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Synaptic delays shape dynamics and function
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ABSTRACT

In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-
processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may
regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coor-
dinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which
time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to inves-
tigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving
exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves
correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-
node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks
with fast inhibitory synapses.
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Time-delays are crucial for synergistically regulating rhythms
and can affect the stability and variability of small rhythm-
generating neural networks, such as central pattern genera-
tors (CPGs). They influence the timing of signaling between
neurons and can determine the types and outcomes of rhyth-
mic activity in a CPG under various environmental conditions.
With varying time-delays, the CPG can exhibit either multi-
stability or mono-stability in its kinetic behaviors, including
diverse bifurcation phenomena and changes in rhythmic pat-
terns. Even in simple biological neural network models, mul-
tistable bursting rhythms can arise due to the introduction
of time-delays. Advanced parallel computing techniques are
employed to derive and parametrically continue a computa-
tional family of Poincaré return maps for phase-lags between
three constituent neurons. The attractors of these maps, such
as stable fixed points and invariant curves, directly influence
and determine oscillatory outcomes in both biologically plausible

and phenomenological models of rhythmic neural networks.
With this computational approach generating large and accu-
rate datasets, we can thoroughly explore how time-delays dictate
which stable rhythmic patterns can coexist, emerge, or vanish,
specifically due to underlying bifurcation mechanisms. Subject
to intrinsic mechanisms, these seemingly simple three-cell net-
works can produce a rich variety of multistable rhythmic states,
including phase-locked burst pacemakers, traveling-wave or peri-
staltic patterns, and even chimeras in which one cell repeatedly
phase-slips relative to the other two, which remain phase-locked
over time. Additionally, more unusual behaviors may occur,
such as robust synchronous oscillations of all three cells and
“phase jitter” (small phasic oscillations) in bursting rhythms.
We elucidate the detailed transition mechanisms between these
rhythms, including saddle-node, various pitch-fork, secondary
Andronov–Hopf, and torus bifurcations, along with heteroclinic
connections.

Chaos 35, 043106 (2025); doi: 10.1063/5.0233640 35, 043106-1

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0233640
https://doi.org/10.1063/5.0233640
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0233640
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0233640&domain=pdf&date_stamp=2025-04-01
https://orcid.org/0000-0001-5584-3839
https://orcid.org/0000-0003-2655-3343
https://orcid.org/0000-0002-5331-2628
https://orcid.org/0000-0002-4879-4327
mailto:qiexixi954@gmail.com
mailto:jiezang97@gmail.com
mailto:mashqliu@scut.edu.cn
mailto:ashilnikov@gsu.edu
https://doi.org/10.1063/5.0233640


Chaos ARTICLE pubs.aip.org/aip/cha

I. INTRODUCTION

Central pattern generators (CPGs)1–12 are small neural net-
works composed of coupled neurons that autonomously generate
and regulate various rhythmic motor activities in animals, includ-
ing heartbeat, respiration, mastication, and locomotion. Though
structurally simple, CPGs exhibit significant complexity. They can
produce stable oscillations through endogenous burst generators or
network-level mechanisms. A prime example is the lobster pyloric
CPG, which rhythmically controls the contraction and relaxation
of stomach muscles. Typically, CPGs are composed of fundamen-
tal units like the half-center oscillator (HCO), consisting of two
symmetrically arranged neurons that inhibit each other, resulting
in alternating anti-phase bursting patterns.13,14 Current research
focuses on the rhythmic dynamics, transitions, and bifurcations
in three-cell neural networks formed by interconnected HCO cir-
cuits with delayed and fast inhibitory synapses. Various three-cell
biological circuits have been previously identified as fundamental
building blocks for larger neural networks regulating various types
of locomotion.15–19

Neuronal activity is a complex, collaborative process involving
interactions and coupling relationships among numerous neurons.
This collaboration is essential for executing various operational tasks
within specific regions of the nervous system. Coupling relation-
ships encompass both electrical signal transmission and chemical
signal transfer at synapses. Due to the speed of nerve conduction,
synaptic transmission time, and the time required for neuronal
information processing, inevitable delays occur in signal transmis-
sion between constituent neurons.20–28 These delays play a crucial
role in the dynamic behavior and function of the nervous system,
particularly in central pattern generators (CPGs). The presence of
delays may induce changes in network rhythms and transitions
between them in response to perturbations. For example, in res-
piratory control, CPGs must switch between different breathing
patterns, such as quiet and deep breathing.29,30 This switching pro-
cess relies on precise delay regulation to ensure that the rhythm and
intensity of breathing adapt to the body’s needs.

Concerning neural oscillatory networks with time-delayed cou-
pling, it was suggested in Refs. 31 and 32 that time-delays may
enhance neural synchronization. Furthermore, as was found in
Refs. 33 and 34 that the length of time-delay may have significantly
different effects on synchronization. Additionally, delays can con-
tribute to the emergence of multistability.35–37 For instance, in gait
control, CPGs facilitate transitions between distinct locomotion pat-
terns, such as walking, trotting, and running, each corresponding to
a stable rhythmic state.38,39 Adjusting delays enables smooth transi-
tions between these stable states, allowing for complex movement
patterns. Thus, understanding the mechanisms and roles of delays is
essential for uncovering the fundamental principles of CPG func-
tion and advancing neuro-engineering technologies, for example,
bio-inspired robotics.

II. METHODS

In this study, we use a generalized FitzHugh–Nagumo (gFN)
model proposed in Refs. 40–43 to construct a family of delayed
three-cell networks. More specifically, the two-dimensional gFN
model captures some key features of typical Hodgkin–Huxley

(HH)-type square-wave bursters. This model emphasizes the essen-
tial characteristics of rhythm-generating circuits, enabling the stable
generation of required dynamics without relying on specific neu-
ronal and synaptic models. The simplicity of the gFN equations
makes them particularly suitable for computational studies, espe-
cially those involving GPU-based exploration of parameters and
initial conditions. We investigate how time-delays influence the gen-
eration and stability of various rhythms, including phase-locked
states, periodic phase slips, and chimera-like behaviors. By modulat-
ing these delays, different neural activity patterns emerge, revealing
the underlying mechanisms of CPG function across various physio-
logical states. A key feature of multifunctional CPGs is their ability
to generate multiple rhythmic outcomes within the same circuitry
and transition between these rhythms.19,44–47 Mathematical modeling
and computational simulations serve as powerful tools for explor-
ing the dynamics of small rhythmic neural networks, especially
multi-modal or multi-functional ones.

