
ISSN 1560-3547, Regular and Chaotic Dynamics, 2010, Vol. 15, No. 2–3, pp. 148–160. c© Pleiades Publishing, Ltd., 2010.

ARTICLES

Burst-Duration Mechanism of In-phase Bursting

in Inhibitory Networks

I. Belykh1, 2*, S. Jalil1, 2**, and A. Shilnikov2, 1***

1Department of Mathematics and Statistics, Georgia State University,
30 Pryor Street, Atlanta, GA 30303, USA

2Neuroscience Institute, Georgia State University,
30 Pryor Street, Atlanta, GA 30303, USA

Received December 19, 2009; accepted December 26, 2009

Abstract—We study the emergence of in-phase and anti-phase synchronized rhythms in
bursting networks of Hodgkin–Huxley–type neurons connected by inhibitory synapses. We show
that when the state of the individual neuron composing the network is close to the transition
from bursting into tonic spiking, the appearance of the network’s synchronous rhythms becomes
sensitive to small changes in parameters and synaptic coupling strengths. This bursting-spiking
transition is associated with codimension-one bifurcations of a saddle-node limit cycle with
homoclinic orbits, first described and studied by Leonid Pavlovich Shilnikov. By this paper,
we pay tribute to his pioneering results and emphasize their importance for understanding the
cooperative behavior of bursting neurons. We describe the burst-duration mechanism of in-
phase synchronized bursting in a network with strong repulsive connections, induced by weak
inhibition. Through the stability analysis, we also reveal the dual property of fast reciprocal
inhibition to establish in- and anti-phase synchronized bursting.
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1. INTRODUCTION

The theory of dynamical systems has proven useful in gaining new insights into how neural
systems operate, and has made predictions that have aided in the design of new experiments [1–
35]. A central problem in these studies is to understand how single neuron dynamics contributes
to network oscillations and spatio-temporal pattern formation. Neurons can generate a complex
oscillatory rhythm known as bursting, which occurs when neuron activity alternates, on a slow
time scale, between a quiescent state and fast repetitive spiking. The intrinsic mechanisms that
generate and control bursting oscillations have recently received a great deal of attention [1–15].
Interacting bursting neurons may exhibit different forms of synchrony; including synchronization
of individual spikes, burst synchronization when only the envelopes of the spikes synchronize,
complete synchrony and anti-phase bursting. Inhibitory and excitatory synapses play different
roles in promoting synchronization or anti-synchronization of bursting neurons [16–35]. It has been
shown that the synchronizing roles of inhibition and excitation depend on the rates of onset and
decay of inhibition with respect to the intrinsic timescale of the individual neurons. More precisely,
fast excitation favors synchrony whereas fast direct inhibition typically desynchronizes neurons [24].
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In-phase and anti-phase synchronized bursting are the key component for functioning of
many neuronal networks, including Central Pattern Generators (CPGs) [36–39]. CPGs are small
polymorphic neural circuits, governing various rhythmic activities including cardiac beating,
cycles of basal ganglia, and animal locomotion [37–41]. CPG with a given neural circuitry can
drive multiple behaviors and switch between different neuronal rhythms upon various conditions
[42]. Examples include the Tritonia swim CPG [43], and switching between trot and gallop in
several animals, respiratory movements, switching between crawling and swimming in leeches [40].
Switching between locomotion behaviors can be attributed to switching between various attractors
of a CPG network. Each attractor is associated with a definite rhythm on a specific time scale.
Such a multifunctional CPG contrasts to a dedicated CPG that is only capable of generating a
single robust rhythm. Its multistability can be solely built upon the multistability of the individual
neurons composing the network. Of special interest here is endogenous bursting, co-existing with
tonic spiking in multistable interneurons [12]. The other cause of the polyrhythmical behaviors and
co-existing motor outputs in the CPG is its network architecture [38–41, 46–49]. The network
circuitry, the synaptic and intrinsic properties of neurons cooperate synergetically to produce
various synchronous and anti-synchronous rhythms [16–35].

