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The present paper focuses on the two time scale dynamics generated by 2D polynomial nonin-
vertible maps T of (Z0−Z2) and (Z1−Z3−Z1) types. This symbolism, specific to noninvertible
maps, means that the phase plane is partitioned into zones Zk, where each point possesses the k
real rank-one preimages. Of special interest here is the structure of slow and fast motion sets of
such maps. The formation mechanism of a stable invariant close curve through the interaction
of fast and slow dynamics, as well as its transformation into a canard are studied. A few among
the plethora of chaotic attractors and chaotic transients produced by such maps are described
as well.
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1. Introduction

We study the family of the following plane maps T :
x′ = x + G(x, y),
y′ = y + H(x), H(x) = −µ(x + α),

(1)

in which 0 < µ � 1 and α = 1 − σ are control
parameters. Here, G(x, y) is either a quadratic poly-
nomial G(x, y) = y + x2, or a cubic one G(x, y) =
y + dx − x3. Either map of the family is noninvert-
ible, because its inverse T−1 may have, typically,
none or two determinations (branches of inverses
distinct in terms of their ranges and domains) in
the quadratic case, or one or three in the cubic
one. The phase plane of a noninvertible map can
be divided into a number of zones Zk, where a
point has k distinct rank-one real preimages [Mira
et al., 1996]. So, in the quadratic case G(x, y) =
y + x2, where k = 0, 2, the map T is said to
be of (Z0 − Z2) type as its phase plane is subdi-
vided into two unbounded regions: one, Z2, gener-
ates two real rank-one preimages, while the other,

Z0, has no real preimage at all. In the cubic case
G(x, y) = y + dx − x3, k is either 1 or 3, and
therefore the map T belongs to (Z1 − Z3 − Z1)-
type, meaning that (x, y)-plane is subdivided into
three unbounded regions: in one of which, Z3, a
phase point has a triple of real rank-one preimages;
the region Z3 is bordered by two Z1-type regions,
where the phase point has always a single real rank-
one preimage. Note that noninvertible polynomial
maps are incompletely identified by their degrees.
Indeed, a two-dimensional quadratic map may have
Zk-regions with the integer k equal to 2 or 4. The
corresponding highest integer k may be 3, and 5, 7
or even 9 for a cubic map. So, the map’s complexity
depends on the highest value of k [Mira et al., 1996],
which is not a polynomial degree of the right-hand
side of the map.

Any two such regions, Zk and Zk′ , are sepa-
rated by an arc of rank-one that is called a crit-
ical curve LC. It is a locus of the points in the
(x, y)-plane where two branches of the inverse map
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T−1 merge on a set, LC−1, where the Jacobian of T
zeroes. So, one can see that when G(x, y) = y + x2,
LC is a slanting line, and LC−1 is a vertical one.
For G(x, y) = y + dx − x3, the critical line LC is
composed of a pair of parallel slanting lines, while
LC−1 is made of a pair of parallel vertical ones L−1

and L′−1.
Observe that map (1) is a slow–fast one, which

is due to the smallness of µ. This implies that
the rate of change of the y-variable is significantly
slower than that of the fast x-variable. The devel-
opment of the theory of the time-continuous singu-
lary perturbed ODEs had begun a long time ago;
its fundamentals can be found in [Mishchenko &
Pontryagin, 1955; Pontryagin, 1957; Andronov
et al., 1959; Mishchenko & Rozov, 1975]. A system
of such ODE is well known for exhibiting the relax-
ation oscillations where long plateaus are alternated
by fast switches between the slow motion branches.
This effect of two time scale dynamics is due to
the presence of a small µ in front of the highest
order time derivative of a phase variable. When
µ = 0, one can single out a slow motion mani-
fold Ms

0 and a complementary fast motion manifold
Mf

0 in the phase space of a slow–fast system. The
attracting segment of Ms

0 is formed by Lyapunov
stable limit orbits of the fast subsystem, and the
repelling part of Ms

0 is composed of its unstable
limit orbits. When |µ| � 1, the manifold Ms

µ per-
sists, moreover it remains µ-close to its original
Ms

0 until the latter is normally hyperbolic, i.e. far
from a bifurcation of a fixed point or a periodic
orbit [Tikhonov, 1952; Fenichel, 1979]. An interest-
ing dynamics may occur in some singular region of
the phase space where the slow motion manifolds
are no longer normally hyperbolic. An example of
such behavior can be a small limit cycle bifurcat-
ing from a stable equilibrium state through the
Poincare–Andronov–Hopf bifurcation. The ampli-
tude of this cycle grows abnormally fast as a con-
trol parameter varies. Moreover, the cycle follows, in
part, the unstable slow motion manifold bearing a
exponential instability. This kind of orbital behavior
was called a canard (or French duck) phenomenon
[Callot et al., 1977; Diener, 1981]. More complex
discrete canards were first analyzed in [Shilnikov &
Rulkov, 2003, 2004] in connection with the emer-
gence of irregular subthreshold oscillations in slow–
fast map based models of biological neurons. It
is worth noticing that such discrete canards inter-
rupted by sporadic spiking firings are shown to be
due to the crossings of the stable and unstable slow

motion sets (SSM and USM below), the phenom-
ena that can only be observed near canards in peri-
odically forced singularly perturbed plane vector
fields.

Map (1) is a singularly perturbed, or slow–
fast one, at values of µ small enough. The slow
motion sets of the map are made up of arcs of cycles
points at µ = 0. The fast motion is constituted
of arcs y = c with c being a constant. Note that
the dynamics of a slow–fast plane map may be way
more complex than that of a planar ODE system,
since the potential chaoticity of the former can be
even enforced by the noninvertibility property of the
map. Moreover, one observes that even a singular
limit µ = 0 in the quadratic case leads to a sequence
of bifurcations that occurs while the family is moved
through a Lattes’ critical case [Lattes, 1906] related
to the existence of infinitely many arcs composed of
period-k (k = 1, 2, 3, . . .) cycles with the multipli-
ers S1 = +1 and S2 = −1. This robust complex
dynamics will persist for nonzero |µ| � 1 too. So,
the analysis of the dynamics of the map µ = 0 is
reduced to that of the one family of one-dimensional
maps x′ = x + G(x, c) where y = c is a parameter.
In some sense, the case µ = 0 is “germinal” as it
sets the foundation for the dynamics of the whole
map at µ �= 0.

This paper is organized as follows: first we dis-
cuss some general properties of two-dimensional
noninvertible maps. Section 3 focuses on some
bifurcations originated by the Lattes’ critical case.
Sections 4 and 5 analyze the dynamics of maps
of (Z0 − Z2) and (Z1 − Z3 − Z1) types.

2. Behavioral Features of
Noninvertible Maps

Let us consider a smooth noninvertible map T , not
necessarily (1), in a plane. Any neighborhood of the
critical set LC contains a point having, at least, two
distinct rank-one preimages. Then, the set LC−1 is
defined as that on which the Jacobian of the map T
vanishes. One observes that the set LC satisfies the
relations T (LC−1) = LC, and T−1(LC) ⊇ LC−1.
So, the iterate LCk = T k(LC), k = 1, 2, 3, . . . , con-
stitutes the (k + 1)-rank critical set of the map T .
In the quadratic case G = y + x2, the pre-image
LC−1 of LC is then a straight line shown in Fig. 8.
In case of G = y+dx−x3, it follows that LC−1 con-
sists of two straight lines = L−1 and L′−1, whereas
LC consist of two parallel lines L and L′ , see Fig. 10
below.
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A closed invariant set Ω is called attracting if
a neighborhood U of Ω exists such that T (U) ⊂ U ,
and T n(X) → Ω as n → ∞, ∀X ∈ U . An attract-
ing set Ω may contain a single or several attrac-
tors, which may coexist with a repelling set. If it
is so, the latter may give rise to either chaotic
transients towards these attractors, or fuzzy bound-
aries of their basins (cf. [Gumowski & Mira, 1977;
Mira, 1987; Mira et al., 1996]). A chaotic area (d)
is an invariant absorbing area (cf. [Mira et al., 1996,
p. 188]) bounded by arcs of the critical curves LCn

(LC0 ≡ LC), n = 0, 1, 2, . . . , p (where p is a finite
integer or is infinite), within which computer sim-
ulations demonstrate consistently a robust chaotic
behavior. Here, the term “chaotic” may be treated
in a nonstrict sense, or in a strict one. Chaoticity in
a nonstrict sense means that the observed dynamics
reveals no regularity in numerical simulations. By
chaoticity in the rigorous sense we mean that the
given set (d) can be proven to be a genuine strange
attractor.

Chaotic area (d) contains a fractal set Λ com-
posed of countably many unstable cycles of various
periods and with their increasing rank preimages.
Let D be a basin of the attracting set (d), and
∂D be its boundary. It is shown in [Gumowski &
Mira, 1978] that a contact between ∂d and ∂D
is a global bifurcation that destroys (d) and gives
rise to the emergence of a strange repeller SR,
which is an unstable fractal set constituted by the
points of Λ. As a repelling set, the strange repeller
belongs to a basin boundary [Mira et al., 1994,
1996].

The open set D =
⋃

n≥0 T−n(U) is the entire
basin of Ω, i.e. D is the open set of points X whose

forward trajectories converge to Ω. Its boundary ∂D
is invariant for inverse T−1 of T , but not necessarily
for T itself, defined by (1):

T−1(D) = D, T (D) ⊆ D,

T−1(∂D) = ∂D, T (∂D) ⊆ ∂D

The strict inclusion holds iff D contains a Z0-type
region, for example, as in the quadratic case. If
Ω is a connected attractor, (say, a fixed point),
then the immediate basin D0 of Ω is defined as
the largest connected component of D containing
Ω. Noninvertible maps may generate not only sim-
ply connected basins (like invertible maps), but
also disconnected, or multiply connected, or both
disconnected and multiply connected basins. A non-
connected (resp. multiply connected) basin D is
generated from two different situations. The first
one is due to the presence of a headland (resp. a
bay) bounded by an arc of ∂D and an arc of the
critical curve LC. In the second case, the immedi-
ate basin boundary intersects only one of the arcs
of LC limiting a Zk-region with k ≥ 3, or the imme-
diate basin is fully included in Zk [Mira et al., 1994,
1996].

