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Bistability of bursting and silence regimes in a model of a leech heart interneuron
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Bursting is one of the primary activity regimes of neurons. Our study is focused on determining a generic
biophysical mechanism underlying the coexistence of the bursting and silent regimes observed in a neuron
model. We show that the main ingredient for this mechanism is a saddle periodic orbit. The stable manifold of
the orbit sets a threshold between the regimes of activity. Thus, the range of the controlling parameters, where the
coexistence is observed, is limited by the bifurcations’ values at which the saddle orbit appears and disappears.
We show that it appears through the subcritical Andronov-Hopf bifurcation, where the equilibrium representing
the silent regime loses stability, and disappears at the homoclinic bifurcation. Correspondingly, the bursting
regime disappears in close proximity to the homoclinic bifurcation.
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I. INTRODUCTION

Cardiac cells and a variety of neurons have been shown
to exhibit bistability [1–5]. Certain perturbations of the state
of a bistable excitable cell may trigger a switch between two
coexisting regimes of activity, such as, for example, periodic
spiking and silence in a cardiac cell [5], and in the squid
giant axon [6]. The mechanisms supporting multistability
in excitable cells are not well understood. The more such
mechanisms we know, the closer we will be to applying this
knowledge to the development of biofeedback stimulation
treatments that could prevent the onset of pathological regimes
such as seizures, by inducing a switch back to a normal regime
[7–10]. Analysis of the dynamical mechanisms supporting
bistability is facilitated by the appropriate choice of an
invertebrate model system [11]. Such a system allows the
investigation of bistability on a cellular level using identified
neurons [6,12,13]. For example, the hand-in-hand modeling
of and experiments on the neuron R15 from the mollusk
Aplysia demonstrated the bistability of bursting and tonic
spiking [12,14]. Another classical example of such a system
is the celebrated squid giant axon made famous by the studies
of ionic currents by Hodgkin and Huxley [15]. These two
components—first, having a neuron that is identified so that a
researcher can always find it from preparation to preparation;
and, second, having a biophysically accurate model that
describes the dynamics of these regimes—make it no surprise
that it is the number one system where the bistability of
tonic spiking and silence is studied with an exemplary
thoroughness. These studies have made the coexistence of
tonic spiking and silence into probably the most extensively
studied type of bistability [6,16–19]. In a striking contrast,
there is a gap in our knowledge when it comes to understanding
the mechanisms supporting the bistability of bursting and
silence in the dynamics of a single neuron. In this work we
describe the mechanism producing bistability in the leech heart
interneuron.

Several different classes of neurons displayed the coexis-
tence of tonic spiking and silence [1,3,4]. The coexistence of
regimes implies that their basins of attraction are separated
by a barrier created by an unstable regime. The mechanisms
supporting bistability can be classified in terms of the unstable
regime involved. Models exhibiting coexistence of tonic

spiking and silence usually have either a saddle equilibrium or
saddle periodic orbit involved. A stable manifold of a saddle
separates the rest state and tonic spiking, setting a threshold
between these two attractors. Purkinje cells and motoneurons
were shown to exhibit the type of bistability based on a saddle
equilibrium [4,20]. The Hodgkin-Huxley model has bistability
based on a saddle periodic orbit [19].

The saddle periodic orbit commonly appears through the
subcritical Andronov-Hopf bifurcation, which is a ubiquitous
cause of bistability in different nonlinear systems. In the
Hodgkin-Huxley model a saddle orbit terminates at a saddle-
node bifurcation for periodic orbits, at which the stable
and unstable periodic orbits coalesce and disappear. The
bifurcations that determine the appearance and disappear-
ance of the unstable periodic orbit limit the range of the
control parameter values for which the bistability exists.
This bistability investigated in the model has been clearly
experimentally identified in the squid giant axon under low
Ca2+ bath concentration; by applying a single current pulse
to a squid axon the transition between tonic spiking and
silence was shown [6]. The unstable oscillatory regime was
recorded for several periods before the activity settled to one of
the attracting regimes. This example unites experimental and
theoretical studies and illustrates the advantages of studying
the neuronal dynamics of identified neurons.