In 1911, studying animal locomotive behaviors, Graham Brown proposed the concept of the half-
center oscillator as a pair of reciprocally connected neurons that inhibit each other and produce
a cycle of alternating bursts of activity [44, 45]. The half-center oscillator is the fundamental
building block of many CPGs. Depending on the intrinsic dynamics of component neurons, the
half-center oscillator typically produces anti-phase bursting, when composed of endogenous busters,
or interacting spiking neurons [50, 51]. The mechanisms that give rise to anti-phase bursting
[16, 18] include the synaptic release mechanism, post-inhibitory rebound, and synaptic escape [18].
Reciprocal inhibition is known to produce half-center bursting, provided that inhibition is fast [16–
19], i.e. the synaptic decay is faster than the duration of presynaptic drive. This carries over to larger
interconnected inhibitory networks [18]. At the same time, a common fast inhibition of a neuronal
network received from one or several pacemaker neurons was shown to favor synchronization [27].
It was also shown in [27] that a small amount of electrical coupling, added to already significant
common inhibition of the network can increase the synchronization more than a very large increase
in the synchronizing inhibitory coupling. Central pattern generators (CPGs) and other neural
circuits are often composed of pairs of mutually inhibiting cells, driven by a common bursting
pacemaker [43, 50]. Understanding the emergence of different anti-phase and synchronous rhythms
in such networks requires an in-depth knowledge of the interplay among mutual internal inhibition,
common external driving, and temporal characteristics of neurons composing the network.

In this paper, we review our results, regarding the onset of in-phase bursting in inhibitory
networks [35, 49, 52], and demonstrate that weak common inhibition applied to a network of
neurons with strong repulsive connections can induce in-phase synchronized bursting. We use the
geometric dynamical systems methods to show that the weak synchronizing inhibition from the
same pacemaker neuron can win out over much stronger desynchronizing connections within the
network, provided that the pacemaker’s duty cycle, the fraction of the period during which the
neuron bursts, is sufficiently long. We discuss the bifurcations of a saddle-node periodic orbit,
letting the pacemaker neuron have a longer duty cycle and therefore allowing the weak common
inhibition to win the “David vs. Goliath” fight. We also prove that anti-phase bursting in the
half-center oscillator with fast non-delayed inhibitory connections co-exists with stable in-phase
synchronization that appears from a fairly wide set of initial conditions. We describe the emergent
mechanism of in-phase synchronization and discuss the implications of the analysis for various types
of bursting neurons.

2. THE MODEL

We start with a network of bursting neurons with fast inhibitory connections and choose a
Hodgkin–Huxley type model of a leech heart interneuron [13] as an individual cell unit of the
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network. The equations corresponding to this network are

CV̇i = F (Vi, hi,mi)− (Vi − Es)
n∑
j=1

gs
ijΓ(Vj −Θsyn),

ḣi = G(Vi, hi) = [f(500, 0.0325, Vi)− hi]/τNa,

ṁi = R(Vi,mi) = [f(−83, 0.018 + V shift
K2 , Vi)−mi]/τK2, i, j = 1, n,

where f(a, b, Vi) = 1/(1 + ea(Vi+b)) and

F (Vi, hi,mi) = −[30m2
i (Vi + 0.07) + 8(Vi + 0.046)

+160hi(Vi − 0.045){f(−150, 0.0305, Vi )}3 + 0.006].

(2.1)

Here, the ith neuron variables Vi, hi, and mi are the membrane potential, opening probabilities
of the sodium and potassium channels, respectively. Due to the disparity of the time constants
τNa = 0.0405 and τK2 = 0.9, the system (2.1) possesses two characteristic time scales: the voltage
and the sodium current are the fast variables, while the potassium current is a slow one. It is known
that the dynamics of the individual slow-fast system composing the network is centered around
stable manifolds formed by the limit sets of the fast subsystem. The model possesses two such
manifolds constituting a skeleton of bursting activity: 2D spiking and 1D quiescent, Meq, manifolds,
composed of limit cycles and equilibria of the fast system. The individual model exhibits square-
wave bursting; the bursting solution traverses along and repeatedly jumps between these manifolds
(see Fig. 1). In Fig. 1, the solid blue S-shape curve Meq and the dark yellow surface m′ = 0 are two
nullclines of the fast and slow systems, respectively. They are often called fast and slow nullclines.
By construction, a point of intersection of Meq with the slow nullcline, m′ = 0, is an equilibrium
state of the corresponding neuron. Further details on the dynamics of uncoupled equations (2.1)

can be found in [13]. Here, V shift
K2 is the intrinsic, bifurcation parameter governing the temporal

characteristics of bursting cells.