An arc, α0, intersecting LC−1 produces a fun-
damental interaction for its image with respect to
the critical set LC as shown in [Mira et al., 1996]
and [Frouzakis et al., 1997]. So, Fig. 1(a) represents
an arc α0 intersecting LC−1 at a point A0 with some
angle φ. If T is a smooth map, the rank-one image
α1 = T (α0) of this arc is a curve arc tangent (con-
tact of order one) to LC at the point A1 = T (A0).
If T is a nonsmooth map, then LC−1 is a curve
of the nonsmooth points of T , and hence α1 has

(a) (b) (c)

Fig. 1. Arc α0 makes the angle φ at the intersection point A0 on the curve LC−1 of merging rank-one preimages. Shown are
three distinct contacts of rank-one image α1 = T (α0) with the critical curve LC at A1 = T (A0).
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a nontransverse contact of order zero with LC. In
addition to α0, there is a second inverse α′

0 of α1

intersecting LC−1 at A0. When T is smooth, one
eigenvalue of the Jacobian of T along LC−1 remains
always zero. As long as the angle φ stays different
from the angle at the point A0 between LC−1 and
the eigenvector corresponding to this zero eigen-
value, the arc α1 is quadratically tangent to LC
(contact of first order at A1).

When the arc α0 turns, then the angle φ
changes too. Figure 1 shows the stages of its evolu-
tion. In Fig. 1(b) the vector tangent to α0 becomes
collinear with the eigenvector corresponding to the
zero eigenvalue of the Jacobian of the map at A0.
In this case, α1 creates a cusp at A1, so that the
tangent vector to α′

0 is also collinear with the null
vector of the map at A0. A further rotation leads to
the first order contact of the arc with LC at A1 [see
Fig. 1(c)]; this situation differs from the former one
by the local change of the parametrization direc-
tion on α1 near A1. This switch in the direction
causes the formation of self-intersecting loops of
one-dimensional unstable set of saddle orbits. The
map (1) may exhibit indeed such behaviors for some
parameter values. When α0 is an arc of an invariant
closed curve (γ) intersecting LC−1, the situation
depicted in Fig. 1(a) can only occur. Indeed, the
local situation is such as one shown in Figs. 1(b) and
1(c), the existence of an arc of invariant closed curve
with an irrational rotation number would mean that
it would be possible to close the curve (γ) with self-
intersections, or with cusps points, which makes no
sense. Then, Fig. 1(b) illustrates a bifurcation turn-
ing an invariant closed curve (γ) into a “weakly
chaotic ring”, as established in [Mira et al., 1996,
pp. 529–530].

3. General Properties of
Noninvertible Maps

3.1. Some properties of invariant sets

Functions G(x, y) and H(x) are introduced in (1)
so that the map has always a single fixed point
Q (x∗, y∗). Its stability is determined by a pair of
Floquet multipliers:

S1,2 =
1
2

[2 + G∗
x ±

√
(G∗

x)2 − 4µ ],

G∗
x =

∂G(x, y)
∂x

∣∣∣
(x∗,y∗)

The point Q is a focus when (G∗
x)2 < 4µ, moreover

stable provided that G∗
x+µ < 0. When G∗

x = −µ, Q
has a pair of complex conjugate multipliers on a unit
circle. This corresponds to the bifurcation of a birth
of a invariant closed curve (BICC), or a torus bifur-
cation. The stability of the bifurcating fixed point is
determined by the sign of the first Lyapunov coef-
ficient. It is inherited later by an emerging invari-
ant closed curve (γ), corresponding to a 2D torus in
ODEs. In either, quadratic or cubic, case under con-
sideration, the new born invariant curve is stable as
follows from [Mira, 1987, p. 238], and [Arnold, 1994,
p. 187].

The fixed point Q resides at the intersection
of the nullclines G = 0 and H = 0. The latter
ones break the (x, y)-phase plane into four subre-
gions selected by the conditions G > 0, G < 0,
H > 0, and H < 0. The images T (G = 0) and
T (H = 0) of the nullclines cross at Q too. In
the case G = y + x2, T (G = 0) is the parabola
y = −x2 −µ(x + α), while T (H = 0) is the straight
line y = x + α(1 − α). In the cubic case, T (G = 0)
is given by y = x3 − (d + µ)x − µα, and T (H = 0)
by y = x+(1−d)α+α3 . Because of the form of the
map (1) the following assertion seems to be quite
evident:

Proposition 1. Let η be an arc of the invariant
curve that intersects the nullcline G = 0 at a
point M, its image T (G = 0) at a point M ′, the
nullcline H = 0 at a point N and T (H = 0)
at N ′. Between the points M and M ′, there is a
point where η has an infinite slope, whereas between
N and N ′ there is a point where η has a zero
slope.

Similar to isoclines of ODEs in a plane, we can
introduce and follow the qualitative evolution of the
slope m = (y′ − y)/(x′ − x) ≡ H/G of the vec-
tor

−−−→
MM ′ connecting two consecutive points: the

image M(x, y) and its pre-image M ′(x′, y′) at vari-
ous zones of the phase plane.

3.2. Slow and fast motion manifolds
at µ = 0 and |µ| � 1

The original map (1) at µ = 0 recasts in the follow-
ing form:

x′ = x + G(x, y),
y′ = y.

(2)
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By setting y = c, c ∈ R1, the problem is
reduced to the consideration of bifurcations in
an one-parameter family of fast 1D noninvertible
maps:

x′ = x + G(x, c) (3)

The dynamics of such maps, especially quadratics
and cubic, were studied in [Gumowski & Mira, 1980;
Mira, 1975, 1987].

When exists, the attracting set of the quadratic
map (3) is composed only of a stable period-k cycle,
or a chaotic segment of period-k (k = 1, 2, 3, . . .). If
k > 2, the stable cycle is associated with infinitely
many sequences of unstable cycles with increas-
ing periods, and their limit sets, that constitute a
strange repeller. When the stable cycle results from
a flip bifurcations sequence (period doubling) start-
ing off the fixed point Q (k = 2i, i = 0, 1, 2, . . .),
it coexists with a finite number of period 2n (n =
0, 1, 2, . . . , j−1) unstable cycles (absence of unstable
chaos). An attracting set, if any, of the cubic map
(3) with G ≡ c + dx − x3 is made up of either only
one stable period-k cycle, or one stable period-k
chaotic segment (k = 1, 2, 3, . . .), or two such attrac-
tors. If k > 2, they are associated with infinitely
many sequences of unstable cycles, and their limit
sets, with increasing period constituting one or two
strange repellers.

Returning to map (1) at µ = 0, let us introduce,
in the phase space, the manifold SM of slow motion
that is composed of all possible cycles of (3), as well
as of their limit points that may exist, as c is varied.
So, for example, each period-k cycle generates a set
SMk consisting of k arcs. The stable (resp. unsta-
ble) slow dynamics manifold SSM (resp. USM) is
composed of all stable (resp. unstable) arcs SSMk

(resp. USMk) and their limit sets. Each point on
SSMk corresponds to a period-k cycle with one
(slow) multiplier S1 equal +1, the other, fast, mul-
tiplier S2 is found from the fast subsystem (3) at
given y = c. This situation was first elaborated by
Lattes [1906]:

Theorem 1 (Lattes). Let T be a 2D analytical map
generating an arc consisting of fixed points. Then,
one of two multipliers, S1 of each point equals +1.
If the second multiplier satisfies |S2| < 1, then on
both sides of this arc a there is a region in the plane
where the forward iterates of an initial point tend
to some point of the arc, and remain on the same
analytical invariant curve. When |S2| > 1, an ini-
tial point starting in a small neighborhood of the arc

generates a sequence of iterates running away from
the arc. The same result holds for arcs of period-k
cycles as well, which are the fixed points of T k.

Note that the more the period k increases, the
more the number of period-k cycles increases as
well. These cycles differ by the permutation of their
points after k iterates of T . This means that a set
SSMk (resp. USMk) is the union of arcs SSM j

k

(resp. USM j
k) with index j characterizing the per-

mutation; here j = 1, 2, . . . , pk, pk → ∞ if k → ∞.
The arcs SSM j

k and USM j
k , corresponding to the

same permutation, join in pairs at the values of c
corresponding to the fold (S1 = S2 = +1) bifur-
cation of the cycle defined by k and j. An arc
of SSM j

k disintegrates into two arcs belonging to
SSM j′

2k after the period-k cycle undergoes a period-
doubling bifurcation when S2 = −1. This means
for map (2) that the arcs given by (S1 = +1,
|S2| < 1) of the stable manifold SSM of slow
dynamics form an attractor, whose basin bound-
ary contains the arcs (S1 = +1, |S2| > 1) of the
unstable manifold USM of slow dynamics. In par-
ticular, the nullcline G(x, y) = 0 is the branch SM1

of the slow dynamics manifold composed of the fixed
points.

Some related bifurcations of the singularly
perturbed map (1) at small |µ| are described in
[Gumowski & Mira, 1980, pp. 175–177, 252–260]
and in [Mira, 1987, pp. 206–211]. Their adaptation
to the given problem allows the following preposi-
tions to be made:

Let (βk) be a set of k arcs consisting of points
of a period-k cycle with the multiplier S1 = +1.
Depending on T k, singular perturbations destroying
(βk) may give rise to the emergence of a period-k or
a period-2k cycle with k = 1, 2, 3, . . . , more specif-
ically of a fixed point Q(−α,G(−α, y) = 0) when
k = 1. Perturbations of the arcs existing at µ = 0
generate the manifold of slow dynamics related to
map (1).

The proof is given in [Gumowski & Mira, 1980]
for the case k = 1. It is worth noting that the sta-
ble slow dynamics manifold SSM reproduces the
well-known “scanning” bifurcation diagram of map
(3) obtained through varying c (for example, see
Fig. 2(b) below).

