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PREFACE

This edited compendium is dedicated to Professor Leon O. Chua on the occasion of his 75th
birthday this year.

Given the advanced evolution and extreme specialization in science and technology
today, a scientist may take great pride in the body of his work if, during his career, he has
had a significant impact upon just a single area of science or engineering. But the impact
of Professor Chua’s work is in not just one, but no less than three areas: nonlinear circuit
theory [1], cellular neural networks [2] and solid-state memristors [3].

The significance and impact of Leon’s scientific work are evidenced by the large number
of awards and honors he has received over his career, the most important of which include
the conferring of 13 Doctor Honoris Causa (Honorary Doctorate) degrees from the following
prestigious institutions:

• École Polytechnique Fédérale de Lausanne, Switzerland (1983)
• University of Tokushima, Japan (1984)
• Technische Universität Dresden, Germany (1992)
• Technical University of Budapest, Hungary (1994)
• University of Santiago de Compostela, Spain (1995)
• University of Frankfurt, Germany (1996)
• Gheorghe Asachi Technical University of Iaşi, Romania (1997)
• University of Catania, Italy (2000)
• AGH University of Science and Technology, Cracow, Poland (2003)
• Dogus University, Istanbul Turkey (2005)
• Université du Sud, Toulon, France (2006)
• Université du Havre, France (2009)
• University of the West of England, UK (2011).

In addition, Leon has received numerous prestigious awards and prizes for his work,
including

• The IEEE Browder J. Thompson Memorial Prize Award (1967),
• The IEEE Guillemin-Cauer Award (1972, 1985, 1989),
• The IEEE W. R. G. Baker Prize Paper Award (1973),
• The Frederick Emmons Award (1974),
• The Alexander von Humboldt Senior US Scientist Award (1982),
• The IEEE Centennial Medal (1985),
• The IEEE Neural Networks Pioneer Award (2000),
• The IEEE Third Millenium Medal (2000),
• The IEEE Circuits and Systems Society Golden Jubilee Medal (2000),
• The IEEE Gustav Robert Kirchhoff Award (2005),
• The Mac E. Van Valkenburg Award (1995 and 1998),
• The IEEE Circuits and Systems Society Vitold Belevitch Award (2007),

vii
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viii Preface

• The Guggenheim Fellowship (2010),
• Leverhulme Visiting Professor, UK (2010–2011).

Most recently, Leon was appointed Distinguished Affiliated Professor by the Technische
Universitat Muenchen (TUM), Germany, which is the highest honor of its kind, along with a
lifelong academic appointment based in the TUM Department of Electrical Engineering and
Information Technology. This particular honor is awarded “only to those exceptional scien-
tists and researchers of international prominence that have significantly shaped their own
disciplines and also inspired other areas within the scientific community.” Other honorees
of this award include Nobel Laureates such as Professor Rudolph A. Marcus (Chemistry).

Regarding Leon’s education and career background, he received his BSEE degree from
the Mapúa Institute of Technology in the Philippines in 1959, the MSEE from the Mas-
sachusetts Institute of Technology in 1961, and the Ph.D. from the University of Illinois at
Urbana-Champaign in 1964. He then started to work as Assistant Professor of Electrical
Engineering at Purdue University and was promoted to Associate Professor there in 1967.
Finally, he joined the University of California at Berkeley in 1970 and taught there until he
retired recently.

Leon is an IEEE Life Fellow (1974) and a foreign member of the European Academy
of Sciences (1997) as well as of the Hungarian Academy of Sciences (2006). He owns seven
USA patents, and is the recipient of the top 15 most-cited authors in 2002 from all fields of
engineering published during the ten-year period (1991–2001) according to the ISI Current
Contents database. He is also the Founding Editor-in-Chief of the International Journal of
Bifurcation and Chaos.

Regarding his personal background, Leon Ong Chua (Chinese name ) was born
on 28 June 1936. He and his family moved to the United States in 1959. Leon and his wife
Diana have four daughters — Amy, Michelle, Katrin and Cynthia — and 7 grandchildren.

To commemorate Leon’s 75th birthday, this volume is a collection of essays and research
articles celebrating Leon’s great achievements in science and technology written by some of
his closest collaborators, former students and long-term friends; these articles present scien-
tific works in areas related to nonlinear circuits, cellular neural networks, and memristors.

We wish to express our sincerest appreciation to the staff of World Scientific Publishing
Company for their assistance in producing this book. We especially thank World Scientific’s
Chairman and Editor-in-Chief, Dr. K. K. Phua for his strong and enthusiastic support of
this work honoring the achievements of Professor Leon O. Chua.

