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Neural circuit motifs producing coexistent rhythmic patterns are treated as building blocks of multi-
functional neuronal networks. We study the robustness of such a motif of inhibitory model neurons to
reliably sustain bursting polyrhythms under random perturbations. Without noise, the exponential stability
of each of the coexisting rhythms increases with strengthened synaptic coupling, thus indicating an
increased robustness. Conversely, after adding noise we find that noise-induced rhythm switching intensifies
if the coupling strength is increased beyond a critical value, indicating a decreased robustness. We
analyze this stochastic arrhythmia and develop a generic description of its dynamic mechanism. Based
on our mechanistic insight, we show how physiological parameters of neuronal dynamics and network
coupling can be balanced to enhance rhythm robustness against noise. Our findings are applicable to a
broad class of relaxation-oscillator networks, including Fitzhugh-Nagumo and other Hodgkin-Huxley-type
networks.
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I. INTRODUCTION

Robustness and flexibility are critical features of physical,
social, and biological networks exposed to perturbations
in their environment [1–5]. Mechanisms that ensure robust
network dynamics can be intricate, especially in genetic [6,7],
and neuronal [8–10] networks, for which a high degree of
flexibility, i.e., multistability and plasticity, is equally required
for proper functioning.

We follow the point of view that functional flexibility in
neuronal networks is expressed by the coexistence of multiple
dynamical activity patterns, i.e., polyrhythmicity. Each pattern
controls a particular function, e.g., coordinated motion [11],
sensory perception [12], or memory [13]. These activity
patterns are network states of synchronization, notoriously
showing a high degree of multiplicity and clustering [14–17].
Perturbations, such as neuronal noise, can destroy such mul-
tifunctionality by accidentally switching between coexistent
functional patterns [17] and by reducing neuronal synchrony,
assumed to be a binding element of neuronal information
transmission [18,19]. The interplay between robustness and
flexibility was studied in neuronal network models of memory,
where an increasing number of stable states, representing
individual stored memories, negatively affect the robustness
of memory retrieval, thereby leading to false memory associ-
ations [20–22].

On a circuitry level, activity patterns are generated by
small groups of neurons that are often synaptically coupled
to form functional motifs [23–29]. Such neural circuit motifs
(NCMs) “are ubiquitous and may serve as computational
elements within neural circuits” (Ref. [30], p. 693), including
central pattern generators, which produce various motor
behaviors autonomously, e.g., heartbeat, respiration, chewing,
and locomotion.
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Neurons within an NCM often exhibit bursting discharges,
i.e., alternation of spike trains and quiescent recovery periods
[31,32]. The complex properties of such single-cell activity
determine the rhythmic patterns that an NCM can generate
autonomously. The pattern repertoire of the NCM also depends
on the functional form and strength of synaptic coupling.
Inhibitory synaptic coupling facilitates polyrhythmicity in
NCMs by actively breaking the globally synchronized state
into many coexistent ones. Each of these is characterized
by specific phase relationships between bursts [33]. Such
polyrhythmicity can already emerge in a network of two
bursters [34,35].

Prediction and control of NCM dynamics are bounded by
the multiple time scales inherent to bursting, because such
dynamics limits the use of conventional analysis methods.
Phase reduction, for example, is not applicable in the analysis
of stability of burster networks that are strongly coupled.
Conversely, random perturbations can effectively elucidate
the dynamical stability of such systems that otherwise evade
standard analysis methods [36]. Such systems also include
those near bifurcations and those that are singularly perturbed
[37,38].

In this article, we study the robustness of polyrhythmicity
against random perturbations in an NCM model of three
mutually inhibiting Hodgkin-Huxley-type bursters. We report
a generic mechanism of noise-induced switching between the
coexistent bursting patterns. In search of a robust network
design, we devise mechanism-based strategies to enhance
rhythm robustness while preserving polyrhythmicity.