Let us consider an O(αµ)-neighborhood (0 <
α < 1) of the nullcline G = 0 that nar-
rows to µ → 0+. Outside of O(µa) the fol-
lowing relations, characterizing the fast motion,
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are hold:
|G(x, y)| ≥ O(µa),∣∣∣∣ y′ − y

x′ − x

∣∣∣∣ = |m| ≤ O(µ1−a) → 0 as µ → 0+.

A slow motion arc Ψr of G = 0 is repelling if
∂G/∂x > 0 in the limit µ → 0+. A necessary con-
dition for an arc Ψa of G = 0 to attract fast motion
trajectories, is ∂G/∂x < 0. The repelling arc Ψr is
comprised of unstable fixed points of the fast map
with S2 > 1 at µ = 0. The complementary arcs
(G = 0)\Ψr are comprised of unstable fixed points
S2 < −1 at µ = 0, and stable fixed points such that
−1 < S2 < 1.

In the cubic case where there exists a large
(relaxation) stable invariant closed curve (γ), there
are two arcs of fast motion, and two arcs of slow
motion near both branches of Ψa, as illustrated in
Fig. 17. The evolution of the slope m = H/G of the
vector

−−−→
MM ′ lets one understand better the effect of

canards or French duck solutions emerging with the
stable invariant closed curve right bifurcating from
the fixed point. In map (1), this effect is revealed
in two distinct ways. The first one brings in a small
stable invariant closed curve (γ) comprised of only
a single arc of fast motion and two arcs of slow
motions near Ψr and Ψa, like in Fig. 15. In the sec-
ond case, the duck is a large stable invariant closed
curve consisting of two fast and two slow motion
arcs shown in Fig. 16.

The “canard” effect implies that an arc of (γ)
stays closed to the repelling arc Ψr of G = 0, before
the phase point on (γ) is dragged along with the
fast motion towards Ψa. This also means that the
fixed point Q, giving rise (γ), remains close enough
to a fold of the graph of G = 0, where Gx/Gy = 0.
Note that Q is a focus when (G∗

x)2 < 4µ at |µ|
small enough, and since the bifurcation occurs when
G∗

x = −µ, then Q is indeed in a small neighborhood
of fold G∗

x = 0. Hence, after the bifurcation, some
arc of (γ) must remain in a neighborhood of the
repelling arc Ψr of G = 0.

Then, the intersection (γ) ∩ Ψr gives a point M
on (γ) with an infinite slope between M and M ′ =
TM , followed by a fast motion, an intersection
N = (γ) ∩ Ψa, an infinite slope between N and
N ′ = TN , and a slow motion in the O(µa)-
neighborhood of Ψa. In the case G = y + x2, one
may see that the fast motion on (γ) is only fol-
lowed by a slow motion in the Ψa neighborhood
with a subsequent return into the Ψr neighborhood.
It results in the appearance of a “small” invariant

curve (γ). In the case G = y + dx − x3, “small”
invariant curve (γ) merges too. However, the fact
that the nullcline G = 0 has two extremum points
may alter its evolution as a control parameter is
varied in the sense that the size of (γ) may grow
abnormally fast. This may also lead to the absence
of an intersection between (γ) and Ψr. If so, when
(γ) leaves a neighborhood of Ψr, when (γ) moves
out of a neighborhood of the repelling arc Ψr, the
fast motion pushes it toward the opposite branch
of the attracting part Ψa of G = 0. This leads to
a sudden increase of the size of (γ) that gives rise
to the so-called canard with a head. With further
parameter change, the point Q moves further away
from G∗

x = 0, resulting in shortening the length of
the arc of (γ) near Ψr. Eventually, as no part of (γ)
follows Ψr, the map exhibits relaxation oscillations
generated by (γ) consisting of two fast motion arcs
and two slow motion arcs in a neighborhood of Ψa.

4. (Z0 − Z2) Map

4.1. Basic properties

In the case of the quadratic map T

x′ = x + G(x, y) ≡ x + x2 + y,

y′ = y + H(x) ≡ −µ(x + α), α > 0,
(4)

its inverse T−1 has two branches, or two determina-
tions T−1

1 and T−1
2 , i.e. the jacobian of the inverse

map is nullified on two loci in the (x, y)-phase plane:

T−1
1 :
x =

1
2
(−1 − µ −

√
(1 + µ)2 − 4(y′ − x′ + µα)),

y = y′ + µ(x + α)
,

T−1
2 :
x =

1
2
(−1 − µ +

√
(1 + µ)2 − 4(y′ − x′ + µα))

y = y′ + µ(x + α)
.

The forward map T has a single fixed point
Q(−α;−α2) with multipliers S1,2 = 1 − α ±q

α2 − µ. One sees that Q is a focus, i.e. S1,2 are
complex conjugates α2 < µ; moreover Q is stable if
µ < 2α. The curve µ = 2α corresponds to the BICC
bifurcation after which Q becomes an unstable focus
surrounded by a small stable invariant closed curve
(γ), [Mira, 1987, p. 238].

The nullclines given by G ≡ y + x2 = 0 and
H ≡ −µ(x + α) = 0 divide the phase plane in four
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regions where G > 0, G < 0, H > 0 and H < 0.
Their images T (G = 0) and T (H = 0) are the
parabola y = −x2 − µ(x + α), and is a straight
line y = x + α(1 − α), respectively.

4.2. Fast dynamics at µ = 0

At µ = 0, the dynamics of (4) on each leaf y = c is
determined by the following map:

x′ = x2 + x + c. (5)

This map turns into the classical Myrberg’s map
u′ = u2−λ by letting c = −λ− 1/4 and x = u− 1/2.
It has two fixed points: p(c)(x =

√−c) which is
always unstable with multiplier S > 1, while the
other q(c)(x = −√−c) with the multiplier S < 1 is
stable when −1 ≤ c < 0 (−1/4 < λ ≤ 3/4), and
is unstable (multiplier S < −1) for c < −1. Indeed
the fixed points are unstable in two different ways
S > 1 and S < −1, the corresponding branches
having different properties. The map has a rank-
one critical point C(c − 1/4), which is the forward
image of the minimum at (x = −1/2).

The map (5) generates an attractor (stable
cycle, or an attracting periodic chaotic segment)
if −9/4 < c < 0 (or −1/4 < λ < 2 in Mybergs’
notation). It is located within an absorbing segment
bounded by the critical point C and its rank-one
image C1 = T (C) such that x(C1) = c2 + 3c/2 −
5/16. The attractor basin is the interval

x(p−1) < x <
√−c,

x(p−1) =
(−1 −

√
1 − 4c + 4

√−c )
2

,

where p−1 = T−1
1 p is a rank-one preimage of p,

other than p itself. The existence boundary of this
attractor is c∗1 = −9/4, corresponding to x(p) =
x(C1), i.e. to a homoclinic bifurcation. The classical
Myrberg cascade of period-doubling occurs within
the interval

−1
4

< λ ≤ λ1s � 1.401155189 . . . ,

i.e. c1s = −1
4
− λ1s < c < 0.

This cascade creates a finite number of period-2i

cycles with i = 0, 1, 2, 3, . . . . The interval

λ1s ≤ λ ≤ 2 i.e. c∗1 = −9
4

< c < c1s

corresponds to the generation of infinitely many
sequences formed by countably many unstable

cycles and their limit sets. This leads to the appear-
ance of a strange repeller, which is a chaotic tran-
sient. As c is decreased (hence λ is increased),
these cycles persist and can be then continued until
c < c∗1 = −9/4 (i.g. λ > 2). The snap back repeller
bifurcation of the fixed point q(−√−c) takes place
at λ = λ∗

21 � 1.543689013, i.e. when c = c∗21 �
−1.793689013. Odd period cycles do not exist when
c > c∗21 . This homoclinic bifurcation at c∗21 occurs
when the rank-3 critical point C2 = T 2(C) merges
with the fixed point q. Similarly, other homoclinic
bifurcations c = c∗2i can be defined when the unsta-
ble period 2i−1 cycle, born through the Myrberg’s
cascade, merges with a rank 2i + 1 critical point
C2i = T 2i

(C). Moreover, the value c = c1s is a limit
of a sequence of homoclinic bifurcation values

c∗
2i+1 > c∗

2i > · · · > c∗21 , i = 1, 2, 3, . . .

so that c1s = lim
i→∞

c∗2i .

When c ≤ c∗1, there are all possible cycles and their
limit sets on the x-axis, furthermore, every one is
unstable. At c = c∗1 these cycles and their increas-
ing rank preimages, filling out the entire interval
[−5/2 ≤ x ≤ 3/2], constitute a set (E) such that
the set (E′) of all its limit points is perfect. The
preimages of (E), are everywhere dense on (E′).
When c < c∗1, perturbations of (E′) give rise to a
Cantor set, made of the unstable cycles and the
limit sets located within the segment x(p−1) ≤ x ≤√−c. It is now a disjoint repelling set.

When the period k increases from 3, the num-
ber of all possible period-k cycles raises very quickly.
They differ by their points’ permutations deter-
mined through k successive applications of the map
(5). So, a period-k cycle admits the symbolism
(k; j), where j is an index characterizing this cyclic
permutation. Moreover, the index j of a cycle of the
quadratic map is the running number defining the
rank of the cycle birth.

4.3. Slow dynamics at µ = 0

Let us now consider the two-dimensional map (4)
at µ = 0. The manifold of slow dynamics SM
is the set of all the arcs consisting of (k; j)-cycles
(k = 1, 2, 3, . . .) with a “slow” multiplier S1 = +1,
and their limit set as k → ∞. This set SM is com-
posed of a stable subset SSM , where the fast multi-
plier |S2| < 1, and of an unstable one USM , where
|S2| > 1.