Andrew Adamatzky (University of Western England, UK)

Guanrong Chen (City University of Hong Kong, Hong Kong)

Co-Editors Winter, 2011
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CHAPTER 33

SYMBOLIC DYNAMICS AND SPIRAL STRUCTURES
DUE TO THE SADDLE-FOCUS BIFURCATIONS

ANDREY SHILNIKOV

Neuroscience Institute and Department of Mathematics and Statistics,
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ashilnikov@gsu.edu

LEONID SHILNIKOV
(17/12/1934–26/12/2011)
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ROBERTO BARRIO

Departamento de Matemática Aplicada and IUMA,
University of Zaragoza, E-50009. Spain

rbarrio@unizar.es

We examine spiral structures in bi-parametric diagrams of dissipative systems with strange
attractors. We show that the organizing center for spiral structures in the Rössler model with
the saddle-focus equilibria is related to the change of the structure of the attractor transi-
tioning between the spiral and screw-like types. The structure skeleton is formed by saddle-
node bifurcation curves originating from a codimension-two Belyakov point corresponding
to the transition to the saddle-focus from a simple saddle. A new computational technique
based on the symbolic kneading invariant description for examining dynamical chaos and para-
metric chaos in systems with Lorenz-like attractors is proposed and tested. This technique
uncovers the stunning complexity and universality of spiral structures in the iconic Lorenz
equations.
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Symbolic Dynamics and Spiral Structures due to the Saddle-focus Bifurcations 429

1. Introduction

Over recent years, a great deal of experimental stud-
ies and modeling simulations have been directed
toward the identification of various dynamical and
structural invariants to serve as key signatures unit-
ing often diverse nonlinear systems into a single
class.

One such class of low order dissipative systems
has been identified to possess one common, easily
recognizable pattern involving spiral structures in
a biparametric phase space [2, 12,13,15]. Such pat-
terns turn out to be ubiquitously alike in both time-
discrete [30] and time-continuous systems [6,20,21].

Despite the overwhelming number of studies
reporting the occurrence of spiral structures, there
is still little known about the fine construction
details and underlying bifurcation scenarios for
these patterns. In this paper we study the genesis
of the spiral structures in several low order systems
and reveal the generality of underlying global bifur-
cations. We will start with the Rössler model and
demonstrate that such parametric patterns are the
key feature of systems with homoclinic connections
involving saddle-foci meeting a single Shilnikov con-
dition [44, 45]. The occurrence of this bifurcation
causing complex dynamics is common for a plethora
of dissipative systems, describing (electro)chemical
reactions [32], population dynamics [26, 28], elec-
tronic circuits [12,19,40], including the Chua circuit
[17,18]. The other group is made of models with the
Lorenz attractor. Here, under consideration is the
iconic Lorenz equation.

2. Spiral Hubs in Rössler-like
Models

One of the most paradigmatic examples of low-
dimensional deterministic chaos is the canonical
Rössler system [33]:

ẋ = −(y + z), ẏ = x + ay,

ż = b + z(x − c),

with two bifurcation parameters a and c (we fix
b = 0.2). For c2 > 4ab the model has two equilib-
rium states, P1,2(ap±,−p±, p±), where p± = (c ±√

c2 − 4ab)/2a. This classical model exhibits the
spiral and screw chaotic attractors after a period
doubling cascade followed by the Shilnikov bifurca-
tions of the saddle-focus P2.

Bi-parametric screening of the Rössler model
unveils a stunning universality of the periodicity

0.22

c

a
0.1 0.12 0.14 0.16 0.18 0.2

5

10

15

20

25

Fig. 1. Spiral structures in the biparametric bifurcation dia-
gram of the Rössler model: light colors are associated with
chaotic behavior, whereas dark colors correspond to regular,
simple dynamics. The thick dark curve corresponds to the
saddle-focus homoclinic bifurcation, and the medium green
boundary separates the existence regions of the spiral (at •)
and screw-shaped (at �) attractors. Courtesy of [8].

hubs in the bifurcation diagrams shown in Fig. 1 [8].
The diagram is built on a dense grid of 1000× 1000
points in the (a c)-parameter plane. Solutions of the
model were integrated using the high precision ODE
solver TIDES [1]. The color is related with the Lya-
punov exponents, where dark and light colors dis-
criminate between the regions of regular and chaotic
dynamics corresponding to a zero and positive max-
imal Lyapunov exponent λ1, respectively. The fig-
ure reveals the characteristic spiral patterns due to
variations of the Lyapunov exponents.

The chaotic-regular regions spiral around a
F[ocal] point [12, 13] at (a, c) = (0.1798, 10.3084).
This F-point terminates the bifurcation curve
(black) corresponding to the formation of a homo-
clinic loop of the saddle-focus, P2, in the phase space
of the Rössler model [10]. Another curve (medium
green) passes through the F-point: crossing it right-
ward the chaotic attractor in the phase space of the
model changes the topological structure from spi-
ral to screw-shaped. This curve has been identified
from the examination of 1D Poincaré return maps
(see Fig. 2) evaluated on a grid of 1000×1000 points.