Motor control of rhythmic movements commonly employs
specialized oscillatory neuronal networks, central pattern gen-
erators (CPGs) [11]. The leech heart beat CPG is one of the best
studied invertebrate neuronal networks, with a clearly identi-
fied function, a set of identified participating neurons, and
well-developed biophysically accurate models. It consists of a
small number of interneurons distributed over several ganglia.
Those located in ganglia 3 and 4 are responsible for generating
basic rhythm [22]. Here we focus on the dynamics of a single
interneuron from either ganglion 3 or 4. The predictions of
this work could be tested in further studies since synaptic
interaction within this CPG can be blocked pharmacologically
[21,22]. These neurons are particularly attractive for analysis in
terms of the theory of dynamical systems since their membrane
ionic currents have been measured and well described by a
canonical model using the Hodgkin-Huxley formalism [23].
The canonical model has proven itself as a powerful tool
in predicting phenomena [23,24]. Depending on the value
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of the parameters, the model can exhibit different regimes
including tonic spiking, bursting, silence, and subthreshold
oscillations. The bistability of bursting and silence has also
been observed in this model [24] and the goal of this study
is to describe the mechanism that supports it. We start by
showing that the switch from silence to bursting activity can be
achieved by current perturbation. We show the involvement of
the unstable subthreshold oscillations; and with one-parameter
bifurcation analysis we describe the origin and disappearance
of the subthreshold oscillations. Finally, we performed two-
parameter bifurcation analysis to show the range of leak current
parameters where bistability can be observed.

II. RESULTS

We studied the dynamics of the canonical leech heart
interneuron model. Bistability of bursting and silent regimes
had been demonstrated previously [24], but the mechanism
supporting it was not described. The model contained nine
voltage-dependent currents: fast calcium current (ICaF), slow
calcium current (ICaS), fast sodium current (INa), delayed
rectifier-potassium current (IK1), persistent potassium current
(IK2), fast transient potassium current IKA, hyperpolarization
activated cationic current (Ih), persistent sodium current (IP ),
and leak current (Ileak) and was described by a system of
14 differential equations [23] (Appendix). The parameters of
the canonical model were tuned to produce activity with a
wave form close to the one experimentally observed [23,24].
The trajectories of this model were obtained using the Matlab
ODE solver, ode15s. Absolute tolerance and relative tolerance
were 10−9 and 10−8. The integration and bifurcation analysis
were performed using the software package CONTENT [25,26].
The integration of equations was done using the Runge-Kutta
method of the fourth order with the tolerance of integration set
as 10−9. Bistability was reported in the model with elevated
conductance of the leak current, gleak.

We were able to elicit a switch from silence to bursting
activity by applying a square pulse of current. The switch could
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FIG. 1. Perturbation by a square pulse of current switches the
regime of activity from silence into bursting. (a) A negative,
hyperpolarizing pulse of current Iinj = −0.05 nA switches activity
from silence to bursting. The minimum magnitude of Iinj that can
induce the switch is –0.02131 nA. (b) A positive, depolarizing pulse
of current Iinj = 0.05 nA also initiates the bursting activity. To
switch the activity, Iinj has to be larger than the value of 0.0175 nA.
For either polarity of the pulse, the pulse duration was 0.03 sec.
The parameters of the leak current are Eleak = –0.0635 V and
gleak = 10.7 nS.