The technique introduced in Ref. 44 has been effectively used
to detect nonlocal bifurcations of bursting polyrhythms in small net-
works of weakly coupled neurons.43,44,47–53 While a previous study52

proposed a simpler neural network for stability analysis, and recent
work54 introduced a slow synapse model with high filtering effi-
ciency and short time-delays, the effects of such delays in synaptic
connections, both inhibitory and excitatory, in such neural net-
works remain yet to be fully explored. This paper addresses this gap
by thoroughly investigating three-cell neural circuits with delayed
inhibitory synapses.

Fitzhugh–Nagumo-like cells in biological sciences, also known
historically and chronologically as generic relaxation oscillators in
physics, provide a mathematical generalization of Hodgkin–Huxley-
type models, capturing common dynamical features observed
in biological neurons. The generalized Fitzhugh–Nagumo (gFN)
model43 used here incorporates additional dynamical and tempo-
ral features to more realistically replicate the behavior of biological
bursters, both in isolation and under perturbations. Using this gFN
neuron model, we investigate a family of several three-cell networks,
described by the following coupled ODE system:

V̇i = Vi − V3
i − hi + Iapp +

∑

j6=i

Gji(Vj, Vi), (1)

ḣi = ε

[

1

1 + e−k(Vi−V0)
− hi

]

, i, j = 1, 2, 3. (2)

Here, the ith neuron’s state is described by its fast membrane
voltage V and a slow recovery or gating variable h (like in the
Hodgkin–Huxley formalism); ε is the inverse of a time constant that
regulates the slow dynamics in the gFN neuron (0 < ε < 1); the
control parameter Iapp is an applied current, which is set to Iapp = 0.4
for all three neurons (unless otherwise specified as in the caption
to Fig. 1). Constants V0 and k determine and shape the relative
positions and shapes of the cubic and sigmoidal nullclines given by
V̇ = 0 and ḣ = 0, respectively. The default values of the parameters
are k = 10, ε = 0.3, and V0 = 0, which is also the level of the synap-
tic threshold Vth in Eq. (3). Driving or presynaptic neurons are active
as long as their voltage Vi > Vth = 0: they are assumed to slow down
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FIG. 1. (a) Symmetric Poincaré return map for the phase-lags, 112 and 113, between the neurons is represented on unit square and features six fixed points (FPs): one
repeller at (0, 0) labeled with (light blue) ◦, five attractors labeled with blue, red, and green dots •, located near the default values (112,113) = (1/2, 1/2), (0, 1/2), (1/2, 0)
referred to as pacemakers (PM), along with black and purple dots (CW) and counter-clockwise (CCW) traveling wave (TW) FPs situated near (1/3, 2/3) and (2/3, 1/3),
respectively. The black crosses × represent saddles, whose separatrices partition the attraction basins (with matching colors) of the stable FPs, while arrows represent the

directions of the forward phase trajectories of the map. (b) Phase-lags, τ
(n)

21 and τ
(n)

31 are defined as the delays between upstrokes in the voltage traces of the reference blue
cell 1 and the following green cell 2 and red cell 3, normalized over the network period. (b1) The phase-locked PM rhythm and (b2) the CC TW rhythm corresponding to the
stable black and blue FPs of the map in panel (a). Parameters: Iapp = 0.419 and gji = 0.0015.

or inhibit the driven or postsynaptic neurons by the fast, unidirec-
tional synapses described by the fast threshold modulation (FTM)
given by

Gji

(

Vj, Vi

)

= gji (Vrev − Vi) 0
(

Vj

)

,

0
(

Vj

)

=
1

1 + e−100(Vj(t−D)−Vth)
,

(3)

without or with some varying time-delay regulated by the bifurca-
tion parameter D. The FTM formalism provides a clear distinction
between active “on” and driven “off” states of a neuron. The cou-
pling function 0

(

Vj

)

= 1 when the voltage Vj exceeds the synap-
tic threshold Vth = 0, and 0

(

Vj

)

= 0 if Vj < Vth. The coupling
strength is controlled by the maximal conductance gij with its default
value is 0.001, unless otherwise specified, to ensure weak coupling in
the network. The synapse can be inhibitory or excitatory depending
on the level of the reversal potential Vrev: if Vrev < Vi always, say,
−1.5, it is inhibitory; elevating the level to +1.5 makes the synapse
excitatory.

Time-delays are an inherent characteristic of neural signal
transmission in biological systems. Their inclusion in CPG models is
essential for accurately simulating biological signal propagation and
enhancing the models’ biological plausibility. Specifically, when the
time-delay equals kT (where k is an integer and T is the network
period), the system’s phase relationship remains unaffected, mir-
roring the behavior observed without time-delays. However, time-
delays that are not integer multiples of period T can significantly

alter the phase relationship, potentially leading to phase misalign-
ment and other complex dynamic behaviors. With this in mind, we
introduce synaptic time-delays into the three-cell neural network as
follows:

D = α · T, (4)

where 0 ≤ α ≤ 1 is a factor scaling down the network period T
remaining around 3.63 (in some abstract time units), provided the
coupling remains weak.

In what follows we will demonstrate that these three-cell gFN
networks can exhibit a variety of stable phase-locked rhythms,
including traveling waves, characterized by sequential cell firing,
and pacemakers, where one cell effectively inhibits the other two
and fires in anti-phase. The symmetric connections within the net-
work lead to the coexistence of multiple rhythms, a consequence
of the cyclic arrangement of the cells. We analyze the stability of
these cyclic rhythms using the Poincaré return map for phase-lags
between the constituent oscillatory neurons. Specifically, we define
the phase-lag between cells as the difference in time between their
burst initiations, identified by a threshold voltage crossing from
below.

To analyze bursting and rhythmic spiking in central pattern
generator (CPG) networks, we employ an oscillatory network com-
putational toolkit. This toolkit simplifies the analysis by reducing
it to a bifurcation analysis of phase-lags between oscillatory neu-
rons, performed using corresponding Poincaré return maps. The
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phase space structure of these maps provides a comprehensive char-
acterization of the CPG network’s functional properties. Because
CPG-generated rhythms [represented by the coupled gFN system
(3)] are recurrent, we can define Poincaré return maps based on the
phase-lags between spike/burst onsets of the constituent neurons.