The spiral attractor in the Rössler model at
a= 0.14 (the point labeled by “•” in Fig. 1) gener-
ates a 1D unimodal map shown in the left panel of
Fig. 2. In the case of the screw attractor at a= 0.18
(the point labeled by “�” in the diagram), the corre-
sponding map shown in the right panel in Fig. 2 has
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Fig. 2. 1D Poincaré return maps for the spiral and screw-
shaped (resp.) chaotic attractors in the Rössler model at
a= 0.14 and 0.18 for c =15. Courtesy of [8].

a bimodal graph with two critical points. The addi-
tion of the second critical point in the map is indica-
tive of a change of the topology of the attractors.
This criteria was used to locate the corresponding
boundary (medium green line) that separates the
existence regions of the attractors of both types in
the bifurcation diagram in Fig. 1 [8]. This boundary
passes right through the F-point.

The dark bifurcation curve in Fig. 1 corre-
sponds to a formation of the homoclinic orbits to
the saddle-focus, P2, of topological type (1,2), i.e.
with 1D stable and 2D unstable manifolds, in the
Rössler model. Depending on the magnitudes of
the characteristic exponents of the saddle-focus, the
homoclinic bifurcation can give rise to the onset of
either rich complex or trivial dynamics in the sys-
tem [22,44,45]. The cases under consideration meet
the Shilnikov conditions and hence the existence of

a single homoclinic orbit implies chaotic dynamics
in the models within the parameter range in the
presented diagrams. The magnification of the cor-
responding bifurcation curve in the diagram (Fig. 1)
reveals that what appears to be a single bifurcation
curve has actually two branches (Fig. 3). This curve
has a U-shape with the turn at the F-point. Figure 3
shows the evolution of the homoclinic loops of the
saddle-focus toward a simple saddle along the bifur-
cation curve. While its low branch corresponds to a
primary loop, the upper branch corresponds to the
double-pulse homoclinic loops. This suggests that
the F-point actually might correspond to a hetero-
clinic cycle involving two equilibria, i.e. it is similar
to T-points considered in the next section (actual
study of the phase portrait for the parameter values
corresponding to the F-point is yet to be done for
the Rösler model).

Figure 4 outlines the structure of the bifur-
cation unfolding around the spiral hub [6, 8]. The
picture depicts a number of the identified folded
and cusp-shaped saddle-node bifurcation curves of
periodic orbits originating from a codimension-two
point, labeled as B[elyakov], toward the spiral hub
in the (a, c)-parameter plane for the Rössler model.
Note that none of these curves is actually a spi-
ral — the overall spiral structure must be supported
by homoclinic bifurcations. At this B-point, the
saddle with real characteristic exponents becomes
a saddle-focus for smaller values of the parame-
ter a. The unfolding of this bifurcation is known
[11] to contain bundles of countably many curves

parameter a
a=0.18

a=0.5

a=0.5

a=1.1

a=1.1

a=1.8

a=1.8

homoclinic bif. curve

Fig. 3. Transformations of homoclinic orbits of the saddle-focus, P2, in the Rössler system. In the sketch, the F-point is the
turn point for two branches of the U-shaped bifurcation curve corresponding to the primary and secondary (with an additional
round) homoclinic loops, which are sampled at the indicated points. Courtesy of [8].
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1.6 1.8 2

B point
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25

30

c

a a

Saddle-node bif.

Homoclinic bif.

Fig. 4. Spiral structure is outlined with folded and cusp-shaped curves corresponding to saddle-node bifurcation of periodic
orbits and originating from the codimension-two homoclinic B[elyakov]-point. Courtesy of [8].

corresponding to saddle-node and period doubling
bifurcations of periodic orbits, as well as to vari-
ous secondary homoclinic bifurcations of the saddle-
focus. Indeed, both B- and F-points together glob-
ally determine the structure of the (a, c)-bifurcation
portrait of the Rössler model [8].

3. Spiral Structures in Systems with
the Lorenz Attractor

Dynamical systems theory is aimed to create purely
abstract approaches followed by a further develop-
ment of applicable tools allowing for the search and
identification of basic invariants employed to unify
diverse nonlinear systems with complex dynamics
into a class. One such computationally justified
approach for studying complex dynamics capitalizes
on the concept of sensitivity of deterministic chaos.
Sensitivity of chaotic trajectories can be quantified
in terms of the divergence rate expressed through
the largest Lyapunov characteristic exponent. The
approach has been proven to work out exceptionally
well for most systems with chaotic dynamics, like
the Rössler model above. However, it has failed, in
general, to deliver the desired answers and insights
into intrinsic bifurcations of strange attractors in
Lorenz-like models.