The slow motion branch made solely of the fixed
points (k = 1) is given by y = −x2. Its stable
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segment is the arc given by {x < 0; −1 ≤ y < 0}
which is made up of stable fixed points q(y) with
−1 ≤ S < 1. There are two unstable arcs with k =
1: one consisting of unstable fixed points p(

√−y)
with multiplier S2 > 1, located on the arc x > 0; the
other q(−√−y) with multiplier S2 < −1 is located
on the slow motion arc given by {x < 0; y < −1}.
The other branches of the slow dynamics manifold
are obtained from the fractal bifurcation structure
of box-within-a-box (or embedded boxes) [Mira,
1975, 1987; Guckenheimer, 1980] type of the inter-
val −9/4 ≤ y = c < 0, and from the situation with
y < −9/4 described above (existence of the real
set (E)).

The basin of the attractor SSM is inside an
open domain U bounded by four arcs: the unstable
slow dynamics one y = −x2 (x > 0), the arc{

(η) : x =
(−1 − √

1 − 4y + 4
√−y)

2

}

(i.e. the other rank-one preimage of y = −x2,
x > 0), the horizontal segment (y = 0; −1 < x <
0), and the horizontal segment ∆ : (y = −9/4,
−5/2 < x < 3/2). This domain U contains a subset

of the unstable manifold USM , and thus it is not
the basin D of the attractor SSM . Remind that
USM is the union of arcs USM j

k (k = 1, 3, 4, . . . .) of
unstable (k; j)-cycles, their increasing rank preim-
ages, and the limit of all these sets. This situation
leads to a fractal unstable manifold of slow dynam-
ics. So, the boundary ∂D of the basin D is com-
plex. It consists of two parts. The first one, USMi,
is located inside U , and gives rise to a chaotic tran-
sient toward SSM . The other part USMo is located
outside of U , and originates from the fractal perfect
set (E′) on ∆. It becomes completely disjoint, turn-
ing into a Cantor set of arcs in y < −9/4. In partic-
ular, ∂D contains the increasing rank preimages of
the arc (η̃) = (η) ∩ (y < −9/4), i.e.

⋃
n≥0 T−n(η̃) ∈

∂D (located inside the Z2 region). When n → ∞,
the limit of T−n(η̃) is the set of the repelling cycle
arcs in the region y < −9/4, their limit when the
period tends toward infinity, and their increasing
rank preimages. It is worth noting that ∂D ⊃ USM
is invariant for T−1, not for T , due to the pres-
ence of a Z0 region containing the arc (η) ∩ (−9/
4 < y < 0).

Figure 2(a) shows the region U and the rank-r
preimages (r = 1, 2) of the arc (η̃). The rank-one
preimage (η̃)−1 = T−1(η̃) is formed by two branches

(a) (b)

Fig. 2. (a) Map (4) at µ = 0, α = 0.003. Shown are the U -region (orange) and the rank-r preimages (r = 1, 2) of the arc
(η̃); L is the critical curve, L−1 is the line of rank-one merging preimages. (b) Map (4) at µ = 0.0001, α = 0.003. Stable
manifold SSM of the slow dynamics associated with the stable fixed point Q(−α;−α2), emerges from the bifurcation of the
arc [y = −x2] ∩ (−1 < x < 0) of stable fixed point q at µ = 0. The manifold SSM corresponds to the red arcs, transient
toward Q from the initial point (x = 1.4, y = −2.2). The classical bifurcation diagram of an unimodal map can be recognized.
The basin has infinitely many narrow tongues in the region y < −9/8, which is not seen at the figure scale.
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of a parabolic shape (η̃−1) = (η̃1
−1) ∪ (η̃2

−1) and
(η̃1−1) = T−1

1 (η̃), (η̃2−1) = T−1
2 (η̃) tangent to the

line y = −9/4 at the point C−1(x = −1/2). The
rank-two preimage is composed of two arcs with a
maximum on y = −9/4, (η̃1−2) = T−1

1 (η̃−1), (η̃2−2) =
T−1

2 (η̃−1). The set
⋃

n≥0 T−n(η̃) is an arborescent
sequence of parabolic shaped arcs with a maximum
on y = −9/4, the rank-n preimage T−n(η̃) con-
sisting of 2n−1 such arcs. The set [

⋃
n≥0 T−n(η̃)] ∩

(y = c), c < −9/4 is a Cantor one.

4.4. Behavior at 0 < µ � 1

At these values of µ, the slow dynamics manifold
inherits the dynamics and the bifurcations of the
robust Lattes’ critical case (S1 = +1) are discussed
above. Suppose that the parameter values are cho-
sen so that the map has an attractor. Then, the
stable manifold SSM of the slow dynamics associ-
ated with this attractor can be easily visualized. It
can be as shown in Fig. 2(b) at µ = 0.0001 and
α = 0.003; these values correspond to the existence
of a stable fixed point Q(−α;−α2) born through the
bifurcation of the arc [y = −x2] ∩ (−1 < x < 0) of
stable fixed points q at µ = 0. So, SSM , shown by
the red arcs, reproduces the well-known bifurcation
diagram of a one-dimensional unimodal map
obtained via the parameter scanning. When µ = 0,

the point A marks the period-doubling bifurcation
of the fixed point q (at λ = 3/4, i.e. when y = −1),
and B marks the snap back repeller bifurcation
occurring at c = c∗21 . The part of the unstable man-
ifold USMi of the slow dynamics inside the region
U is composed of infinitely many arcs filling in the
space between SSM arcs. Figure 2(b) shows also
that the stable manifold SSM has contacts with the
critical line L. In this figure the orange area corre-
sponds to the basin D(Q) of the stable fixed point
Q; its boundary is labeled as ∂D(Q). At the given
figure’s scale one may see that the lowest part of the
basin appears to be bounded by y � −9/8, which
is not true. Indeed the unstable manifold USM of
slow dynamics, originating through the bifurcation
of the USM arcs defined at µ = 0, continues for
y < −9/8 (a part of USM0) and leaves the domain
U . Therefore, the basin has infinitely many narrow
tongues in the region y < −9/8. A section y = c
gives a Cantor set of disjoint points, which limit
infinitely many open segments belonging to the
basin D(Q).

The form of the boundary ∂D(Q) can be better
seen when µ is increased like in Fig. 3(a). The fixed
point Q is now an unstable focus surrounded by a
stable invariant closed curve (γ). The arcs (η̃)−1,
(η̃1−2) and (η̃2−2), found at µ = 0, have turned into
the arcs (η̃−1)µ, (η̃1−2)µ and (η̃2−2)µ, respectively.

(a) (b)

Fig. 3. (a) Map (4) at µ = 0.1, α = 0.03. The fixed point Q is now an unstable focus surrounded by a stable invariant closed
curve (γ) (red). An unstable period-four cycle, generated by bifurcation of a period-four arc USMk is marked by four blue
points. (b) Map (4) at µ = 0.05, α = 0.015. The fixed point Q is an unstable focus surrounded by a stable invariant closed
curve (γ). A slow motion arc of (γ) follows the repelling arc of G = 0. It does not cross L−1, and thus has no contact with
L either.
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This figure shows that the basin boundary ∂D(γ)
has common points with y = −∞. The Lattés’
bifurcation of a period-k arc USM j

k (existing at
µ = 0, cf. Sec. 3.2) outside of the domain U ,
generates an unstable period-k cycle. Figure 3(a)
reveals one of such cycle of period four with
multipliers S1 = 1.1391 and S2 = −42.08. This
cycle does not come from a period-doubling bifur-
cation of the period-two cycle. Another unstable
period-three cycle belonging to ∂D(Q) has mul-
tipliers S1 = 1.0254, S2 = −102.36 (the coordi-
nates of one of its points are x � 2.15691, y =
−5.65758, because when y < −3 it is located out-
side the figure frame). All the cycles issued from
the Lattés’ bifurcation of the arcs USM j

k , out-
side of the domain U defined for µ = 0, are
located on the part of the boundary ∂D(Q), which
limits the infinitely many “tongues” of the figure
(attaining y = −∞).

4.5. Stable invariant sets

4.5.1. Invariant close curve in the
invertible case situation

A stable invariant close curve (γ) with basin D(γ)
originates from the fixed point Q(−α;−α2) when
(µ = 2α). This point is a stable focus when µ < 2α
and α2 < µ. It turns into an unstable focus sur-
rounded by (γ) when µ > 2α. One can see that since
Q is in a O(µ) neighborhood of the maximum (0; 0)
of the nullcline G = 0 when µ > 2α and µ � 2α
small enough, then an arc of (γ) has to remain in
a O(µa) (0 < a < 1 ) neighborhood of the repelling
arc Ψr given (y = −x2) ∩ (x > 0) of G = 0. This
condition is a single possibility for the existence of a
“small” invariant closed curve in a Z0 −Z2 map (4)
illustrated in Fig. 3(b), which is intended to show
the evolution of the vector joining two consecutive
points (x, y) and (x′, y′). Note that (γ) cannot cross
∂D(γ). It is suggested by the ∂D(γ) shape and
the evolution of the slope m = (y′ − y)/(x′ − x)
that a slow motion arc of (γ) remains near the
repelling arc of the nullcline G = 0. Let us begin
from the highest point on (γ) moving clockwise.
This occurs when the negative slope of a tangent to
(γ) is decreasing up to the point M ∈ (γ) ∩ (G = 0),
thereby implying a vertical tangency between M
and M ′ ∈ T (G = 0). Between the points N and
N ′ the fast motion arc of (γ) has an horizontal
tangency. Beginning with the point P , a part of
(γ) remains O(µa)-close to the attracting arc of

G = 0, and then has a vertical tangency between P
and P ′.

