
PHYSICAL REVIEW E 105, 064203 (2022)

Noise-activated barrier crossing in multiattractor dissipative neural networks
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Noise-activated transitions between coexisting attractors are investigated in a chaotic spiking network. At
low noise level, attractor hopping consists of discrete bifurcation events that conserve the memory of initial
conditions. When the escape probability becomes comparable to the intrabasin hopping probability, the lifetime
of attractors is given by a detailed balance where the less coherent attractors act as a sink for the more coherent
ones. In this regime, the escape probability follows an activation law allowing us to assign pseudoactivation
energies to limit cycle attractors. These pseudoenergies introduce a useful metric for evaluating the resilience of
biological rhythms to perturbations.
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I. INTRODUCTION

Inhibitory neurons play an important part in the genesis of
biological rhythms. They entrain long-range electrical activity
in the brain [1] and produce the spatiotemporal signals that
control motor actions [2,3]. A notable property of inhibitory
networks is their ability to support coexisting modes of syn-
chronized oscillations [4–8] evoked by sensory stimulation
[9–11]. There is, however, a wide discrepancy between the
number of oscillations theoretically predicted [8,12] and the
relative paucity of experimentally observed ones [13–15].
This discrepancy might arise from different tolerances to noise
among attractors [16]. Experiments on central pattern gener-
ators have shown that all limit cycle attractors survive mild
noise levels and heterogeneity [11]; however, their stability
at large noise levels is unknown. Experiments on crustacean
central pattern generators have shown that biological rhythms
only exist within a finite range of temperatures [17] and pH
levels [18]. Outside of this range oscillations become arrhyth-
mic. An objective metric is therefore needed for predicting the
range of stability of biological rhythms.

In conservative systems (Hopfield networks [19], Boltz-
mann machines [20]), the robustness of attractors is defined
by activation energies in a potential landscape representing
bit configurations. The dissipative systems we are concerned
with here (central pattern generators, the brain) do not have
an equivalent potential landscape since the state is time de-
pendent. Theoretical attempts have been made to describe
interactions in terms of a time-independent function; however,
a unifying theoretical description is yet to emerge. Graham
and Tél [21,22] have introduced pseudopotentials; Stankovski
et al. [23,24] multivariate coupling functions; while other
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researchers use phase-lag maps to visualize basins of at-
tractions as an indirect effect of “potential wells” [4,5,11].
Attractor hopping is thus routinely analyzed in terms of bi-
furcations [25–28] rather than equilibrium thermodynamics.
Dynamic networks and Hopfield network differ further in
fundamental ways regarding their number of attractors and
the sensitivity of these attractors to noise. Dynamic inhibitory
networks host up to (N − 1)!/(ln2)N attractors [11,12]. These
are protected from noise by negative Lyapunov exponents
[29,30]. In contrast, Hopfield networks [19] can in principle
store 2N states; however, the overlap of stored patterns limits
this number to 0.14N , a number that decreases exponentially
with temperature [31]. Understanding the robustness of limit
cycle attractors to noise requires demonstrating the existence
of (i) an activation law, (ii) pseudoactivation energies and their
relation to limit-cycle oscillations, and (iii) the reversibility or
irreversibility of hopping events depending on whether it is
controlled by fine-scale dynamics or thermodynamics.

Here, we answer these questions by measuring the noise-
induced transitions between the six limit-cycle attractors of
a three-neuron network. The network was implemented on
a purposely built neuromorphic platform that integrates cur-
rent stimuli with analog electronic circuits like those in the
brain and that incorporate the same level of electronic noise
and heterogeneity. Unlike in Chauhan et al. [11] where the
initial state was chosen randomly in phase space, we have
now prepared the network in a single attractor. We then var-
ied the level of extrinsic noise over a range two orders of
magnitude greater than Chauhan et al. to propel transitions
out of this attractor. At low noise level, intrabasin transitions
dominate. At intermediate noise level, the system hops into
the state of immediately lower coherence. In this regime, the
escape probability may be fitted with a Kramers-Arrhenius
activation law [32,33]. At higher noise level, transitions skip
the states of intermediate coherence to arrive into the most
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FIG. 1. Current-clamp measurements on a three-neuron network. (a) The current-clamp amplifier injects time series currents I1(t ), I2(t ),
and I3(t ) in the three-neuron network in the silicon chip and measures their voltage waveforms V1(t ), V2(t ), and V3(t ). The prototypical current
protocol is shown in the upper window of the computer screen. The 200-ms-long current step is followed by a 600-ms-long epoch where
noise is added to propel transitions between attractors. The neuron oscillations are recorded in the lower window of the computer screen.
(b) Micrograph of one neuron on the chip (top). Detail of an ion activation gate in 0.35 μm technology (bottom).

incoherent state. In this way we obtained the probability
matrix of the Markov chain of the six attractors. We ob-
tained the pseudoactivation energies of individual attractors
and find they increase as the coherence of limit cycle os-
cillations decreases. Our demonstration of pseudoactivation
energies in dissipative networks provides a simple metric for
predicting the range of stability of network oscillations to
perturbations [17,18].