A strange attractor in the Lorenz equation
from hydrodynamics has become a de-facto proof of
deterministic chaos and the butterfly-shaped image
of the iconic Lorenz attractor, shown in Fig. 5,
has become the trademark of Chaos theory and
dynamical systems. This theory elaborates on com-
plex trajectory behaviors in nonlinear systems from
mathematics, physics, life sciences, finance, etc.
Universality of the methods along with bifurcation

tools has made them spread wide and deep across
all other disciplines.

3.1. The Lorenz equation

The Lorenz equation [29] is a system of three dif-
ferential equations:

ẋ = −σ(x − y), ẏ = r x − y − xz,

ż = −8
3
z + xy, (1)

with two positive bifurcation parameters: σ being
the Prandtl number quantifying the viscosity of
the fluid, and r being a Reynolds number used to
characterize the fluid dynamics. Equation (1) is Z2-
symmetric: (x, y, z) ↔ (−x,−y, z) [47].

Figure 6 (courtesy of [39] ) exhibits the primary
bifurcation curves (left panel) in the parameter
plane, and depicts en route fragments of the forma-
tion of the Lorenz attractor on the pathway, σ = 10
[2, 27]. For r < 1, Eq. (1) has a single stable equi-
librium state at the origin. This equilibrium state
undergoes a pitch-fork bifurcation at r = 1, so that
for r > 1 the origin becomes a saddle, O, of the
topological type (2,1). This implies that the char-
acteristic exponents of the linearized equation at O
can be ordered as follows: λ3 < λ2 < 0 < λ1. This
implies also that the saddle has a pair of 1D separa-
trices (due to λ1) leaving the saddle as t → +∞, and
a 2D stable manifold containing the leading (due to
λ2) invariant z-axis. After the pitch-fork bifurca-
tion, the outgoing separatrices of the saddle tend
to two symmetric attractors — equilibrium states,

O1,2(x = y = ±
√

8
3(r − 1), z = r − 1) (Fig. 6(a)).

A homoclinic butterfly bifurcation occurs in
the Lorenz equation when both 1D unstable
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−20

0

20

time

x

+1

-1

(a)

(b)

Fig. 5. (a) Heteroclinic connection (in dark color) between three saddles (blue spheres) overlaid with the Lorenz attractor
(green light color) on the background in the 3D phase space of the Lorenz equation at the primary T-point (r = 30.38,
σ = 10.2). Orange spheres on the butterfly wings indicating the turning points around the saddle-foci define the kneading
sequence entries, {±1}. (b) Time evolution of the x-coordinate of the right separatrix at other parameter values.

separatrices of the saddle come back to it along
the z-axis (Fig. 6(b)). Bifurcations of the separa-
trices of the saddle at the origin are crucial overall
for the Lorenz attractor. In virtue of the symme-
try of the Lorenz equation, homoclinic loops come
in pairs, and therefore constitute bifurcations of
codimension-one, in general. The homoclinic but-
terfly bifurcation can be continued in the form of a
continuous curve, l1, in the (r, σ)-parameter plane
of the Lorenz equation.

The very first homoclinic butterfly made of two
separatrices looping a single round about the equi-
librium states O1,2, causes a homoclinic explosion
in the phase space of the Lorenz equation; namely,
this bifurcation gives rise to an enumerable set of
saddle periodic orbits that further form the skeleton
of the Lorenz chaotic set (yet to become the attrac-
tor). For the explosion to happen, the so-called sad-
dle value S = λ1 + λ2, which is the sum of the

leading characteristic exponents of the saddle, must
be positive at the origin. Otherwise, the unfolding of
the homoclinic butterfly produces a single symmet-
ric figure-8 periodic orbit in the aftermath of a glu-
ing bifurcation through which two stable periodic
orbits merge into one after flowing into the homo-
clinic butterfly. In the case of the Lorenz equation
with S > 0 at the origin, such saddle orbits demar-
cate a threshold of the “interior” of the chaotic
unstable set (Fig. 6(c)).

After the homoclinic butterfly bifurcation,
between r1 < r < r2, the separatrices of the sad-
dle switch targets: now the right/left separatrix
tends the left/right focus O2/1. For the unstable
chaotic set to become the Lorenz attractor, it must
become invariant, i.e. must not lose trajectories run-
ning away to the stable foci O1,2. This happens
on another bifurcation curve, l2, in the parameter
space (Fig. 6(c)). After r ≥ r2, the Lorenz attractor
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Fig. 6. (Left) The (r, σ)-parameter plane depicting the primary bifurcation curves and the stages of the formation of the
Lorenz attractor. l1 corresponds to the primary homoclinic butterfly; l2 corresponds to the formation of the Lorenz attractor;
l3 is a supercritical Andronov-Hopf bifurcation curve; curves, l4 and l5, correspond to the homoclinic loops (in insets) with
kneadings {+1,−1} and {+1,−1,−1}, respectively. Courtesy of [39].

is shielded away from the stable equilibrium states
by the 2D stable manifolds of the two “threshold”
saddle orbits (Fig. 6(d)) that simultaneously emerge
from each separatrix loop after crossing the curve l1.