In network (2.1), the synapses are fast and non-delayed [31]. The inhibitory synapses are
described using fast threshold modulation (FTM), the kind of coupling that was proposed by
Somers and Kopell [21, 53]. The synaptic coupling function is given by the sigmoidal function
Γ(Vj −Θsyn) = 1/[1 + exp{λ(Vj −Θsyn)}], where λ = −1000. The synaptic threshold Θsyn = −0.03
is set so that every spike in the single neuron burst can cross the threshold (see Fig. 1). The
synaptic current towards the post-synaptic cell is initiated when the pre-synaptic cell is above this
threshold. The reversal potential Es = −0.0625 is set below the minimum values of Vi to ensure
that the synapse is inhibitory.

3. HALF-CENTER OSCILLATOR: ANTI-PHASE BURSTING

Consider first a pair of bursting neurons (2.1) with reciprocally inhibitory couplings. This
half-center network is known to solely produce anti-phase oscillations [18]. By geometry of the
nullclines, each uncoupled cell has a single, unstable equilibrium state located away from the stable,
hyperpolarized branch of Meq. The effect of inhibition from one cell to the other is to shift the S-
shape nullcline Meq towards the slow nullcline m′ = 0 in the phase space of the inhibited cell. If
inhibition is sufficient, this creates a new stable equilibrium around the lower knee of Meq through
a saddle-node bifurcation (Fig. 1). We will refer to this stable equilibrium state as a lock-down
state. Cutting inhibition off makes this equilibrium state disappear through the reverse saddle-
node bifurcation. This bifurcation has a remarkable feature of the bifurcation memory, revealed
through a specific, scalable delay of the flight time of the phase point passing throughout a vicinity
of the disappeared saddle-node. While spiking, the active cell keeps oscillating around the synaptic
threshold Θsyn, rapidly switching inhibition of the inactive cell on and off. Therefore, the inhibiting
current emerges periodically for a period shorter than the characteristic escape time of the inactive
cell. Hence, the latter is trapped and oscillates around the lower knee of the inhibited nullcline,
depicted by the dotted blue line in Fig. 1. The active cell eventually reaches the end of the spiking
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manifold and falls down to Meq. This changes the governing nullcline for the other cell and releases it
from inhibition. Therefore, the released cell jumps up and turns inhibition of the other cell on. This
process of switching between active and inactive states of the two cells is cyclic and results in the
onset of anti-phase bursting. A similar hold-then-release mechanism of the anti-phase behavior of
spiking cells is often referred to as “synaptic release” [16, 18], causing post-inhibitory rebound [18].

Fig. 1. Half-center oscillator composed of inhibitory neurons (2.1). V shift
K2 = −0.02. The inhibitory connections

are strong (gs
12 = gs

21 = 2). (Top) The uncoupled and inhibited nullclines are depicted by solid and dotted blue
lines, respectively. Color-matching balls represent the instant phase points of the cells on the bursting orbit.
The dark gray trajectory corresponds to the anti-phase solution, while the light one is the reference trajectory
of the uncoupled cell. As soon as the active (green) cell is above the threshold Θsyn, the nulcline Meq is
shifted towards the slow nullcline m′ = 0 to generate a stable equilibrium state near the lower knee through
the saddle-node bifurcation. The inactive (blue) cell is trapped at it until the active cell falls down to Meq.
(Bottom) Time-series of the established anti-phase dynamics.

Below we show that the synaptic release mechanism along with a long duty cycle of driving
neurons play the crucial role in inducing synchronization in larger networks.

4. THREE-CELL NETWORK: DAVID VS. GOLIATH

Inspired by the connectivity diagrams of a heart leech CPG [50] and a tritonia CPG governing
locomotion [43], where neurons are organized in pairs of cells with strong reciprocal inhibition and
each pair receives common inhibition from external neurons, we consider a three-neuron network
shown in Fig. 2 (left inserts). In this network, code-named “David vs. Goliath,” neurons 1 and 2 form
a half-center oscillator, receiving common inhibition from neuron 3. The reciprocal inhibition within
the pair is strong (gs

12 = gs
21 ≡ gs

G), and the pair bursts in anti-phase in the absence of inhibition from
neuron 3. Neuron 3 is assumed to have much (a hundred times) weaker unidirectional connections
with the pair: gs

31 = gs
32 ≡ gs

D and gs
13 = 0, gs

23 = 0. In what follows, neuron 3 shall attempt to
induce in-phase synchronized bursting in the half-center pair, fighting against a much stronger
desynchronizing force within the half-center network. It is worth noticing that the “David vs.
Goliath” ratio of the couplings is particularly pronounced in the tritonia CPG [43]. Let us consider
two distinct outcomes of this “David vs. Goliath” fight, depending on the duty cycle of the driving
neuron 3.