In the next section, we introduce the NCM model. In Monte
Carlo simulations, we identify the noise-induced rhythm
switching phenomenon (Sec. III), which we then explain in
Sec. IV, using a soft- to hard-lock transition of network
dynamics. In Sec. V, we use this mechanistic insight to
improve the stability of NCM polyrhythmicity. We end in
Sec. VI with concluding remarks.
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II. CIRCUIT MOTIF OF THREE INHIBITORY
BURSTING NEURONS

Our NCM consists of three bursting model neurons with
reciprocal inhibitory synapses. The NCM shows three stable
rhythms with fixed phase relationships between bursts. The
stability and robustness of polyrhythms depend on the system
and coupling parameters introduced in this section. Complete
equations and a list of all parameter values are presented in the
Appendix.

A. Single-cell dynamics

Membrane voltages Vi of the NCM neurons follow
Hodgkin-Huxley-type dynamics coupled via inhibitory chem-
ical synapses (i,j = 1,2,3):

CV̇i = −INa
i − I

K2
i − IL

i − I rand
i −

∑
j �=i

I inh
ij . (1)

Each neuron has a number of intrinsic currents: a sodium-ion
current INa

i , a potassium-ion current I
K2
i , a leak current IL

i ,
and a random current I rand

i :

IL
i = gL(Vi − EL), I

K2
i = gK2m

2
i

(
Vi − EK2

)
,

INa
i = gNam

3
Nahi(Vi − ENa), I rand

i = I0 + σξi(t). (2)

The random current I rand
i is uncorrelated Gaussian white noise

with mean I0 and amplitude σ . We temporarily set σ = 0 until
Sec. II D, to outline the deterministic dynamics.

The Na+ current activates instantaneously, reflected in the
immediate change of the gating variable mNa = m∞

Na(Vi). Na+

inactivation hi and K+ activation mi , on the other hand, are
dynamic:

τNaḣi = h∞(Vi) − hi, τK2ṁi = m∞
K2

(Vi) − mi,

h∞(V ) = [1 + exp (−sh(V − V h))]−1, (3)

m∞
K2

(V ) = [1 + exp (−sK2 (V − V K2 ))]−1.

Bursting emerges from the time-scale separation between
the fast Na+ inactivation (τNa = 0.0405 s) and the slow K+
activation (τK2 = 0.9 s): fast spiking of the membrane voltage
and Na+ current is interrupted by quiescent states governed by
slow modulation of the K+ current (bursting orbit in Fig. 1).

Dynamics of the single-neuron model, including the genesis
of bursting patterns, was studied in detail in Refs. [36] and
[39–41].

B. Network dynamics

Neurons are networked with inhibitory chemical synapses:
the presynaptic neuron j activates its synapses if Vj exceeds
the synaptic threshold � = −40 mV. An active synapse, in
turn, activates the inhibitory current I inh

ij of the postsynaptic
neuron i [cf. Eq. (1)]. Synapses are inhibitory because they
activate channels of ions with a reversal potential, Einh =
−62.5 mV, below typical values for the membrane voltage
Vi , e.g., chloride channels. Synaptic dynamics is governed by

τ İ inh
ij = I∞

ij − I inh
ij ,

I∞
ij = ginh(Vi − Einh)/[1 + exp (λ(� − Vj ))]. (4)

FIG. 1. (Color online) Bursting in the slow-fast Hodgkin-Huxley
neuronal model. The bursting orbit of a single neuronal burster
(at σ = 0 and ginh = 0) is organized according to the backbone of
nullclines for the slow variable, given by ṁi = 0 [dashed (red) line],
and fast variables (V̇i ,ḣi) = 0 (dashed-dotted black lines). The shaded
rectangle (lower-left corner) is expanded in Fig. 3.

These synapses are essentially in two states, either active or
inactive, as dictated by the activation parameter λ = 1 mV−1.
The conductance ginh parameterizes the synaptic coupling
strength. Except in Sec. V B, we investigate instantaneous
synapses for which we set τ = 0. At this value of τ , synapses
follow the fast threshold modulation framework [40,42,43].

The NCM network dynamics shows coexistent bursting
patterns characterized by specific phase relationships: in three
pacemaker patterns (A, B, and C), one neuron bursts in
antiphase with the other two that are in phase (cf. Fig. 2),
and two traveling-wave patterns consist of three consecutive
bursts [43]. Traveling waves dephase immediately under
perturbations and are, therefore, not observed. Uniform all-
to-all coupling ensures that the remaining three pacemaker
patterns are equally stable.