As r is increased to r3 these periodic orbits
collapse into the stable equilibria. The equilib-
rium states become saddle-foci of the (1,2)-type
through a subcritical Andronov-Hopf bifurcation.
The topological (1,2)-type means that each saddle-
focus has 2D unstable and 1D stable manifolds;
the latter is formed by two incoming separatrices.
Some properties of the eigenvalues of the saddle-
foci can be revealed without evaluating their char-
acteristic exponents explicitly. Let λ1 < 0 denote
the stable exponent of O1,2, and λ2,3 stand for
a complex conjugate pair such that Reλ2,3 > 0.
Observe that Eqs. (1) have a constant negative
divergence given by [−σ − 1 − 8/3], which equals∑3

i=1 λi. This implies λ1 +Reλ2,3 < 0, i.e. the com-
plex conjugate pair is closer to the imaginary axis
than the real eigenvalue, and hence the saddle-foci
meet the Shilnikov condition [43]. Therefore, if the
saddle-focus has a homoclinic loop, the bifurcation
causes the emergence of countably many periodic

orbits near the saddle-focus. Those periodic orbits
constantly undergo saddle-node and period dou-
bling bifurcations as the parameters are varied.
Moreover, since the Lorenz equation has the nega-
tive divergence, saddle-node bifurcations give rise to
the onset of stable periodic orbits. Like in the case
of the Rössler attractor, a single Shilnikov saddle-
focus bifurcation can cause the emergence of spiral
or screw-like attractors. However, a strange attrac-
tor due to the Shilnikov saddle-focus in a 3D sys-
tem with a negative divergence is not a genuine
chaotic one in the sense that it contains stable peri-
odic orbits within, which may have large or narrow
attraction basins in the phase space.

Because of that, such a chaotic attractor is
called quasi-attractor thus referring to the existence
of stable periodic orbits along with structurally
unstable or non-transverse homoclinic orbits in the
attractor [3, 40,41]. Note that in higher dimension,
one may have genuine strange attractors with a
Shilnikov loop without stable periodic orbits (the
so-called pseudo-hyperbolic attractors [40–42,48]).

The Lorenz attractor is non-hyperbolic because
it includes the origin — the saddle equilibrium
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state of the topological type (2,1) while all other
saddle periodic orbits are of the type (2,2), i.e.
have 2D stable and unstable manifolds crossing
transversally in the 3D phase space. In order for
the Lorenz attractor to be strange and chaotic with
no stable orbits, it may include neither [homoclinic]
saddle-foci, O1,2, nor contain only structurally sta-
ble homoclinic orbits due to transverse intersections
of the manifolds of saddle periodic orbits.

After the stable equilibria are gone through the
Andronov-Hopf bifurcation, the Lorenz equation
exhibits the strange attractor of the iconic butterfly
shape. The wings of the butterfly have symmetric
eyes containing the saddle-foci are isolated from the
trajectories of the Lorenz attractor. This attractor
is structurally unstable [3,25] as it undergoes bifur-
cations constantly as the parameters of the equa-
tion are varied. The primary cause of structural and
dynamical instability of chaos in the Lorenz equa-
tion and similar models is the singularity at the
origin — the saddle with two one-dimensional out-
going separatrices. Both separatrices fill in densely
two spatially symmetric, [(x, y, z)↔ (−x,−y, z)],
wings of the Lorenz attractor in the 3D phase space
(see Fig. 5). The Lorenz attractor undergoes a bifur-
cation when the separatrices of the saddle change
the flip-flop pattern of switching between the but-
terfly wings centered around the saddle-foci. At the
change, the separatrices comes back to the saddle
thereby causing additional homoclinic explosions in
the Lorenz attractor [2, 27].

The time progression of the “right” (or
symmetrical “left”) separatrix can be described geo-
metrically and categorized in terms of the num-
ber of flip-flops around the equilibria O1,2 in the
3D phase space of the Lorenz model (Fig. 5).
An alternative way is to follow the time-evolution
of the x-coordinate of the separatrix, which is
shown in Panel B of Fig. 5. The sign-alternation
of the x-coordinate suggests the introduction of
a {±1}-based alphabet to be employed for the
symbolic description of the separatrix. Namely,
whenever the right separatrix turns around O1 or
O2, we write down +1 or −1, respectively. For
example, the time series shown in Panel B gener-
ates the following kneading sequence starting with
{+1,−1,−1,−1,+1,+1,+1,−1, . . .}.