The second inverse T−1
2 of the map T near

the invariant close curve (γ) can be viewed as an
invertible map, provided that (γ) does not cross
the line of coincident preimages L−1 and has no
contact with the critical line L either. This sit-
uation is represented in Fig. 3(b) for µ = 0.05
and α = 0.015. Fixing µ = 0.01 and decreas-
ing α from α = 0.00252 reveals that the invariant
curve (γ) behaves as it should in a plain invertible
map, until its gets destructed after contact with its
basin boundary ∂D(γ) at (α � α∗ = 0.0025). Note
that (γ) grows rapidly as α is increased, i.e. it is
highly sensitive to small variations of the control
parameter. About α = α∗ + 3.810−16, (γ) appears
to have turned into a weakly chaotic ring (γ̃) [see
Fig. 4(a)] with its basin boundary ∂D(γ̃) looking
rather “fuzzy”, as shown in Fig. 4(b). The exact
numeric value of corresponding α is hardly deter-
minable here, due to unavoidable round-ups and
truncation errors caused by the specific computer
arithmetic. Furthermore, a different computer plat-
form would probably give different quantities like in
the case of rigid basins. Therefore, we have to rely
only upon a qualitative interpretation of the results.
Note that the effect depicted in Fig. 4 can be a
purely numerical artefact as well, or this announces
an homoclinic situation where the attractor breaks
down via a heteroclinic tangency.

4.5.2. Noninvertibility for attractor
and its basin

Scarcely has the stable close invariant curve (γ)
crossed the merging preimages line L−1 at points
P = (γ) ∩ L−1 and P ′ = T (P ) ∈ L, its behav-
ior changes drastically leading to the emergence of
“oscillations” on (γ), see Figs. 1 and 5(a). The fur-
ther decreasing α at fixed µ = 0.23 leads to bifur-
cation sequences described in [Mira et al., 1986,
pp. 515–547]. These sequences are characterized by
alternation of α intervals corresponding to period-k
cycles pair “saddle-node (or focus)”, and intervals
related to the existence of a weakly chaotic ring.
Figures 5(b) shows such a weakly chaotic ring (γ̃)
at α = 0.05811. Further decreasing α gives rise to
a chaotic area (d), shown in Figs. 6(a) and 6(b).
Observe that the basin D(d) is multiply connected,
even though this cannot be seen at the figure scale.
When µ = 0.05, the attractor gets destroyed at
αb � α∗ = 0.0125, after contact with its basin
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(a) (b)

Fig. 4. (a) Attractor of (4) at µ = 0.01 and α = 0.0025 + 3.8 10−16 breaks down when it contacts its own basin boundary.
View of the attractor in its fast motion. (b) The basin boundary becomes “fuzzy” near the slow motion arc.

(a) (b)

Fig. 5. (a) Map (4) at µ = 0.23 and α = 0.6. While crossing L−1, the stable invariant closed curve (γ) is tangent to the
critical line L; this creates oscillations along L. (b) Map (4) at µ = 0.23 and α = 0.05811 shows a weakly chaotic ring (γ̃);
compare with Fig. 1(b).

boundary. Staring from α = 0.01251, there exists a
stable invariant close curve (γ). As α is decreased,
(γ) grows very quickly and starts oscillating trans-
forming into weakly chaotic ring (γ̃). Moreover
the attractor basin becomes multiply connected in
accordable with the description reported in [Mira
et al., 1994, 1996].

Figure 7(a) at α = α∗ + 2.8 10−15 illustrates
such situation, which is due to the emergence of
bay H0 whose increasing rank preimages create
two sequences of lakes (white holes belonging to
the domain of diverging orbits) with unstable fixed
point Q and its preimage Q−1 as their limit points.
The enlargements in Figs. 8(a) and 8(b) allow one
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(a) (b)

Fig. 6. (a) Map (4) at µ = 0.23 and α = 0.0577. Decreasing α gives rise to the emergence of a chaotic area (d) when its basin
D(d) becomes multiply connected (not seen at the figure scale). (b) Chaotic area (d) of map (4) at µ = 0.23 and α = 0.05758.
The crucial part of the slow motion remains in a neighborhood of the basin boundary. The basin D(d) is multiply connected.

(a) (b)

Fig. 7. (a) Map (4) at µ = 0.23 and α = 0.0125+2.8 10−15. The points (γ) ∩ L−1 give rise to tangential contacts of (γ) with
L evolving into oscillations on (γ). The bay H0 has infinitely many increasing rank preimages; each generates two sequences of
lakes having Q and its preimage Q−1 as limit points. Figures 12 and 13 show a high sensitivity with respect to very small varia-
tions of α. (b) Map (4) at µ = 0.23, α = 0.0125 + 10−16 produces the closed curve (γ) turning into a weakly chaotic ring (γ̃).

to see the rank-one and -two lakes H1 = T−1(H0)
and H1

2 ∪ H2
2 = T−1(H1). The other lakes belong

to the set
⋃

n>0 T−n(H0). It is interesting to note
that the lakes sequence is made up of lakes subsets
organized along “mean lines” of fast motion and
“mean lines” of slow motion.

Figure 7(b) shows the stable closed curve (γ)
turning into a weakly chaotic ring (γ̃) and its
multiply connected basin at α = α∗ + 10−16.
The ring has an arc that follows closely the basin
boundary, which is an element of the unstable man-
ifold of slow motion. The parameter value α is very
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(a) (b)

Fig. 8. Map (4) at µ = 0.23 and α = 0.0125 + 2.8 10−15. Enlargements of Fig. 11 permits to see the rank-one and -two lakes
H1 = T−1(H0), H1

2 ∪H2
2 = T−1(H1). The other lakes belong to the set

S
n>0 T−n(H0). The lake sequences follow subsets of

fast motion, and subsets of low motion.

close to the bifurcation destroying (γ̃). As above,
the presented numerical results indicate the prob-
lem of unavoidable presence of roundups and trun-
cation errors generated by the computer, which are
associated with its arithmetic. These results must
be considered as qualitative, as trajectory behavior
becomes extremely sensitive to small variations of
the parameter α.

5. (Z1 − Z3 − Z1) Map

5.1. Basic properties

Such a cubic map T is given by:

x′ = x + y + dx − x3,

y′ = y − µ(x + α),
(6)

with α = 1−σ, d > 0 and 0 < µ � 1. The equation
of the line LC−1 = L−1 ∪ L′−1 of merging preimages
is given by:

x = ±
√

1 + µ + d

3
,

and that of the critical curve LC = L ∪ L′ is
given by

y = x ∓
(

2
3

)
(1 + µ + d)

√
1 + µ + d

3
− µα.

The inverse map T−1 has one or three determi-
nations, which are the real solutions of the cubic
equation:

x3 − (d + 1 − µ)x + x′ + y′ + µα = 0,

with y = y′ + µ(x + α). There is a single point
Q(−α;α(α2 − d)) at a finite distance from the ori-
gin. Its multipliers are

S1,2 =
2 + d − 3α2 ±√

∆
2

,

∆ = (d − 3α2)2 − 4µ.

The fixed point Q is a focus when µ > (d −
3α2)2/4; moreover it is stable if µ + d < 3α2. The
parameter values µ + d = 3α2 correspond to the
BICC bifurcation after which Q becomes unstable
surrounded by a stable invariant closed curve (γ).

The nullclines G ≡ y + dx − x3 = 0 and
H ≡ −µ(x + α) = 0, divide the phase plane in four
regions when G > 0, G < 0, and H > 0, H < 0.
Likewise Z0 − Z2 map, these curves and their
images T (G = 0), T (H = 0) help us give a qual-
itative geometrical interpretation of the behavior of
deviations x′−x and y′−y. The set T (G = 0) is the
cubic parabola y = x3 − (d + µ)x − µα), whereas
T (H = 0) is the straight line y = x+ (1− d)α+ α3.
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5.2. Fast dynamics at µ = 0

At µ = 0 the fast dynamics is defined on each cut
on y = c by the one-dimensional map T ′

x′ = (d + 1)x − x3 + c (7)

This map has two rank-one critical points

x(C) = c +
(

2(d + 1)
3

)√
d + 1

3
,

x(C ′) = c −
(

2(d + 1)
3

)√
d + 1

3
.

Every bounded limit orbit, if any, is located inside
the interval bounded by the points (ζ1, ζ2) of an
unstable period-two cycle with multiplier S > 1.
The limits of the existence region of such an orbit
are determined by the two homoclinic bifurcations
x(C) = x(ζ2) at c = c∗1, and x(C ′) = x(ζ1)
at c = c′∗1 ; the existence interval of an attract-
ing set is c′∗1 < c < c∗1. Letting T ′−1(ζ1,2) =
T ′(ζ1,2), and ∆ = (ζ1,2 − c)2/4 − (d + 1)3/27, the
coordinates ζ1,2 are defined through the following
relationship:

3

√
d + 1

2
+

√
∆ + 3

√
d + 1

2
−

√
∆

= (d + 1)ζ1,2 − ζ3
1,2 + c. (8)

The inverse map T ′−1 has two coincident preimages
at c = c∗1 and c = c′∗1 satisfying

ζ1,2 =
27c ± 2

√
27(d + 1)3

27

0 = 27(ζ1,2 − c)2 − 4(d + 1)3.

(9)

The bifurcations of (7) at c = 0 are described
in [Gumowski & Mira, 1980, pp. 415–418]. Within
the interval 0 ≤ d ≤ √

27/2 − 1, two attractors
of the map may coexist, one is located on the ray
x < 0, and the other is on the opposite side. As
the parameter d is varied, both give rise a fractal
bifurcation structure of embedded boxes mentioned
in Sec. 3.2. Within

√
27/2 − 1 ≤ d ≤ 2, some new,

even period cycles, symmetric about the origin, are
created, in addition to pairs of odd period cycles.
On the leaf c = 0, the abscissa x(ζ1,2) is given
y = ±√

2 + d, and the map has all the possible
cycles at d = d∗1 = 2. When c �= 0, the map
becomes dissymmetric and hence may have only one
attractor.

On leafs c = c∗1 and c = c′∗1 the map has all
the possible cycles and their limit sets in the x-axis;
moreover, all of them are unstable. These cycles and

their increasing rank preimages constitute a real set
(E), filling out the whole interval bounded by the
points ζ1 and ζ2. The set (E′) of all the limit points
of (E) is a perfect one. The preimages of (E) are
dense everywhere on (E′). When c < c′∗1 and c > c∗1,
unstable cycles and the limit sets form a Cantor set,
a disjoint repelling set resulting from a perturbation
of (E′).

