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Abstract In this paper we examine spiral structures in bi-parametric diagrams
of dissipative systems with strange attractors. First, we show that the organizing
center for spiral structures in a model with the Shilnikov saddle-focus is related
to the change of the structure of the attractor transitioning between the spiral and
screw-like types located at the turning point of a homoclinic bifurcation curve. Then,
a new computational technique based on the symbolic description utilizing kneading
invariants is proposed for explorations of parametric chaos in Lorenz like attractors.
The technique allows for uncovering the stunning complexity and universality of
the patterns discovered in the bi-parametric scans of the given models and detects
their organizing centers – codimension-two T-points and separating saddles.

1 Introduction

Several analytic and experimental studies, including modeling simulations, have
focused on the identification of key signatures to serve as structural invariants.
Invariants would allow dynamically similar nonlinear systems with chaotic
dynamics from diverse origins to be united into a single class. Among these key
structures are various homoclinic and heteroclinic bifurcations of low codimensions
that are the heart of the understanding of complex behaviors because of their roles
as organizing centers of dynamics in parameterized dynamical systems.
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One computationally justified approach for studying complex dynamics
capitalizes on the sensitivity of deterministic chaos. Sensitivity of chaotic
trajectories can be quantified in terms of the divergence rate evaluated through the
largest Lyapunov characteristic exponent. In several low-order dissipative systems,
like the Rössler model, the computational technique based on the largest Lyapunov
characteristic exponent reveals that they possess common, easily recognizable
patterns involving spiral structures in bi-parametric planes [1,2]. Such patterns have
turned out to be ubiquitously in various discrete and continuous-time systems [3],
and they are easily located, as spiral patterns have regular and chaotic spiral “arms”
in the systems with the Shilnikov saddle-focus [4–6].

Application of the Lyapunov exponents technique fails, in general, to reveal
fine structures embedded in the bi-parametric scans of Lorenz-like systems. This
implies that the instability of the Lorenz attractors does not vary noticeably as
control parameters of the system are varied. This holds true when one attempts
to find the presence of characteristic spiral structures that are known to theo-
retically exist in Lorenz-like systems [7], identified using accurate bifurcation
continuation approaches [8, 9]. Such spirals in a bi-parametric parameter plane of
a Lorenz-like system are organized around the T[erminal]-points; corresponding to
codimension-two, closed heteroclinic connections involving two saddle-foci and a
saddle at the origin, see Fig. 6. Such T-points have been located in various models
of diverse origins including electronic oscillators and nonlinear optics.

Despite the overwhelming number of studies reporting the occurrence of
spiral structures, there is still little known about the fine construction details
and underlying bifurcation scenarios for these patterns. In this paper we study
the genesis of the spiral structures in several low order systems and reveal the
generality of underlying global bifurcations. We will start with the Rössler model
and demonstrate that such parametric patterns are the key feature of systems
with homoclinic connections involving saddle-foci meeting a single Shilnikov
condition [10, 11]. The occurrence of this bifurcation causing complex dynamics
is common for a plethora of dissipative systems, describing (electro)chemical
reactions [12], population dynamics [13], electronic circuits [3, 14]. The other
group is made of models with the Lorenz attractor. Here we present a computational
toolkit capitalizing on the symbolic representation for the dynamics of Lorenz-like
systems that employ kneading invariants [15, 16].

2 Spiral Structures: Homoclinic Loop

One of the most paradigmatic examples of low-dimensional deterministic chaos is
the canonical Rössler system [17]:

Px D �.y C z/; Py D x C ay; Pz D b C z.x � c/;
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Fig. 1 Spirals and “shrimps” in the 1;000 � 1;000 grid biparametric bifurcation diagrams for
the Rössler model. The F-point of the hub is located at .a; c/ D .0:1798; 10:3084/. The color
bars for the Lyapunov exponent range identify the regions of chaotic and regular dynamics.
Left monochrome panels are superimposed with bifurcation curves: thin blue for saddle-nodes,
and thick black for homoclinic bifurcations of saddle-foci. The medium-thick green boundary
determines a change in the topological structure of chaotic attractors from spiral (at �) to screw-
shaped (at ?)

with two bifurcation parameters a and c (we fix b D 0:2). For c2 > 4ab the model
has two equilibrium states,P1;2.ap˙;�p˙; p˙/, wherep˙ D .c˙

p
c2 � 4ab/=2a.