In what follows we demonstrate the new com-
putational toolkit for the analysis of chaos in the
Lorenz-like models. The toolkit is inspired by the
idea of kneading invariants introduced by Milnor
and Thurston [31]. A kneading invariant is a value

that is intended to describe quantitatively the state
of a complex system that admits a symbolic descrip-
tion using two symbols, here +1 and −1. The knead-
ing invariant is supposed to depend monotonically
on the parameter controlling the system so that any
two systems can be compared and differentiated, or
ordered in terms of > and <, by the kneadings. Two
systems with the same kneading are topologically
conjugate [3, 25].

For the symmetric system with the Lorenz
attractor, the kneading invariant is assigned to
quantify the symbolic description of the separatrix.
It reflects respectively and quantitatively a qualita-
tive change in the separatrix behavior as the param-
eter of the system is changed. So, kneadings can
serve as moduli of the topological equivalence to
compare or contrast between any two Lorenz attrac-
tors or, equivalently, any two Lorenz-like systems.

In virtue of the spatial symmetry of the
Lorenz equation, the kneading invariant for either
separatrix is defined as a formal series:

P (q) =
∞∑

n=0

κn qn. (2)

By setting q ∈ (0, 1), the series (2) is made conver-
gent. The sequence comprised with only +1 corre-
sponds to the right separatrix (Fig. 5) tending to
either an equilibrium state or a periodic orbit with
x(t) > 0; the corresponding kneading invariant is
given by Pmax = 1/(1 − q). When the right separa-
trix converges to a ω-limit set with x(t) < 0 for all
times; the corresponding kneading invariant is given
Pmin = 1−q/(1−q) because the first +1 is followed
by an infinite sequence of −1s. Thus, [Pmin, Pmax]
yields the range of the kneading invariant values.

In this computational study of the Lorenz equa-
tion we consider the very first 50 entries in the
kneading sequences for the right separatrix of the
saddle in order to generate the biparametric map-
ping: (r, σ) → P50(q) with some appropriately cho-
sen value of q. The mapping can be colorized using
a non-linear spectrum ranging between to P

(50)
min and

P
(50)
max , respectively. In the mapping, a color is asso-

ciated with a level curve corresponding to the par-
ticular value of the kneading invariant that remains
constant for the given points in the parameter plane.

Figure 7 represents the kneading-based color
mapping for the Lorenz equation in the parame-
ter plane foliated by such kneading level curves on
a dense grid of [1000 × 1000] points. In it, a wide
window of a solid color corresponds to a constant
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Fig. 7. (a) Bifurcation diagram of the Lorenz equation depicting the two detected T-points and primary homoclinic bifurcation
curves (courtesy [15]). (c) The (r, σ)-biparametric sweeping revealing numerous T-points within a fractal mapping of the Lorenz
equation in the kneading-based bifurcation diagram. Solid-color regions correspond to constant kneadings: dark (brown)
region corresponding to simple Morse-Smale dynamics; lighter (blue) stripe corresponding to the chaotic saddle set after the
homoclinic explosion due to the primary homoclinic butterfly. Bright (reddish) region maps the complex chaotic dynamics in
the Lorenz equation globally organized by various T-points alternating with saddles in the parameter plane. (b) Zoom of the
vicinity of the primary T-point at (r = 30.4, σ = 10.2) to which the homoclinic bifurcation curve converges. Data for curves
(purple) are courtesy of Yu. Kuznetsov.

kneading. This implies that the behavior of the
separatrix does not change within the windows.
It could be due to the existence of robust trivial
attractors such as equilibrium states or periodic
orbits, to which the separatrix converges as time
progress. The boundary between two solid-color
regions corresponds to a bifurcation of the trivial
attractor, which is associated with a jump between
two constant values of the kneading invariant. For
example, the jump from P

(50)
max to P

(50)
min in the knead-

ing value occurs on the borderline between two
regions, brown and light blue, corresponds to the
formation of the homoclinic butterfly of the saddle.
Since, for r > 1 there is a single Andronov-Hopf
bifurcation for equilibria of the Lorenz equations, all
other borderlines between the regions of solid col-
ors should be associated with bifurcations of stable
periodic orbits: period-doubling or saddle-nodes. A
quick review of the kneading definition (2) suggests

that the kneading value does not vary after a
period-doubling bifurcation, because the kneading
sequence will inherit the same coding; say original
[+1,−1,−1] will be repeated twice in the sequence
[+1,−1,−1,+1,−1,−1] for a new attractor of dou-
ble period and so forth. The same is true also for the
pitch-fork bifurcations, because continuous transi-
tioning between stable symmetric and asymmet-
ric periodic orbits is undetectable by the kneading
technique. We can hypothesize that the border-
lines may be only associated with generic saddle-
node bifurcations, after which the separatrices must
switch to another attractor with a distinct kneading
invariant.