5.3. Slow dynamics at µ = 0

Let us next examine the two-dimensional map (2)
at µ = 0. The manifold SM of slow dynamics
consists of the arcs formed by all period-k cycles
(k = 1, 2, 3, . . .) and by their limit set as k → ∞.
This manifold can be decomposed into the stable
subset SSM (|S2| < 1) and unstable one USM
(|S2| > 1). The branch SM1 (G = 0) of slow
dynamics corresponding to the single fixed point
(k = 1) is given by y = x3 − dx. Its unstable
part USM1 is made up of three parts. One arc Ψr

made up of unstable fixed points with multipliers
S1 = 1 and S2 > 1, is located between the two
extrema (−√

d/3 < x <
√

d/3) of y = x3 − dx.
The two other arcs Ψi

r, i = 1, 2 are made up of
unstable fixed points with multipliers S1 = 1 and
S2 < −1. On curve y = x3 − dx they are defined by
the inequalities y < −[2(1 − d)

√
(2 + d)]/

√
27 and

y > [2(1 − d)
√

(2 + d)]/
√

27, or x < −√
(2 + d)/3

and x > (2 + d)/3. The stable part SSM1 of SM1

is made up of two arcs Ψi
a (i = 1, 2) of stable

fixed points q(c), whose multipliers satisfy S1 = 1
and −1 ≤ S2 ≤ 1. On the curve y = x3 − dx
they are defined by the inequalities −√

(2 + d)/3 <

x < −√
d/3 and

√
(2 + d)/3 > x >

√
d/3. Let

us denote by Ψ1
a the arc x < 0 and by Ψ2

a the arc
x > 0. The other branches SM j

k (k > 2) of the
slow dynamics manifold are obtained from the frac-
tal bifurcation structure of embedded boxes of the
interval c′∗1 ≤ y = c ≤ c∗1.

Figure 9 represents the basin D (shown in
orange) of the attractor SSM formed by the arcs
of stable period-k cycles with multipliers S1 = 1,
|S2| < 1 at α = −0.4 and d = 0.65. It is located
inside an open domain (W ) of nondiverging orbits
bounded by two arcs Û ′V ′, and ÛV of unstable
period-two cycles, and two horizontal segments U ′U
and V ′V . These arcs Û ′V ′ and ÛV belong to the
two branches (η) and (η′) of (8) comprised of the
points (ζ1) and (ζ2) of unstable period-two cycles.
The ordinates U, V,U ′, V ′ are such that y(V ′, V ) =
c′∗1 , y(U ′, U) = c∗1, as defined in (9). The abscissae
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x(V ′, V ), x(U ′, U) are also given by (9). The open
domain (W ) contains a subset USMi of the unsta-
ble manifold USM , and thus (W ) is not the basin
D of the attractor SSM . The boundary ∂D of
the basin D is complex and includes the fractal
unstable manifold USM of slow dynamics consti-
tuting a strange repeller. This boundary ∂D has a
part USMi giving rise to a chaotic transient toward
SSM , and a part USMo outside of (W ) issued from
the fractal perfect set (E′) on U ′U , V ′V . This set
becomes completely disjoint having turned into a
Cantor set when in y < c′∗1 and y > c∗1. In particular,
∂D contains the increasing rank preimages of the
arcs

(η̃) = (η) ∩ (y > c∗1), (η̃′) = (η′) ∩ (y < c′∗1 ),

i.e.
⋃

n≥0[T
−n(η̃) ∪ T−n(η̃′)] ∈ ∂D. When n →

∞, the limit of T−n(η̃) ∪ T−n(η̃′) is the set of
repelling cycle arcs in the regions y < c′∗1 and
y > c∗1.

Figure 9 shows the region (W ) and the rank-
one preimages of the arcs (η̃), as well as (η̃′). The
rank-one preimage (η̃)−1 = T−1(η̃) is constituted

by two branches (η̃−1) = (η̃1
−1) ∪ (η̃2

−1), tangent
to the line y = c∗1 at the point C−1 ∈ L−1, and
a third arc (η̃3

−1) belonging to (η̃′) (the preimage
composed of period-two cycle points). An equiv-
alent property takes place for the arc (η̃′) as
well.

The stable manifold SSM of the slow dynamics
consisting of the arcs of stable cycles can be visual-
ized at small enough values of µ. As shown in Fig. 9
it is made of two subsets (red and black colored)
related to each of the two parts of the cubic nonlin-
earity generating their own structure of the embed-
ded boxes. This figure is obtained at µ = 10−6

by scanning y. The unstable manifold USM of the
slow dynamics consisting of infinitely many arcs of
unstable cycles (at µ = 0) inside the region (W ),
occupies the space between the red and black arcs.
One can recognize the points corresponding to the
period-doubling at µ = 0, two snap back repeller
bifurcation of this fixed point, and a few arcs of sta-
ble period-two, three and four cycles. Figure 9 shows
also that the stable manifold of the slow dynam-
ics has contacts with the critical curve L ∪ L′. The
unstable manifold of slow dynamics continues out of

(a) (b)

Fig. 9. (a) Map (6) at µ = 10−6, α = 0.35 and d = 1.4 showing the attractor SSM made of arcs of stable period-k cycles
with multipliers |S2| < 1. It is made up of two subsets (red and black) having the so-called embedded boxes structure, resides

in domain (W ) (orange) of nondiverging orbits bounded by two arcs Û ′V ′ and dUV of unstable period-two cycles, and two
horizontal segments U ′U and V ′V . These arcs belong to the branches (η) and (η′) consisting of unstable period-two cycles
(ζ1, ζ2). The basin boundary ∂D contains the increasing rank preimages of the arcs (η̃) = (η) ∩ (y > c∗1), (η̃′) = (η′) ∩ (y < c′∗1 ).
The figure also shows the rank-one preimages (η̃−1) = (η̃1

−1) ∪ (η̃2
−1) ∪ (η̃3

−1) of the arcs (η̃) and (η̃′). The rank-one preimage

(η̃)−1 = T−1(η̃) is formed by (η̃−1) = (η̃1−1) ∪ (η̃2−1), tangent to the line y = c∗1 at the point C−1 ∈ L−1, and a third arc

(η̃3−1) ∈ (η̃′). (b) The map at µ = 10−5, α = −0.4, d = 0.45 has an a stable invariant closed curve (γ). The stable manifold
SSM is visualized by iterates of two close initial points (red and black) in D(γ) transient toward (γ).
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(W ) below and above the segments U ′U and V ′V
of ∂D.

5.4. Dynamics of cubic map
at 0 < µ � 1

In the limit µ → 0+, the arc Ψr of the nullcline
G = 0 repels the fast motion if (∂G/∂x) > 0, i.e.
when d − 3x2 > 0. A necessary condition that an
arc Ψi

a of G = 0 (i = 1, 2) attracts the fast motion
is (∂G/∂x) < 0. The arc Ψr is composed of unstable
fixed points with fast multipliers S2 > 1 at µ = 0.
The two arcs Ψi

r, i = 1, 2 are composed of fixed
points with multiplier S2 such that S2 < −1 at
µ = 0. At 0 < µ � 1, the slow dynamics manifold
originates from the Lattes’ critical case (Sec. 3.2).
Suppose that the map has an attracting set, like
a stable invariant closed curve (γ) shown in Fig. 9
at α = −0.4, d = 0.45 and µ = 10−5. The sta-
ble manifold SSM of the slow dynamics associated
with this set can be easily visualized by iterations
of two initial points inside the basin D(γ) close
to the horizontal parts of its boundary. When µ
is sufficiently small, the manifold SSM shown in
Fig. 9 by the red and black arcs, represents the
transient toward the stable invariant closed curve
(γ), which consists of two horizontal arcs of fast
dynamics and two arcs of slow dynamics belonging
to Ψi

a (i = 1, 2). The manifolds of slow dynamics are

now invariant curves of T k, k = 1, 2, 3, . . . , issued
off perturbations of the “germ” SMµ=0. The per-
turbation of the unstable manifold USMi belong-
ing to the slow dynamics USM inside the region
(W ) is formed by infinitely many arcs occupying
places (not visible at the figure scale, except for
low period cycles) between the red and black arcs.
Figure 9 does not permit to see the perturbation
of the “germinal” unstable “slow” manifold USMo

outside of (W ). At 0 < µ � 1, y > c∗1, or y < c′∗1
the basin boundary ∂D(γ) results from this “germ”
USMo defined at µ = 0. In this region a section
y = c gives a Cantor set of disjoint points, bound-
ary of infinitely many open segments belonging to
the basin D(γ). The form of the basin boundary
∂D(γ) is seen clearly at larger values of µ, as, for
example, in Fig. 10(a). The picture indicates that
∂D(Q) should have points on y = ±∞. As in the
quadratic case, the bifurcation of a period-k arc
USM0 generates an unstable period-k cycle located
on the boundary of the attracting set.

For small values of |µ|, a plethora of attracting
sets of the map can be observed by integration of
the perturbation of a part of SSM into the attract-
ing set itself. So, Fig. 10(b) represents a chaotic area
(d) and the transient toward this attracting set. In
Fig. 11(a), the attracting set is made up of two
different chaotic areas (d) and (d′), whose basins
are shown in green and yellow colors. Figure 11(b)

(a) (b)

Fig. 10. (a) Map (6), at µ = 0.02, α = −0.4 and d = 0.45, has the stable fixed point Q. Here, the bifurcation of the arcs of
USM0 determine the basin boundary ∂D(Q). (b) Map (6) at µ = 0.001, α = −0.2, d = 1.15, possesses a chaotic area (d) and
the transient toward the attracting set.
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(a) (b)

Fig. 11. (a) Map (6), at µ = 0.0015, α = −0.1, d = 1.2 after an integration of the perturbed SSM into an attracting set
consisting of two different chaotic areas (d) and (d′); their basins are colored green and yellow. (b) Map (6), at µ = 0.001,
α = −0.2, d = 1.145, has a single chaotic area (d) after the merging of two chaotic areas.

demonstrates the united chaotic area (d) after the
above chaotic areas have merged. Three insets in
Fig. 12 represent the different looks of the chaotic
areas found by integrating parts of SSM0 converg-
ing to a stable invariant curve. With µ small enough
and the fixed point Q on the repelling arc Ψr, a
large diversity of attractors can be detected by fit-
ting the ordinates of the G = 0 extrema (located at
xe = ±√

d/3, ye = ∓(2/3)
√

d/3 ) to a bifurcation
value producing fast dynamics for (7) on the cut
c = ye.

