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BIFURCATION STRUCTURE OF INTERVAL MAPS
WITH ORBITS HOMOCLINIC TO A SADDLE-FOCUS

БIФУРКАЦIЙНА СТРУКТУРА IНТЕРВАЛЬНИХ ВIДОБРАЖЕНЬ
З ОРБIТАМИ, ГОМОКЛIНIЧНИМИ ДО СIДЛА-ФОКУСА

We study homoclinic bifurcations in an interval map associated with a saddle-focus of (2, 1)-type in \BbbZ 2 -symmetric
systems. Our study of this map reveals a homoclinic structure of the saddle-focus, with bifurcation unfolding guided by
the codimension-two Belyakov bifurcation. We consider three parameters of the map corresponding to the saddle quantity,
splitting parameter, and the focal frequency of the smooth saddle-focus in a neighborhood of homoclinic bifurcations. We
symbolically encode the dynamics of the map in order to find stability windows and locate homoclinic bifurcation sets in a
computationally efficient manner. The organization and possible shapes of homoclinic bifurcation curves in the parameter
space are examined, taking into account the symmetry and discontinuity of the map. Sufficient conditions for stability and
local symbolic constancy of the map are presented. This study provides insights into the structure of homoclinic bifurcations
of the saddle-focus map, furthering comprehension of low-dimensional chaotic systems.

Дослiджуються гомоклiнiчнi бiфуркацiї в iнтервальному вiдображеннi, асоцiйованому з сiдлом-фокусом (2, 1)-типу
в \BbbZ 2 -симетричних системах. Наше дослiдження такого вiдображення розкриває гомоклiнiчну структуру сiдлоподiб-
ного фокуса з бiфуркацiєю, що розгортається пiд керуванням бiфуркацiї Бєлякова корозмiрностi 2. Ми розглядаємо
три параметри вiдображення, що вiдповiдають сiдловiй величинi, параметру розщеплення та фокуснiй частотi глад-
кого сiдла-фокуса в околi гомоклiнiчних бiфуркацiй. Динамiка видображення символiчно кодується для того, щоб
знайти вiкна стабiльностi та локалiзувати гомоклiнiчнi бiфуркацiйнi множини ефективним (з точки зору обчислень)
способом. Дослiджено органiзацiю та можливi форми гомоклiнiчних бiфуркацiйних кривих у просторi параметрiв
з урахуванням симетрiї та розривностi вiдображення. Наведено достатнi умови стабiльностi та локальної символiч-
ної сталостi вiдображення. Запропоноване дослiдження дає змогу зрозумiти структуру гомоклiнiчних бiфуркацiй
сiдлофокусного вiдображення, що сприяє розумiнню низьковимiрних хаотичних систем.

We begin with the acknowledgement that we are very grateful to the special editors who invited
us to submit our recent research to this special issue. It is an honor for us to contribute to this
volume of the Ukrainian Mathematical Journal, dedicated to the memory and the academic legacy of
Olexander Sharkovsky, beginning with his seminal publications [1, 2] from the early 60s, his reference
book [3] co-authored with his students in the mid-80s of the previous century, and concluded with
collection [4] yesteryear, 2022. One of our own, A.L.S., had the privilege of knowing Dr. Sharkovsky
personally through various academic rendezvous, their initial encounter taking place at a meeting
in Jurmala, Latvia in 1989. Predominantly, these encounters were facilitated by Yuri and Volodimir
Maistrenko at their scholarly gatherings held in the serene setting of peaceful Crimea. Moreover,
A.L.S. had a couple of occasions to interact with Dr. Sharkovsky at his parents’ abode, the residence
of Leonid and Ludmila Shilnikov. It is notable to mention that Olexander and Leonid shared an
enduring friendship and academic kinship, extending over half a century, marked by mutual respect
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Fig. 1. Two classics of high-dimensional and one-dimensional
dynamics: L. P. Shilnikov and O. M. Sharkovsky (Kiev,
2005). During this visit L. P. Shilnikov was awarded the
Lavrentiev medal by the National Academy of Sciences
of Ukraine for his pioneering contributions to dynamical
system theory.

and admiration (Fig. 1). Each held the other’s original scientific school, founded in Kiev and Nizhny
Novgorod (formerly known as Gorky), respectively, in the highest esteem.

1. Introduction. We aim to scrutinize and computationally illustrate the structure of bifurcation
unfoldings of periodic and homoclinic orbits in one-dimensional saddle-focus return maps, especially
with regards to the Shilnikov saddle-focus in the mirror-symmetric case. These occurrences emerge
near the primary figure-8 connection in a fully \BbbZ 2-symmetric system. Figure 2 offers a glimpse of
such intricate dynamics, portraying the chaotic trajectories recurrently returning nearby the saddle-
focus only to spiral into the three-dimensional phase space of the characteristic model [5, 6] with
reflective \BbbZ 2-symmetry:

\.x = y, \.y = z, \.z =  - bz + cy + ax - x3 with a, b, c > 0. (1)

In L. P. Shilnikov’s seminal works on the saddle focus, he convincingly demonstrated that the
presence of a single homoclinic orbit of the Shilnikov saddle-focus instigates the onset of chaotic
dynamics, involving a countable number of periodic orbits in the phase space of such systems. His
pioneering theories from the 1960s firmly established and underscored the critical role of homoclinic
orbits within the hierarchy of deterministic chaos in its entirety [7 – 9].

Before proceeding, it seems prudent to recapitulate some fundamental elements of the Shilnikov
saddle-focus theory. For a comprehensive understanding, one can refer to his original papers, review
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Fig. 2. The complex chaotic dynamics governed by the Shilnikov saddle-focus
at the origin with the characteristic homoclinic figure-8 (in black) in
the three-dimensional phase space of the \bfZ 2 -symmetric model (1) at
a = 2.1593, b = 0.7, and c = 1.95.

articles [10 – 16], and textbooks [17, 18]. Relevant insights can also be gleaned from previous studies
[6, 19 – 27] that are pertinent to both the theory and the focus of this paper.