To examine the stability of different recurrent rhythms gen-
erated in a network, we utilize the Poincaré return map method.
Initially, we introduce the computational concept and define the
phase-lags between the constituent cells, which are determined at
specific times when the cells crossed the threshold voltage from
below, indicating the start of a burst. The phase-lag of a cell is then
defined as the delay in its burst initiation relative to that of the ref-
erence cell 1, normalized over the bursting period. We define the
relative nth phase-lags, 1(n)

12 and 1
(n)
13 of cells 2 and 3, respectively, as

follows:

1
(n)
12 =

τ
(n)
2 − τ

(n)
1

τ
(n)
1 − τ

(n−1)
1

, 1
(n)
13 =

τ
(n)
3 − τ

(n)
1

τ
(n)
1 − τ

(n−1)
1

, (5)

where τ
(n)
j , (j = 2, 3) denotes the time at which the jth cell reaches

the threshold voltage, θth = 0, from below at the nth bursting cycle,
see Figs. 1(b1) and 1(b2).

Now, we define and examine how the structure of the
Poincaré return map 5 : Pn → Pn+1 (on mod 1) of phase points Pn

=
(

1
(n)
12 , 1(n)

13

)

in the forward trajectory {1
(n)
12 , 1(n)

13 } depends on the

time-delay 1
(n)
1j (j = 2, 3) in the burst initiation between the neurons

of the network.
The trajectories may converge to stable fixed points, whose

coordinates in the map correspond to the rhythms with specific
locked phase-lags, or converge to stable invariant circles on the torus
(the unit square), which correspond to distinct rhythmic patterns
characterized by periodically varying phase-lags. The presence of
single or multiple attractors in the corresponding 2D return map
is a de facto proof that the given neural network is either a dedicated
or a multi-functional/modal one.

The 2D return map of phase-lags, 5 : Pn → Pn+1, can be rep-
resented in the following formal form:

1
(n+1)
12 = 1

(n)
12 + µ1f1

(

1
(n)
12 , 1(n)

13

)

,

1
(n+1)
13 = 1

(n)
13 + µ2f2

(

1
(n)
12 , 1(n)

13

)

,
(6)

where µi represents the coupling strength and f1,2 are some unde-
termined coupling functions. Their zeros f1 = f2 = 0 are the fixed
points of the map 1

(∗)
1j = 1

(n+1)
1j = 1

(n)
1j . Similar to the phase reset

curves, these functions can be graphically evaluated from the simu-
lated return maps {1

(n)
12 , 1(n)

13 } presented in this study.
Poincaré return maps serve as effective “blueprints” of network

dynamics and the stability of rhythmic activity and have become a
valuable tool in computational neuroscience. These maps are typi-
cally constructed from voltage traces by identifying successive volt-
age maxima or minima or by analyzing interspike intervals. Using fi
as a quantile ∂F/∂ϕij, one can possibly reconstruct effective “phase
potentials” or coupling functions F(112, 113) = C that unambigu-
ously determine the dynamics of the network. This allows for the

identification of its critical points, which correspond to the attrac-
tors, repellers, and saddles within the atlas. Furthermore, scaling fi
enables the prediction of bifurcations caused by various perturba-
tions including delays, thereby forecasting the resultant changes in
the overall rhythmic outcome of the network.

A forward trajectory
{

1
(n)
12 , 1(n)

13

}

of the map runs on a 2D

torus, which, when flattened, is represented by a unit square. Phase-
lag values such as 0 (or 1 in mod 1) and 0.5 signify in-phase and
anti-phase, respectively, relationship between the reference cell 1
and two others.

In what follows, we will examine the evolution of the Poincaré
return maps, such as in Fig. 1(a) and the structure of its trajec-
tories originating off a dense population (on a 30 × 30 grid) of
initial phase-lags 112 and 113, and hence discuss indirectly prop-
erties of the corresponding three-cell networks. By computing long
sequences of the circuit’s firing activity and analyzing the resulting
phase-lag iterates, the latter ones eventually settle into an attractor,
which may be a fixed point [with fixed coordinates 1

(∗)
12 and 1

(∗)
13 in

Eq. (5)] in the 2D return map; its coordinates correspond to a stable
rhythmic outcome with the same phased-locked lags. All phase tra-
jectories that converge to the same fixed point are colored similarly,
thus highlighting its basin of attraction in the map. Smaller/larger
basins are associated with less/more observable rhythms generated
by the network in question.

For a start, let us focus on the map presented in Fig. 1(a).
This symmetric map for the homogenous three-cell network with
no delay in synapses coupling the gFN-neurons at Iext = 0.4 shows
five, stable FPs, whose color-mapped attraction basins are separated
by stable sets (separatrices) of the six saddles along with a repelling
FP near the origin. Notice that the total number of such structurally
stable FPs on the 2D torus is always even, which allows all of them
to annihilate in pairs through saddle-node bifurcations. The coordi-
nates of the stable FPs are indeed the phase-lags locked in the voltage
traces of the neurons. Specifically, due to the permutation symme-
try, there are three, the so-called pacemaker (PM) rhythm where
one cell regardless of its color or index bursts in anti-phase with
the other two ones in sync; for example, the red FP with the coor-
dinates

(

0, 1
2

)

, or equivalently (1, 1/2), as the Poincaré return map
for the phase-lags 112 and 113 is defined on mod 1. The other two
PMs are color-mapped in green and blue as long as their coordinates
remain close to (1/2, 0) and (1/2, 1/2), correspondingly. The other
two stable fixed points located at (1/3, 2/3) and (2/3, 1/3) in the
middle of the unit square correspond, respectively, to the sequential
clockwise (1 → 2 → 3) (CW) and counter-clockwise (1 → 3 → 2)
traveling waves (CCW TWs) or peristaltic rhythms stably produced
by the network. Note that if either one becomes unstable, say, for
example, through a secondary torus bifurcation, the corresponding
rhythm still exists but remains unstable or non-observable in the
network. Whenever a stable fixed point (FP) is displaced from its
original location by a delay or other synaptic perturbations, we use a
different color for its basin of attraction to distinguish it from other
stable and established FPs (see Sec. III).

