of the map to external nois
considered.

2. Map-based model with stable subthreshold
oscillations

The map-based model of spiking-bursting neu
oscillations, following[7], can be written in the form
of the two-dimensional map

(1a)x̄ = fα(x, y + β),

(1b)ȳ = y − µ(x + 1− σ),

where thex-variable replicates the dynamics of t
membrane potential, the parametersα, σ and 0<

µ � 1 control individual dynamics of the system
Some input parametersβ andσ are employed to pro
vide coupling with other such models afterwards; b
stand for injected currents.The principal distinction
of the original map analyzed in[7,9] and the one in
question is camouflaged in the functionfα(x, y + β),
which is given by

(2)

fα =




−α2/4− α + y + β, if x < −1− α/2,

αx + (x + 1)2 + y + β, if −1− α/2 � x � 0,

y + 1+ β, if 0 < x < y + 1+ β,

−1, if x � y + 1+ β.

The graph of this function is pictured inFig. 1.
The shape of non-linear function is meant to achi
a replication of sharp tonic spikes in the dynam
of the x-variable in the map. The slowy-variable
can turn the spike generator on and off. The m
difference between the function(2)and that in the map
proposed in[7] is its shape on the left-hand side of t
discontinuity point, i.e., atx < y + 1 + β . Now the
function contains an interval of parabola instead o
hyperbola used in[7,9]. This modification is crucia
for stability of subthreshold oscillations. The parab
reaches its minimum atx = −1 − α/2. At this point
the graph of the function is continued leftward by
horizontal line, seeFig. 1.

2.1. Fast and slow motions of the map

For map(1), whenµ = 0, the slow subsystem(1b)
is decoupled from the fast subsystem(1a), in whichy

is regarded as a perturbation parameter. One may
from Fig. 1 that depending ony, the fast subsystem
may have two fixed points, one stable and one un
ble, or no fixed points. The transition between th
states occurs via a saddle-node bifurcation. Whey

Fig. 1. Geometry of the fast subsystem, map(1a), for the parameter
values at the tangent bifurcation:α = 1 andy = 0. The function
is discontinuous at the pointx = y + 1 + β which belongs to the
rightmost interval, see(2).
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is varied, the fixed points trace out a parabola in
(y, x)-plane as shown inFig. 2. The traces of stabl
and unstable fixed points form on the(x, y) stable,Sps,
and unstable,Spu, branches, respectively.

The point of intersection of these branches with
nullcline of slow subsystem(1b), which is given by
xfp = σ − 1, is a fixed point of the two-dimension
map (1). It is easy to see that this fixed pointO is
stable if it is located onSps and is unstable if it is on
Spu. The case where the nullcline crosses the para
at the fold point requires a more delicate analysis.

The non-standard analysis[17] predicts that when
0 < µ � 1, the normally hyperbolic branchesSps and
Spu persist in the form of the stable and unstable “sl
motion” setsSs and Su that remainµ-close to the
originals, butµ3/2-close to them near the fold[18].

The idea behind generation of tonic spikes in
map(1) is illustrated inFig. 2. The period of spiking
is comprised of the following phases: the rest pha
where the phase point slides along the setSs at a rate
of order µ towards the fold point. Then, the pha
point jumps up indicating the beginning of a spik
Its upward motion is stopped by a delimiter (the th
segment of function(2)) that reflects the phase poi
towards the stable slow surfaceSs through the line
segmentx = −1.

Fig. 2. (y, x)-bifurcation diagram of the fast subsystem, map(1a),
for α = 1 andµ = 0. The branchesSpu andSps are traced out by
the stable and unstable fixed points of the fast map as the parame
y varies. When 0< µ � 1, this (y, x) plane becomes the phas
portrait of the 2D map. The shown trajectory of the 2D map
computed atµ = 0.04,α = 0.99 andσ = 0. The dashed curves a
the zero level ones for function(2).
2.2. Birth of invariant curve

Next we carry out the bifurcation analysis of t
fixed point O . Our consideration is restricted to th
domainα2/2−α+y+β � x < 0, i.e., to the parabolic
segment of function(2). This means that the fas
subsystem(1a) is chosen to be close to the tange
bifurcation. The moment of the bifurcation is pictur
in Fig. 1. From(1b) one finds thex-coordinate of the
fixed pointxfp = σ − 1. Therefore, the fixed point i
located at the parabolic segment of function when
parameter values are within the range−α/2 < σ < 1.
The y-coordinate of the fixed point for this range
parameters isyfp = (σ − 1)(1− a) − σ 2 − β .