The Shilnikov saddle-focus homoclinic bifurcation serves as a fundamental and visually accessible
example of chaotic dynamics within low-dimensional systems of differential equations. Requiring a
mere three dimensions for depiction, its homoclinic orbit and adjacent trajectories lend themselves
to convenient visualization. Further, this structure’s compatibility with one-dimensional return maps
enhances its value as a paradigm for the evolution of mathematical and computational tools within
the realm of chaotic systems.

Figure 3A illustrates the primary homoclinic orbit to a saddle-focus of the differential (2,1)-
type. The designation (2,1)-type implies that the saddle-focus possesses a pair of complex conjugate
characteristic exponents, denoted as \lambda 1,2 =  - \alpha \pm i\omega , \alpha , \omega > 0 (small green dots in the inset of
Fig. 3A), residing in the open left-half of the complex plane, alongside a single positive real exponent
\lambda 3 (red dot). It is important to stress that, for the Shilnikov saddle-focus classification, the complex
pair should be the closest to the imaginary axis; this corresponds to chaos due to the existence of
countably many saddle periodic orbits intersecting any small neighborhood of the saddle-focus. On
the other hand, if the Shilnikov condition is not met (i.e., if the real eigenvalue is closest to the
imaginary axis), then there exists a neighborhood of the saddle-focus not intersecting any periodic
orbits [14].

System trajectories passing nearby the saddle-focus effectively map a local cross-section \Pi +
1

(transverse to flow in the two-dimensional stable manifold \BbbW s
\mathrm{l}\mathrm{o}\mathrm{c}) onto another cross-section \Pi 2
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Fig. 3. (A) Three-dimensional phase space showing the primary homoclinic orbit of a saddle focus of (2,1)-type,
i.e., with two-dimensional stable manifold \BbbW s and one-dimensional unstable manifold \BbbW u. Three colored
stripes painted on a two-dimensional cross-section \Pi 1, locally transverse to W s, are morphed along trajectories
passing by the saddle focus into a colored spiral on the top cross-section \Pi 2, transverse to \BbbW u. (B1 ) The two-
dimensional Poincaré return map T : \Pi 1 \rightarrow \Pi 1 is a contraction when the saddle index \rho > 1; the corresponding
one-dimensional map is shown in C1 . (B2 ) When the Shilnikov condition \rho < 1 is fulfilled, then the map is an
expansion with overlapping T \Sigma k \cap \Sigma k that gives rise to countably many smale horseshoes and saddle periodic
orbits corresponding to repelling fixed points in the respective one-dimensional map in panel C2; courtesy of
[14].

(transverse to the one-dimensional unstable separatrix \Gamma 1). Consequently, three colored stripes deli-
neated on \Pi +

1 morph into a correspondingly colored spiral on \Pi 2. The global map \Pi 2 \rightarrow \Pi 1

transposes the spiral back onto the original section as depicted in Fig. 3B1, B2. The saddle index
\rho = \lambda 3/\alpha being less or greater than 1 engenders two distinct outcomes of such a homoclinic bi-
furcation. When \rho > 1, i.e., local stability “dominates” local instability at the saddle-focus, the
resulting two-dimensional map is a contraction (Fig. 3B1). Its one-dimensional projection is visually
represented in the Lammerey cobweb diagram presented in Fig. 3C1, capturing the essential details
of the map. In accordance with [17], we can adopt the following truncated form of the generic
one-dimensional saddle-focus map:

xn+1 = \mu + x\rho n \mathrm{c}\mathrm{o}\mathrm{s}(\omega \mathrm{l}\mathrm{n}(xn) + \phi ) with xn \geq 0. (2)

In the \BbbZ 2-symmetric case, the map becomes discontinuous for \mu \not = 0:

xn+1 = \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(xn)[\mu + | xn| \rho \mathrm{c}\mathrm{o}\mathrm{s}(\omega \mathrm{l}\mathrm{n} | xn| + \phi )]. (3)

Note that the coordinate x in this system does not correspond to x in the system (1).
The parameters of this system correspond to geometric properties of the saddle-focus in the

differential system: \rho is the saddle index, \omega is the focal frequency, and \mu is the splitting parameter.
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Fig. 4. Snapshots of the symmetric discontinuous map (3) with \rho = 0.5 and
\omega = 10 depicting (A) chaotic dynamics at \mu = 0.05, (B) a stable period-2
orbit at \mu = 0.125, a transition from one-sided chaos at \mu = 1.65 in (C) to
symmetric chaos at \mu = 1.6 in (D) after the “boundary crisis” when a
critical point lowers below the horizontal axis.

In particular, \mu = 0 when there is a homoclinic orbit to the saddle-focus passing once through \Pi 1,

while \mu \not = 0 corresponds to the distance from the stable manifold \BbbW s
\mathrm{l}\mathrm{o}\mathrm{c} to the image of the origin

(corresponding to the first intersection of \Gamma 1 with \Pi 2) under the map \Pi 2 \rightarrow \Pi 1 given by the flow.
This allows us to track the system’s behavior as it undergoes a primary homoclinic bifurcation as
\mu crosses 0, as well as to study secondary, tertiary, and countably many other ancillary homoclinic
bifurcations of the saddle-focus as it merges with the corresponding nearby periodic orbits for \mu \not = 0

in the Shilnikov case \rho < 1.