The exponential stability of bursting patterns increases with
the coupling strength ginh. Strong coupling, studied in this
article, results in very high convergence rates as noticeable by
the short transients after pulses in Fig. 2.

C. Soft- to hard-lock transition

Strong synaptic inhibition distorts the postsynaptic neu-
ronal dynamics. If ginh is greater than a critical coupling, g∗

crit,

FIG. 2. (Color online) Stable polyrhythmic patterns in the NCM.
Two 0.5-mV kicks (arrows) applied to membrane voltages Vi(t) cause
the NCM to switch among the three coexistent pacemaker patterns
(A, B, and C). Parameters are σ = 0, g = 20 pS.
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FIG. 3. (Color online) Critical synaptic strength in the neuronal
burster. We show the shaded region of state space from Fig. 1 (lower-
left corner there). Constant inhibition, at coupling strengths ginh >

g∗
crit, induces a saddle-node bifurcation by shifting the fast nullcline

(dashed-dotted black lines) across the slow one [dashed (red) line].
The critical value g∗

crit, at which nullclines are tangent (filled circle),
therefore separates a soft coupling from a hard coupling that can lock
down the postsynaptic burster.

the presynaptic burst transiently stabilizes all postsynaptic
neurons at a state within the quiescent phase. Unlike this
hard-lock inhibition, a soft-lock inhibition at subcritical values
(ginh < g∗

crit) only slows the postsynaptic burst initiation.
The soft- to hard-lock transition occurs if inhibition is

strong enough to give rise to a stable fixed point in the
quiescent phase of postsynaptic bursting dynamics. Then the
postsynaptic neuron is locked down in the quiescent state.
Here, we treat ginh as a bifurcation parameter. At ginh = g∗

crit,
a saddle-node bifurcation gives birth to a stable equilibrium,
at which the postsynaptic neuron rests in the quiescent phase.
In the state space, the bifurcation point is characterized by
tangency of all nullclines, i.e., curves or surfaces at which
time derivatives are 0 (cf. Fig. 3). The slow nullcline, ṁi = 0,
is given by

mi = m∞
K2

(Vi). (5)

The fast nullcline, (V̇i ,ḣi) = 0, is given by

hi = h∞(Vi),

0 = −INa
i − I

K2
i − IL

i −
∑
j �=i

I inh
ij . (6)

We want to determine the g∗
crit at which one presynaptic burst

can induce bifurcation in the postsynaptic dynamics. To test
this, we set ∑

j �=i

I inh
ij = ginh(Vi − Einh). (7)

In the following we drop the subscript i. The critical coupling
strength g∗

crit, at which the slow [Eq. (5)] and fast [Eq. (6)]
nullclines are tangent, is determined as a solution to the
following equations implicit in V [we set m = m∞

K2
(V ) and

h = h∞(V )]:

0 = −INa − IK2 − IL − g∗
crit(V − Einh),

0 = d

dV
[−INa − IK2 − IL − g∗

crit(V − Einh)]. (8)

This soft- to hard-lock transition leads to a qualitative
change in network dynamics reflected in its rhythm robustness
to small fluctuations. Below, we introduce such fluctuations
and analyze their effect on the dynamics through Monte Carlo
simulations.

In Sec. IV, we generalize the soft- to hard-lock transition
to a generic bifurcation model. From the generalization we
derive an approximation of g∗

crit that can be directly estimated
from a voltage trace.

D. Mean free path description of noise-induced
rhythm switching

Uncorrelated Gaussian white noise I rand
i = I0 + σξi(t),

with mean I0, intensity σ 2, and 〈ξi(t)ξj (t ′)〉 = δ(t − t ′)δij , is
used to study rhythm robustness to perturbations. Such noise
may also emerge as the summated action of circuit-external
synaptic projections [44]. Noise can dephase bursts at weak
coupling and cause alternations from one bursting pattern to
another. At strong coupling, this rhythm switching becomes
frequent and unpredictable [Fig. 4(a)], even for weak noise.