What the proposed kneading technique does
extraordinary well, compared to the biparametric
sweeping based on the finite-time maximal Lya-
punov exponent approach, and what we have devel-
oped it for, is the detection of bifurcations of the
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complex sets, see the parametric chaos in Fig. 7.
Panel (b) of this figure depicts the kneading map-
ping at the left-bottom corner of the bifurcation
diagram in panel (c). Here, the black (blue in Panel
(c)) region corresponds to the unstable complex
dynamics, while the region of the existence of the
Lorenz attractor is presented in yellow-reddish col-
ors. Dark (purple) curves singled out in panel (b)
are bifurcation curves of the simplest homoclinic
orbits with the shortest admissible kneadings. One
can see from this panel that the diagram is nicely
foliated by the kneading level curves of gradually
progressing color from red to yellow. This indicates
that the Lorenz attractor, while being structurally
unstable and sensitive to parameter variations, per-
sists the pseudo-hyperbolic property here because
the foliation remains uniform, and transverse to the
classical pathway σ = 10 (Fig. 6). This nice foliation
starts breaking around a saddle point after which
one partial bifurcation curve spirals onto a singular
point. Far from this point, the curve corresponds
to the formation of the homoclinic loop with the
kneading {1,−1,−1,−1}, i.e. the right separatrix
makes one excursion around the saddle-focus O1,
followed by three revolutions around the saddle-
focus O2, and then return to the saddle at the ori-
gin. While moving along the spiraling curve, the
separatrix of the saddle makes progressively more
turns around O2. With each turn, the number of
the scrolls around the spiral point increments pro-
gressively as well. Due to this feature the point
Q1(r = 30.4, σ = 10.2) is called a Terminal or T-
point, as the bifurcation curve spirals onto it so
that the separatrix makes infinitely many turns.
The limit case corresponds to the following symbolic
sequence {+1,−1,−1,−1, · · · }, or {+1, (−1)∞}. In
virtue of the symmetry of the Lorenz equation,
the T-point corresponds to a closed heteroclinic
connection involving all three saddle-equilibria, see
Fig. 5. The right (left) separatrix of the saddle
merging with the incoming separatrix of the saddle-
focus O2 (O1), makes the bifurcation increase the
codimension to two, while intersections of the 2D
unstable manifolds of the saddle-foci, with the 2D
stable manifold of the saddle at the origin remain
transverse. Breaking the 1D heteroclinic connection
can give rise to a primary homoclinic orbit to
the saddle-focus and to a heteroclinic connection
between both saddle-foci. The corresponding bifur-
cation curves bound a sector originating from the
T-point in the parameter plane as both r and σ
are increased [15, 23]. Bykov [15] proved that near

the primary T-point there are countably many alike
T-points that are located within the sector. Each
new T-point produces other non-overlapping sec-
tors within self-similar structures scaled like frac-
tals. Panel A shows two such identified T-points:
primary and another secondary located at (r = 85,
σ = 11.9). The primary codimension-two T-point in
the Lorenz equation was originally discovered in [5].

As soon as the saddle-foci and their bifurca-
tions become involved in the dynamics of the Lorenz
attractor, it loses the purity of the genuine chaotic
attractor that used to have neither stable periodic
orbits nor non-transverse homoclinic trajectories,
and transforms into a quasi-chaotic attractor with
stable orbits and tangent homoclinics. The idea
of non-transversality or tangency was employed in
[14, 16] to numerically identify the second bifurca-
tion curve, lK, in addition to the curve, l2, that
bounds the existence region of the Lorenz attractor
in the parameter plane, see Fig. 8. Note that lK
crosses the initial boundary, l2. This means that
above the intersection point, crossing l2 rightwards
does not guarantee that the basin of the Lorenz
attractor will necessarily be isolated from the sta-
ble foci, O1,2 (Fig. 6). This means too that the

Fig. 8. The (r, σ)-bifurcation diagram showing the exis-
tence region (shaded) of the Lorenz attractor. The second
bifurcation curve, lk, passing through the primary T-point,
Q(r = 30.4, σ = 10.2), crosses the first boundary, la (l2 in
Fig. 6), thus closing the existence region. Courtesy of [16].
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separatrices of the saddle will demonstrate some
chaotic transient behaviors prior to them converg-
ing to O1,2, see [16,34–36,38] for full details.

The other feature of the the boundary, lK , is
that it passes through the primary T-point, thereby
separating the existence region of the Lorenz attrac-
tor from bifurcations of the saddle-foci, and con-
sequently from all secondary T-points. So, for the
parameter values to the right of the second bound-
ary, the chaotic dynamics still persist in the Lorenz
equation, and moreover it becomes more wider and
less predictable [40–42, 48]. The indication to the
saying is panel C of Fig. 7 showing chaos, turbu-
lence in the parameter space, with fractal explosions
in the forms of multiple spiral structures — “tor-
nado eyes” centered around various T-points. Note
that basins of spiraling T-points are separated by
corresponding saddles in the parameter plane. One
can spot self-similar smaller-scale spiral structures
within large-scale ones and so forth. This richness
of the structure of the parameter plane indicates
that the chaotic attractor, which results from the
synergy of the former Lorenz attractor amplified by
chaos induced by the Shilnikov saddle-foci, becomes
wild, in both dynamical and bifurcation senses.