be triggered by either a negative or positive pulse (Fig. 1). All
parameters including Eleak were set to the canonical values, but
gleak was set to 10.7 nS; the canonical value is 9.9 nS [23,24].
The initial conditions of voltage and gating variables were
set so that the model initially exhibited silence. We used
square pulses with a duration of 0.03 sec. In Fig. 1(a) a
hyperpolarizing pulse of current with the amplitude of 0.05 nA
switched the activity from silence to the bursting regime. By
trying different amplitudes of the pulse, we found that negative
pulses within the range −0.0213 nA < Iinj < 0.0 nA did not
switch silence into the bursting regime, while negative pulses
with an amplitude larger than 0.0213 nA did switch the activity.
Perturbations of the initially silent neuron by the depolarizing
square pulse of current showed that only a pulse with an
amplitude larger than 0.0175 nA could switch the activity
from silence to bursting. Figure 1(b) shows the example of
perturbation by a positive pulse with the amplitude Iinj =
0.05 nA. For a pulse duration of 0.03 sec, the critical values,
Iinj = −0.0213 nA and Iinj = 0.0175 nA, set two thresholds
for the amplitude of the pulse of current, Ith, for the switch
from silence to bursting—negative and positive. Repeating this
analysis we found the two thresholds for pulses with different
durations (Fig. 2). The longer the duration of the pulses
was, the smaller the two thresholds were. The two data sets
obtained fit well to the empirical Lapicque strength-duration
formula describing the property of the minimum strength pulse
triggering a spike in an excitable cell [27–29]
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FIG. 2. The strength-duration relationships of the minimum
depolarizing (gray) and hyperpolarizing (black) square pulses of
current switching the silent regime into the bursting regime. To toggle
the switch the pulse strength must be larger than the thresholds
Ith determined by the relationships. The two data sets (dots) were
obtained numerically and then fitted to the Lapicque formula (curves).
The parameters of the leak current are the same as in Fig. 1.
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where Irheobase is the asymptotic current’s threshold value for
the infinitely long pulse, T is the pulse duration, and τm is a
time constant characterizing the process of charging the cell’s
membrane.

Our previous study of the leech heart interneuron model
showed that the bistability of bursting and silence is as-
sociated with the Andronov-Hopf bifurcation [24]. These
results suggest that the separating barrier between the two
attractors, bursting and silent, is the stable manifold of a
saddle periodic orbit. The Lapicque formula approximates
well the strength-duration relationship of a square pulse of
current which is sufficient to move a phase point from the
stable stationary state across the stable manifold into the basin
of attraction of bursting activity.

A. The unstable orbit disappears at a homoclinic bifurcation

We investigated the stability of the equilibria of the
model for Eleak = −0.0635 V. Evolution of the equilibria
and their stability were analyzed with gleak being varied as
the bifurcation parameter in the CONTENT software. The plot
of the membrane potential associated with each equilibrium
versus the bifurcation parameter gleak exhibits a z-shaped
curve of the equilibria branches. This curve has two branches
made of the equilibria, which are the hyperpolarized and
depolarized rest states, separated by the saddle. First, we set
a large value of gleak, so that the model stayed at the stable
hyperpolarized stationary state. We examined how the stability
of the hyperpolarized equilibrium changed in response to a
decrease in the bifurcation parameter gleak (Fig. 3(a)). The
hyperpolarized equilibrium lost its stability through the sub-
critical Andronov-Hopf bifurcation. For Eleak = −0.0635 V,
the bifurcation occurred at gAH

leak = 10.67 nS; and the stable rest
state became a saddle focus. The subcritical Andronov-Hopf
bifurcation (AH) gave rise to an unstable periodic orbit
with zero amplitude and period 3.05 sec. As the bifurcation
parameter gleak was increased, the amplitude of the unstable
orbit grew proportionally to