This classical model exhibits the spiral and screw chaotic attractors after a period
doubling cascade followed by the Shilnikov bifurcations of the saddle-focus P2.

Bi-parametric screening of the Rössler model unveils a stunning universality of
the periodicity hubs in the bifurcation diagrams shown in Fig. 1 [5]. The diagram is
built on a dense grid of 1;000� 1;000 points in the .a c/-parameter plane. Solutions
of the model were integrated using the high precision ODE solver TIDES [18].
The color is related with the Lyapunov exponents, where dark and light colors
discriminate between the regions of regular and chaotic dynamics corresponding to
a zero and positive maximal Lyapunov exponent �1, respectively. The figure reveals
the characteristic spiral patterns due to variations of the Lyapunov exponents.

The chaotic-regular regions spiral around a F[ocal] point [3] located at
.a; c/ D .0:1798; 10:3084/. This F-point terminates the bifurcation curve (black)
corresponding to the formation of a homoclinic loop of the saddle-focus, P2,
in the phase space of the Rössler model [2]. Another curve (medium green) passes
through the F-point: crossing it rightward the chaotic attractor in the phase space of
the model changes the topological structure from spiral to screw-shaped.

The dark bifurcation curve in Fig. 1 corresponds to a formation of the homoclinic
orbits to the saddle-focus, P2, of topological type (1,2), i.e. with 1D stable and
2D unstable manifolds, in the Rössler model. Depending on the magnitudes of the
characteristic exponents of the saddle-focus, the homoclinic bifurcation can give
rise to the onset of either rich complex or trivial dynamics in the system [10,11,19].
The cases under considerations meet the Shilnikov conditions and hence the
existence of a single homoclinic orbit implies chaotic dynamics in the models within
the parameter range in the presented diagrams. We remark that the homoclinic
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Fig. 2 Outline of the spiral structures: (Top) phenomenological sketch of the spiral hub formed by
the “shrimps.” (Bottom) Magnification of the bifurcation portrait of the spiral hub, overlaid with
principal folded (thick red) and cusp-shaped (thin blue) bifurcation curves setting the boundaries
for largest “shrimps” in the Rössler model

bifurcation curve in the diagram (Fig. 1) has actually two branches, although very
close each other. This curve has a U-shape with the turn at the F-point.

Figure 2 outlines the structure of the bifurcation unfolding around the spiral
hub [2, 5]. The picture depicts a number of the identified folded and cusp-shaped
saddle-node bifurcation curves of periodic orbits, toward the spiral hub in the
.a; c/-parameter plane for the Rössler model. Note that none of these curves is
actually a spiral – the overall spiral structure must be supported by homoclinic
bifurcations. At this B-point, the saddle with real characteristic exponents becomes
a saddle-focus for smaller values of the parameter a.
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Fig. 3 (a) Heteroclinic connection (in dark color) between the saddle at the origin and two saddle-
foci (blue spheres) being overlaid with the strange attractor (green light color) on the background at
the primary T-point .r D 30:38; � D 10:2/ in the Lorenz model. Orange spheres on the butterfly
wings indicating the turning points around the right and left saddle-foci define the kneading
sequence entries, f˙1g, respectively. (b) A typical time evolution of either symmetric coordinate
of the right separatrix of the saddle

3 Homoclinic Spirals: Kneading Invariants for Lorenz
Like Systems

Chaos can be quantified by several means. One customary way is through the
evaluation of topological entropy. The greater the value of topological entropy, the
more developed and unpredictable the chaotic dynamics become. Another practical
approach for measuring chaos in simulations capitalizes on evaluations of the largest
(positive) Lyapunov exponent of a long yet finite-time transient on the chaotic
attractor.