Figure 9 shows a fragment of the typical bipara-
metric sweeping of the Lorenz equation which is
based on the evaluation of the largest Lyapunov

Fig. 9. Finite-time largest-Lyapunov exponent, Lmax,
sweeping of the Lorenz equation shows no sign of spiral struc-
tures in the (r, σ)-parameter plane. The dark region cor-
responds to trivial attractors, where Lmax ≤ 0, while the
red color indicates the largest value of the maximal expo-
nent, Lmax > 0, in chaotic regions right after the saddle-foci
become involved.

exponent spectrum for the separatrices of the sad-
dle calculated over a finite time interval. The same
technique was used to identify the spiral structures
in the Rössler model with the Shilnikov saddle-
focus [6], and was employed in [24] for the study
of a wild Lorenz attractor in the 3D Henon map,
as well as to carry out a comprehensive three-
parametric study of chaotic and regular regions of
the Lorenz model [7,9,10]. In contrast to the Rössler
model, the Lyapunov-exponent-based biparamet-
ric screening reveals no signs of indication of such
structures within regions of deterministic chaos —
including the Lorenz and quasi-attractors, where
variations of the Lyapunov exponents are not signif-
icant enough to identify and differentiate between
any fine patterns. These chaotic, red-colored regions
in Fig. 9 are associated with positive values of the
largest Lyapunov exponent, while the dark region
corresponds to simple Morse-Smale dynamics with
attractor having the largest Lyapunov exponent
Lmax ≤ 0 for stable equilibria or periodic orbits,
respectively.

4. Conclusions

We have examined two formation mechanisms of
spiral structures in biparametric mappings of sys-
tems with the Shilnikov saddle-focus and with the
Lorenz attractor. The feature of the spiral hubs in
the Rössler model is that the F[ocal]-point gives
rise to the alternation of the topological struc-
ture of the chaotic attractor transitioning between
the spiral and screw-like types, as well as termi-
nates the primary homoclinic curves of the saddle-
focus equilibrium state influencing the forward-time
dynamics of the model. The findings let us hypoth-
esize about universality of the structure of the spi-
ral hubs in similar systems with chaotic attractors
due to homoclinics of the Shilnikov saddle-focus.
The hub structures are outlined by homoclinic and
saddle-node bifurcation curves originating from a
codimension-two Belyakov point corresponding to
the transition to the saddle-focus from a simple
saddle.

For thorough explorations of the dynamics of
Lorenz-like models we have proposed the algorith-
mically easy, though powerful toolkit based on the
straight-forward evaluation of the kneading invari-
ants derived through symbolic description of a sin-
gle trajectory — an unstable separatrix of the saddle
singularity of the model. We have demonstrated that
the presence of multiple spiral T-points, saddles and
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accompanying fractal structures in the parame-
ter plane is the key signature for systems with
the Lorenz attractor. The T-points partition and
organize globally the bifurcation structures of the
parameter space of a model with the Lorenz attrac-
tor. We point out that no other techniques, includ-
ing approaches based on the Lyapunov exponents
for example, can reveal the discovered parametric
chaos with such stunning clarity and beauty.

The method should be beneficial for detailed
studies of other systems admitting a reasonable
symbolic description. It bears an education aspect:
the kneading-based screening can be used for
in-class presentation to reveal the magic and fasci-
nating complexity of low-order models in the cross-
disciplinary field of nonlinear dynamics. The bi-
parametric mapping technique is easily adopted for
parallel multicore GPU platforms allowing for ultra-
fast simulations of models in questions. Additional
implementation of high-precision computations for
long transients will thoroughly reveal multi-layer
complexity of self-similarity of fractal patterns
of T-point vortices. In future research we intend
to enhance the toolkits for exploration of high-
dimensional systems, symmetric and asymmetric
[37], admitting symbolic descriptions with more
symbols and additional kneading invariants [49].
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Hénon-map, Phys. D 237, 13, pp. 1689–1704.

[31] Milnor, J. and Thurston, W. (1988). On iterated
maps of the interval, Lecture Notes in Math. 1342,
pp. 465–563.

[32] Nascimento, M. A., Gallas, J. A. C. and Varela,
H. (2011). Self-organized distribution of periodic-
ity and chaos in an electrochemical oscillator, Phys.
Chem. Chem. Phys. 13, pp. 441–446.
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