√
gleak − 10.67 while gleak was

close to the bifurcation value gAH
leak. As the parameter gleak

was increased further the unstable orbit approached the saddle
located on the middle branch of the z-shaped curve. To
depict this evolution of the orbit, we plotted the minimum,
maximum and average values of the membrane potential of
the unstable orbit against gleak together with the z-shaped
curve. In the vicinity of the saddle, the period of the orbit
grew logarithmically fast. For the range of gleak from 10.85
nS to 10.873 nS [Fig. 3(b)] the period of the orbit grew
rapidly from 7 sec to 100 sec. The graph was fitted by the
function −1.198 ln(|10.873 − gleak|). Near gleak = 10.873 nS
the amplitude of the oscillations stayed constant while the
period grew. At the value gleak = 10.873 nS the homoclinic
bifurcation (Hom) occurred in the system. Concerning the
unstable subthreshold oscillations this analysis suggests that
they could be recorded experimentally.

We compared the unstable periodic orbit obtained using the
bifurcation analysis software CONTENT with those recorded
after a square pulse of current with an amplitude that is very
close to the threshold value. Let’s consider again the canonical
model with elevated leak conductance, gleak = 10.7 nS. We
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FIG. 3. (Color) Bifurcation diagram of the stationary states
and hyperpolarized subthreshold oscillations of the model. (a)
The solid green line represents the stable hyperpolarized equilib-
rium (EP1). Subcritical Andronov-Hopf bifurcation (AH) occurs at
gleak = 10.67 nS (marked by the left vertical dashed line, Eleak =
−0.0635 mV) where the equilibrium loses its stability and gives
rise to the unstable periodic orbit. For the values of gleak smaller
than this critical value the equilibrium is unstable (dashed blue line).
The dashed blue line located above it depicts the saddle equilibria
(EP2). The curve of the depolarized equilibrium has the membrane
potential near +0.01 V and is not shown. The unstable periodic
orbit corresponds to the unstable subthreshold oscillations (USTO).
It is marked by the two dashed red curves and the dashed brown
curve locating the minimum, maximum, and average values of the
membrane potential of the oscillations correspondingly. The unstable
orbit disappears at the homoclinic bifurcation (Hom), marked by
the dashed vertical line at the right, gleak = 10.873 nS. (b) Red
dots graph the values of the period, P, of USTO as the gleak is
varied between the two bifurcation values. As the unstable periodic
orbit approaches the homoclinic bifurcation the period grows as
−1.198 ln(|10.873 − gleak|) as shown by the blue curve. (c) Inset
shows the part of the graph in (b) taken in the vicinity of the
homoclinic bifurcation, where b = 1.198, gHom

leak = 10.873 nS.
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FIG. 4. (Color online) Coexistence of bursting and silence. The
negative square pulse of Iinj perturbed the bursting activity. Bursting
and transient activities are represented by black solid line. (a), (c),
(e) Two-dimensional (2D) projection reveals unstable oscillations
represented by dashed red (gray) loop along with the two attractors:
the bursting and the hyperpolarized equilibrium, green (gray) dot.
(a), (b) The pulse with the amplitude of −0.01044 nA moved the
phase point toward the unstable periodic orbit, allowed recording
the subthreshold oscillations for eight periods, but did not switch
the activity from bursting into silence. (c), (d) The pulse with the
amplitude −0.01045 nA again allowed recording the subthreshold
oscillations for a few periods, moved the phase point into the basin of
attraction of the equilibrium, thus producing the switch from bursting
into the silence. The dashed red (gray) lines in plots (b) and (d) mark
the minimum and maximum values of the membrane potential of the
unstable orbit obtained with the bifurcation analysis. (e), (f) This is
the part of the trajectory with the unstable oscillations (solid) revealed
by the perturbation plotted together with the unstable periodic orbit
(dashed). The parameters of the leak current were the same as in
Fig. 1.