A trademark of any Lorenz-like system is the strange attractor of the iconic but-
terfly shape, such as shown in Fig. 3. The “wings” of the butterfly are marked with
two symmetric “eyes” containing equilibrium states, stable or not, isolated from the
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trajectories of the Lorenz attractor. This attractor is structurally unstable [20, 21]
as it bifurcates constantly as the parameters are varied. The primary cause of
structural and dynamic instability of chaos in the Lorenz equations and similar
models is the singularity at the origin – a saddle with two one-dimensional outgoing
separatrices. Both separatrices densely fill the two spatially symmetric wings of the
Lorenz attractor in the phase space. The Lorenz attractor undergoes a homoclinic
bifurcation when the separatrices of the saddle change the alternating pattern of
switching between the butterfly wings centered around the saddle-foci. At such a
change, the separatrices comes back to the saddle thereby causing a homoclinic
explosions in phase space [22, 23]. Other important points, that act as organizing
centers, are the codimension-two T-points and separating saddles, but these points
cannot be detected by using Lyapunov exponents as we can see in Fig. 4, where on
the top we show the maximum Lyapunov exponent that cannot reveal the hidden
structures inside the chaotic region. Among these structures is a T-point, that form a
“kind” of “diamonds-mine” (middle pic) formed by homoclinic spirals as it can
be shown by detailed bifurcation analysis (bottom pic). Therefore, we focus on
presenting a new computational tool that locates automatically “all” the T-points.

The time progression of the “right” (or symmetrical “left”) separatrix of the
origin can be described geometrically and categorized in terms of the number
of alternations around the nonzero equilibrium states in the phase space of the
Lorenz-like system (Fig. 3). Alternatively, the description can be reduced to the
time-evolution of a coordinate of the separatrix, as shown in panel b of Fig. 3.
The sign-alternation of the x-coordinate suggests the introduction of a f˙1g-based
alphabet for the symbolic description of the separatrix. Namely, whenever the right
separatrix turns around O1 or O2, we record C1 or �1, respectively. For example,
the time series shown in panel b generates the following kneading sequence starting
with fC1;�1;�1;�1;C1;�1;�1;C1;�1; : : :g.

We introduce and demonstrate a new computational toolkit for the analysis of
chaos in the Lorenz-like models. The toolkit is inspired by the idea of kneading
invariants introduced in [15]. A kneading invariant is a quantity that is intended
to uniquely describe the complex dynamics of the system that admit a symbolic
description using two symbols, hereC1 and �1.

The kneading invariant for either separatrix of the saddle equilibrium state of the
Lorenz attractor can be defined in the form of a formal power series:

P.q/ D
1X

nD0
�n q

n: (1)

Letting q 2 .0; 1/ guarantees the series is convergent. The smallest zero, q�, if
any, of the graph of (1) in the interval q 2 .0; 1/ yields the topological entropy,
h.T / D ln.1=q�/.

The kneading sequence f�ng composed of only C1s corresponds to the “right”
separatrix of the saddle converging to an !-limit set with x.t/ > 0, such as a stable
focus or stable periodic orbit. The corresponding kneading invariant is maximized
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Fig. 4 (Top) Finite-time
largest-Lyapunov exponent,
Lmax, scan of the Lorenz
equation showing no sign of
spiral structures in the
.r; �/-parameter plane. The
dark region corresponds to
trivial attractors, where
Lmax 	 0, while the red color
indicates Lmax > 0 in chaotic
regions. The red dot points
out the position of the
primary T-point. (Bottom)
Original bifurcation diagram
of the Lorenz equation
depicting the two detected
T-points and primary
homoclinic bifurcation curves
from [7]