II. EXPERIMENTAL METHOD

Noise-induced switching was simulated in a three-neuron
network realized on a neuromorphic platform (Fig. 1). The
network was made of Hogkin-Huxley NaKl neurons [34,35]
interconnected with reciprocal inhibitory synapses [36]. The
neurons were stimulated with delayed current steps I1(t ),
I2(t ), and I3(t ) synthesized by a current-clamp amplifier
driven by a computer-controlled DAQ card [Fig. 1(a)]. Ex-
trinsic Gaussian noise was synthesized using a pseudorandom
number generator (Labview Gaussian White noise VI) and
added to the current steps during an appropriate time win-
dow. The analog circuits on the chip integrated the current
waveforms using the physical characteristics of semiconduc-
tor devices [Fig. 1(b)]. This had the advantage of integrating
signals instantaneously, in continuous time, in the presence
of residual electronic 1/ f noise and component to compo-
nent heterogeneity mimicking the intrinsic environment of
the brain. The current-clamp amplifier picked up the voltage
oscillations returned by the three neurons [Fig. 1(a)]. These
were recorded by the computer. Both the neuron activation
thresholds, neuron recovery time constants, ion channel con-
ductances; and the synaptic threshold, synaptic decay time,
and synaptic conductances were set by the gate voltages of
field effect transistors [10,37]. Neurons had a 7 μA current
threshold above which their oscillation frequency increased
from 40 Hz at 8 μA to 300 Hz at 50 μA. The inhibitory
postsynaptic current peaked at −12 μA and decayed with a
time constant τ set between 1 and 4 ms. The period of neuron

oscillations was T = 14 ms (20 μA). The synaptic threshold
was set at 50% of the height of presynaptic action potentials
to delay the onset of inhibition by ≈400 μs. This delay was
essential to maximize the number of coexisting attractors by
allowing coincident action potentials [10,11]. All neurons (re-
spectively, synapses) were configured with the same nominal
parameters.

The experiment was conducted in two steps covering con-
secutive time intervals 0–t2 and t2–t3 in Fig. 2. The network
was initially prepared in the chosen attractor during interval
0–t2. Gaussian white noise was then added to current stim-
uli to induce attractor hopping (interval t2–t3). The network
state was set in the basin of the initial attractor by choos-
ing the current delays τ21, τ31 that give the desired sequence
of action potentials [Fig. 2(a)]. The initial momentum was
imparted over one oscillation period since 0 < τ23, τ31 < T
(interval 0–t1). The network state was then left to relax into
the attractor state over the next 200 ms [interval (t1–t2) which
was sufficient to absorb transient oscillations. The network
has six basins representing all possible discharge sequences
of neurons 1, 2, and 3 [Fig. 2(b)]. Type C represents ac-
tion potentials discharging in clockwise, 1 → 2 → 3, and
anticlockwise 1 → 3 → 2 sequences; type B are partially co-
herent sequences 1 → {2, 3}, 2 → {3, 1}, 3 → {1, 2}; type A
is the coherent state {1, 2, 3} with coincident action potentials.
The five attractors and their basins are shown in the phase-lag
maps plotting the dephasings of neurons 2 and 3 relative to
neuron 1 (�21,�31) over intervals 0–t2 in units of the oscilla-
tion period [Fig. 2(c)]. Once in the chosen attractor, Gaussian
noise was applied over the next 600 ms to induce attractor
switching (interval t2–t3). The final state of the network was
recorded over the last oscillations of that time window and
used to compute transition probabilities. The noise had a
normal distribution N (0, σ ). Its standard deviation was var-
ied between σ = 0 and 300 mV. This covers a noise range
60 times greater than in Ref. [11]. High noise intensity was
required to “depopulate” attractors. At t > t3, current stimuli
were reset (I1−3 = 0) for 200 ms to let the network return to its
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FIG. 2. Noise-activated switching between attractors. (a) Neurons N1, N2, and N3 interact via reciprocal inhibitory synapses. The timings
of stimuli τ21 and τ31 set initial conditions. (b) The network has three types of synchronized oscillations: type C consists of sequential action
potentials, type B consists of two coincident action potentials out of phase with the third, and type A has all three action potentials discharging
simultaneously. (c) Phase-lag map plotting the trajectories of the network state [�21(t ),�31(t )] emanating from all possible initial states.
�21(t ) and �31(t ) are the instantaneous dephasings of action potentials of neurons 2 and 3 relative to neuron 1 in units of the oscillation period
T . (d) The network is prepared in a given state (B) by first placing it in the relevant basin of attraction (0–t1), and letting it relax in the attractor
(t1–t2). Noise is then applied to study transitions towards another attractor [t2–t3; arrows panel (c)].

quiescent state. The network state was then reinitialized and
the noise level was incremented to probe the dependence of
switch probabilities on noise for each attractor.