To effectively analyze the statistics of switching, we cast
the stochastic polyrhythmic dynamics of the NCM as a two-
dimensional (2D) random walk. The three pacemaker patterns
(Fig. 2) are mapped to three directions of motion in the physical

FIG. 4. (Color online) (a) NCM of three bursters (blue, 1; green,
2; red, 3) randomly switches among three pacemaker patterns in
the voltage trace for coupling strength ginh = 15 pS and noise σ 2 =
0.0025 pA2/s. (b) Coincident bursts (shaded regions) are mapped into
shifts in the A-B-C directions of 2D random walks. Inset: Random
walk episode corresponding to the voltage trace in (a). The mean free
path of the trajectory is 3.8 steps.
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plane. Specifically, membrane voltages of NCM neurons are
streamed into three burst-coincidence detectors—one for each
pair of neurons—that, upon coincidence, activate a motion of
an animat. A coincidence of bursts occurring in neurons 1 and
2 is assigned a shift with the velocity vector (0,1). Coincident
bursts in neurons 1 and 3 and in neurons 2 and 3 are assigned
the vectors (

√
3/2,−1/2) and (−√

3/2,−1/2), respectively
[Fig. 4(b)].

Without noise, the animat moves in the direction set by the
initial bursting pattern. At finite noise levels the NCM either
repeats the same bursting pattern or switches to another pattern,
which in turn changes the animat’s directions (Fig. 4). We
quantify the robustness of the NCM polyrhythms by the mean
free path (MFP) of the animat’s movement in response to noise.
The MFP is defined as the average number of consecutive steps
in a given direction. It is related to the transition probabilities
of Markov chain approximations [7,45].

III. STRONG SYNAPTIC COUPLING
DESTABILIZES POLYRHYTHMS

The synaptic coupling strength ginh is the obvious parameter
to control the robustness of NCM polyrhythms. We compute
the MFP at a variety of coupling strengths and noise intensities,
and we identify a nonmonotonous dependence of the MFP on
ginh, summarized in the biparametric sweep in Fig. 5. The key
characteristics are that (i) the MFP reaches a maximum at an
optimal coupling strength gopt, which is in a vicinity of the
soft- to hard-lock transition of network dynamics (at g∗

crit);
and (ii) at sufficiently large ginh, decreasing σ 2 does not lead
to a noticeable increase in the MFP, which becomes smaller
than two steps, thus indicating that bursting patterns alternate
almost every cycle.

These findings are counterintuitive, because typically,
increasing the coupling strength regularizes the dynamics
of diffusively coupled oscillators and stabilizes the synchro-
nized states against noise [46], although counter examples
of dephasing coupled oscillators with increases in coupling

FIG. 5. (Color online) Nonmonotonous dependence of the mean
free path (MFP) on the synaptic strength ginh. For a plausible range of
noise intensities, σ 2, the MFP reveals a synaptic strength of maximal
robustness, gopt 	 5.5 pS, comparable with the critical coupling
gcrit = 6.1 pS [Eq. (10)].

FIG. 6. (Color online) Hard-lock mechanism of rhythm switch-
ing. (a) A typical rhythm switching event (inlet) occurs upon
noise-induced separation of neurons 1 and 2. Neuron 1 reaches
� and inhibits neuron 2 from bursting. (b) The quiescent phase
of postsynaptic neurons undergoes a saddle-node bifurcation upon
activation of inhibition (left panel). The location of the unstable
point marks the critical voltage Vcrit [Eq. (11)] separating rhythm
switching from coincident bursting: in the right panel, model neuron 2
[Eq. (9)] stays below Vcrit, thus switching rhythms. Parameters:
ginh = 20 pS, σ 2 = 0.01 pA2/s, V0 = −44.3 mV, ε = 0.22 mV/s,
α = 1.53 mV−1 s−1.

strength are also known [47]. The value of gopt at which
the MFP is maximized corresponds to the highest degree of
robustness of the network dynamics. At ginh > gopt, the NCM
dynamics becomes increasingly vulnerable to noise, or other
perturbations, and bursting pattern alternation intensifies due
to the soft- to hard-lock transition, as we explain below. Our
simulations indicate only a weak dependence of the optimal
coupling strength on the noise intensity, which justifies our
perturbation approach.