To conclude this section, we note that trajectories of ODE
system (1) and (2) are numerically integrated using a fourth-
order Runge-Kutta method with a constant step size. The voltage
and phase-lag trajectories, initialized under various conditions, are
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FIG. 2. Four key network configurations with inhibitory delayed synapses. (a) Unidirectional clockwise motif (CC) with a single delayed synapse connecting cell 1 to cell 2.
(b) Unidirectional CC motif with all three delayed synapses. (c) Bidirectional motif with delayed synapses between cells 1 and 2. (d) Bidirectionally homogenous motif with all
delayed inhibitory synapses. The addition of time-delays is indicated by dashed lines in the accompanying diagram.

computed in parallel on a Tesla K40 GPU utilizing CUDA, while the
visualizations are generated in Python. The GPU parallelization lets
one obtain such scans in seconds. The constructed phase sequences
generated by the network change as time-delay is introduced and
varied via the parameter α. This method enables the determination
of the basins of attraction for coexisting attractors and reveals the
bifurcations through which fixed points emerge, vanish, or lose their
stability. These crucial details would be less evident from an analysis
of the voltage traces alone.

III. RESULTS

In the following analysis, we show how the inhibitory three-cell
network, by leveraging time-delays, generates several stable rhyth-
mic patterns by alternating the active and inactive states of its
constituent cells. Our analysis focuses on weakly coupled networks
to maintain the visual continuity of the Poincaré return map for the
phase-lags between weakly coupled neurons. The chosen sigmoidal
shape of the slow h-nullcline enables the system to exploit the bot-
tleneck effect associated with the saddle-node bifurcation, resulting
in a diverse range of rhythmic behaviors.

Below, we will present an in-depth bifurcation analysis on
several vital motifs of the three-cell network discussed above:

(1) Unidirectionally clockwise-connected (CW) motif with a single
synapse delaying the cell 2, see Fig. 2(a).

(2) Unidirectionally clockwise (CW) motif with delayed synapses,
see Fig. 2(b).

(3) Bidirectionally connected motif with a delayed pair-wise
synapse with two equally delayed synapses between cell 1 and
cell 2, see Fig. 2(c).

(4) Bidirectionally symmetric motif with all six equally delayed
synapses, see Fig. 2(d).

The introduction and variation of synaptic delays facilitate the
exploration of complex neural network dynamics, elucidating the
underlying mechanisms responsible for their evolving repertoire
and properties.

A. Clockwise motif with a single delayed synapse

Here, we focus on varying the length of time-delay by changing
the α-parameter in the unidirectional CW motif shown in Fig. 2(a)
where the cell 1 is coupled by a delayed inhibitory synapse with
the following cell 2. Note that whatever findings are true for this

motif are also applicable to other such three-cell networks with
connections permuted symmetrically. The map in Fig. 3 with a sin-
gle purple FP around (2/3, 1/3) demonstrates that the CCW TW
rhythm is the only one observed and generated by the unidirec-
tional CW motif with no delays. The occurrence of this sequential
CW TW cycle (1 → 2 → 3) implies that the activity of each fol-
lowing neuron is only affected by the preceding one, thus resulting
in establishing a stable phase-locked relationship from the consis-
tent cyclical inhibition. Note that this result is somewhat counter-
intuitive that the given CW three-cell motif produces the only stable
CCW rhythm. This result reinforces again and further demonstrates
that connectivity alone is insufficient to predict network function
without a thorough understanding of the underlying mechanisms

FIG. 3. The Poincaré return map corresponding to a unidirectional CW motif
[see Figs. 2(a) and 2(b)] with no delay (α = 0). There are total six FPs in it:
two repellers, at (0, 0) and (1/3, 2/3), labeled with ◦ (light blue), one attrac-
tor labeled with • and three saddles labeled with × that determine attraction
basin(s) of FPs. The stable purple CCW TW at (2/3, 1/3) is the global attractor
determining the mono-stable dynamics of the motif generating the only sequen-
tial (1 → 3 → 2) rhythm. A cyan hollow circle (◦) surrounded by three saddles
(×) nearby represents a repelling CW TW FP corresponding to a non-observable
rhythm (1 → 2 → 3).
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FIG. 4. Transformations in the 2D return map corre-
sponding to the unidirectional CC motif in Fig. 2(a) as the
time-delay is increased in the synapse connecting the blue
cell 1 with the green cell 2. (a–c) The transitioning map with
two attractors including a stable FP (light green) emerging
through a saddle-node bifurcation occurring near the ori-
gin, and the dominant (red PM) FP, corresponding to two
observable rhythms. (d) The motif becomes a mono-stable
one with its phase-locked (1 → 3 → 2) rhythm corre-
sponding to the CCW TW FP (purple) at (2/3 1/3). The
CW FP at (1/3,2/3) is a saddle with three stable and three
unstable separatrices (sets) corresponding to a co-existing
but non-observable rhythm in the motif. Black crosses ×

represent saddles including a complex, structurally unsta-
ble one at (1/3, 2/3) with six separatrices as black lines
hand-drawn and superimposed with the numerical map,
while cyan hollow circles represent unstable (repelling) FPs
and arrows indicate the directions of the forward phase tra-
jectories of the map. Parameters: α = (0.3, 0.5, 0.7, 0.9).

and intrinsic nonlinear dynamics of its constituent neurons and
synapses.

With a delay introduced in the single synapse one-way connect-
ing the reference cell 1 with the cell 2, two snapshots in Figs. 4(a) and
4(b) of the Poincaré return maps for phase-lags clearly demonstrate
what particular transformations the given CW motif [represented in
Fig. 2(a)] undergoes as the α-parameter progressively increased. The
originally mono-stable motif (Fig. 3) becomes a bistable one as the
map now reveals two stable coexisting FPs whose spatial positions
in the unit square, [0, 1] × [0, 1], or the 2D phase torus, continu-
ously change with increasing the time-delay due to D21, while D23

= D31 = 0. Introducing and increasing the time-delay causes the
stable dominant FP [originally purple CCW TW at (2/3, 1/3) to
move up and right from its initial position closer to (1, 1/2) in the
map, see Fig. 4(a)]. Accordingly, its basin is re-colored in red as this
position corresponds to the leading and dominant pacemaker—the
cell 3 of the network. This red PM FP now co-exists with another
stable FP around (0.2, 0.1) shown in light (fresh) green that has
emerged though a simple saddle-node bifurcation. Observe how the
separatrices (stable sets) of two saddles demarcate the borderlines
between the attraction basins, large and small, of these coexisting
FPs.