at fPmax.q/g D 1=.1� q/. When the right separatrix converges to an attractor with
x.t/ < 0, then the kneading invariant is given by fPmin.q/g D 1 � q=.1 � q/
because the first entry C1 in the kneading sequence is followed by infinite �1s.
Thus, ŒfPmin.q/g; fPmax.q/g� yield the range of the kneading invariant values; for
instance ŒfPmin.1=2/g D 0; fPmax.1=2/g D 2�.
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In computational studies of the models below, we will consider a partial kneading
power series truncated to the first 20 entries: P20.q/ D P20

nD0 �n qn. The choice of
the number of entries is not motivated by numerical precision, but by simplicity,
as well as by resolution of the bitmap mappings for the bi-parametric scans of the
models. One has also to determine the proper value of q: setting it too small makes
the convergence fast so that the tail of the series has a little significance and hence
does not differentiate the fine dynamics of the Lorenz equation for longer kneading
sequences.

At the first stage of the routine, we perform a bi-parametric scan of the model
within a specific range in the parameter plane. The resolution of scans is set by
using mesh grids of Œ1;000 � 1;000� equally distanced points. Next by integrating
the same separatrix of the saddle point we identify and record the sequences f�ng20
for each point of the grid in the parameter plane. The mapping is then colorized
in Matlab by using various built-in functions ranging between to Pmin

20 and Pmax
20 ,

respectively. In the mapping, a particular color in the spectrum is associated with a
persistent value of the kneading invariant on a level curve. Such level curves densely
foliate the bi-parametric scans. Now, we repeat the study for the Lorenz model with
the new technique in Fig. 5. Now we can observe that the T-points are revealed
automatically.

Besides, we examine the kneading-based bi-parametric scanning of the Shimizu-
Morioka model [8, 24]:

Px D y; Py D x � �y � xz; Pz D �˛zC x2I (2)

with ˛ and � being positive bifurcation parameters. The Z2-symmetric model has
three equilibrium states: a simple saddle, with one-dimensional separatrices, at the
origin, and two symmetric stable-foci which can become saddle-foci through a
supercritical Andronov-Hopf bifurcation.

This model was originally introduced to examine a pitch-fork bifurcation of the
stable figure-8 periodic orbit that gives rise to multiple cascades of period doubling
bifurcations in the Lorenz equation at large values of the Reynolds number. It
was proved in [9] that the Eqs. (2) would be a universal normal form for several
codimension-three bifurcations of equilibria and periodic orbits on Z2-central
manifolds. The model turned out to be very rich dynamically: it exhibits various
interesting global bifurcations [25] including T-points for heteroclinic connections.

The structure of the bifurcation set of the Shimizu-Morioka is very complex.
The detailed bifurcation diagram is shown in the top-left panel of Fig. 6. It reveals
several T-points, and multiples curves corresponding to an Andronov-Hopf (AH),
pitch-fork (PF), period doubling (PD) and homoclinic (H) bifurcations that shape
the existence region of the Lorenz attractor in the model. The detailed description
of the bifurcation structure of the Shimizu-Morioka model is out of scope of this
paper. The reader can find a wealth of information on bifurcations of the Lorenz
attractor in the original papers [9, 25].

The panels b and c of Fig. 6 is a de-facto proof of the new kneading invariant
mapping technique. The panel represents the color bi-parametric scan of the
dynamics of the Shimizu-Morioka model that is based on the evaluation of the first
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Fig. 5 (a) Kneading-based biparametric scan revealing multiple T-points and saddles that organize
globally complex chaotic dynamics of the Lorenz equation in the .r; �/ parameter plane. Solid-
color regions associated with constant values of the kneading invariant correspond to simple
dynamics dominated by stable equilibria or stable periodic orbits. The border line between the
brown and blue region corresponds to the bifurcation curve of the homoclinic butterfly. The
border line between the blue and yellow-reddish region corresponds to the formation of the Lorenz
attractor (below � ' 50). (b) Zoom of the vicinity of the primary T-point at (r D 30:4; � D 10:2)
to which a homoclinic bifurcation curve spirals onto (Data for the homoclinic curves (in blue) are
courtesy of Yu. Kuznetsov)