Vulnerable phase of the polyrhythms beyond
the soft- to hard-lock transition

Beyond the soft- to hard-lock transition (ginh > g∗
crit),

rhythm switching is enhanced and occurs predominantly
within a vulnerable phase of bursting patterns, as shown in
the inset in Fig. 6(a). Here, simultaneous bursting of two
neurons depends on whether both go together above a critical
voltage Vcrit. The vulnerable phase starts when neuron 3
finishes its burst discharge, and its voltage V3 drops below the
synaptic threshold � [Eq. (4)]. The consequent loss of synaptic
inhibition releases the temporarily hard-locked neurons 1 and
2 [48]. Released, neurons 1 and 2 individually initiate their
bursting cycles by raising the membrane voltages V1 and V2.
While they are below �, they do not interact. In this phase,
random perturbations drive the neurons apart, creating a small
delay between V1 and V2. Neuron 1 reaches the threshold first.
As V1 passes �, neuron 1 starts to inhibit neuron 2. Because
V2 has not yet crossed Vcrit, neuron 2 is held in hyperpolarized
quiescence for the burst duration of neuron 1. Given that the
burst is sufficiently long, postsynaptic neurons 2 and 3 remain
in the locked state.

In contrast, the burst of neuron 1 is not followed by
rhythm switching [Fig. 6(a)]: After the burst, neurons 2 and
3 start advancing towards the synaptic threshold. Now V3
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has surpassed Vcrit as V2, ahead of V3, crosses �. Therefore,
both neurons enter the bursting phase, leading to a temporal
overlap of their bursts, and they complete a pacemaker pattern.
These two scenarios explain the source of vulnerability of
pacemaker patterns to perturbations beyond the soft- to hard-
lock transition.

IV. SADDLE-NODE GHOST MODEL OF THE
SOFT- TO HARD-LOCK TRANSITION

The soft- to hard-lock transition (Sec. II C) provides the
mechanism that leads to the emergence of the vulnerable
phase in the neuronal dynamics [Eq. (1)], as described in
the previous section. Based on the bifurcation structure of
neuronal dynamics, we devise a generic model that describes
this vulnerable phase. The approach allows us to provide a link
between critical voltage and critical synaptic strength. It also
allows us to derive estimates Vcrit and gcrit of these quantities
from voltage traces only.

The neuronal dynamics at hard-lock coupling is charac-
terized by a transient saddle-node bifurcation upon synaptic
activation: the supercritical (ginh > g∗

crit) synaptic inhibition
ties the postsynaptic burster to the stable fixed point when
the presynaptic burster is active (cf. Fig. 3). In the state-space
vicinity of the bifurcation, the uncoupled neuronal dynamics
is approximated by a quadratic normal form equation, v̇ =
ε + α(v − V0)2 [32]. The gap parameter, 0 < ε 
 1 mV/s,
determines the speed at which the saddle-node” ghost” is
passed. Adding noise and coupling, we derive the saddle-node
ghost dynamics for model voltages vi (i = 1,2,3):

v̇i = ε + α(vi − V0)2 −
⎡
⎣σξi(t) +

∑
j

I inh
ij

⎤
⎦ C−1. (9)

Synaptic currents I inh
ij and noise σξi(t) are taken from the

original NCM equation [Eq. (1)]. The parameters ε, α, and V0

are estimated from the burster voltage trace V (t) as described
in Sec. IV A.

The saddle-node ghost model allows us to approximate the
critical coupling g∗

crit by an estimate gcrit. It is the synaptic
strength at which a single active synapse leads to the saddle-
node bifurcation in the postsynaptic neuron (cf. Fig. 3). The
situation is modeled by setting σ = 0 and

∑
j I inh

ij = ginh(vi −
Einh) in Eq. (9): the saddle-node bifurcation occurs at

gcrit = 2C(α(Einh − V0) +
√

α2(Einh − V0)2 + εα). (10)

For values ginh > gcrit, a pair of fixed points emerges from
the saddle-node bifurcation. The critical voltage Vcrit is
approximated by the position of the unstable fixed point:

Vcrit = V0 + ginh

2αC
+

√
g2

inh

4α2C2
− Cε + ginh(Einh − V0)

αC
.