III. RESULTS

Figure 2(d) shows an example of noise-induced switching
from the partially coherent state (B) to the sequential state (C).
The switch occurs quasi-instantaneously in this example as
the noise level is high (σ = 300 mV). Once the switch is com-
plete, no reversion to the initial state occurs at any later point
of the noise window t2–t3. For most practical purposes, the
switch appears irreversible as we shall see below. This points
to an activation process ruled by thermodynamics rather than
reversible fine-scale dynamics.

A systematic study of escape probabilities out of the co-
herent state A and the partially coherent state B is shown in
Figs. 3(a) and 3(b) as a function of noise. In Fig. 3(a), the
coherent state A is stable up to σ ≈ 75 mV where most noise-
induced transitions are within the initial attractor basin. From
σ = 75 mV to 230 mV a majority of transitions terminate
in the partially coherent states B as the number of intrabasin
transitions rapidly decreases. It is noteworthy that outbound
transitions end up preferentially in either one of the three
partially coherent states (B) rather than the two incoherent
states (C). It is only from σ ≈ 230 mV and above that hopping
from the coherent state occurs directly into the incoherent
states without transitioning through the partially coherent
states. This suggests that noise activated hopping follows a
sequential process trickling down the coherence order into
states of lower and lower coherence as the noise amplitude

increases. Turning to Fig. 3(b), intrabasin transitions similarly
dominate at low noise until σ ≈ 230 mV. Reverse switching
events from the partially coherent state towards the coherent
state are negligible in comparison to intrabasin transitions
and are therefore not visible. When σ > 230 mV the network
switches out of the partially coherent attractor into incoherent
states (C). Note the absence of significant reverse switching
into the coherent state (A) or into the other two partially
coherent attractors (B) [Fig. 3(b)]. This apparent irreversibility
where the incoherent states act as a sink for the more coherent
states suggests that a thermodynamic equilibrium is reached at
higher noise levels and that the lifetime of attractors is given
by a detailed balance of transitions.

Noise carries a power per unit bandwidth which is dis-
sipated across the leak resistance of the neuron membrane
(R = 50 k�). The power spectral density is equivalent to a
thermal energy as prescribed by Johnson and Nyquist [38,39]:

σ 2

R� f
= 4kBT, (1)

where � f is a unit of noise bandwidth, kB is Boltzmann’s
constant, and T is the temperature of the reservoir. Noise
therefore provides a reservoir with its own energy and en-
tropy in equilibrium with the discernible microstate states
of the network. These microstates are the state trajectories
differentiated by their initial conditions [Fig. 2(c)]. The mi-
crostates are assumed to be equiprobable and their number
to be very large. For the network at equilibrium, the most
likely macrostate will be the state of maximum disorder
with a probability that depends exponentially on temperature
P = exp(−E/kBT ) where E has the dimension of an energy.
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FIG. 3. Detailed balance of transitions between attractors. (a) Probabilities of transition from the coherent state (A) towards any of the
other five attractors and to self, as a function of noise. (b) Probabilities of transition from the partially coherent state (B) towards any of the five
other attractors and to self. (c) Escape probability out of A as a function of noise, fitted with Eq. (2) (red line). Inset: noise-activated hopping in
the nonequilibrium potential, φ, showing capture by the final state B at moderate noise (∼75 mV) and by final state C at σ ∼ 230 mV. When
σ < 230 mV hopping into C is a sequential process that occurs via B (full purple arrows). When σ > 230 mV, hopping into C is direct (dashed
purple arrow). (d) Escape probability out of B as a function of noise.