The origin x = 0 in the one-dimensional map always corresponds to the saddle-focus of the
three-dimensional system. For \mu = 0 and \rho > 1 (when the two-dimensional return map T : \Pi 1 \rightarrow 
\Pi 1 sends small neighborhoods of the origin into themselves) the fixed point x\ast = 0 of the one-
dimensional map (3) is superstable. In contrast, the scenario when \rho < 1 is an expansion, as depicted
in Fig. 3B2. In this case, the colored (green, blue, and red) stripes do not bound or exceed their
images in the expanding spiral in distance from the origin, but instead intersect their image sets. Such
intersections are interpreted as the mechanism instigating the formation of countably many smale
horseshoes, resulting in countably many unstable periodic orbits and the onset of complex dynamics
in close proximity to the primary homoclinic orbit in the phase space of the differential system.
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Fig. 5. A fragment of the Belyakov homoclinic bifurcati-
on set [22] near the borderline transition from the
Shilnikov saddle-focus for \mu 1 > 0 (i.e., \rho < 1)
to a stable contraction for \mu 1 < 0 (\rho > 1).

The corresponding one-dimensional return map illustrated in Fig. 3C1, C2 locally exhibits countably
many characteristic oscillations, resulting in countably many unstable fixed points at the intersections
of the graph with the identity line. It is worth mentioning that (i) these correspond to periodic orbits
near the saddle-focus in the phase space of the corresponding differential system, and (ii) certain
“oscillations” of the map graph will become tangent to the identity line as the parameters are varied,
leading to new crossings or their elimination. Such a tangency triggers a saddle-node bifurcation
through which a pair of periodic orbits – one stable and one saddle – emerge. It can be readily inferred
that the stable orbit will soon undergo a period-doubling bifurcation when its slope in the map exceeds
1 in absolute value; this will be succeeded by a period-doubling cascade, and so on. This pattern is
a primary reason why the Shilnikov bifurcation in three-dimensional systems is associated with the
motion of the quasichaotic attractor [9], where a hyperbolic subset can coexist with stable periodic
orbits emerging through saddle-node bifurcations [28, 29] in a variety of models and applications
[27, 30 – 32]. This phenomenon is not necessarily observable in higher dimensions, where such
homoclinic tangencies may instigate saddle-saddle bifurcations instead, as detailed in [15, 33, 34], no
longer giving rise to stable periodic orbits within a chaotic attractor in the phase space.

In what follows we will examine the global organization of bifurcation unfoldings with bi-
parameteric sweeps of the above one-dimensional return maps (2) and (3) to reveal the organization
of stability windows, also known as shrimps [35 – 38], uniformly emerging in diverse applications,
including models with the Shilnikov saddle focus [27, 30].

We will also study the fine organization of secondary and higher-order homoclinic bifurcations
in such maps. Of special consideration is the borderline codimension-2 case when the dilation map
with \rho < 1 becomes a contraction map with \rho > 1. This transition was first analytically studied
by L. A. Belyakov [22]; see his bifurcation diagram presented in Fig. 5, where \mu 1 = 1  - \rho , while
\mu 2 can be either the frequency \omega or the splitting parameter \mu shifting the maps given by Eqs. (2)
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Fig. 6. Comparison of one-sided secondary and tertiary homoclinic orbits. (A1 ) A secondary (one-sided) homoclinic
orbit (coded as [11]) to the Shilnikov saddle-focus (\rho < 1) with its two variants in the one-dimensional return
maps (A2 and A3 ) ending at different zeros. (B1 ) A tertiary (one-sided) homoclinic orbit coded as [111] and
its representation in the one-dimensional return map (B2 ) where the right forward iterates of the origin attain
a critical point touching the horizontal axis — the so-called homoclinic tangency.

and (3) up and down. Here, a \{ -shaped curve with a cusp corresponds to two closest saddle-node or
tangent bifurcations in the one-dimensional maps shown in Fig. 3C1, C2. To the right from it, there
are loci of U -shaped curves in the bifurcation diagram which correspond to secondary, tertiary, and
higher-order homoclinic bifurcations in the differential system.

To detect and differentiate such longer orbits, we employ a symbolic description, following our
previous work [6, 39 – 45]. The codes [11] and [111] for the double and triple loops signify that
the unstable separatrix returns to the saddle focus to complete the orbit after two and three large
swings or excursions, respectively; these orbits in the differential system are secondary and tertiary
homoclinics. The respective orbits for the one-dimensional maps are demonstrated in Fig. 6A2 , A3 ,
B2. For the double loop [11] in the map (3), the sequence of iterates follows the pattern: 0 \mapsto \rightarrow \mu \mapsto \rightarrow 0;

whereas for the triple loop requires one more iterate: 0 \mapsto \rightarrow \mu \mapsto \rightarrow x2 \mapsto \rightarrow 0. The oscillatory structure
of the one-dimensional map allows such homoclinic orbits to emerge at different zeros or oscillatory
branches as depicted in Fig. 6 A2, A3 though all such double orbits share the same symbolic code
[11]. In Eqs. (2) and (3), varying \rho changes the envelope of the map from convex if \rho > 1 to
non-convex when \rho < 1, while the frequency parameter \omega stretches and shrinks the map graph
horizontally, and the splitting parameter \mu shifts the graph of the one-sided map up and down.

We illustrate possible homoclinic orbits in a mirror-symmetric map in Fig. 7A, B, showing that
such orbits are inherent in \BbbZ 2-symmetric systems like the chaotic model (1) above.
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Fig. 7. Two-sided secondary and tertiary homoclinic orbits and their representations in the symmetric one-dimensional map.
(A1 ) Depicted is a secondary homoclinic orbit symbolically encoded as [10], while panel (B1 ) illustrates a triple
homoclinic loop encoded as [110]. The corresponding return maps are displayed in (A2 ) and (B2 ), respectively.

Fig. 8. (A) Bifurcation diagram of model (1) populated by self-similar U -shaped bifurcation curves corresponding to
the one-sided homoclinic orbits coded as [11], [111], . . . along the boundaries of solid-color regions. (B) Fractal
organization of bifurcation structures corresponding to one- and two-sided homoclinic orbits coded with all
symbolic sequences.