When the parameter α12 is increased further from 0.5 through
0.9, the comparison of the return maps in Figs. 3(b) and 3(c) helps
one figure out how these stable two FPs transition in the map.
The red stable FP shifts further right on the torus to re-emerge

on the left of the map where it meets with a saddle and anni-
hilate through another saddle-node bifurcation. Meanwhile, the
remaining stable (now black) FP gets closer to the position near
(2/3, 1/3) where it regains its original purple color correspond-
ing to the CCW traveling rhythm of this neural motif, as in its
case with no delay, with α12-values close +1, see Fig. 3(d). Conse-
quently, the motif reverts to its expected monostable state, compare
with the map in Fig. 3. However, there is a subtle yet principal
difference in these two cases. One can see that in the former case
the CW FT is a repeller, whereas in the last case it is a complex
saddle with six separatrices (sets), three stable and three unsta-
ble. This structurally unstable saddle is the result of the merger
of a stable or repelling FP with three nearby saddles through a
pitch-fork bifurcation (with four prongs) typical for equivariant sys-
tems with the S3-symmetry, as well as the 1:3 resonance with a
period-3 orbit on a circle due to rotation through the 2π/3-angle.55

This saddle, should α12 be brought closer +1 (or 0), will quickly
decompose into the repeller and three surrounding saddles as Fig. 3
reveals.

Note that the observed transitions are mediated by the delay
approaching a full period, thereby preserving the system’s phase
relationship. In this process, we observed the system transition
between two stable fixed points (FPs), with a corresponding shift
in their locations. Therefore, the time-delay affects not only the
stability of the FPs but also their spatial position, globally influencing
the dynamic behavior of this three-cell motif.
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FIG. 5. (a) The voltage traces and (b) time progressions of phase-lags112 and113 associated with the (purple) stable FP of the return map for the CW motif with the single
delayed synapse. The darker and lighter colors of the voltage traces V2 and V3 in (a) and the phase-lag progressions in (b) correspond to shorter and longer time-delays as
α is discretely increased from 0 through 0.7.

Figure 5 illustrates the time progressions of voltages recorded
from all three neurons, as well as the corresponding phase-lag
progression as the delay is varied from α = 0 through α = 0.7.
These diagrams are specifically based and reflect on the movement
of the stable (purple) CCW TW FP shown in the map (Fig. 4)
to provide a detailed explanation of the gradual changes of the
phase-lags in the specific rhythm generated by the motif under spe-
cific time-delays. While the time series representation presented in
Fig. 5(a) depicts the motif’s temporal evolution prior to reaching
a steady state, Fig. 5(b), illustrating the convergence of differing
initial phase-lag configurations to the stable, phase-locked states,
manifests a more comprehensive understanding of this mono-stable
convergence phenomenon.

B. Unidirectional CW motif with three delayed

synapses

In this section, we study the dynamics of the unidirectional CW
motif [depicted in Fig. 2(b)] with three equally delayed synapses.
The six snapshots in Fig. 6 illustrate the evolution of the Poincaré
return maps, and hence of the given motif, as delay due to the
α-parameter is increased.

Figure 6(a), computed with all three synapses initially delayed
with α = 0.2, reveals the bistability in this motif where the expected
CCW TW (compare with Fig. 3 with no delay) co-exists with
a stable FP (yellow) at the origin that corresponds to a fully

synchronous state, i.e., 112 = 0 and 113 = 0. Note that such syn-
chronous rhythms are typically observed in small neural networks
where all synapses are either electric or excitatory ones. Apparently,
this and some longer delays make fast inhibitory synapses act as
excitatory ones. Moreover, we can only hypothesize how this syn-
chronous FP becomes stable as intermediate transformation stages
are skipped as α is gradually increased with 0 to 0.2. There is basi-
cally a single bifurcation option that lets a repeller becomes an
attractor, which is an Andronov–Hopf bifurcation in systems with
continuous time, or a secondary torus bifurcation in systems with
discrete time that gives rise to the onset of a periodic orbit or an
invariant curve, respectively. The former case in the given Poincaré
return maps for phase-lags will be discussed in the concluding result
section of the paper, as detailed as possible in a computational paper
like ours. The presumed torus bifurcation, sub- or super-critical,
giving rise to an IC, is also accompanied with a heteroclinic connec-
tion between all three saddles nearby through which the round IC
emerges from or terminates into. Needless to add that the discrete
case can be more complex as one has to take into considerations
other factors, for example, a winding number on the IC that can
make it resonant before its possible breakdown, and so forth.

Figure 6(b) reveals that this new yellow FP at the origin
becomes nearly a global attractor of the map at a longer delay with
α = 0.3, after three saddles come close to block the attraction basin
of the CCW TW. Recall that the given attractor corresponds to the
fully synchronous rhythm in the CW motif under consideration.
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FIG. 6. Six snapshots of the Poincaré return maps corresponding to the unidirectional CC motif in Fig. 2(b) with all delayed synapses as the α-parameter is increased.
(a) The bistable map with a synchronous FP (yellow) near the origin and the CCW FP (purple). With further increasing α the attraction basins of the synchronous FP and
CCW TW FP become redistributed as the separating saddles move around the unit square. (b) The basin of the TW FP shrinks as three nearby saddles approach to reverse
its stability. (c) The repelling [in (b)] CW FP at (1/3 2/3) (black) becomes stable due to a reverse bifurcation. (d) Its basin expands while the basin of the synchronous (yellow)
FP shrinks with a further α increase after three saddles approach the latter to make it unstable. (e) The CCW FP (purple) regains its stability through a reverse bifurcation
and (f) becomes the only attractor of the map and the dominating (1 → 3 → 2) rhythm of the motif; here, the CW FP is a complex, structurally unstable saddle with six
separatrices and black lines hand-drawn and superimposed with the computed map. Black crosses represent saddles, cyan hollow circles represent unstable FPs, and arrows
indicate the directions of the phase trajectories of the maps. Parameters: α = (0.2, 0.3, 0.5, 0.7, 0.8, 0.98).

As the time-day becomes longer in Fig. 6(c), the purple CCW
TW becomes a repeller, whereas oppositely the repelling CW TW
FP becomes stable through a two-step transformation: first a hete-
roclinic triangle-shape connection between the saddles followed by
a secondary torus bifurcation. Increasing the time-delay in all three
inhibitory synapses of the motif causes the saddles move closer to
the yellow FP to first bound its basin in Fig. 6(d) and second make it
a repeller in Fig. 6(d). Meanwhile, the reverse bifurcation sequence
brings the CCW TW attractor at (2/3, 1/3) back to the map. When
the delay becomes larger, the attraction domain of the black CW TW
FP starts to shrink, and at some critical α-value it becomes unstable
so that the motif returns to its original monostable state. Figure 6(f)
depicts the very beginning of the stability loss of the CW FP where
it becomes a complex saddle with six separatrices at the moment

of its merger with three saddles nearby. Increasing α from 0.98 to
1.0 restores the status quo of this monostable unidirectional CW
motif, which as we have seen can be bistable when its synapses are
delayed within certain margins. Here, the motif can switch between
synchronous and traveling wave rhythms with perturbations applied
to its targeted neuron(s).