Substituting kBT with the variance of noise using Eq. (1), the
probability of the macrostate is

P = exp

(
−4R� f E

σ 2

)
. (2)

In order to test this picture we have plotted the noise-
induced escape probability from the initial attractor as a
function of the inverse of the noise variance. This is shown
in Fig. 3(c) for the coherent attractor (PA→B,C) and in Fig. 3(d)
for the partially coherent attractor (PB→C). In the limit of high
noise levels (σ−2 → 0), the escape probability approaches
unity. As noise gradually decreases and approaches the 75
and 230 mV thresholds, the escape probability decreases
exponentially with the inverse of the noise variance, validat-
ing Eq. (2). A least-square fit of the probability data (red
line) gives pseudoactivation energies of EA = 45.6 nW/Hz
for the coherent attractor and EB = 783 nW/Hz for the par-
tially coherent attractor. As the noise amplitude decreases
below these thresholds, the statistical sample of events used
to calculate the escape probability becomes very small. This
gives a wider dispersion of escape probabilities in Figs. 3(c)
and 3(d).

The detailed balance of transitions between attractors is
consistent with the existence of a pseudopotential similar
to that plotted in the insets to Figs. 3(c) and 3(d). The

pseudoactivation energies define the depth of pseudopoten-
tial wells. When the noise variance is small compared to
the activation energy, transitions take place within the initial
well. When noise increases to become comparable to the
pseudoactivation energy, transitions in and out of the initial
attractor erase the memory of initial conditions and a detailed
balance is established. The detailed balance assigns exponen-
tially small lifetimes to the more coherent states: τA,B/τC =
exp[−4R� f (EC − EA,B)/σ 2]. The occupancy of the coherent
state τB/τA remains very small over a wide range due to the
large difference in pseudoactivation energies. For example, at
σ = 75 mV, τA/τB = 4 × 10−12, which explains why reverse
switching into the coherent state is never observed [Fig. 3(a)].
The detailed balance also explains the sequential activation
of transitions into attractors of increasingly low coherence as
noise increases [Fig. 3(a)]. The partially coherent attractors
initially act as a sink to the coherent attractor [Fig. 3(c), gray
arrow]. This only lasts until noise is sufficient to overcome
the pseudoactivation energy of the partially coherent attractor,
at which point the incoherent attractors become the new sink
[Figs. 3(c) and 3(d), purple arrows]. This sink is with respect
to both the partially coherent attractor selected by current
stimuli and the two equivalent attractors (B). This is why
transitions {3, 1}2 ⇒ {1, 2}3 and {3, 1}2 ⇒ {2, 3}1 are not
observed in Fig. 3(b).

064203-4



NOISE-ACTIVATED BARRIER CROSSING IN … PHYSICAL REVIEW E 105, 064203 (2022)

FIG. 4. Temporal dependence of the switching probability out of
the coherent state A. Noise of amplitude σ = 100 mV is applied at
t = 10 ms.

We have also measured the time dependence of the switch
probability from the instant that noise was applied to deter-
mine the instantaneous switch rates (Fig. 4). Under a noise
level of σ = 100 mV, the occupancy of the initial state de-
cays exponentially over the first 200 ms. The rate of escape
increases exponentially as noise amplitude increases and at
σ = 300 mV, switching is almost instantaneous [Fig. 2(d)].

IV. DISCUSSION

Our neural hardware models the equations of motion of
neurons and synapses [40] in the presence of 1/ f elec-
tronic noise and component-to-component heterogeneity. The
system integrates 18 coupled differential equations (4 × 3
neurons + 6 synapses) to compute the network state. Unlike
conservative systems [19,20] this state does not have a time-
independent energy function. Limit-cycle attractors [5,8,10]
are sequences of action potentials rather than local minima
of an energy function representing bit configurations. In dis-
sipative systems, attractor switching is analyzed in dynamic
terms of bifurcations, event timing, initial conditions, and the
realizations of noise [25–27]. In conservative systems attrac-
tor hopping follows equilibrium thermodynamics [41].

Our experiments on noise-activated switching distinguish
a low noise regime dominated by intrabasin transitions and
a higher noise regime not investigated previously where
50% or more transitions are interattractor transitions. In the
low noise regime, state trajectories conserve the memory
of initial conditions and interdiffuse reversibly between
attractor basins [11]. The escape probability cannot be
defined over our finite 600 ms interval and has the broad
distribution seen in Figs. 3(c) and 3(d) at σ → 0. In the high
noise regime, single event dynamics is replaced with the
detailed balance of transitions between attractors. The state
at the end of the 600-ms observation window is determined
with greater consistency and the escape probability in
Figs. 3(c) and 3(d) narrows down on the exponential trend
line (red line). The memory of initial conditions is lost. The

attractor lifetime is now given by the detailed balance of
transitions. Pseudoactivation energies validate the hypothesis
of pseudopotential barriers made by Graham and Tél [21,22]
in dissipative multiattractor neural networks.