4.1. Case 1: Short Duty Cycle (< 50%)

Weak common inhibition is unable to establish synchronization within the “Goliath” network
under this condition, and “David” always fails. The mechanism leading to the anti-phase bursting
is similar to the above mechanism in the half-center oscillator.
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Fig. 2. Dynamics of the “David vs. Goliath” network (left insert) with weak gD = 0.02 and strong coupling

gG = 2 for two distinct duty cycles. (a) Duty cycle at V shift
K2 = −0.02 is insufficient to lock neurons 1 and 2

down long enough to achieve burst synchronization. (b) Long burst duration at V shift
K2 = −0.024 allows the

driven neurons to get together at the lock-down state near the saddle-node and to fire synchronously. This
allows “David” to beat “Goliath”.

Recall that due to the antiphase behavior, either cell of the “Goliath” network is always inactive,
being locked down near the right knee of Meq. While the phase state of the driving neuron 3 is on
the spiking manifold Mlc above the threshold, it inhibits “Goliath” extending the lock-down state
of the cell further. Note that in the 3D phase space of each individual system, the gap between the
quiescent manifold Meq and the slow nullcline m′ = 0 is initially small so that a weak inhibition
originating from the driving neuron is sufficient to close the gap and hence to lock either “Goliath”
neuron down. Loosely speaking, this gap may be viewed as a narrow mountain gorge, where only
300 Spartans can hold off a vastly superior army. Figure 2a shows that at the given Vshift

K2 the duty
cycle of the driving neuron is not long enough to put both neurons 1 and 2 into the lock-down
state. Neuron 1 (blue ball) is initially locked at the right knee by the driving neuron 3. At the
same time, the phase point of neuron 2 (green ball) moves along Meq towards its right knee, in
attempt to catch up with the phase state of neuron 1. As soon as the phase point (red ball) of
the driving neuron 3 eventually reaches the end of the spiking manifold and falls down to Meq,
this turns off the driving inhibition. Released from inhibition, neuron 1 is free to fire a spike, while
neuron 2 remains yet inactive. After jumping up, the phase point of neuron 1 traverses the synaptic
threshold to turn on the strong inhibition that leaves now neuron 2 locked down until neuron 1
is out of its active phase. This process of switching between active and inactive states of neurons
1 and 2 becomes cyclic and leads to asynchronous behavior of the “Goliath” network that they
compose. Thus, an effort of the driving neuron 3 to break down the anti-phase firing rhythm of the

REGULAR AND CHAOTIC DYNAMICS Vol. 15 No. 2–3 2010



BURST-DURATION MECHANISM OF IN-PHASE BURSTING 153

“Goliath” network fails. Moreover, the driving neuron 3 with a duty cycle shorter than about 45%
cannot synchronize the given half-center pair, even if the strength of common inhibition exceeds
that of reciprocal inhibition within the half-center network (see Fig. 3).

4.2. Case 2: Longer Duty Cycle

We set the driving neuron relatively close to the transition from bursting into tonic spiking
which is due to either the blue sky bifurcation [13, 54, 55] or the Lukyanov–Shilnikov bifurcation of
a saddle-node limit cycle with homoclinic orbits [12, 56]. In either case, the duty cycle grows fast

as V shift
K2 approaches the transition value [13]. It is worth noticing that near the transition the burst

duration becomes sensitive to small variations of the parameter and external contributions induced
by synaptic currents. Close to a saddle-node bifurcation of a limit cycle on the spiking manifold,
the system slows down and slowly passes the ghost preceding the emergence of the saddle-node
limit cycle. This allows the driving neuron 3 to maintain long burst durations without changing
the interburst interval. In other words, it spends more time on the spiking manifold than on the
lower branch of the nullcline Meq.

We start with the duty cycle of 80% which lies in a biologically plausible interval [50]. Fig. 2b
illustrates the onset of in-phase synchronization between neurons 1 and 2, induced by the weak
common inhibition. In contrast to the previous case of Fig. 2a, neuron 3 remains active much longer,
letting the driven neurons get together and locking them at the right knee. When the two last
cells are released from inhibition, they jump up together, giving rise to the in-phase synchronized
rhythm. Their further behavior on the spiking manifold depends on the coupling parameters and
synaptic threshold. For the above mentioned parameters, they remain completely synchronized.
This is in contrast with the expectations that their phase trajectories would diverge as the strong
desynchronizing connections between the two neurons are turned on. This surprising observation
will be discussed in detail in the next Section.