Since fixed pointO is a single fixed point o
map (1), the further stability analysis is reduced
two possible local bifurcations: a flip where o
of the multipliers of the fixed point equals−1;
and the Andronov–Hopf bifurcation, where the fix
point possesses a pair of multipliers equale±iϕ on
the unit circle. Simple calculations reveal that th
flip bifurcation takes place outside of the conside
parameter region.

In the case of the Andronov–Hopf (AH) bifurca
tion, the Jacobian

J =
[

α + 2σ 1
−µ 1

]

of the map equals 1 at the fixed point, while
trace equals 2 cosϕ. The equation of the correspondin
bifurcation curve AH is given by

(3)αAH = −2σ + 1− µ.

On this curve, the fixed point has a pair of comp
conjugate multipliers:

(4)ρ1,2 = 1− µ

2
± i

2

√
µ(4− µ) = cosψ ± i sinψ.

To determine the stability of fixed pointO right
at the bifurcation state we need to evaluate the s
of the first Lyapunov coefficientL1. Note that the
absolute value ofL1 is not an invariant as it depend
on coordinate transformations. The critical fixed po
O is stable ifL1 < 0, and unstable ifL1 > 0.

Let us introduce new coordinates in which the fix
point is translated to the origin:(

x

y

)
�→

(
x + 1− σ

y + (σ − 1)(α − 1) + σ 2 + β

)
.
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Now the map looks as follows

(5)x̄ = (1− µ)x + x2 + y, ȳ = y − µx.

Let us next make another transformation(
x

y

)
�→

(
0 1

sinψ 1− cosψ

)(
ξ

η

)
,

with sinψ and cosψ defined in(4). This makes the
linear part of(5) a rotation throughψ :(

ξ̄

η̄

)
=

(
cosψ −sinψ,

sinψ cosψ,

)(
ξ

η

)
+

( cosψ−1
sinψ
1

)
η2.

In variablez = ξ + iη the map assumes the compl
form

(6)z̄ = zeiψ + c20

2
z2 + c11zz

∗ + c02

2
z∗2

with

c20 = 1

2

(
tan

ψ

2
− i

)
, c11 = 1

2

(
i − tan

ψ

2

)
,

(7)c02 = 1

2

(
tan

ψ

2
− i

)
.

The normalizing transformation

z �→ z − c20

e2iψ − eiψ
z2 − c11

1− eiψ
zz∗

− c02

e−2iψ − eiψ
z∗2

eliminates all the quadratic terms in(6) so that the
coefficientL1 at the desired cubic term in the resulti
normal form

z̄ = eiψz
(
1+ (L1 + iS1)zz

∗) + O
(‖z‖3)

becomes the sought Lyapunov value. Its expres
reads as follows:

(8)

L1 = −Re
(1− 2eiψ)e−2iψc20c11

2(1− eiψ)
− |c11|2

2
− |c02|2

4
.