This introduction concludes with snapshots showcasing the fractal organization of some global bi-
furcation unfolding representing a rich variety homoclinic orbits to the saddle-focus in the system (1).
Figure 8A displays numerous U -shaped curves corresponding to one-sided homoclinics, while two-
sided homoclinics populate within the spaces bounded by these U -shaped curves (Fig. 8B). The
subsequent analysis will offer a more granular examination of these structures using a computati-
onally efficient symbolic approach.

2. Symbolic representation and homoclinic bifurcation unfoldings. 2.1. Partitioning the
one-dimensional map. The saddle-focus in the system corresponds to the origin x = 0 of the one-
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dimensional map, and the homoclinics in the differential system correspond to successive forward
iterates of the map beginning and ending at the origin. The map is generally discontinuous at 0, and
there are three possible behaviors at the discontinuity. Firstly, the origin may be treated as a fixed point
corresponding to the saddle focus. The second and third possibilities involve the trajectory leaving
the saddle-focus in either direction along the one-dimensional unstable manifold, corresponding to
sending 0 \mapsto \rightarrow \mu and 0 \mapsto \rightarrow  - \mu , respectively. We construct a binary sequence which encodes the
sequence of positive and negative excursions a trajectory of the differential system takes; for each
choice of parameters of the maps there correspond two such symbolic sequences. The first element of
the sequence is “1” for a positive excursion corresponding to x1 = \mu and “0” for a negative excursion
corresponding to x1 =  - \mu . The rest of the sequence is generated from the signs of successive iterates
xn, n \geq 0, of the chosen initial point, with “0” corresponding to \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(xn) =  - \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\mu ) and “1” to
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(xn) = \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\mu ). Due to the symmetry of the system there is a mirror image of each sequence,
but we will in this paper always follow the sequence originating on the right branch of the symmetric
one-dimensional map (x1 > 0).

Consider the mappings from the (\rho , \mu +)-parameter half-plane to the nth iterates starting with the
initial point x1 = \mu > 0. It is precisely the zeros of these mappings (where xn = 0) that define
corresponding bifurcation curves of the homoclinic orbits of the nth degree in the parameter space.
Reaching xn = 0 is encoded symbolically as a termination of the sequence. This sequence constitutes
a binary representation of the dynamical behavior at each point, providing a comprehensive description
of the homoclinic bifurcation structures. As such, this method transforms the intricate problem of
calculating homoclinic orbits in continuous-time dynamical systems into the simpler problem of
finding zeros of iterates in discrete maps. This transformation considerably simplifies the analysis and
enables efficient computation of homoclinic structures.

2.2. Basic use of the symbolic trajectory representation. Two procedures are used to process
the binary sequences. The first procedure is to select particular sequences which illustrate particular
aspects of the homoclinic structure. The zeros of the first iterate of \mu correspond to the boundary
between various sequences [XX1. . . ] and [XX0. . . ] (here the Xs denotes various identical initial
substrings in such sequences), as well as to secondary homoclinic curves in the ODE system. Similarly,
the zeros of the second iterate of \mu correspond to all bifurcation curves of tertiary homoclinic orbits.

For asymmetric systems with one-dimensional return map (2), only positive x values are relevant,
so the only homoclinics to consider are one-sided and correspond to sequences of repeated “1”s.
For one-sided orbits with \mu > 0, it is necessary to truncate sequences just before their first zero
entries. Although in this case one cannot distinguish homoclinic orbits from non-homoclinic orbits
symbolically, the boundaries of regions in parameter space corresponding to particular symbolic
sequences do form homoclinic bifurcation curves.

The second procedure is to compute an embedding of binary sequences of arbitrary length into
the interval [0, 1]. For a binary sequence [S1, S2, . . . , SN ] of length N, this is computed as a partial

power series with the factor
1

2
:

K(\rho , \mu ) =
N\sum 
i=1

Si
1

2i
.

2.3. Bifurcation unfoldings in the (\bfitrho , \bfitmu )-plane of the interval map. The overarching structure
of parameter sets for one- and two-sided sequences up to order 6 is summarized in Fig. 9, with several
panels presented for side-by-side comparison. Panel A reveals a collection of U -shaped bifurcation
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Fig. 9. Homoclinic bifurcation structures in the (\rho , \mu +)-parameter half plane of the one-dimensional saddle-focus map.
(A) The U -shaped curves of secondary homoclinics accumulating to the primary homoclinic curve at \mu = 0 and
separating the red regions associated with sequences beginning with [110. . . ] from the black region where sequences
begin with [111. . . ]. (B) One-sided tertiary homoclinic structure corresponding to [111]-orbits revealed by the
boundary of parameter regions with sequences originating with symbols [1110. . . ] (red), while the two-sided tertiary
structure comes from separating sequences beginning with symbols [1100. . . ] (red) and [1101. . . ] (black) in (C).
(D) The full tertiary structure corresponds to orbits differentiated by their fourth symbols, showing how the zeros of
successive iterates of the initial value \mu partition the parameter space along the homoclinic curves. (E, F) Bifurcation
curves corresponding to the up-to-6th-order homoclinics of both types: one-sided (E) and two-sided (F) cases.