(11)
Figure 6(b) illustrates the model dynamics of rhythm switch-
ing: v1 surmounts the synaptic threshold �, whereas v2 < Vcrit

remains hard-locked within the basin of attraction of the
transient stable state for ginh > gcrit.

The correspondence of g∗
crit and gcrit is not perfect as

discussed in the Appendix. However, the procedure for

FIG. 7. (Color online) Estimation procedure of the saddle-node
ghost equation. (a) Time derivative V̇ on the periodic orbit shows
a complicated dependence on V . (b) Locally, V̇ can be expressed
as a function, F (V ) = V̇ . Parameters ε, V0, and α of Eq. (9) are
determined so that the quadratic fit (dash-dotted line) matches F (V )
(solid line) at the local minimum of the quiescent period. Ghost model
parameters: V0 = −44.3 mV, ε = 0.22 mV/s, α = 1.53 mV−1 s−1.

obtaining gcrit is almost equation-free, as opposed to g∗
crit,

for which the full Hodgkin-Huxley equations are needed.
The estimate gcrit can thus also be obtained from empirical
data. This highlights the benefits of the additional abstraction
contained in the saddle-node ghost approach.

Estimation procedure of the saddle-node
ghost model parameters

Parameters ε, α, and V0 of the ghost model [Eq. (9)] are
estimated from the voltage dynamics V (t) of an uncoupled
burster model [Eq. (1) at ginh = σ = 0], as illustrated in Fig. 7.
First, the periodic bursting orbit is obtained [solid line in
Fig. 7(a)]. Within the quiescent phase of the bursting orbit,
we express V̇ as a function, F (V ) [solid line in Fig. 7(b)].
This is only possible locally. The function F (V ) yields a good
representation of the saddle-node bifurcation, which appears
if coupling is activated. However, we describe the transient
saddle-node bifurcation on a higher level of abstraction by
formulating the normal-form equation v̇ = ε + α(v − V0)2

[cf. Eq. (9)]. Its parameters can be estimated directly from
F (V ): at V0, F (V ) is minimal, the minimum is ε = F (V0),
and 2α = F ′′(V0). An example estimate is shown in Fig. 7(b).

The estimation procedure requires only traces of the
uncoupled membrane voltage dynamics. In principle, it can
also be applied to empirical data.

V. MODIFICATIONS FOR ROBUST POLYRHYTHMICITY

By taking into account the hard-lock switching mechanism,
we can now balance the parameters to enhance the robustness
of the NCM to noise. Foremost, we choose the optimal
coupling strength (cf. Fig. 5). In addition, we present two
strategies to enhance the robustness further: increasing the
model parameter ε increases the ratio of drift and diffusion
within the vulnerable phase after the quiescent neurons are
released from inhibition [cf. Fig. 6(b)]. This gives the neurons
a greater chance to enter the bursting phase simultaneously.
Alternatively, the synaptic activation is made more gradual,
which simply gives the two neurons more time to traverse the
vulnerable phase before inhibition kicks in and separates the
two neurons.
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FIG. 8. (Color online) Improving the robustness of bursting
polyrhythms. (a) MFP dependence on ginh for ε = 0.22 mV/s at
V K2 = 3 mV, 0.25 mV/s at 3.5 mV, and 0.27 mV/s at 4 mV. The
optimum, gopt, shifts towards a higher ginh. (b) MFP dependence on
ginh in the NCM with instantaneous τ = 0 and delayed synapses
τ = 100 and 250 ms. Parameters: V K2 = 3 mV, σ 2 = 0.0025 pA2/s.

A. Neuronal modifications

Parameter ε approximates the smallest distance between
slow and fast nullclines at ginh = 0 (cf. Fig. 3). The complex
Hodgkin-Huxley model allows for a variety of neuronal
modifications that increase ε, all of which are aimed at altering
the distance between nullclines.