C. Bidirectional motif with two synapses equally

delayed

In such a motif, see its circuitry in Fig. 2(c), the delay is intro-
duced and regulated in two reciprocally inhibitory synapses between
the cell 1 and cell 2. It is evident that this should eventually break
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FIG. 7. (a) The symmetric Poincaré return map with a zero delay (α = 0) and (b)
its magnified fragment depicted near the repelling CW FP; borderlines between
the attraction basins are determined by the incoming or stable separatrices
(invariant sets) of the nearby three saddles labeled by ×.

down the S3-symmetry of the network, which is de facto a prerequi-
site for the existence of the CW and CCW TW rhythms, and of the
PM rhythms led by the selected cells.

Figure 7 depicts the return map for the phase-lags on the bidi-
rectional motif with no delays in its synapses. Here, the CW and
CCW rhythms cannot be observed as the corresponding FPs in the
map are unstable foci as one can observe from the magnified section
of the figure. It is easy to see from the map that such a symmetric
motif can only generate three PM rhythms with the same proba-
bility. Note that the map illustrates what is known as dynamical
uncertainty: starting from an initial phase difference close to either
unstable FP, the trajectory will spiral away heading toward one of the
stable PM FPs. Same is true for solutions close to the synchronous
state as well. This dynamical uncertainty has a significant impact on
the rhythmogenesis in such a motif: the traveling rhythms are no
longer observable, and after some transient this multi-modal motif

FIG. 8. Six snapshots of the Poincaré return maps corresponding to the bidirectional motif [Fig. 2(c)] with delayed synapses between cells 1 and 2. (a) Introducing the delay
unbalances the motif and forces the green and blue FPs to vanish simultaneously through simple SN-bifurcations, leaving the map being dominated by the red PM FP in
panel (b). Further α-parameter increase also breaks down the CW and CCW symmetries of the motif and hence annihilates the corresponding FPs with close saddles (×)
through SN-bifurcations in panel (c). As α increases from 0.5 to 0.7, the map demonstrates mono-stability due to a single periodic attractor—a stable invariant cycle (IC in
gray), emerging through a heteroclinic SN-bifurcations that wrap around the torus and corresponds to periodic phase shifting (PS) between the neurons 1 and 2. (e) The
purple and blue FPs re-emerge in the map through a reverse heteroclinic SN-bifurcations and so did the red PM though a simple SN-one in panel (f) to complete the full
round as α is increased to its upper limits. Arrows represent the directions of the phase trajectories of the return maps. Parameters: α = (0.04, 0.05, 0.3, 0.5, 0.8, 0.98).
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FIG. 9. Continued from Fig. 8(b): four identical panels are stitched together to
visualize and better understand how trajectories populate and wrap around the
phase torus, which is dominated by a single red PM at (0, 0.5). The saddles,
located nearby, cause two trajectories from close initial conditions to traverse dif-
ferent pathways (black lines hand-drawn and superimposed with the computed
map) leading toward the red FP.

stabilizes into one of the three PM rhythms [see Fig. 7(b)]. Exter-
nal perturbations applied to targeted neurons can trigger switches
between the three robust rhythms.

Figure 8 shows the evolution of the Poincaré return maps as
α is increased from 0.2 through 0.98. A short delay is introduced
to two inhibitory synapses between the cells 1 and 2 in order to
break down the S3-symmetry of this bidirectional motif. This is doc-
umented in Figs. 8(a) and 8(b) showing that both corresponding
blue and green PM FPs undergo saddle-node bifurcations that anni-
hilate them along with two saddles. One can see from Figs. 8(b) and
8(c) that the PM rhythm led by the red cell 3 remains the only one
in the repertoire of this motif, even though the TW FPs still exist in
the map.

Throughout an extended parameter range α ∈ [0.05, 0.7], the
motif’s dynamics is dominated by the red PM rhythm correspond-
ing to the stable red FP at (0,1/2) to which all trajectories converge
by following different paths (black curves) with variable converge
rates, as seen in Fig. 8(b). To better understand the transient dynam-
ics of the motif, and using the property that the map is defined on the
phase torus on modulo 1, one may find useful to consider four iden-
tical panels stitched together, as done in Fig. 9, to visually inspect
rather a “continuous” trajectory behavior.

Figure 8(d) illustrates a qualitative change in the motif’s behav-
ior. The previously observed rhythm with locked phases is replaced
by a rhythm characterized by periodically varying, or shifting,

phases. The map here has a single attractor, which is a stable invari-
ant curve (IC) that wraps around the phase torus, or the unit
square from its bottom to the top, passes sequentially throughout
the “ghosts” of the four disappeared FPs: the green PM one at (1/2,0),
the CCW TW one at (2/3,1/3), the blue PM one at (1/2,1/2), and the
CW TW FP at (1/2,2/3) to start over. In this case, the IC formation
undergoes two stages: two simultaneous SN-bifurcations through
which both TW FPs are eliminated, followed by the elimination
of the red FP thorough a homoclinic SN-bifurcation, whose stabil-
ity is inherited by the IC, which corresponds to the so-called phase
slipping rhythm. Note that besides the stable IC, the map has still
two FPs: a repeller close to the origin and a saddle located at the
position of the red FP near (0,1/2) or (1,1/2). Should the motif be
perturbed differently, both FP may merge too and vanish through
another homoclinic SN-bifurcation to produce a repelling IC. We
can hypothesize further with perturbations to force both ICs merge
and disappear as well, so that the torus will get covered densely by a
single trajectory.

Figure 8(e) validates our bifurcation scenario and shows that
the IC is replaced by the heteroclinic connection between two
saddle-node FPs that give rise to the two stable PM FPs located
on the IC ghost. Further increasing the delay with α = 0.98 com-
pletes the cycle; here the map gains all three stable PM FPs, including
re-emergent red one, at the fixed, pre-set locations.

D. Bidirectional motif with all delayed synapses

This is the final motif, presented in Fig. 2(d), with all six delayed
and manipulated synapses that we analyze in this study case.