curves of secondary homoclinic orbits accumulating to the primary homoclinic at \mu = 0 from above.
The top and bottom branches of a secondary homoclinic bifurcation curve correspond to [11]-encoded
double loops occurring in the one-dimensional map as illustrated in Fig. 6A2 , A3 : the forward iterates
of the origin come back after two steps: 0 \mapsto \rightarrow \mu \mapsto \rightarrow 0. The peak of this U -shaped bifurcation curve at
\rho = 1 corresponds to the case when an orbit involving a critical point of the map yields a coincidence
of the graph with the horizontal axis, producing a homoclinic tangency much like the case illustrated
in Fig. 6B2 for the tertiary homoclinic orbit. For fixed \rho and varying \mu values, secondary homoclinic
orbits may form at the various oscillatory branches of the one-dimensional map positioned some
distances away from the origin. This accounts for the shape and multiplicity of such U -shaped
bifurcation curves, which become narrower as \mu decreases, accumulating to the primary homoclinic
bifurcation at \mu = 0. Also noteworthy is that these peaks lie exclusively on the line \rho = 1, with no
secondary homoclinic bifurcations in the \rho > 1 half plane. This implies that the secondary one-sided
homoclinic tangencies are exclusive to the Shilnikov saddle-focus; i.e., where \rho \leq 1. However, this
is not the case for the one-sided tertiary and higher-order homoclinics, nor is it the case for two-sided
homoclinic bifurcations in general, all of which will be discussed in later sections.

While only small values of \mu are relevant to the study of systems in a neighborhood of the
primary homoclinic bifurcation, the behavior of the map for arbitrary \mu is interesting in its own right.
In Fig. 10A, B, we explore the impact of larger values of | \mu | > 1 on homoclinic orbits. When | \mu | 
exceeds 1, the relationship between the envelope (due to the term | xn| \rho in (3)) and the image of

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



1618 CARTER HINSLEY, JAMES SCULLY, ANDREY L. SHILNIKOV

Fig. 10. (A, B) Homoclinic bifurcations of the one-dimensional map for large \mu . The left panel shows the one-sided orbits
and the right panel depicts the two-sided orbits. The orientation of the homoclinic orbits in the parameter plane
switches due to the changing relationship between the envelope \mu \pm | x| \rho and the image of \mu . (C) Low-order
homoclinic bifurcations of the saddle-focus at the transitions of colors for small \mu densely organized about the
primary homoclinic orbit at the origin of the map at \mu = 0. The color bar corresponds to the embedding of
a symbolic sequence at a given parameter value into the interval [0, 1]. Countably many homoclinic U -shaped
curves of a particular color lie tangent to each of countably many monotonic curves originating at \rho = 1, \mu = 0.
The U -shaped regions become uniform in this area, illustrating the fractal nature of dynamics of the saddle-focus
map and its bifurcation diagram.

\mu changes. At \mu = 1, the envelope has a root at x = \mu , and thus homoclinic tangencies relevant
to the flow arise only for | x| \geq | \mu | so that homoclinic bifurcation curves are seen for large \rho but
cannot be found for \rho small. This changes the position of the homoclinic U -shaped curves, from
being contained mostly within the left half of the parameter plane, to being found predominantly
within the right half as depicted in these two figures. The left panel demonstrates this effect in the
case of one-sided homoclinic orbits, while the middle panel exhibits the structure of such homoclinic
bifurcation curves in the two-sided case.

Figure 10C demonstrates the order of homoclinic orbits and their bifurcation curves for small
values of \mu in the bifurcation diagram near the demarcation line \rho = 1 in the one-dimensional
saddle-focus map, to be compared with the sketch in Fig. 5 from the original Belyakov theory [22].
In this case, the map exhibits fractal structure organized about the codimension-2 Belyakov point
(\rho = 1, \mu = 0), with bifurcation curves of homoclinic orbits of higher orders drawn into a front at
\rho = 1. This observation provides an intricate look into the dynamics of the system and the fractal
nature of orbits homoclinic to saddle-foci and periodic orbits in neighborhoods thereof.

It should be noted that our symbolic description of orbits fails to capture chaotic dynamics
occurring only on one side of the map. Fig. 4C illustrates the presence of a one-sided chaotic orbit,
which would encode symbolically as [111. . . ], having minimal complexity as a binary string. But
with an perturbation of the parameter \mu , a homoclinic bifurcation may occur for such configurations,
leading to two-sided chaotic orbits as in Fig. 4D; such orbits generally will exhibit arbitrarily great
symbolic complexity. However, this apparent shortcoming of our encoding scheme does not seem to
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Fig. 11. Low- and high-order homoclinic bifurcation structure of the one-
dimensional saddle-focus map with \omega = 3.6 on an 8000\times 8000 pixel
scan. Outside of the cone-shaped region bounded by the green curves
\gamma g for \rho > 1 there exists no invariant interval in the map (3) as its
iterates may diverge for some choice of \omega given \rho , \mu in this regi-
on. The region bounded by the cusp-like purple curves \gamma p comprises
parameters for which the derivative remains less than 1 in absolute
value within the invariant interval, so orbits converge to the unique
fixed point of the map. The black curves \gamma b are solutions to systems of
equations corresponding to critical zeroes of the iterated map, and for
sufficiently small \mu serve as upper bounds on values of \rho for which
such ancillary homoclinic bifurcations may be found.

impede our illumination of the complicated homoclinic bifurcation structure responsible for chaos in
saddle-focus systems.