In the particular model used in this study, an effective
way to regulate the model parameter ε is to adjust the K+
activation potential, V K2 [Eq. (3)]: increasing V K2 from 3 to
4 mV changes ε from 0.22 to 0.27 mV/s [49]. This change in
neuronal dynamics enhances the MFP from 20 to 60 steps at
gopt, as shown in Fig. 8(a).

B. Synaptic modifications

Alongside the synaptic strength, the functional form of
coupling can also be altered to enhance network robustness.
We demonstrate that subtle synaptic modifications can alter
robustness properties by making the onset of inhibition more
gradual. For this, we slightly increase the synaptic time scale
τ [Eq. (4)].

As shown in Fig. 8(b), τ = 250 ms yields an optimal MFP
of about 25 steps, as opposed to 20 steps at τ = 0. Alter-
natively, one could also raise the synaptic threshold �, thus
allowing more time for the systems to reach the bursting phase.

VI. CONCLUSIONS

Perturbation-induced switching between functional
rhythms is a limiting factor to multifunctionality in neural
networks. The assertion is supported by our analysis of the
inhibitory NCM [Eq. (1)]: it demonstrates three coexisting
bursting rhythms among which switching is frequently

observed, indicating a high degree of vulnerability of
polyrhythms. Switching among rhythms occurs within a
vulnerable phase which is highly sensitive to perturbations.
We uncover this phase by applying random perturbations to
the NCM.

To recover rhythm robustness, we alter a variety of model
parameters such as the synaptic strength, the principal parame-
ter of synchrony. We find that strengthening synaptic coupling
fulfills a dual role: at weak coupling the stability increases
against gradual dephasing of bursting patterns [43,46,50],
but at strong coupling the rhythm robustness decreases due
to sensitization of the vulnerable phase. This duality is due
to a coupling-dependent soft- to hard-lock transition. When
strengthening coupling beyond the transition point, gradual
dephasing of polyrhythms is further suppressed, but abrupt
switching becomes more likely as well. Correspondingly,
we find an optimal value of synaptic strength for which
polyrhythms are maximally robust (cf. Fig. 5). This noise-
induced rhythm switching is different from other mechanisms
of coupling-induced dephasing [47,51,52], where noise does
not play a key role. We note a similarity to Brownian motions
in tilted periodic potentials where the diffusion coefficient
becomes nonmonotonous and greatly amplified at a critical
tilt [53,54].

We generalize our results by formulating the soft- to hard-
lock transition in terms of a generic saddle-node bifurcation.
This description has no reference to the number of oscillators
in the network, or their biophysical interpretation. Therefore,
the description generalizes the switching mechanism to a
variety of oscillator networks. In larger inhibitory networks,
the mechanism may also influence the distribution of cluster
sizes in networks, where a large cluster can become vulnerable
if its collective coupling exceeds an optimal strength dictated
by the soft- to hard-lock transition. Applications may include
memory processes [55], perceptional multistability [14,56],
robotic locomotion [57], and generic phase oscillator networks
[17]. The mechanism may be equally observable in metastable
systems, yielding an alternative description of neural code
[58].

Using the mechanism-based selection of neuronal parame-
ters, we achieve a threefold enhancement of rhythm robustness
(Fig. 8). The enhancement is achieved without optimizing a
multitude of parameters in our NCM model, which would
be a costly task in silico. Foremost, such high-dimensional
optimization is unfeasible in synthetic-neurobiological exper-
iments, in which simultaneous control of multiple biological
parameters is complicated [59]. Our analysis highlights the
strengths of biodynamical modeling to control biological
systems and to avoid pitfalls emerging at the intersection of
noise and nonlinearity.
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TABLE I. Typical parameter values used in this work.