Fig. 3. Dependence of the threshold coupling strength gD, inducing synchronization in the half-center network,
on the duty cycle of the driving neuron 3. Other parameters are the same as in Fig. 2. Values of V shift

K2 correspond
to the indicated duty cycles.

Fig. 3 shows a wide horizontal plateau in the duty cycle-dependence curve of the synchronization
threshold coupling for duty cycles greater than 50%. This confirms that the strength of common
inhibition plays no essential role in inducing synchronization, provided that it is sufficient to close
the gap between the nullclines. The induced burst synchronization persists even when the driven
neurons are mismatched due to both intrinsic properties of the cells and asymmetries of the network
[49]. In particular, it persists even under a 200% mismatch between coupling strengths, like g12 = 1
and g21 = 3. Moreover, the inhibitory connections from neuron 3 do not have to be unidirectional;
for example, symmetric synaptic couplings g13 = g31 = 0.02 and g23 = g32 = 0.02 also induce burst
synchronization in the half-center network.
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5. SYNCHRONIZED BURSTING:
THE EVIL TWIN OF THE HALF-CENTER OSCILLATOR

The above burst-duration mechanism of in-phase synchronized bursting, induced by common
inhibition, explains the onset of burst synchronization when neurons 1 and 2 start firing at the same
time, after having released from common inhibition by neuron 3. However, the onset of complete
synchronization when the states of the two neurons converge to each other on the spiking manifold
remains a puzzle. In fact, the strong reciprocal inhibition connections between the two neurons are
turned on while the common inhibition is turned off (neuron’s 3 state still is on the lower branch of
the nullcline). It shows that the half-center oscillator, composed by neurons 1 and 2, is capable of
synchronizing by itself, provided that the neurons’ states are brought close enough to each other and
are on the spiking manifold. This is in contrast with the conventional belief as reciprocal inhibition
is postulated to produce only anti-phase bursting, provided that inhibition is fast [16, 17, 20, 24],
i.e. the synaptic decay is faster than or comparable to the duration of presynaptic drive.

In what follows, we will solve this puzzle and show that reciprocal inhibition can make completely
synchronized bursting stable and robust [52]. This makes the half-center oscillator network bistable
so that anti-phase bursting and the synchronous (in-phase) rhythm co-exist. In many cases,
alternating anti-phase bursting is crucial in the occurrence of heart beats, and motor and locomotion
rhythms. At the same time, synchronized firing is often considered to be an important part of the
dysfunction of a biological system or a CPG. This is the reason for calling co-existent synchronized
bursting the Evil Twin.

We consider the half-center oscillator network, modelled by the system (2.1) with n = 2 and
gs
12 = gs

21 ≡ gs. Hence, the system (2.1) transforms into

C dVi
dt = F (Vi, hi,mi)− gs(Vi − Es)Γ(Vj −Θsyn),

τh
dhi
dt = G(Vi, hi), τm

dmi
dt = R(Vi,mi), i, j = 1, 2.

(5.1)

We reveal the robustness of synchronized bursting with respect to transversal perturbations against
phase mismatch between the two neurons. More specifically, we study how the basin of attraction
of the synchronous solution depends on the phase along the synchronous orbit. The synchronous
orbit is parameterized with respect to the phase from 0 to 360 degrees. The zero phase corresponds
to the beginning of the quiescent period (see Figs. 4a and 4c). The width of the shaded region (the
synchronization “river”) in Fig. 4c gives the maximum size of the phase difference that provides
stable synchronization at a given phase. Figure 4c shows that the beginning of the spiking phase
of bursting corresponds to the widest synchronization zone. The synchronization zone narrows
down towards the quiescent phase so that if the phase difference exceeds a critical value, anti-
phase synchronization arises via the hold-and release mechanism, described in Section 3. Figure
4 demonstrates that stable synchronization is a typical phenomenon for half-center networks that
appears from a wide set of initial conditions.

In the rest of the article, we explain the synchronizing effect of fast non-delayed reciprocal
inhibition [52]. This is done by means of the variational equations for the transverse perturbations
to the completely synchronous solution [31]:

Cξ̇ = FV (V, h,m)ξ + Fh(V, h,m)η + Fm(V, h,m)ζ

+(S1 + S2)ξ

τhη̇ = [GV (V, h)ξ − η]
τmζ̇ = [RV (V,m)ξ − ζ], where

(5.2)

S1 = −gsΓ(V −Θsyn)