Substituting(7) into (8) yields

L1 = −1

4

cos(ψ)

cos(ψ) + 1
= − 2− µ

4(4− µ)
< 0

for all small µ. Thus, the loss of stability of fixe
point O on the Andronov–Hopf bifurcation curve
accompanied by the birth of a stable closed invar
curve emerging fromO . This mechanism of the birt
of subthreshold periodic oscillations is illustrated
Fig. 3as the parameterσ increases.
2.3. Noise and subthreshold oscillations

It was observed recently that subthreshold p
odic activity shapes stochastic properties of spik
in a neuron influenced by noise, see, for exam
[13–16,19,20]. To illustrate similar properties in ou
model let us now consider the regime of subthresh
oscillations in the map with the presence of noise.
the sake of briefness we consider only the case w
noise is applied to the fast subsystem. The discus
of the effects of noise, occurring in the fast and sl
subsystems, can be found elsewhere[21,22]. The sys-
tem(1) in presence of noise can be written as follow

(9)xn+1 = fα(xn, yn + β) + ζn,

(10)yn+1 = yn − µ(xn + 1− σ),

whereζn is a delta-correlated Gaussian white no
(GWN) with zero mean value and standard deviat
values.

Waveforms of map model(1) operating in the
regime of subthreshold oscillations and the influe
of noise are shown inFig. 4. Four traces plotted
in the figure correspond to different values of t
standard deviation,s, of GWN. The top trace presen
the case where the level of noise is insufficient
induce an action potential (a spike). When the leve
noise exceeds a critical level the map starts produ
occasional spikes. Such spikes are more likely to oc
at the top of oscillation. This behavior results in t
formation of a multi-hump structure in the probabili
distribution function of interspike intervals (ISIs), s
histograms shown inFig. 5(a), (b).

Fig. 3. Bifurcation diagram illustrating the birth of “small” sub
threshold oscillations transforming into spikes as parameterσ in-
creases. Top and bottom branches corresponds to the highes
lowest values of thex-variable for a given value of parameterσ . The
other parameters of the map are set as followsα = 0.99,β = 0.0 and
µ = 0.02.
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Fig. 4. Four waveforms of iteratesxn versus the discrete timen show
the influence of an external Gaussian white noise with stan
deviations on the map oscillations. The control parameters of
map areα = 0.99,σ = −0.0001 andµ = 0.02.

A further raise of the noise level increases
probability of the action potentials. As the resu
spikes occur almost every period of the subthresh
oscillation (see the bottom trace inFig. 4) and the
distribution of probability density of ISIs transform
into a single hump structure, seeFig. 5(c). These
results are in good agreement with the results obta
from ODE based neuron models[19,20].

3. Tangles of critical curves and chaos

In the numerical simulations of map(1) we found
that subthreshold oscillations may be interrupted by
regular spiking even in the absence of external no
An example of such a behavior is presented inFig. 6.
This intermittent dynamics is observed only within
rather thin parameter interval at the border between
regimes of continuous subthreshold oscillations an
tonic spike generation. To understand the dynam
mechanisms behind this sporadic spiking we num
cally studied the evolution of an invariant circle as t
parameter values vary within thin region.

It follows from the theory of canards that the p
rameter domain for the existence of a stable invar
circle is a narrow strip of the order ofO(µ) that ad-
joins the bifurcation curve AH. Furthermore, the s
of the circle increases abnormally fast as the para
ter values deviate from the Andronov–Hopf bifurc
tion curve and approach the critical values where the
invariant circle breaks down. Such extreme sensitiv
ity to slight parameter deviations hamper the deta
analysis of bifurcations associated with the circle as i
breaks.

The breakdown of the stable invariant circle lea
to an interesting situation depicted inFig. 7(a). One
can observe the co-existence of two kinds of spe
solutions following the unstable slow branchSu.
They are called canards with a head (a spike)
ones without it[17]. A canard is characterized by
growing level of exponential instability with respe
to nearby solutions. This instability is a necess
first component of chaotic behavior observed in
system. In addition, the presence of two types
canards creates mixing anduncertainty, which is the
second important ingredient for the onset of cha
This type of chaos in the neuron model(1) appears
as small subthreshold oscillations alternating w
sporadic spikes, seeFig. 6.