Five panels of Fig. 10 present four snapshots of the return
map operating corresponding to the bidirectional motif with short
time-delays due to small value of the α-parameter. This symmetric
motif is dominated by three PMs, coexisting with two stable (gray)
ICs around repelling TW FPs that emerge simultaneously through
supercritical torus bifurcations in Fig. 10(a). These two ICs represent
the phenomena referred to as periodic “phase-jitter,” i.e., the phase-
lags of the neurons oscillate stable around the values (1/3, 2/3)
and 2/3, 1/3, depending on their initial states; it is observed in
various coupled systems, including neural networks49 and nonlin-
ear optics.56,57 These two quasi-periodic orbits (ICs) emerge off the
CW and CCW TW FPs as the zoomed Fig. 11(a) depicts. The
time progression of the corresponding voltage traces and phase-
lags reflect the periodical variations rather than fixed locked states,
see Figs. 11(b) and 11(c). One can foresee from this figure that
as the parameter is further increased, each IC becomes a one-way
heteroclinic orbit connecting three nearby saddles after which it
disintegrates.

Figure 10(b) reveals the further bifurcation unfolding of the
return map: both stable ICs increase in size and become domi-
nant attractors in the map after the PF bifurcations simultaneously
transform the red, green, and blue PM attractors into saddles at
same locations, (0, 1/2), (1/2, 0), and (1/2, 1/2), respectively. With
a longer time-delay, a plain saddle-node bifurcation occurs on the
bisectrix near the origin that makes it stable, see Figs. 10(b)–10(d).
Its basin quickly increases in size at α = 0.13 after both stable
ICs disintegrate when they reach the saddle FPs. A following SN-
bifurcation eliminates the repeller and the saddle on the bisectrix
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FIG. 10. Four snapshots of the Poincaré return map for
the bidirectional motif in Fig. 2(d) illustrate its transforma-
tions as all synapses are progressively delayed within a
short range [0.05, 0.15]. (a) This symmetric motif is dom-
inated by three PMs, coexisting with two stable (gray)
ICs (representing periodic phase-jitter phenomena) around
repelling TW FPs that emerged through supercritical torus
bifurcations. (b) As the time-delay is increased, the sta-
ble ICs become dominant after the PF bifurcations trans-
form the red, green, and blue PM attractors into saddles
at same locations, (0, 1/2), (1/2, 0), and (1/2, 1/2),
respectively. With a longer time-delay, a saddle-node bifur-
cation occurs on the bisectrix near the origin that makes it
a stable (yellow) FP. (c) Its basin quickly increases in size at
α = 0.13 after both stable ICs disintegrate when they
reach the saddle FPs. (d) Another SN-bifurcation elimi-
nates the repeller and the saddle on the bisectrix after
which the origin becomes the global attractor of the
map with two more repellers and three saddles. Arrows
represent the directions of phase trajectories includes
special ones color-selected. Parameters: α = (0.05, 0.1,
0.13, 0.15).

FIG. 11. A magnified fragment of the return map from Fig. 10(a) depicting a stable IC around the repelling CW FP at (112 = 2/3 and 113 = 1/3). (b) The corresponding
voltage traces and (c) the associated progressions of phase-lag jitters.
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after which the origin becomes the global attractor of the map,
which is de facto proof that the synchronous rhythm is the only one
generated by this motif.

Figure 12 showcasing the return maps is an extension of Fig. 10
for the bidirectional motif with longer time-delays. We can see
that the TW FPs regain, loose, and regain their stability as the α-
parameter is increased all the way up to 0.98, basically following the
same bifurcation mechanisms described above for the bidirectional
motif with short delays, which include forward and reverse torus and
pitch-fork bifurcations. In between the synchronous rhythm solely
determine the repertoire of the given motif. Two stable foci [black
and purple at (112 = 1/3, 113 = 2/3) and (112 = 2/3, 113 = 1/3),
respectively] existing in the map in Fig. 12(a) disappear in Fig. 12(c)
so that the yellow synchronous FP at the origin determines the exis-
tence of the only robust rhythm generated by the mono-stable neural
motif. The motif becomes bistable with two TW rhythms at longer

delays [Fig. 12(d)] before it becomes penta-stable as α approaches
its upper limit +1.

Recall that near a heteroclinic bifurcation, particularly one
yielding a stable, round invariant curve (IC), the period can become
arbitrarily large (logarithmically), as is determined by the num-
ber of iterations required for phase points to traverse a sad-
dle. Consequently, phase jitter frequency slows significantly near
the heteroclinic connection. Figure 11 illustrates this phase jit-
ter in voltage waveforms (panel b) and phase-lag oscillations
(panel c).

We would like conclude this section by elaborating on the torus
and heteroclinic bifurcations in the extended phase space presented
in Fig. 13 that depicts the key transformation stages occurring in
the map (bidirectional motif) near the TW FPs, specifically close to
the CW one at (1/2,2/3), as the α-parameter (time-delay) is varied
between 0.02 and 0.2.

FIG. 12. For panels of the Poincaré return map corresponding to the bidirectional motif in Fig. 2(d) with all six inhibitory synapses delayed equally. (a) The motif with a short
delay produces synchronous and two CW and CCW TW rhythms, corresponding, respectively, to the stable FP at the origin (0, 0) and at (1/3, 2/3) and (2/3, 1/3). (b) The
time progressions of phase-lags of the oscillatory neurons converging to the CW and CCW TWs (b1) and synchronous (yellow) state (b2) in the symmetric triple-modal motif
with delay due to fixed parameter α = 0.2. (c) Longer delays make both TW FPs repelling through the torus bifurcation, and the synchronous rhythm only observable. (d)
The TW FPs regains stability after the origin lost it. (e) The Poincaré return map with five stable FPs for a nearly symmetric bidirectional motif. Arrows represent the directions
of phase trajectories. Parameters: α = (0.2, 0.6, 0.7, 0.98).
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FIG. 13. This bifurcation diagram depicts key stages of the supercritical torus (or
secondary Andronov–Hopf) bifurcation and the heteroclinic bifurcation of the fixed
points (FPs) within the α-extended phase space. A paraboloid-shaped surface is
foliated by the stable, round invariant curve (IC) that emerges from the clockwise
traveling wave fixed point (CC TW FP). This invariant curve terminates in a het-
eroclinic connection between three surrounding saddle points. Subsequently, the
invariant curve re-emerges and collapses back into the original fixed point through
two reverse bifurcations. Solid lines represent the evolution of stable FPs, while
dashed lines indicate unstable FPs.