S2 = gs(V − Es)ΓV (V −Θsyn)
(5.3)

and ξ = V1 − V2, η = h1 − h2, ζ = m1 −m2 are infinitesimal differences. The derivatives are
calculated at the point ξ = 0, η = 0, ζ = 0, and {V (t), h(t), m(t)} corresponds to the synchronous
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Fig. 4. (a) Voltage trace of synchronous bursting with four spikes. The synaptic threshold V = θsyn is
depicted by the line crossing the voltage trace. Thin and thick parts (red and black, online) of the voltage

trace correspond to positive and negative values of the maximum instantaneous Lyapunov exponent, Linst
max,

respectively. Time scale of the burst period is shown on the top horizontal axis. All figures are aligned by phase,
φ, which is shown on the lowest horizontal axis. Parameters of the network are gs = 0.4, Θsyn = −0.0225, and

V shift
K2 = −0.022. (b) Magnitude of Linst

max oscillates between negative and positive values, that are, similar to

(a), depicted by the thin and thick lines, respectively. The overall contribution Linst
max, averaged over the period

of the synchronous trajectory, is negative and synchronization is locally stable. (c) The dependence of the basin
of attraction of synchronization on the phase along the bursting periodic orbit. The zero phase corresponds to
the beginning of the quescient phase of bursting. The width of the shaded region (the synchronization “river”)
gives the maximum size of the phase difference that provides stable synchronization at a given phase.

bursting rhythm between the neurons defined via the self-connected system. The linearized system
(5.2) has the coefficients that are time-dependent via the variable V (t), h(t), and m(t), and the
stability of the zero equilibrium of system (5.2) corresponds to the stability of the synchronous
solution.

The two terms S1 and S2 are due to the inhibitory synaptic coupling. Note that the first term
S1 is always non-positive and therefore aims at stabilizing the zero equilibrium of system (5.2).
Indeed, the sigmoidal function Γ(V −Θsyn) is non-negative and ranges from 0 to 1, therefore adding
S1ξ to the ξ-equation of system (5.2) has a stabilizing effect on the origin. More precisely, when
the membrane potential V (t) exceeds the threshold Θsyn, the negative term S1 is turned on and
contributes to the stability of synchronization, as it were the case of excitatory coupling [31]. At
the same time, the second coupling term S2 is non-negative since (V − Es) is always positive (the
synapses are inhibitory) and the graph of the derivative ΓV (V −Θsyn) has a bell shape with its
high positive peak at V = Θsyn and rapidly declining tails. Consequently, the term S2ξ, which
is linear in ξ and has a positive cofactor S2, tends to destabilize the zero equilibrium when the
membrane potential V (t) crosses or is close to the synaptic threshold Θsyn. In other words, the
inhibitory coupling plays a dual role in stabilizing and destabilizing synchronization as the terms
S1 and S2 are competing between each other in attempt to make the synchronous solution stable
or unstable, respectively. The impact of the inhibitory coupling on the stability of synchronization
strongly depends on the location of the phase point on the synchronous bursting orbit.

When the membrane potential V (t) is above the threshold Θsyn, the synchronizing term S1

is turned on and approaches to −gs, whereas the desynchronizing, competing term S2 rapidly
decreases to zero while V (t) increases and leaves a small transient region close to V = Θsyn, where
the contribution of S2 is still significant. Thus, the overall contribution of the two terms, S1 + S2

for V (t), exceeding the threshold Θsyn and the values from its small vicinity, is negative. Hence,
similar to fast excitation, the inhibition tends to synchronize the cells along the bursting part of
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the synchronous trajectory, above the values from the small vicinity of Θsyn. On the other hand,
when V (t) crosses the threshold Θs, the desynchronizing term S2 reaches its peak value which is
significantly higher that the corresponding value of S1. Thus, the desynchronizing term S2 becomes
decisive in the vicinity of V = Θs. The width of this vicinity region is defined by the parameter
λ = −1000, showing how close the sigmoidal function Γ(V −Θsyn) is to the Heaviside function. In
the case of the Heaviside function, the size of this vicinity region shrinks to zero.