set the initial conditions that corresponded to the bursting
regime. With these initial conditions the model would exhibit
bursting indefinitely; to confirm that the bursting regime is
the attractor, the system was integrated for several thousand
seconds. To perform the switch from bursting to silence, we
applied a negative pulse of current near the first spike of a
burst. Pulses with an amplitude of the current pulse close
to −0.010445 nA revealed unstable subthreshold oscillations
for several periods [Figs. 4(b) and 4(d)]. Now we plotted
together the saddle periodic orbit obtained with the parameter
continuation software CONTENT for gleak = 10.7 nS and the
subthreshold oscillations recorded after the pulse [Figs. 4(e)
and 4(f)]. The unstable periodic orbit is presented by dashed
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FIG. 5. (Color online) Bursting, the saddle orbit and silent
regimes at different values of the controlling parameter gleak. The
saddle orbit, stable and saddle equilibria on the 2D projection onto
(mCaS,hCaS) plane presented for three gleak values, 10.76 nS (a), 10.83
(b), 10.87 (c); and panels (a1), (b1), (c1) show corresponding bursting
activities. On panels (a), (b), and (c), the saddle orbit is marked by the
dashed loop; and the stable and the saddle equilibrium are shown by
the filled green (gray) and open blue (gray) circles, correspondingly.
The homoclinic bifurcation occurs at gleak = 10.873 nS, where the
saddle orbit merges with the saddle equilibrium. Panels (a1) and (b1)
show the bursting activities of the models such that in parameter space
one is relatively far from the bifurcation [(a1)] and the other is close
to the transition from bursting to silence [(b1)]. Both cases exhibit
the bistability of bursting and silence. At the parameter value close to
the bifurcation [(c), (c1)], bursting no longer exists as a regime; and
silence is the only attractor [(c1)]. The value of Eleak was −0.0635 V
for all the plots.

red (gray) curve. The trajectory of the unstable subthreshold
oscillations is extracted from the trace in Fig. 4(b) between
two vertical lines and is shown by black curve in Figs. 4(e)
and 4(f) (inset). Minimum and maximum voltages of the
unstable periodic orbit are also plotted in Figs. 4(b) and 4(d).
The two trajectories appeared very close to each other when
projected on the plane created by the state variables gating the
conductance of the slow calcium current [Fig. 4(e)] and also
plotted as membrane potentials versus time [Fig. 4(f)]. Figure 4
illustrates the position of the unstable periodic orbit relative
to rest state and bursting trajectory projected onto the plane
(mCaS,hCaS). It allows one to observe how a pulse of current
brings the phase point of the bursting trajectory into the basin
of attraction to the rest state, which is separated by the stable
manifold of the saddle periodic orbit.
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As we elevated gleak in small increments the saddle orbit
grew in size approaching the saddle rest state [Figs. 5(a)–5(c)].
By tracing the bursting activity for the same values of gleak,
we found that the transition from bursting to silence occurred
very close to but slightly before the homoclinic bifurcation
[Figs. 5(a1)–5(c1)]. The wave form of the bursting activity
changed only slightly as the controlling parameter was set
closer and closer to the transition value. At gleak = 10.87 nS
the bursting activity was not observed and the stable stationary
state was the only attractor. Up to the transition point the
neuron exhibited bistability.

To summarize, the unstable periodic orbit appears through
the subcritical Andronov-Hopf bifurcation and disappears at
the homoclinic bifurcation. The orbit corresponds to unstable
subthreshold oscillations, which could be revealed by a pulse
of current. The homoclinc bifurcation bounds the range
where the bursting regime could exist, since the separating
saddle regime does not exist beyond the bifurcation value.