The bottom of the 3D bifurcation diagram is map where the
CW FP is a repeller at α = 0.02, which is surrounded by three sad-
dles nearby. As α is initially increased, the saddles form a one-way
heteroclinic connection (purple curve) or cycle that gives rise to the
onset of the stable round IC. As α is further increased, the size of the
stable IC starts increasing and next decreasing, so that it collapses
into the CW FP and makes it stable at 0.2 through a super-critical
torus bifurcation. Once can see a paraboloid-like surface foliated by
the shrinking IC. In this diagram, the solid and dashed lines rep-
resent the coordinate parameters of the stable FP and saddle FP,
respectively.

This bifurcation diagram offers deeper insights into the semi-
local dynamics of the bidirectional motif, thereby providing a valu-
able resource for a comprehensive understanding of nonlinear inter-
actions of the three coupled neurons. The exact location of the bifur-
cations can be accurately identified through a refinement process.

IV. CONCLUSIONS AND FUTURE DIRECTION

We conducted a case study on a three-cell neural network
weakly coupled by delayed inhibitory synapses. Our goal was to
demonstrate the network’s capacity for diverse, often counter-
intuitive, rhythmic outputs in response to time-delay variations.
These dynamic properties are determined by both synaptic prop-
erties and the individual neuron states. We analyzed several key
multi-modal motifs supporting both single and multiple rhythms,
depending on the synaptic time-delay. We also explored potential
switching mechanisms between robust rhythmic states in biologi-
cal systems. Using phase-lags between neurons, we computationally
generated Poincaré return maps from multiple voltage traces, pro-
viding a powerful framework for analyzing rhythmic behavior in
small neural networks with diverse synapses and circuitries. The use
of GPU computing enables rapid, parallel generation of these return
maps in seconds.

The computational tools presented here are designed to reflect
common features of electrophysiological experiments. Crucially,
our approach requires only voltage recordings from the model
cell, mirroring the typical constraints of experimental settings. Our
analysis is based on the phase derived from this voltage, the pri-
mary measurable variable in experiments. Furthermore, analogous
to experimental protocols, we control the initial phase distribution
by precisely timed inhibition release of neurons relative to a des-
ignated reference neuron. Our analysis relies exclusively on qual-
itative geometric methods from dynamical systems theory. While
we use a system of differential equations for illustrative purposes,
these methods can be applied directly to experimental data, obvi-
ating the need for explicit knowledge of the underlying model
equations. This approach, which analyzes phase-lag and return
maps independent of the system’s mathematical description, can
be generalized to a wide range of complex biological and engi-
neered systems. Examples include applications in engineering, eco-
nomics, population dynamics, dynamic memory, animal decision-
making,58 and the development of efficient robotic locomotion.59–61

These computational techniques provide a powerful means of com-
prehensively examining the rhythmic behavior exhibited by these
networks.

Investigating rhythmic transitions necessitates manipulating
the time lag of synaptic connections within different network
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architectures. In biological systems, such manipulations can be
achieved by altering the transmission properties of synapses,
through chemical interventions or external perturbations (current
pulses). These diverse network structures can generate a wide
range of rhythmic behaviors, including phase-locked ruptures cou-
pled with pacemakers or traveling waves, as well as cyclic phase-
slip chimeras. Changes in network parameters can induce a vari-
ety of bifurcations, such as saddle-node, torus, and secondary
Andronov–Hopf bifurcations, leading to the emergence or disap-
pearance of rhythmic states and the gain or loss of their stability.

Our findings reveal that traveling wave dynamics are the dom-
inant characteristic of single-connected central pattern generator
(CPG) motifs. Increasing time-delays leads to transitions between
distinct rhythmic patterns within the network, with traveling waves
becoming increasingly prevalent at higher delay values. Signifi-
cantly, this implies that the introduction of time-delay in single
connections is sufficient to predict the range of rhythmic behaviors
a given network can generate, even without prior knowledge of the
qualitative mechanisms underlying rhythm generation, escape or
release phenomena, or the quantitative strength of synaptic connec-
tions. This predictive capability is essential for designing verifiable
hypotheses in neurophysiological experiments investigating diverse
biological systems of coupled oscillators and CPG circuits. Finally,
we note that in central pattern generators, the mutual conversion
between two fixed points via a bifurcation frequently corresponds to
the system transitioning from one movement pattern to another, as
observed in gait transitions.

Central pattern generators (CPGs) play a crucial role in coor-
dinating limb movements in biological systems, enabling transitions
between different gaits. A clear example is the shift from walking (a
slow gait) to running (a fast gait) observed in horses. This transition
represents a shift between distinct stable equilibrium points cor-
responding to each gait. By analyzing bifurcation phenomena and
constructing phase diagrams, we can gain a deeper understanding
of the underlying mechanisms governing biological motion con-
trol. These insights provide critical theoretical foundations for the
design and development of both bio-mechanical devices and bionic
robots. Our results demonstrate that a doubly connected network,
when subjected to a single time-delay, exhibits a strong tendency
to remain at a single equilibrium point for extended periods. The
introduction of the time-delay promotes synchronization between
cell 1 and cell 2, while also facilitating the emergence of phase
slips, which allow the system to transition between multiple stable
points. Furthermore, in this delayed, doubly connected network, we
identified heteroclinic cycles. These cycles form the basis of the “no-
winner competition principle,” a mechanism that drives robust and
continuous behavioral repetitions in small neuronal networks. We
show that tracking invariant curves and heteroclinic cycles within
the phase-lag return maps enables the prediction and detection of
“hidden” bursting rhythms in the motif in question. These bifur-
cation phenomena provide the necessary theoretical framework for
understanding the ubiquitous phenomenon of phase jitter synchro-
nization, which has been widely reported in diverse applications
across both physical and life sciences.

Several avenues for future research emerge from this work.
First, incorporating time-delays into larger, modular neural net-
works built from smaller subunits62 warrants investigation. Second,

utilizing biologically plausible Hodgkin–Huxley-type bursters as
neural motifs could offer new insights into the resulting dynami-
cal behaviors. Third, the application of Poincaré return maps could
facilitate a comprehensive exploration of the full range of rhythmic
patterns generated by a given network. Finally, extending these find-
ings to more complex network architectures, including EI networks,
and exploring the implications of the odd cycle rule63 for deter-
mining the network’s oscillatory capacity promises to be a fruitful
direction for future research.
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