In other words, every time the synchronous trajectory crosses the vicinity of V = Θsyn, it receives
a strong, but short-term desynchronizing impact due to S2, causing an increase in the transversal
perturbations. However, during the fraction of time the system is above the threshold and its small
vicinity, the inhibition plays a synchronizing role and the synchronous orbit receives a weaker,
but longer lasting synchronizing impact due to S1, so that the perturbations temporarily decrease.
This is depicted in Figs. 4a and 4b, reporting the numerical calculations of the instantaneous
values of the least stable transversal Lyapunov exponent, Linst

max of the synchronous trajectory,
calculated via the stability system (5.2). It is shown in Fig. 4a that the location of the points
on the bursting part of the synchronous trajectory, that correspond to a negative instantaneous
Lyapunov exponent coincides with the region above the threshold vicinity region, where the overall
contribution of S1 and S2 is negative. This part of the trajectory with a negative instantaneous
Lyapunov exponent is depicted by the thick line. The thin line corresponds to the part of the
trajectory with a positive instantaneous Lyapunov exponent that lies in the threshold vicinity
region where the desynchronizing term S2 dominates over S1. Note that the quiescent part of the
synchronous orbit, corresponding to the wide horizontal plateau in Fig. 4a, contains regions with
negative and positive instantaneous Lyapunov exponents that oscillate around and are very close
to 0. Here, the contribution of the coupling is almost negligible since the cells are significantly
below the synaptic threshold V = Θsyn and the coupling is turned off so that the variations in
the sign of the instantaneous Lyapunov exponent are caused by the time-varying Jacobian of the
uncoupled system. Figure 4b shows the magnitude of the instantaneous Lyapunov exponent Linst

max
that indicates its local contribution towards the overall stability of synchrony. The positive peaks
in Linst

max, correspond to the sharp appearance of the desynchronizing term S2 when the synchronous
orbit crosses the threshold.

The threshold value Θsyn and the synaptic strength gs are two crucial factors that determine
the stability of the variational equations (5.2), and, therefore, the stability of synchronization. The
choice of Θsyn affects the balance between the competing terms S1 and S2 and may reverse the
overall contribution of the coupling from negative to positive and vice versa. For instance, raising
the threshold to the upper part of the bursting trajectory decreases the contribution of the term
S1 and leads to desynchronization (see Fig. 5). On the other hand, lowering the threshold makes
the overall contribution of S1 stronger as it remains switched on during a longer fraction of the
burst. However, when the threshold Θsyn is lowered further so that it is tangent to the lowest part
of the bursting trajectory, the desynchronizing term S2 remains switched on longer due to the
tangency (see Fig. 5c). Hence, the desynchronizing term S2 wins over the synchronizing term S2

and synchrony becomes unstable (see Figs. 5a and 5b).

Figure 5a shows the dependence of the Lyapunov exponent Lmax on the synaptic threshold Θsyn

for a fixed synaptic strength gs. It is shown that there are two intervals of Θsyn, corresponding to
negative Lyapunov exponents, and, therefore, to locally stable synchronization of bursting neurons
(2.1).

It is worth noticing that the values of Θsyn from the left interval of stability (see Fig. 5a) lie
between −0.038 to −0.036. For these values, the threshold Θsyn is placed below the minimum value
of spikes and cannot intersect the bursting part of the trajectory and, hence, cannot account for
interaction with the presynaptic neuron, while the latter is in the tonic spiking phase. As far as
the synaptic coupling between the neurons is concerned, this location of the synaptic threshold
Θsyn implies an interaction that is similar to that between spiking (non-bursting) cells [18] such as
Morris–Lecar or FitzHugh–Nagumo spiking neurons. Here, the synaptic coupling is always switched
on when the neurons are on the tonic spiking manifold and switched off when the neurons are on
the quiescent branch of the solution. This is another surprising implication of this work, showing
that bursting cells with the FTM reciprocal inhibition can still achieve stable synchrony provided
that they are only connected in a way similar to non-bursting cells. Here, the neurons feel the

REGULAR AND CHAOTIC DYNAMICS Vol. 15 No. 2–3 2010



BURST-DURATION MECHANISM OF IN-PHASE BURSTING 157

Fig. 5. Stability of synchronization as a function of the synaptic threshold Θsyn. (a) Lyapunov exponent
Lmax is plotted versus Θsyn for a fixed value gs = 0.3. Note two intervals of stability indicated by negative
Lyapunov exponents. The left interval of stability, ranging from Θsyn = −0.038 to Θsyn = −0.036, indicate
lower thresholds Θsyn where spikes do not cross the threshold Θsyn. The right interval corresponds to the
thresholds Θsyn, intersecting the spikes. (b) Dependence of the averaged sum 〈S〉 = 〈S1 + S2〉 on the threshold
Θsyn. The graph of 〈S〉 follows that for the Lyapunov exponent. In the physiologically relevant interval of Θsyn,
ranging from −0.02 to 0.015, the curve for 〈S〉 agrees with the Lyapunov exponent curve remarkably well. (c,d
and e,f) Plots similar to Figs. 4a and 4b for two values of the synaptic threshold V = Θsyn, corresponding to
unstable (c,d) and stable (e,f) synchronization. The asterix and diamond indicate the two values chosen on the
graph Lmax. (d) When the threshold Θsyn is tangent to the lowest part of the spikes (c), the desynchronizing
term 〈S2〉 remains turned on for longer periods of time, so that 〈S〉 becomes positive, making in-phase
synchronization unstable. (e) When Θsyn crosses the spikes transversally, the impact of the desynchronizing
term S2 is weaker and 〈S〉 is negative enough to ensure stable synchronization.