We numerically computed a two-parameter bifurcation
diagram of oscillatory and stationary regimes (Fig. 6). The
range of the parameters of the leak current (gleak, Eleak)
supporting bursting activity has a banana shape and is
surrounded by a large area supporting tonic spiking activity
on the left side and a silent regime on the right side. The
borders between regimes are associated with bifurcations in
the system. The period-doubling bifurcation of the stable
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FIG. 6. (Color) Bifurcation diagram of the oscillatory and station-
ary regimes. The green curve is composed of numerically found points
where the transition from bursting activity into silence occurs. The
subcritical Andronov-Hopf bifurcation (AH) of the hyperpolarized
rest state (silent regime) is shown by the blue curve and marks the
boundary where the silent regime loses stability giving rise to the
unstable subthreshold oscillations. The red circles correspond to
the homoclinic bifurcation (Hom) of the unstable subthreshold oscil-
lations. The area between these two curves (the blue and the red dots)
marks the parameter regime where unstable subthreshold oscillations
exist. The gray curve marks the period-doubling bifurcation (PD) of
large amplitude periodic spiking and marks the transition from tonic
spiking to bursting activity. The area of bursting activity is located
between the PD and green curves.

periodic orbit representing tonic spiking activity determines
the critical values of the controlling parameters, which describe
the transition from spiking into bursting. It marks the beginning
of the cascade of period-doubling bifurcations transforming
the periodic tonic spiking into chaotic tonic spiking. These
events occur in a very narrow range of parameters of the
leak current. Within a small parameter range bursting coexists
with tonic spiking. The mechanism underlying this transition
and coexistence has been described for the Hindmarsh-Rose
model [30]. Here, we explored the transition from bursting into
silence and the mechanism supporting bistability of these two
regimes. Based on the knowledge that the range of parameters
where unstable subthreshold oscillations exist is bounded
between the Andronov-Hopf and homoclinic bifurcations,
first, we computed the AH curve in (gleak, Eleak) parameter
space. Then, in order to locate the homoclinic bifurcation curve
(Hom), we increased gleak while following the saddle periodic
orbit. We started at the Andronov-Hopf bifurcation where the
orbit appeared and followed the orbit until its period became
very large, 100 sec, near the homoclinic bifurcation. CONTENT

software allows tracking the periodic orbit with the given value
of the period; we used gleak and Eleak as the two parameters to
find the curve with a fixed period of 100 sec. This curve gives
a good estimation for the bifurcation values determining the
homoclinic bifurcation. The estimated bifurcation values are
shown by the red circles in Fig. 6. One can see that the detected
points representing the homoclinic bifurcation of the unstable
periodic orbit match well with the border between bursting and
silence calculated previously by numerical simulations [24].
Hence, the transition from bursting activity into silence is
associated with the homoclinic bifurcation, and the range of
bistability in leak current parameter space is limited by the
subcritical Andronov-Hopf and homoclinic bifurcations for
the saddle periodic orbit.

III. DISCUSSION

In a single neuron, interplay between different ionic cur-
rents can lead to the coexistence of different regimes of activity,
such as tonic spiking, bursting, silence, and subthreshold
oscillations. The documented types of bistability include
coexistence of bursting and tonic spiking [12,14,24,31],
depolarized and hyperpolarized silent states [3,32], two tonic
spiking regimes [33], tonic spiking and silence [6], and
different patterns of bursting [14,24,34]. Although bistability
as a phenomenon has been shown in many different neuronal
systems, the biophysical mechanisms supporting bistability
are largely not known.

The coexistence of tonic spiking and silence has been
particularly extensively studied [19]. It was detected in
various types of neurons, from spinal motoneurons to neuronal
networks of the entorhinal cortex, and thalamocortical network
[1–3,35]. Bistability has been found to occur spontaneously or
to be induced by neuromodulators. For example, spontaneous
bistability was demonstrated in Purkinje cells in the rat and
guinea pig [4]. Turtle and cat motoneurons become bistable
after modulation of membrane properties by serotonin [3,36].
Analysis of neuronal Hodgkin-Huxley type models exhibiting
coexistence of tonic spiking and silence suggests two main
types: i) The depolarized tonic spiking regime and rest state are

041910-5



MALASHCHENKO, SHILNIKOV, AND CYMBALYUK PHYSICAL REVIEW E 84, 041910 (2011)

separated by the stable manifold of a saddle equilibrium [20];
and ii) the trajectory of the tonic spiking of larger amplitude
goes around the hyperpolarized rest state so that the states
are separated by the stable manifold of a saddle periodic orbit
[6,16,17,19]. The second type features Rinzel’s mechanisms
of bistability. The mechanism of bistability described in this
paper is of the second type, except that the bursting state is in
the place of tonic spiking.