To understand the dynamical mechanism beh
the splitting of canards into two types, we conducte
a numerical analysis of the behavior ofSs andSu for
various parameter values selected close to the thresh
old for the breakdown of the stable invariant circle.
plot Ss , we iterated forward a large number of pha
points initiated from a relatively short interval on th
stable branchSs , chosen as an initial approximatio
Fig. 7(b)shows how the connected forward images
this interval become non-smooth, generating grow
wiggles around the unstable setSu. Note that the un
stable setSs is easily computed using inverse ma
ping, seeAppendix A. The insert inFig. 7(b)shows
the zoomed-in wiggles. One can see fromFig. 7(a)
and (b)that upon entering the wiggling area, the ph
point can land back in the stable setSs , thereby com-
pleting another round of subthreshold oscillations, o
jump up to make a spike. Such a situation is referre
as dynamical uncertainty[25]. Loosely speaking, th
place onSu where the wiggles become noticeable in
dicates the threshold beyond which the behavior of
map becomes uncontrollable.

This situation is similar to the case of a periodica
driven pendulum near a homoclinic orbit associa
with the saddle point at the top. Such a system is ty
cally studied using a Poincaré return mapping defi
over the period of the external force. Under pro
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in
Fig. 5. Histograms of the interspike interval (ISI)distribution computed for the waveforms shown inFig. 4. (a) s = 0.0002; (b)s = 0.002 and
(c) s = 0.02.

Fig. 6. Sporadic spiking in the map(1) computed witha = 1.25,σ = −0.13 andµ = 0.02. The phase portrait of these oscillations is shown
Fig. 7(a).
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conditions, the saddle fixed point of the mapping w
possess transversal crossings between its stable
unstable sets (formerly, the stable and unstable sep
trices of the saddle equilibrium in the autonomous s
tem). These crossings generate the Smale horse
and, therefore, symbolic shift-dynamics in the syste
see details in[17,23,24]and references therein. B
construction, this type of Poincaré mapping is a diff
morphism. However, our map(2) is an endomorphism
e.g., a non-invertible one, and as a result it may pos
d
-

e

some exotic features prohibited in the invertible ma
see more in[23]. One of those features is that the s
Ss may self-cross (so does the setSu in the backward
time). This situation is sketched inFig. 8(a)and also
can be seen on the trajectories’ behavior in the lo
left corner of the attractor shown inFig. 7(a). One can
assume that these self-crossings can stimulate the
ditions for the onset of a topological Small horsesh
(seeFig. 8(b)), whose presence is a de-facto proof
complex chaotic dynamics.
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le
Fig. 7. (a) Chaos in the noiseless map(1) computed withα = 1.25,σ = −0.13 andµ = 0.02 The corresponding waveform is shown inFig. 6.
(b) Forward iterates of a small interval of the stable critical setSs reveal increasing wiggles occurred around the unstable critical setSu.

Fig. 8. Heteroclinic-like crossings of the critical setsSs andSu. Self-crossings of the setSs , which are one of the features of non-invertib
maps, may generate a topological Smale horseshoe.
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4. Conclusion

It is shown that a simple map can be employed
replicate the behavior of neurons with self-sustain
subthreshold oscillations. These oscillations are
chieved by a special selection of a non-linear fu
tion in the fast subsystem. The dynamical mec
nisms behind the transitions from silence to subthre
old oscillations of small amplitude and then to sp
ing activity are explained using the bifurcation a
proach.

Here we focused mostly on the individual dynam
of the map-based model. As a result we conside
only the case whenβ andσ are constants. One ma
notice from(1) that the parameterβ can be eliminated
by using the variable transformationy + β �→ y.
However, the role of input parameterβ becomes
important when a time dependent input is conside
see [7] for detail. We would like to note that fo
studies of non-autonomous dynamics of this m
model one needs to modify function(2) to insure
that no trajectory of(1) gets locked in the interva
0 < x < y + 1 + β asβ or y increase. The discussio
on suggested alterations of the function to resolve
problem can be found elsewhere[7].
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Appendix A. Inverse map

To locate the unstable setSu which is a surface
of slow motion one should consider the inverse m
Finv : (x, y) �→ (x̄, ȳ) ∈ D defined inD := {−1 −
α/2 � x � 0}. Within D the inverseFinv assumes the
following form

(A.1)x̄ = αx + (x + 1)2 + y + β,

(A.2)ȳ = y − µ(x + 1− σ).