3. Stability modulation by homoclinic and shrimp structures. Diving deeper into the complexi-
ty of the one-dimensional discontinuous saddle-focus map (3), we now shift our attention to the
substantial regions of parameter space known as stability windows. It is well-known that saddle-
node bifurcations give rise to stability windows as various tangencies between the map graph and
its higher order degrees and the identity line occur, or when its negative slope, or that of its hi-
gher degrees becomes less than one in the absolute value. These stability windows can be vivi-
dly demonstrated through the Lyapunov exponent (LE), which in our context is evaluated over a
trajectory of 5000 iterates by taking the mean of the logarithm of the absolute derivatives of the map
along the trajectory as follows:

LE(\rho , \mu ) =
1

N

N\sum 
i=1

\mathrm{l}\mathrm{o}\mathrm{g}

\bigm| \bigm| \bigm| \bigm| dxn+1

dxn
(xi)

\bigm| \bigm| \bigm| \bigm| .
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Fig. 12. (A) Chaos and stability windows (“shrimps”) in a 4000\times 4000-pixel scan of the (\rho , \mu )-parameter plane of the
one-dimensional saddle-focus map with \omega = 5. The heatmap represents the magnitudes (color bar on the right)
of Lyapunov exponents computed over trajectories of length 5000 with the red color indicating chaos and the
blue/white colors signifying stability. Discontinuities in the color grading correspond to branch-switching in
areas of multistability, mostly well-organized for \rho > 1. (B) 4000\times 4000-pixel bifurcation diagram of the map
viewed through the lens of Lempel – Ziv complexities of the symbolic binary sequences of long orbits beginning
with the same initial point x1 = \mu : lighter shades signify higher symbolic complexity (color bar on the right).
The overlaid curves \gamma b, \gamma g, and \gamma p are the same as in Fig. 11. Despite unbounded and Lyapunov-positive
trajectories in much of the \rho > 1 half plane, the symbolic representations of these orbits are very simple for
small enough | \mu | , undisturbed by distant homoclinic structures. The shrimp structures from panel (A) appear
as windows of relatively lower complexity.

Figure 12A visualizes the (\rho , \mu )-parameter plane of the given saddle-focus map: the color-coded
heatmap reveals chaoslands in red, where LE > 0, and stability windows in blue and white, where
LE \leq 0.

It is worth noting that the presence of many multistability regions is a complex aspect that the
Lyapunov exponent computed from a single initial value does not address directly. The accurate
and in-depth exploration and understanding of multistability principles in systems with saddle-foci
remains yet an open challenge. However, this visualization still offers insightful glimpses into the
chaotic region and aids in understanding the overall stability landscape of the system.

3.1. Stability in the absence of homoclinic interference. It will be useful to note going forward
that the derivative of the map (3) is given by the expression

dxn+1

dxn
=

| xn| \rho 

xn

\sqrt{} 
\rho 2 + \omega 2 \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
\omega \mathrm{l}\mathrm{n} | xn| + \mathrm{t}\mathrm{a}\mathrm{n} - 1 \omega 

\rho 

\biggr) 
.

When the Shilnikov condition \rho < 1 is accompanied by the existence of a primary homoclinic
(that is, when the splitting parameter \mu = 0 so that x = 0 is a fixed point of the map), chaotic behavior
is observed in a neighborhood of the origin, associated with the existence of countably many unstable
periodic orbits. However, for nonzero splitting parameter \mu there exist ancillary homoclinic orbits to
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the saddle focus, with tertiary and higher-order homoclinic orbits present even for \rho > 1. The curve
\gamma b in the (\rho , \mu )-parameter plane (see Fig. 11), serves as an upper bound on \rho for which homoclinic
bifurcations can occur given | \mu | \ll 1.

\gamma b is determined in part by the explicit solution of the system of equations
dxn+1

dxn
(x1) = x2 = 0

for the parameter \mu . This admits countably many solutions

\mu = ( - 1)k
\omega \sqrt{} 

\rho 2 + \omega 2
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
\rho 

\omega 

\biggl( 
\pi 

\biggl( 
 - k  - 1

2

\biggr) 
 - \mathrm{t}\mathrm{a}\mathrm{n} - 1 \omega 

\rho 

\biggr) \biggr) 
indexed by k \geq 0, lying in the upper half parameter plane \mu > 0 for k even and in the lower
half plane \mu < 0 for k odd. The rest of \gamma b is determined by the implicit solution of the system of

equations
dxn+1

dxn
(x1) = x3 = 0 in the (\rho , \mu )-plane. Again, there are countably many solutions

x2 = ( - 1)k\mu +
\omega \sqrt{} 

\rho 2 + \omega 2
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
\rho 

\omega 

\biggl( 
\pi 

\biggl( 
 - k  - 1

2

\biggr) 
 - \mathrm{t}\mathrm{a}\mathrm{n} - 1 \omega 

\rho 

\biggr) \biggr) 
,

0 = \mu + | x2| \rho \mathrm{c}\mathrm{o}\mathrm{s}(\omega \mathrm{l}\mathrm{n}(| x2| ))

indexed by k \geq 0, this time lying in the lower half parameter plane \mu < 0 for k even and in the
upper half plane \mu > 0 for k odd; the solution sets to these equations do belong to each half plane,
but serve to bound homoclinic bifurcation sets only in one half plane or the other. Only a certain
restriction of these solution sets within the (\rho , \mu )-plane correspond to \gamma b, although the equations
involved do govern organization of homoclinic bifurcations internally to the region bounded above
in \rho by \gamma b. Moreover, there exist conditions corresponding to higher-order iterates of the map which
serve to further organize the homoclinic bifurcation structure; in general, these conditions correspond
to systems of equations for which only implicit solutions may be obtained.

Through geometric analysis of the one-dimensional map, parameter values associated with the
existence of a fixed point are determined. Additionally, some conditions under which bounds on
trajectories can be established are identified. As our analysis concerns behavior of the map (3) in a
small neighborhood of x = 0, it is useful to note that in many cases a compact invariant interval
containing the origin can be given.

For \rho > 1 and \mu = 0, a small neighborhood of x = 0 cannot contain any fixed points of the map

other than the origin x = 0 itself. As
dxn+1

dxn
(0) = 0, the origin is stable. However, for \mu \not = 0, orbits

may wander chaotically and the non-convexity of the envelope

\bigm| \bigm| \bigm| \bigm| xn+1  - 
xn
| xn| 

\mu 

\bigm| \bigm| \bigm| \bigm| \leq | xn| \rho can lead to

exploding trajectories. In preventing these issues it is enough to consider only x > 0, \mu > 0 due to
the map’s odd symmetry.