A saddle periodic orbit is a generic component of a number
of mechanisms supporting bistability in the dynamics of single
neurons [6,17,19,31,33,37,38]. Its stable manifold acts as a
threshold between the two regimes; and different perturbations
of the state of the model could induce crossing the threshold
and a switch from one regime to the other. Analysis of the
process of switching between regimes of activity with noise
or pulses of injected current applied to a bistable neuron or
network is a valuable tool for the investigation of bistability
[6,16–18].

After the separating regime is identified, an essential part
of the description of a mechanism supporting bistability is the
description of the appearance and disappearance of the regime
under variation of a controlling parameter. This description
allows one to identify the factors that cause the bistability and
the range of the parameter values supporting it. The choice
of parameter is usually dictated by the topic of study. The
bifurcation theory provides appropriate tools for this task. For
the Hodgkin-Huxley model, the Rinzel mechanism determines
that the unstable orbit appears through the Andronov-Hopf
bifurcation and disappears through the saddle-node bifurcation
for periodic orbits as the polarizing current is varied [19]. The
Hodgkin-Huxley model was also analyzed under variation of
the concentration of K+, which affects the membrane potential
in accordance with the Nernst potential. This analysis was
motivated by the hypothesis that the elevation of external
K+ concentration can induce seizures. The analysis shows
the same mechanism of bistability [17].

By applying the bifurcation analysis to the model of the
leech heart interneuron, we showed that for a given value
of Eleak the stable hyperpolarized equilibrium and bursting
regime coexisted in a certain range of values of gleak. For a
smaller gleak, this range is limited by the subcritical Andronov-
Hopf bifurcation at which the unstable periodic orbit appears.
In this regard, the orbit appears in accordance with the Rinzel
mechanism of the coexistence of tonic spiking and silence. For
a larger gleak, the range of bistability is limited by the homo-
clinic bifurcation of a periodic orbit. The latter distinguishes
the mechanism presented here from the Rinzel mechanism,
which has the unstable orbit ceasing at the saddle-node
bifurcation for periodic orbits. Outside of the above-mentioned
range, bistability of bursting and silence was not observed.
We performed two-parameter bifurcation analysis to trace the
Andronov-Hopf and homoclinic bifurcations using the leak
current parameters as the bifurcation parameters and placed
them on the bifurcation diagram obtained previously [24]. On
this diagram, we showed that the transition from bursting to
silence approximately coincides with the two-parameter curve
of the homoclinic bifurcation (Fig. 6). This type of analysis of
biophysically realistic models could provide help establishing
the origin and roles of bistability in the functioning of the
nervous system.

Similarly to electronic and other technical devices, in
neuronal networks the bistable neurons could play the roles
of switch, relay, logic, and memory elements [39]. In the
realm of motor control, bistable neurons appear to be a
natural choice as elements of multifunctional central pattern
generators so that the same network can generate several
behavioral patterns [40–42]. In contrast to multifunctional
central pattern generators, for the leech heartbeat central
pattern generator bistability in the leech heart interneurons
seems to be a pathological, life threatening phenomenon. This
study predicts the existence of bistability of the leech heart
interneuron under conditions leading to elevated conductance
of the leak current.