5.5. Stable invariant sets

5.5.1. Invariant close curves

A stable invariant close curve (γ) with a basin
D(γ), emerges at µ + d = 3α2 when the stable
(µ > (d − 3α2)2/4, µ + d < 3α2) focus fixed point
Q(−α;α3 + α) becomes unstable for µ + d > 3α2.
This occurs in an O(µ)-neighborhood of the min-
imum (

√
d/3, −2

√
d/3/3) of the nullcline G = 0,

which is a necessary condition for a canard birth.
Figure 13 illustrates a situation similar to that for
quadratic maps depicted in Fig. 3, where an arc of
(γ) stays O(µa)-close (0 < a < 1) to the repelling
arc Ψr of G = 0 in the limit µ → 0+. The local
behavior of (γ) is typical, until it does not cross the
coincident preimages lines L−1 and L′−1, i.e. until
it has no contact with the critical lines L and L′.

If it does, the noninvertibility feature of the map
steps into action. Note that the intersection point
M ∈ (γ) ∩ (G = 0) implies a vertical tangency
between M and M ′ ∈ T (G = 0). The curve (γ)
crossing only one of the two attracting arcs Ψ2

a of
G = 0, and the repelling arc Ψr is referred to as
“small ” invariant closed curve in Fig. 13.

As α is increased from α = −0.4 to −0.38
(µ = 0.1 and d = 0.45 are fixed), the size of (γ)
increases too, so that it crosses LC−1 = L−1 ∪L′−1,
see Fig. 13(b). Its tangential contacts with the crit-
ical lines L and L′ cause oscillations on (γ) [cf.
Fig. 1(a)]. At α = −0.4 and d = 0.53, (γ) starts to
self-intersect, and losing smoothness it turns into a
weakly chaotic ring (γ̃) shown in Fig. 14.

Let us consider next smaller values of µ, and
start from the point (µ = 0.001; α = −0.36509014;
d = 0.4) giving a small stable invariant closed
curve (γ) in Fig. 13(a); observe that the minimum of
G = 0 is in the interior of (γ). Dependence of (γ) on
α is enormous; its size increases quickly with small
variations of α. So, at µ = 0.001, α = −0.36509
and d = 0.4, the invariant curve (γ) ceases to be
“small”, and turns into a “duck” solution, depicted
in Fig. 14(b). At some intermediate α, the fast
component of (γ) becomes fuzzy, as reflected in
Fig. 15(a).

A small increase to α = −0.36509013737915
extends a fuzzy region joining now the “small”
invariant curve with the “duck” one, like shown
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(a) (b)

(c)

Fig. 12. Phase portraits of map (6) at (a) µ = 0.001, α = −0.59, d = 1.05; (b) α = 0.01, d = 0.8; (c) α = 0.1, d = 0.9, show
iterates of the initial stable manifold SSM at µ = 0 of slow dynamics converging to a stable invariant closed curve.

in Fig. 15(b). For α = −0.365090137379148, the
attractor is a canard type, with a single fuzzy
fast component (Fig. 16). Likewise the quadratic
map, due to computer roundups and truncation,
the quantitative description of transformations of
the attracting sets of the map, including the exact
values for α corresponding to Figs. 15 and 16,
are meaningless if depending on the computational
platform arithmetic. So, an evolution of “small”
invariant closed curve into the “duck” solution must

be understood in a qualitative way with a certain
scepticism regarding the mathematical rigor about
the “fuzzy” arcs.

Figures 17(a) and 17(b) illustrate the stable
invariant close curve (γ) consisting of two arcs
of fast motion and two arcs of slow motion in
a neighborhood of two attracting branches Ψi

a of
the nullcline G = 0. When the curve (γ) starts
intersecting L−1, the oscillations of (γ) emerge,
which are due to a contact with L = T (L−1).
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(a) (b)

Fig. 13. (a) Map (6), at µ = 0.1, α = −0.4, d = 0.45, depicts a circle (γ) not crossing the lines of preimages L−1 and L′−1,
and thus having no contact with critical lines L, L′. (b) Map (6), at µ = 0.1, α = −0.38, d = 0.45. Increasing the size of (γ)
leads to its intersections with LC−1 = L−1 ∪ L′−1 and cause wiggles of (γ).

(a) (b)

Fig. 14. (a) Map at µ = 0.1, α = −0.4, d = 0.53, self-intersections of (γ) [compare with Fig. 1(c)] turn it into a weakly
chaotic ring (γ̃). (b) At µ = 0.001, α = −0.36509, d = 0.4, the small appendix on (γ) follows the right knee of G = 0 including
the unstable branch thereby creating the “duck with a head” configuration.

5.5.2. Noninvertibility effect on the
attractor and its basin

A chaotic attractor (d) and its basin ∂D(d) of a
genuine noninvertible map may be in a way more
complex. A first example is given in Fig. 18, where
the chaotic area (d) is bounded by arcs of LC =
L ∪ L′ and their images LCn = Ln ∪ L′

n, n =

1, 2, . . . , LCn = T n(LC). Its enlargement shows the
“spindly” fragment of (d) resembling the mecha-
nism of self-intersections suggested in Fig. 1(c). An
increase of the parameter d = 0.8923 leads to the
situation, depicted in Fig. 19(a), occurring nearby
the bifurcation destroying the attractor (d) when
its boundary approaches the boundary ∂D(d) of its
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(a) (b)

Fig. 15. (a) Map (6), at µ = 0.001, α = −0.36509013737916, d = 0.4, seems to exhibit a “small invariant closed curve” (γ);
indeed that attractor has a fractal structure; its horizontal segment disintegrates and becomes fuzzy. This fast component is
zoomed in the next figure at α = −0.36509013737915.

Fig. 16. (a) Cubic map (6), at µ = 0.001, α =
−0.365090137379148, d = 0.4, has a canard-type attractor
with one fuzzy fast motion component.

basin D(d). This basin is multiply connected due
to the presence of two bays H0 and H ′

0 leading to
two arborescent sequences of lakes with increasing
rank preimages of H0 and H ′

0, see the first preim-
ages T−1(H0) = H1

1 ∪ H2
1 ∪ H3

1 and T−1(H ′
0) =

H ′1
1 ∪ H ′2

1 ∪ H ′3
1 in Figs. 29(a) and 30.

A second example presented in Fig. 19(b) shows
the attractor whose basin is nonconnected. Here,
the attractor is a small invariant closed curve

(γ) composed of the one arc of fast motion, and
two arcs of slow motions: one in a Ψr neigh-
borhood of G = 0, and the other near Ψa. A
third example illustrating a dynamical variety is
Fig. 20(a) at µ = 0.001, α = −0.591681, d = 1.05;
the enlargement in Fig. 20(b) reveals the canard
effect.

5.5.3. From “small” invariant closed
curve to canard

Take note that the “small” invariant closed curve
(γ) and the canard closed curve are related: an arc
of (γ) remains in a small neighborhood of a piece
of the repelling arc Ψr of the nullcline G = 0. Such
a case is “exceptional” in the sense that it occurs
within an extremely thin region in the parameter
space. As mentioned above, the corresponding nec-
essary condition is the following: the fixed point
Q(−α;α(α2 − d)) is an unstable focus (when µ >
(d− 3α2)2/4, µ+d> 3α2), located in a small enough
neighborhood of an extremum (x = xe = ±√

d/3,
y = ∓(2/3)

√
d/3) of the nullcline G = 0, i.e.

the value of the parameter α must be rather close
to ∓√

d/3. The emerging “small” curve (γ) exists
when it intersects the repelling arc Ψr of G = 0,
which is not the case for the canard curve. A “large”
invariant closed curve emerges when (γ) not only
does not intersect Ψr, but also it has no arc stay-
ing inside a small neighborhood of a piece of the



December 9, 2005 18:9 01419

Slow–Fast Dynamics Generated by Noninvertible Plane Maps 3529

(a) (b)

Fig. 17. Map (6), at µ = 0.001, α = 0, d = 0.4, shows the classical situation where (a) the stable invariant close curve (γ) is
composed of a pair of fast motion arcs, and those of slow motion near the attracting branches Ψa of G = 0; (b) Enlargement
shows the intersection of (γ) with LC−1 = L−1 ∪ L′−1 leading to wiggles of (γ) due to its contact with LC = L ∪ L′; (γ) is
tangent to L at the point T (M0) = M1 and M0 = (γ) ∩ L−1.

(a) (b)

Fig. 18. (a) Chaotic attractor (d) at µ = 0.1, α = −0.25, d = 0.89. (b) Enlargement showing that the spindly part of (d)
corresponds to the scenario suggested in Fig. 1(c).

arc Ψr. Recall that Ψr repels the fast motion if
(∂G/∂x) > 0, i.e. d−3x2 > 0 when µ → 0+, i.e. the
“repelling” action of Ψr is enforced starting from
each of the two extrema up to the inflexion point
(x = y = 0) of G = 0, where it reaches the maxi-
mum Gx = d (Ψr slope equals −d).

The parameter values corresponding to phase
portraits in Figs. 15 and 16, yield a first type of

transition from a “small” invariant closed curve
(γ) to a canard. The transition is characterized by
a sudden discontinuous change of the size of (γ)
occurring at rather very small variations of a control
parameter, other than 0 < µ � 1 surely. When µ is
not small, a second type of transition occurs, char-
acterized by the change of size of (γ) continuous
with respect to control parameter variations.
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(a) (b)

Fig. 19. (a) Map (6), at µ = 0.1, α = −0.25, d = 0.8923 near the bifurcation destroying the attractor (d), when its boundary
approaches ∂D(d) of the multiply connected basin D(d). (b) The attractor, which is a small invariant closed curve (γ) has
disconnected basin at µ = 0.1, α = −0.63 and d = 1.15.