Parameter Description Value

C Membrane capacitance 0.5 nF
gNa Na+ conductance 160 nS
gK2 K+ conductance 30 nS
gL Leakage conductance 8 nS
ENa Na+ resting potential 45 mV
EK K+ resting potential −70 mV
EL Leak resting potential −46 mV
τNa Na+ time scale 0.0405 s
τK2 K+ time scale 0.9 s
V Na Na+ activation threshold −30.5 mV
V h Na+ inactivation threshold −32.5 mV
V K2 K+ activation threshold 3 mV
sNa Na+ activation slope 0.15 mV−1

sh Na+ inactivation slope −0.5 mV−1

sK2 K+ activation slope 0.083 mV−1

Einh Synaptic resting potential −62.5 mV
λ Synaptic activation slope 1 mV−1

� Synaptic threshold −40 mV
I0 Synaptic noise mean 6 pA
σ 2 Noise intensity 0.0025 pA2/s

University of Nizhni Novgorod, the agreement of August 27,
2013.

APPENDIX

1. Full NCM model equations

For each of the three neurons, i = 1,2,3, the membrane
voltages dynamics Vi(t) is modeled by Hodgkin-Huxley-type
equations:

CV̇i = −INa
i − I

K2
i − IL

i − I rand
i −

∑
j �=i

I inh
ij ,

IL
i = gL(Vi − EL), I

K2
i = gK2m

2
i (Vi − EK ),

INa
i = gNam

3
Nahi(Vi − ENa), mNa = m∞

Na(Vi),

τNaḣi = h∞(Vi) − hi, τK2ṁi = m∞
K2

(Vi) − mi,

h∞(V ) = (1 + exp(−sh(V − V h)))−1,

m∞
Na(V ) = (1 + exp(−sNa(V − V Na)))−1,

m∞
K2

(V ) = (1 + exp(−sK2 (V − V K2 )))−1,

I inh
ij = ginh(Vi − Einh)/[1 + exp ( − λ(� − Vj ))],

I rand = I0 + σξi(t), 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′).

(A1)

Table I lists all free parameter values used in this work.
We approximate the solution to this stochastic differential

equation with the Euler-Maruyama method with a fixed time
step width of �t = 0.001 s. This value yields about 180 points

FIG. 9. (Color online) Comparison of critical and optimal in-
hibitory strength. (a) For different values of V K2 , gcrit [dashed-
dotted (blue) line] and g∗

crit [dashed (red) line] approximate the
optimal coupling gopt (circles) reasonably well. (b) The ghost model
approximation gcrit systematically underestimates the bifurcation
value g∗

crit, seen as deviations from the diagonal (dashed black line).
Parameter: σ 2 = 0.0025 pA2/s.

per oscillation in the fast spiking dynamics. We tested other
values of �t to confirm the numerical stability of our results.

A PYTHON code that simulates the stochastic network motif
for these parameter values is included in the Supplemental
Material for convenience [60].

2. Relation of critical and optimal coupling

We compare the soft- to hard-lock transition value g∗
crit from

Eq. (8) to its estimate gcrit from the saddle-node ghost model
[Eq. (9)] and to the optimal coupling strength gopt from the full
stochastic network, all at a range of values of the parameter
V K2 [Fig. 8(a)].

The close proximity of all three quantities underlines
the relevance of the soft- to hard-lock transition to rhythm
robustness [Fig. 9(a)]: both g∗

crit and gcrit predict the optimal
value of the inhibitory strength, gopt, beyond which the network
rapidly loses robustness. Notably, the real bifurcation value
g∗

crit overestimates gopt. This is expected because a stochastic
dynamics typically anticipates a transition, e.g., bifurcation,
in its corresponding deterministic dynamics. Critical coupling
gcrit of the ghost model yields a better predictor to gopt than
g∗

crit. Notice, however, that gcrit was only designed as a more
general quantity that closely tracks g∗

crit.
We find that gcrit systematically underestimates g∗

crit and
that the better prediction of gopt is thus somewhat “accidental.’
Let us outline the origin of this systematic error of gcrit in
approximating g∗

crit. As shown in Fig. 3(b), increasing ginh

moves the fast nullcline approximately horizontally (in the
mK2 direction) towards the slow nullcline. This direction does
not follow the shortest distance between the two nullclines.
The ghost model, on the other hand, approximates this shortest
distance with the parameter ε and assumes that ginh yields shift
in that very direction. In consequence, smaller values of ginh

induce a transition in the ghost model approximation. Note
that the skewed geometry is also visible in Fig. 7, where a
small rotation of axes would allow for a better quadratic fit.
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