Bistability of a nervous system affected by a pathological
condition like seizures coexisting with an alternative, func-
tional regime could be the key element determining the seizure
dynamics [7,8,43]. If seizure activity coexists with a functional
state, then based on the theory of bistability one could create a
feedback procedure to switch it back from seizure. Stimulation
by noise of a neuronal network was tested to reduce the
duration of seizure episodes [7,8]. In the case of Parkinson’s
disease, theoretical analysis of the coexistence of pathological
synchronization and functional desynchronized states helps
in the designing of deep brain stimulation techniques that
promote antikindling and desynchronization of the network,
suppressing the pathological activity by electric stimulation
[10,44].
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APPENDIX: MODEL

CV ′ = −[ḡNam
3
NahNa(V − ENa)

+ ḡPmP(V − ENa)

+ ḡK1m
2
K1hK1(V − EK)

+ ḡK2m
2
K2(V − EK)

+ ḡKAm2
KAhKA(V − EK)

+ ḡCaSm
2
CaShCaS(V − ECa)

+ ḡCaFm
2
CaFhCaF(V − ECa)

+ ḡhm
2
h(V − Eh)

+ gleak(V − Eleak)],

m′
Na =

[
f ∞

mNa(−150.,0.029,V ) − mNa
]

0.0001
,

h′
Na =

[
f ∞

hNa(500.,0.03,V ) − hNa
]

τNa(V )
,

m′
P =

[
f ∞

mP (−120.,0.039,V ) − mP
]

τ (400,0.057,0.01,0.2,V )
,

m′
CaS =

[
f ∞

mCaS(−420.,0.0472,V ) − mCaS
]

τ (−400,0.0487,0.005,0.134,V )
,
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h′
CaS =

[
f ∞

hCaS(360.,0.055,V ) − hCaS
]

τ (−250,0.043,0.2,5.25,V )
,

m′
CaF =

[
f ∞

mCaF(−600.,0.0467,V ) − mCaF
]

τCaF (V )
,

h′
CaF =

[
f ∞

hCaF(350.,0.0555,V ) − hCaF
]

τ (270,0.055,0.06,0.31,V )
,

m′
K1 =

[
f ∞

mK1(−143.,0.021,V ) − mK1
]

τ (150,0.016,0.001,0.011,V )
,

h′
K1 =

[
f ∞

hK1(111.,0.028,V ) − hK1
]

τ (−143,0.013,0.5,0.2,V )
,

m′
K2 =

[
f ∞

mK2(−83.,0.02,V ) − mK2
]

τ (200,0.035,0.057,0.043,V )
,

m′
KA =

[
f ∞

mKA(−130.,0.044,V ) − mKA
]

τ (200,0.03,0.005,0.011,V )
,

h′
KA =

[
f ∞

hKA(160,0.063,V ) − hKA
]

τ (−300,0.055,0.026,0.0085,V )
,

m′
h = [f ∞

h (V ) − mh]

τ (−100,0.073,0.7,1.7,V )
,

where the reversal potentials and maximal conductances
of the ionic currents are ENa = 0.045V , EK = −0.07V ,
ECa = 0.135V , Eh = −0.021V , ḡNa = 200 nS, ḡP = 7 nS,
ḡCaS = 3.2 nS, ḡCaF = 5 nS, ḡK1 = 100 nS, ḡK2 = 80 nS,
ḡKA = 80 nS, ḡh = 4 nS. The cell membrane capacitance C is
0.5 nF. The steady-state activation and inactivation functions
are defined by f ∞

x (a,b,V ) = 1/[1 + ea(V +b)], where x defines
the gating variable. The steady-state activation function of
the hyperpolarization activated current, the inactivation time
constants of the fast sodium and calcium currents, and the
time constants of the activation and inactivation variables of
the other currents are given by

f ∞
h (V ) = 1

1 + 2e180[V +0.047] + e500[V +0.047]
,

τNa(V ) = 0.004 + 0.006

1 + e500[V +0.028]

+ 0.01

cosh(300[V + 0.027])
,

τCaF(V ) = 0.011 + 0.024

cosh(−330[V + 0.0467])
,

τ (a,b,c,d,V ) = c + d

1 + ea[V +b]
.
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