interaction only during two fast transitions between quiescence and the spiking phase of bursting
that are the only time instants when the neurons’ voltages can hit the synaptic threshold Θsyn [18].

Figure 5b presents the dependence of the sum 〈S〉 = 〈S1 + S2〉, averaged over the period of the
synchronized bursting trajectory, on the threshold Θsyn. The graph of 〈S〉 resembles the stability
curve in Fig. 5a; there is no exact peak-to-peak coincidence between the two curves, especially
within an interval of Θsyn close to the minimum values of spikes. So for Θsyn = −0.03, the average
〈S〉 is negative, whereas the Lyapunov exponent Lmax is still positive, and hence synchronization is
unstable, despite the overall stabilizing effect of inhibition. This is due to a very strong instability
of the uncoupled system near V − 0.03 which is the third crucial factor affecting the stability of
synchronization. In a physiologically relevant interval of the thresholds Θsyn between −0.02 and
0.01 (see [50, 51]), intersecting the burst in a middle of spikes, the curve for 〈S〉 in Fig. 5b agrees
with the Lyapunov exponent curve in Fig. 5a remarkably well. In particular, it predicts the value
Θsyn = −0.009 at which synchronization loses its stability.

6. CONCLUSIONS

We have shown that the duty cycle of neurons driving an inhibitory network is the critical
characteristic, determining the cooperative properties of the network. In strongly heterogeneous
networks of non-identical neurons, the ratio of the duty cycles becomes the imperative order
parameter that controls the dynamics of the network and designates its pacemaker by the intrinsic
properties, or by the network structure. The pacemaker, being the longest bursting cell, makes
other strongly uncorrelated neurons synchronized and determines the network’s paces and rhythms.
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Moreover, excitatory coupling added to the inhibitory network can essentially increase the burst
duration of the given neuron. This allows the neuron to become a pacemaker and induce synchronous
rhythms in the network by the above described mechanism. The role of excitatory coupling was
discussed in [49]. The effect of the emergent network behavior shows how single neurons initially
having shorter duty cycles can self-organize to create a pacemaker with a longer duty cycle that,
in turn, induces network’s synchronous rhythms. Uneven common inhibition of a neuronal network
was also shown [49] to cause multiple, co-existent synchronous patterns, called polyrhythms, to
emerge among the networked neurons. The discovered mechanism of induced synchronization is
generic and applicable to other Hodgkin–Huxley–type neurons, capable of forming a half-center
oscillator. It demonstrates how neurons with different duty cycles can be employed as building
elements for constructing complex neuronal networks with prescribed cooperative behaviors.

We have discovered that anti-phase bursting in the half-center oscillator with fast non-delayed
inhibitory connections, which had been believed to be the only robust rhythm, is accompanied by
stable in-phase synchronization that appears from a fairly wide set of initial conditions. Should
one neuron be initially in the bursting phase, whereas the other is in quiescence, fast non-delayed
reciprocal inhibition between the cells leads to anti-phase bursting. However, if the neurons start
firing in the tonic spiking phase, then the inhibition, instead of diverging them, will force the
neurons’ states to come together, resulting in stable synchronized bursting. Surprisingly, the onset
of anti-phase bursting from initial conditions, corresponding to the tonic spiking phase of both
neurons is improbable. Once anti-phase bursting is achieved, it remains resistant to external voltage
perturbations of either neuron. On the contrary, even a weak common inhibition of both neurons
can break the anti-phase regime and make the neurons burst together [35]. The role of the common
inhibition in making in-phase synchronization stable is to bring the neurons’ states relatively close
to each other so that the reciprocal inhibition between the neurons could synchronize them.

We believe that our study of the synchronization mechanism of reciprocal inhibition and
co-existing dynamical rhythms may help one better understand multi-stability and switching
mechanisms between various neuronal rhythms of a multi-functional CPG upon various dynamical
conditions and inputs.
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