(a) (b)

Fig. 20. Map (6), µ = 0.001, α = −0.591681, d = 1.05 exhibits another type of chaotic attractor (a), whose enlargement (b)
reveals the canard.

Figures 21(a)–21(e) show the transition of the
second type with the continuous evolution of (γ) in
the size, when α increases respectively from −0.37,
through −0.3635, −0.3634, −0.3633 and −0.3628
at fixed µ = 0.02 and d = 0.4. The stages of
the transformation begins with the stable invariant
closed curve (γ) bifurcating from Q in the neigh-
borhood of the minimum (x =

√
d/3 � 0.36515,

y = −(2/3)
√

d/3) of the nullcline G = 0.

After this bifurcation occurs at αb � −0.37417,
the fixed point Q is located on the arc Ψ2

a of
G = 0 with a positive slope, where it stays until
x(Q) = −√

d/3 � 0.36515. When α > −√
d/3, the

point Q moves onto the arc Ψr of G = 0 with a
negative slope equal to −∂G/∂x, so that an arc of
(γ) lies in a vicinity of Ψr. A necessary condition
for the existence of a “small” curve (γ) becoming
a canard is thus fulfilled. Let us elaborate on the
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case, shown in Fig. 22, where (γ) emerges from Q
in the neighborhood of the minimum (x =

√
d/3,

y = −(2/3)
√

d/3) of the nullcline G = 0, thus
α < 0. The slope of the vector

−−−→
MM ′, connect-

ing the image M ′ = TM with its pre-image, is
given by

∆y

∆x
=

y′ − y

x′ − x
=

−µ(x + α)
G(x, y)

.

Following [Mishchenko & Pontryagin, 1955] and
[Andronov et al., 1959] for ODE, introduce the
neighborhood O(µa) (0 < a < 1) of the nullcline
G = 0 that shrinks to G = 0 as µ → 0+. Let
B, x(B) = xm, be the point on (γ) such that its
forward image B′ = T (B) belongs to G = 0, and
let A be the point on (γ) with the ordinate corre-
sponding to the minimum of G = 0. Take note that
between the points B′ and T (B′) on (γ), there is a
point leading to a vertical tangency (cf. Sec. 5.5.1),
so that xm is close to the smallest value of the
abscissa of (γ). Let the function G(x, y) be eval-
uated as G(x, y) = −k(x)µa, k(x) > 0 along the
arc ÂB (of slow dynamics) of (γ), in the O(µa)-
neighborhood of the nullcline G = 0. Then, along
ÂB, one has that ∆y/∆x = (x + α)/[k(x)µa−1],
with (x + α) < 0. Moreover, |∆y| and |∆x| are
small since µ is small, and therefore ∆y/∆x is
close to the slope of the line tangent to (γ). Pick
a point (x∗, y∗) on the curve G = 0. Between its
two extrema, the slope of G(x∗, y∗) = 0 is negative:

dy∗/dx∗ = 3x∗2 − d = −p(x∗), p(x∗) > 0. Note
that p(x∗) decreases from d to zero when x∗ varies
from zero to the minimum x∗ =

√
d/3. Let (x, y)

be a point on (γ) such that y = y∗. The condition
of existence of a small invariant curve (γ) is that
∆y/∆x ≤ dy∗/dx∗ along the arc ÂB of (γ). This
leads to the inequality:

∆y

∆x
=

x + α

k(x)µa−1
≤ −p(x∗),

i.e. −(x + α) ≥ p(x∗)k(x)
µ1−a

,

(10)

where −(x + α) > 0 is bounded, so that “small”
curve (γ) must intersect G = 0 between its two
extrema (dy∗/dx∗ < 0), i.e. 0 < −(x+α) < 2

√
d/3.

So, inequality (10) is only fulfilled within a very nar-
row window of the parameter values. With y = y∗,
decreasing x means increasing −(x + α) and p(x∗),
and hence (γ)’s size is increasing as well. The larger
the values of µ, or α are chosen, the more the size
of the “small” curve (γ) can grow. For example,
at x∗ = 0 (p(x∗) = d), for the existence of (γ)
it is required that

√
d/3 − k(x)µa ≥ k(x)d/µ1−a,

i.e. µ must be sufficiently large. Increasing α < 0
ensures a fulfilment of the continuous growth of
(γ) with no turning into the canard because p(x∗)
decreases from d (x∗ = 0) to 0 (x∗ = −√

d/3,
which is the maximum on the nullcline G = 0).
Let us note that, with no µ large enough, (γ)
cannot have a point x = 0 for which at the limit

(a) (b)

Fig. 21. Stages of the evolution of a canard in map (6), at fixed µ = 0.02, d = 0.4, as α increases from (a) −0.37, (b) 0.3635,
(c) −0.3634, (d) −0.3633, through (e) −0.3628.



December 9, 2005 18:9 01419

3532 C. Mira & A. Shilnikov

(c) (d)

(e)

Fig. 21. (Continued )

√
d/3 − k(x) µa ≥ k(x)d/µ1−a. Then a continuous

growth of the “small” invariant closed curve (γ) is
impossible. As soon as (γ) has a point x = 0, an
increase of the (γ) size cannot lead to a canard,
because |p(x∗)| decreases.

In the inequality (10) the ratio p(x∗)/µ1−a

plays a more important role. When |µ| � 1,
p(x∗) must remain of order µ1−a for the persis-
tence of small (γ). Its sudden switch into the canard
begins when (γ) has a point (x, y) satisfying the

“inverse” inequality −(x+α) < p(x∗)k(x)/µ1−a, i.e.
∆y/∆x < dy∗/dx∗, y(x) = y(x∗). Provided p(x∗)
is not sufficiently small and µ is not large enough,
an orbit, having followed a small arc of Ψr in the
O(µa)-neighborhood of G = 0, from its minimum
p(x∗

e) = 0 (where (10) is held), will be expelled
from O(µa) by Ψr in a direction determined by the
fast motion, i.e. the x-coordinate starts decreasing
quickly. This leads to a formation of a new canard-
like closed curve (γ).
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Fig. 22. Qualitative representation of the small stable
invariant closed curve (γ) emerging from the fixed point Q
residing nearby the minimum (

p
d/3, −(2/3)

p
d/3) of null-

cline G = 0.

6. Conclusion

This paper is based on the important observation
that a noninvertible two-dimensional degenerated
map in the form x′ = x + G(x, y), y′ = y can
be embedded into the family of the singularly per-
turbed maps x′ = x + G(x, y), y′ = y − µ(x + α),
with |µ| � 1. Indeed, when µ = 0, an initial con-
dition y = c, c ∈ R1, yields the fast motion equa-
tion defined by the one-dimensional noninvertible
map x′ = x+ G(x, c). The constant c plays the role
of a parameter in the family quadratic map with
G ≡ c+x2, or in a cubic one when G ≡ c+dx−x3,
whose dynamics are well known. For the map x′ =
x + G(x, y), y′ = y − µ(x + α), the limit case µ = 0
corresponds to the Lattes’ critical case [1906], asso-
ciated with a bifurcation described in [Gumowski &
Mira, 1980, pp. 175–177, 252–260], and the case
of µ going through zero in [Mira, 1987, pp. 206–
211]. In this critical case, the manifold SM of slow
dynamics in the (x, y)-plane is formed by all the
cycles, and their limit points, generated as c varies,
i.e. by infinitely many arcs made up of cycle points
and their limits. Each period-k cycle, denoted by
(k; j) (the index j differentiates two cycles having
the same period but exchanging differently their
points by k applications of the map), generates
a set SM j

k of k arcs. The stable (resp. unstable)

slow dynamics manifold SSM (resp. USM) is com-
posed of all the stable (resp. unstable) arcs SSM j

k

(resp. USM j
k) and their limit sets. Each point of

SSM j
k , or USM j

k , corresponds to a period-k cycle
with one of the two multipliers S1 = +1, the sec-
ond, fast, multiplier, S2 is found from the map x′ =
x + G(x, c).

The bifurcation occurring while crossing
through the Lattes’ critical case, results in the
destruction of each set of k-arcs, consisting of the
points of a period-k cycle with S1 = +1, which
may give rise to a period-k (or 2k) cycle, k =
1, 2, . . . It is worth noting that at small enough val-
ues of µ, the stable slow dynamics manifold SSM
may reproduce the classic bifurcation diagram of
the one-dimensional map obtained through scan-
ning by the control parameter c. In this sense,
the case µ = 0 appears as the “germinal” situ-
ation giving rise to the dynamics generated when
µ �= 0.

The situation related to what is known as
a “canard” or “French duck” limit cycle in
autonomous ODEs, also occurs in the map x′ = x+
G(x, y), y′ = y − µ(x + α) as well: a stable invari-
ant closed curve exists within a narrow window of
parameter values. However, because of the nonin-
vertibility of the map, it may become into a attrac-
tor of a complex shape, which can be chaotic as
well. Similar to ODEs, the canard behavior can
be explained without the standard analysis tool
[Callot et al., 1977; Diener, 1981], but by apply-
ing the classical qualitative methods of dynamical
systems, as shown in Sec. 5.5.3.

This study can be extended to other forms
of function G(x, y). For example, the map with
G(x, y) = y + px + qx3 + rx5 may already gener-
ate two invariant closed curves: stable and unsta-
ble, with a plethora of different complex behaviors.
Another direction in this context is to consider x, y
and µ as vectors, i.e. a map of a higher dimension
with a few time scales. All these extensions pave the
way for new studies.
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déstabilisant une solution chaotique d’un endomor-
phisme du 2nd ordre,” Comptes Rendus Acad. Sc.
Paris, Série A 286, 427–431.

Gumowski, I. & Mira, C. [1980] Dynamique Chaotique.
Transformations Ponctuelles. Transition Ordre-
désordre (Editions Cépadues, Toulouse).
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