20 kneadings of the separatrix of the saddle on the grid of 1;000 � 1;000 points in
the .˛; �/-parameter region. Getting the mapping took a few hours on a high-end
workstation without any parallelization efforts. The color scan reveals a plethora
of primary, large, and small scale T-points as well as the saddles separating spiral
structures.
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Fig. 6 (Top-left) Detailed .˛; �/-parameter plane of the Shimizu-Morioka model obtained by
the parameter continuation method (Courtesy of [9]). Legend: AH stands for a supercritical
Andronov-Hopf bifurcation, H1 stands for the homoclinic butterfly made of two separatrix
loops; the codimension-two points corresponding to the resonant saddle P on H1 organizes the
bifurcation unfolding of the model; cod-2 point R10 stands for an orbit-flip bifurcation for the
double-loop homoclinics on H2. The thick line demarcates, with good precision, the existence
region of the Lorenz attractor bounded by LA1 and LA2. (Top-right and bottom) Two kenading
scans revealing multiple T-points and saddles that globally organize complex chaotic dynamics of
the Shimizu-Morioka model. Solid-color regions associated with constant values of the kneading
invariant correspond to simple dynamics dominated by stable equilibria (brown) or stable periodic
orbits (blue). The border between the brown and blue regions corresponds to the bifurcation curve
of the homoclinic butterfly

The solid-color zones in the mapping correspond to simple dynamics in the
model. Such dynamics are due to either the separatrix converging to the stable
equilibria or periodic orbits with the same kneading invariant (blue region), or to
the symmetric and asymmetric stable figure-8 periodic orbits (brown region).
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The borderlines between the simple and complex dynamics in the Shimizu-Morioka
model are clearly demarcated. On the top is the curve,LA1, (see the top-left panel of
Fig. 6). The transition from the stable 8-shaped periodic orbits to the Lorenz attractor
(through the boundary, LA2) is similar though more complicated as it involves a
pitch-fork bifurcation and bifurcations of double-pulsed homoclinics, see [9,25] for
details.

One can clearly see the evident resemblance between both diagrams found using
the bifurcationaly exact numerical methods and by scanning the dynamics of the
model using the proposed kneading invariant technique. The latter reveals a richer
structure providing finer details. The structure can be enhanced further by examining
longer tails of the kneading sequences. This allows for the detection of smaller-scale
spiral structures within scrolls of the primary T-vortices, as predicted by the theory.

4 Conclusions

We have examined two formation mechanisms of spiral structures in biparametric
mappings of systems with the Shilnikov saddle-focus and with the Lorenz attractor.
The feature of the spiral hubs in the Rössler model is that the F[ocal]-point
gives rise to the alternation of the topological structure of the chaotic attractor
transitioning between the spiral and screw-like types, as well as terminates the
primary homoclinic curves of the saddle-focus equilibrium state influencing the
forward-time dynamics of the model. The findings let us hypothesize about
universality of the structure of the spiral hubs in similar systems with chaotic
attractors due to homoclinics of the Shilnikov saddle-focus.

We have demonstrated a new computational toolkit for thorough explorations of
chaotic dynamics in models with the Lorenz attractor. The algorithmically simple
yet powerful toolkit is based on the scanning technique that maps the dynamics of
the system onto the bi-parametric plane. The core of the approach is the evaluation
of the kneading invariants for regularly or chaotically varying alternating patterns
of a single trajectory – the separatrix of the saddle singularity in the system. In the
theory, the approach allows two systems with structurally unstable Lorenz attractors
to be conjugated with a single number – the kneading invariant. The kneading scans
unambiguously reveal the key features in Lorenz-like systems such as a plethora
of underlying spiral structures around T-points, separating saddles in intrinsically
fractal regions corresponding to complex chaotic dynamics. We point out that
no other techniques, including approaches based on the Lyapunov exponents, can
reveal the discovered parametric chaos with such stunning clarity and beauty.

The method should be beneficial for detailed studies of other systems admitting
a reasonable symbolic description.
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