Subtracting(A.2) from (A.1) one gets

(A.3)x̄ − ȳ = αx + (x + 1)2 + µ(x + 1− σ) + β.

Solving it for x one can findx as the following
function in x̄ andȳ

x = −(2+ α + µ)/2

(A.4)

+
√

(2+ α + µ)2/4− (1+ β + µ(1− σ) − x̄ + ȳ.

To get the equation for they-variable expression(A.4)
must be plugged into(A.2).

References

[1] D.R. Chialvo, A.V. Apkarian, J. Stat. Phys. 70 (1993) 375.
[2] D.R. Chialvo, Chaos Solitons Fractals 5 (1995) 461.
[3] B. Cazelles, M. Courbage, M. Rabinovich, Europhys. Lett.

(2001) 504.
[4] N.F. Rulkov, Phys. Rev. Lett. 86 (2001) 183.
[5] K.V. Andreev, L.V. Krasichkov, Izv. Akad. Nauk Fiz. 6
(2002) 1777.

[6] E.M. Izhikevich, F.C. Hoppensteadt, Bursting mappings, 20
submitted for publication.

[7] N.F. Rulkov, Phys. Rev. E 65 (2002) 041922.
[8] N.F. Rulkov, M.V. Bazhenov, A.L. Shilnikov, in: Proceeding

of International Symposium on Topical Problems of Nonline
Wave Physics, Russia, September 2003.

[9] A.L. Shilnikov, N.F. Rulkov, Int. J. Bifur. Chaos 13 (2003) 1
[10] R. Llinás, Science 242 (1988) 1654.
[11] R. Llinás, Y. Yarom, J. Physiol. 315 (1981) 549.
[12] R. Llinás, Y. Yarom, J. Physiol. 376 (1986) 163.
[13] H.A. Braun, H. Wissing, K. Schäfer, M.C. Hirsch, Nature 36

(1994) 270.
[14] M. Heinz, K. Schäfer, H.A.Braun, Brain Res. 521 (1990) 28
[15] V.A. Makarov, V.I. Nekorkin, M.G. Velarde, Phys. Re

Lett. 86 (2001) 3431.
[16] M.G. Velarde, V.I. Nekorkin, V.B. Kazantsev, V.I. Makarenk

R. Llinás, Neural Networks 15 (2002) 5.
[17] V.I. Arnold, V.S. Afrajmovich, Yu.S. Ilyashenko, L.P

Shilnikov, Bifurcation Theory, Dyn. Sys. V, Encyclopaedia
Mathematics Sciences, Springer, Berlin, 1994.

[18] N. Fenichel, J. Differential Equations 31 (1979) 53.
[19] D.T.W. Chik, Y. Wang, Z.D. Wang, Phys. Rev. E 64 (200

021913.
[20] E.I. Volkov, E. Ullner, A.A. Zaikin, J. Kurths, Phys. Rev. E 6

(2003) 026214.
[21] R.C. Hilborn, R.J. Erwin, Phys. Lett. A 322 (2004) 19.
[22] R.C. Hilborn, Am. J. Phys. 72 (2004) 528.
[23] C. Mira, L. Gardini, A. Barugola, J.C. Cathala, Chao

Dynamics in Two-Dimenional Noninvertable Maps, Wor
Scientific, Singapore, 1996.

[24] A.L. Shilnikov, L.P. Shilnikov, D.V. Turaev, J. Bifur
Chaos 14 (7) (2004).

[25] L. Shilnikov, A. Shilnikov, D. Turaev, L. Chua, Method
of Qualitative Theory in Nonlinear Dynamics. Part I, Wor
Scientific, Singapore, 1998.


	Subthreshold oscillations in a map-based neuron model
	Introduction
	Map-based model with stable subthreshold oscillations
	Fast and slow motions of the map
	Birth of invariant curve
	Noise and subthreshold oscillations

	Tangles of critical curves and chaos
	Conclusion
	Acknowledgements
	Inverse map
	References