A sufficient condition for a trajectory beginning at x1 = \mu to be bounded is that the upper
envelope xn+1 \leq \mu + x\rho n intersect the identity line; that is, \beta \rho  - \alpha + \mu = 0 has a solution \beta > 0.

Noting that F (x) = x\rho  - x+ \mu has a minimum of \rho 
1

1 - \rho 

\biggl( 
1

\rho 
 - 1

\biggr) 
and that F (0) = \mu > 0, one sees

that such a solution \beta exists if \mu \leq \rho 
1

1 - \rho 

\biggl( 
1 - 1

\rho 

\biggr) 
; this region of parameter space corresponds to the

region bounded by the green curve \gamma g in Fig. 12A. Evidenced by the existence of a positive Lyapunov
exponent within this region, these bounded trajectories can nevertheless behave chaotically. We now
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Fig. 13. (A) A two-dimensional Lyapunov-exponent sweep highlighting a “shrimp” structure, indicative of a saddle-node
bifurcation in the one-dimensional saddle-focus map with \omega = 10. This region contains cascades of period
doubling bifurcations of stable orbits of minimal period progressing in agreement with the Sharkovsky ordering
[4]. (B) The orbit diagram of a horizontal slice through the shrimp from (A) at \mu = 0.35 (dotted interval).
Observe the occurrence of a period doubling cascade in decreasing \rho and a subsequent progression through orbits
of periods with odd factors, signifying alongside the negative Lyapunov exponents in panel A that trajectories
near the saddle-focus exhibit stable behavior. Nevertheless, there still exist robust orbits of period-3 in intervals
containing \mu throughout the shrimp. Such a period-3 orbit has been overlaid in red. Varying \rho throughout the
shrimp continuously deforms this red orbit, preserving its 3-periodicity. (C) Juxtaposition of cobwebs of a period-3
orbit and a x1 = \mu orbit (from the saddle-focus) within the shrimp from panel A at a choice of \rho where \mu 
converges to a period-2 orbit.

seek to prove that a trajectory xn with x1 = \mu converges to a stable fixed point when the map is an
expansion (\rho > 1) and the splitting parameter \mu is small.

One method to guarantee that a trajectory beginning at x1 = \mu converges to a fixed point is to

establish a bound xn \leq \beta as before, subject to the additional constraint that

\bigm| \bigm| \bigm| \bigm| dxn+1

dxn
(xn)

\bigm| \bigm| \bigm| \bigm| < 1 for

all 0 < xn < \beta . Using the Brouwer fixed point theorem alongside the established bounds on the
map’s derivative, the existence of a unique fixed point of the map x\ast is verified within the interval
0 < x\ast \leq \beta as xn+1(xn)  - xn is monotone decreasing for 0 < xn \leq \beta . Furthermore, this fixed
point is determined to be stable. In order to determine a large value \mu such that a suitable \beta exists,

note that

\bigm| \bigm| \bigm| \bigm| dxn+1

dxn

\bigm| \bigm| \bigm| \bigm| \leq x\rho  - 1
n

\sqrt{} 
\rho 2 + \omega 2 : it is enough to satisfy x\rho  - 1

n

\sqrt{} 
\rho 2 + \omega 2 < 1 by choosing \beta such

that xn \leq \beta < (\rho 2 + \omega 2)
1

2(1 - \rho ) . As F (x) has its smallest positive root at x = \beta and is a convex
function, we can obtain an upper bound on \beta by Jensen’s inequality applied via a chord through

(0, F (0)) = (0, \mu ) and f ’s minimum

\biggl( 
\rho 

1
1 - \rho , \rho 

1
1 - \rho 

\biggl( 
1

\rho 
 - 1

\biggr) 
+ \mu 

\biggr) 
: certainly \beta \leq \mu 

1 - 1

\rho 

. Hence a

suitable bound xn \leq \beta exists if \mu <

\biggl( 
1 - 1

\rho 

\biggr) 
(\rho 2 + \omega 2)

1
2(1 - \rho ) ; equality here yields the purple curve

\gamma p in Fig. 12A. It is easy to see by the symmetry of the map that these stability conditions are nearly
identical if \mu < 0; one needs only consider establishing the same bounds instead on the absolute
value of \mu .

In the case of \rho < 1, the one-sided envelopes are convex and thus an invariant interval containing
x = \mu always exists. An upper bound \beta on trajectories in this case is given by the sufficient constraint

| xn| \leq (| \mu | + 1)
1

1 - \rho \leq \beta .
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3.2. Shrimp tails and symbolic robustness. Figure 13 presents a detailed exploration of a
“shrimp” structure identified in the Lyapunov-exponent scan (Fig. 13A) of the one-dimensional map
with \omega = 10. These regions arise from saddle-node bifurcations and exhibit periodic orbits robust
to perturbations both in parameter space and in the one-dimensional interval map (3). One key
observation is the presence of period doubling cascades, a common indicator of the emergence of
chaotic dynamics. Moreover, from the orbit diagram in Fig. 13B we observe that the periods of
these orbits appear to progress monotonically through Sharkovsky’s order [4]. The “tails” of these
shrimps, those long negative-Lyapunov-exponent regions along decreasing \rho , carry on all the way to
\rho = 0 and beyond, though the shrimp may be partially obscured by multistability. The existence of
these features, keeping multistability in mind, expands our understanding of the chaotic nature of the
saddle-focus map and sets the stage for more in-depth study.