The detailed balance principle explains the transition prob-
abilities reported in Figs. 3(a) and 3(b) and their dependence
on noise. These together with the remaining transitions with
vanishingly small probabilities give the Markov transition
matrix of the six-attractor system. Hopping is effectively uni-
directional from coherent to incoherent attractors. Reverse
transitions from the incoherent to the coherent states have
a very low probability due to the different pseudoactivation
energies and vanishing lifetime of the coherent attractor. Hop-
ping among attractors of the same type [e.g., B in Fig. 3(b)]
is improbable because these transitions compete with tran-
sitions into attractors of lower coherence. The attractor of
lowest coherence whose pseudoactivation energy is greater
than the noise variance will act as a sink for all transitions
emanating from states of higher coherence. Asymmetrical
hopping probabilities into the three B states in Fig. 3(a) is
likely due to residual imbalance in the network connectivity.
Preferential noise-induced hopping is known to occur in mul-
tistable dynamical systems [25]. We have also investigated
noise-induced switching in a four-neuron network building
on the low noise work of Chauhan et al. [11]. The same
detailed balance is established at higher noise level as in the
present three-neuron network. This now takes place between
24 attractors. The coherent attractor, in particular, is less stable
than in the three-neuron network.

The pseudoactivation energies of dissipative dynamic net-
works are likely to have several important applications. They
are easy to compute and will be important to estimate the
range of stability of oscillations to perturbations other than
noise that may be quantified in terms of an energy, such as
temperature [17] and pH [18]. The broad distribution of pseu-
doactivation energies in multiattractor networks will further
explain the discrepancy between the plethora of theoreti-
cally predicted attractors and the smaller number observed
in biological networks. Lastly, our work paves the way to
engineering the pseudopotentials of dissipative networks to
solve computationally hard problems in the same way as the
free energy of Hopfield-like conservative networks and is
optimized to perform integer factorization [42] or simulated
annealing [41,43]. Wojcik et al. [5] and Schwabedal et al.
[44] have shown that the size and location of attractor basins
may be tuned with the network connectivity. If used in this
way it is expected that dynamical networks would hold many
more information patterns for their larger number of attractors
[(N − 1)!/(ln2)N against 2N ] which are protected from noise.

The advantages and limitations of neuromorphic hardware
as a test bench for nonlinear dynamics are as follows. The
development of neuromorphic models is driven by bioelec-
tronic medicine, in particular cardiac pacing [45], where they
provide effective solutions [46] and brain-machine interfaces
[47]. Applications aside, both analog neuron models [40,48]
and computational models [49,50] are equally capable of pre-
dicting the state of a biological neuron to near perfection when
configured with the right parameters. Both types of models
are thus equally suited to modeling functional biocircuits.
It should also be noted that all neuron models are guesses
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irrespective of whether they are hardware or computational
models. Model error is currently the major hurdle for estimat-
ing meaningful biological parameters. Parameter estimation
frequently assigns erroneous values to parameter solutions to
compensate for model error when fitting electrophysiolog-
ical data. Neuromorphic computation has the advantage of
being instantaneous, accurate, and free from approximations
although it requires a time investment to build the hard-
ware. Nonideal situations are modeled by default including
device-specific heterogeneity, 1/ f electric noise with multiple
sources distributed across the spatial structure of the network.
Probing the dynamics of actual living cells would be an
ideal alternative; however, it would require isolating a func-
tional subnetwork, injecting multiple stimuli and recording
multiple neurons simultaneously without cross-talk. Any of
these undertakings, on its own, is beyond current experimen-
tal capabilities in electrophysiology. Assuming a functional
network could be isolated and measured, the lack of knowl-
edge on electrochemical parameters [51] (neuromodulation,
ion pumps...) would add uncertainty to the recorded data.
Until experimental methods in neuroscience are sufficiently
advanced to probe network dynamics in vitro, neuromorphic
hardware will provide a powerful proxy for testing concepts
in nonlinear dynamics free from uncertainty in electrical
characteristics.

V. CONCLUSION

Our experiments unify the theoretical picture of time-
independent interactions in dissipative dynamical systems by
validating the existence of pseudopotentials. Unlike conser-
vative systems where the free energy exists independently
of noise, the pseudopotential barriers of our dissipative dy-
namical network form when the escape probability becomes
comparable to the intrabasin hopping probability. When
the noise level is low, attractor switching occurs through
small-scale bifurcation events. We have obtained the pseu-
doactivation energies of limit-cycle attractors and show that
these energies increase rapidly with the incoherence of syn-
chronized oscillations. This energy-based metric is important
to predict the range of stability of biological rhythms to per-
turbations (thermal, electrochemical, pressure) that may be
expressed as energies.
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