Figure 13B depicts on the vertical axis the branches of stable periodic orbits originating at the
boundary of the shrimp, plotted against the bifurcation parameter \rho at fixed \mu = 0.35. These periodic
orbits develop in a manner reminiscent of saddle-node bifurcations and their further development
in unimodal maps. Despite the presence of stable periodic orbits within the shrimp appearing to
coincide in evolution of periodicities with the Sharkovsky order as \rho decreases, period-3 orbits can
be easily identified throughout the windows, as is seen in the juxtaposed red curves in Fig. 13B
corresponding to a persistent period-3 orbit; a cobweb diagram of another period-3 orbit within the
shrimp is depicted in Fig. 13C. This is important to keep in mind going forward, as the existence of a
period-doubling cascade and subsequent progression to odd-period cycles does not by the Sharkovsky
theorem imply the nonexistence of period-3 orbits. At the same time, the existence of the negative-
Lyapunov-exponent shrimp structure tells one nothing about the existence or absence of chaotic sets
within intervals bounded by period-two orbits; multistability is prevalent throughout saddle-focus
systems.

Our computations of the Lempel – Ziv complexity [46] for a symbolic sequence at each parameter
value in the (\rho , \mu )-plane are showcased in Fig. 12B. The Lempel – Ziv complexity is a measure of
the complexity of binary sequences, related in purpose to the notion of Kolmogorov complexity; it is
defined as the length of a partition of a finite binary sequence such that each element of the partition is
the shortest substring not having already occurred, less the final element if it happens to be a duplicate.
For instance, the binary sequence [010110010111] is partitioned as \{ 0, 1, 01, 10, 010, 11, 1\} , so it
has a Lempel – Ziv complexity of 6. After computing the Lempel – Ziv complexity C of a symbolic

sequence of length N, we normalize by taking C =
\mathrm{l}\mathrm{n}(N)

N
C, as is done in our recent publication [32].

The region confined by the purple curve in the two-dimensional LZ-sweep, as shown in Fig. 12B,
displays sequences of minimal complexity, with quick convergence to unique fixed points for \mu \geq 0 or
period-2 orbits for \mu < 0. However, substantial regions associated with positive Lyapunov exponents
(refer to Fig. 12A) similarly exhibits low symbolic complexity. Chaos here does not change sign, and
thus does not interact with homoclinics.

Within the region populated by homoclinics in the complexity scan, there is a “sheet” of high
complexity interspersed by stability windows. These windows align with tails of shrimp structures vi-
sible in the Lyapunov-exponent scan in Fig. 12A. The sheet appears as noise, seemingly induced by the
sensitivity of symbolic sequences to perturbations of their generating trajectories, while the windows
of reduced complexity indicate robust convergence to specific symbolic sequences. Furthermore, the
geometric organization of the level sets of very small symbolic complexities within these shrimp
tails — and also across much of the boundary of the region of nontrivial symbolic complexity —
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mirrors that of the homoclinic curves seen in the symbolic sequence scans from Fig. 11 due to
transients.

4. Conclusions and future directions. In this study, we delved into the heart of chaos, exploring
the rich dynamics inherent in low-dimensional systems of ODEs, particularly the map associated with
the Shilnikov saddle-focus homoclinic bifurcation. Inspired by the foundational work of Sharkovsky
in one-dimensional maps, our research adopted two primary approaches: the generation of binary
sequences to symbolically represent the dynamical behavior at each point in the parameter space,
and the subsequent geometric analysis of the one-dimensional map (3) in elucidating homoclinic
bifurcation structure. These techniques unveiled the intricate details of the homoclinic bifurcation
structures relating to the saddle-focus, shedding light on the complex organization of these orbits.

Utilizing the Lyapunov exponent enabled us to illustrate the chaotic regions and stability zones
within the saddle-focus map’s parameter plane. However, this method falls short when addressing
multistability. Our research revealed that the stability region of the saddle-focus map dramatically
narrows near the codimension-two point (\mu = 0, \rho = 1), representative of the Belyakov case [22].
This discovery raises profound questions about the nature of chaos at nonzero \mu , particularly as
the \rho = 1 case corresponds to a nonhyperbolic saddle-focus, delicately balanced between the map’s
expansive and contractive behaviors. Moreover, the relationship between the one-dimensional saddle-
focus map and the corresponding two-dimensional return map has nuances that may result in obscuring
chaotic behavior in the full saddle-focus ODE system. The exploration of this theoretical frontier
warrants deeper examination, and the one-dimensional map framework presents a promising avenue
for this future endeavor, further building upon the pioneering work of L. P. Shilnikov in the study of
two- and higher-dimensional return maps.

Beyond this, there are additional aspects of both the stability and homoclinic structure that await
scrutiny. The occurrence of multistability within the map and its relationship to periodic orbits, as
well as their corresponding homoclinics in systems of ODEs featuring a saddle-focus, represent fertile
ground for future investigation. In future research on these topics, we would like to:

\bullet produce tools to extend our Lyapunov-exponent scans along stability branches,
\bullet visualize 2-dimensional homoclinic submanifolds of the (\rho , \mu , \omega )-parameter space by a method

similar to the symbolic method we showcase in this paper, followed by an investigation of the
homotopy types of these submanifolds, and

\bullet develop a computational method for efficiently scanning the (\rho , \mu )-parameter plane for the
Sharkovsky-largest minimal-period orbit exhibited at each parameter choice, demonstrating the level
of periodicity within the Sharkovsky order.
Investigation into these areas will not only enhance our understanding of the rich dynamics in such
systems but also contribute to the broader theoretical framework for analyzing complex dynamical
systems.

In conclusion, our research stands as a testament to the enduring impact of Sharkovsky’s
groundbreaking work [1 – 4] on one-dimensional maps. Our methods, influenced by his research,
not only simplify the analysis of intricate dynamical structures but also offer a promising avenue for
future investigations into similar low-dimensional systems. The broad applicability of these techni-
ques makes a significant contribution to the mathematical toolbox for studying complex dynamics,
underscoring their potential to advance our understanding of chaos and complex dynamical systems.
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