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a b s t r a c t

We performed a thorough bifurcation analysis of a mathematical elliptic bursting model, using a
computer-assisted reduction to equationless, one-dimensional Poincaré mappings for a voltage interval.
Using the intervalmappings, wewere able to examine in detail the bifurcations that underlie the complex
activity transitions between: tonic spiking and bursting, bursting and mixed-mode oscillations, and
finally mixed-mode oscillations and quiescence in the FitzHugh–Nagumo–Rinzel model. We illustrate
the wealth of information, qualitative and quantitative, that was derived from the Poincaré mappings, for
the neuronal models and for similar (electro)chemical systems.

© 2011 Elsevier B.V. All rights reserved.
1. Pointwise Poincaré mappings and elliptic bursting models

Activity types of isolated neurons and their models may be
generically classified as hyper- and depolarizing quiescence, sub-
threshold and mixed mode oscillations, endogenous tonic spiking
and bursting. Bursting is an example of composite, recurrent
dynamics comprised of alternating periods of tonic spiking
oscillations and quiescence. The type of bursting in which tonic
spiking oscillations alternate with sub-threshold oscillations is
often referred to as Mixed Mode Oscillations (MMO). Various
endogenous bursting patterns are the natural behavior rhythms
generated by central pattern generators (CPG) [1]. A CPG is a neural
network, or a mini circuit, controlling various vital repetitive
locomotive functions of animals and humans [2]. We contend that
understanding all plausible transitions of the activity patterns of
individual neuron models would allow for better understanding
of networked models. In this study we elaborate on the transition
mechanisms by revealing the underlying bifurcations between
neuronal activities on the elliptic bursting models of (inter)
neurons which are used as the building blocks in the CPG circuitry.

Bursting represents direct evidence of multiple time scale dy-
namics of a neuron. Deterministic modeling of bursting neurons
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was originally proposed and done within a framework of three-
dimensional, slow–fast dynamical systems. Geometric configura-
tions of models of bursting neurons were pioneered by Rinzel
[3,4] and enhanced in [5–8]. The proposed configurations are all
based on the geometrically comprehensive dissection approach, or
the time scale separation which have become the primary tools
in mathematical neuroscience. The topology of the slow motion
manifolds is essential to the geometric understanding of neuro-
dynamics. Through the use of geometric methods of the slow–fast
dissection, where the slowest variable of the model is treated as a
control parameter, it is possible to detect and follow the manifolds
made of branches of equilibria and limit cycles in the fast subsys-
tem. Dynamics of a slow–fast system are determined by, and cen-
tered around, the attracting sections of the slowmotion manifolds
[9–16].

The slow–fast dissection approachworks exceptionally well for
a multiple time scale model, provided the model is far from a
bifurcation in the singular limit. On the other hand, a bifurcation
describing a transition between neuron activities may occur from
reciprocal interactions involving the slow and fast dynamics of
the model. Such slow–fast interactions may lead to the emergence
of distinct dynamical phenomena and bifurcations that can occur
only in the full model, not in either subsystem of the model. As
such, the slow–fast dissection fails at the transition where the
solution is no longer constrained to stay near the slow motion
manifold, or when the time scale of the dynamics of the fast
subsystem slows to that of the slow system, near the homoclinic
and saddle node bifurcations, for example.
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Fig. 1. A point-wise mapping (black +) for the local v-maxima of the bursting
solutions starting from randomized initial conditions in the phase space of the
FitzHugh–Nagumo–Rinzel model at c = −0.7 and overlaid with the ‘‘continuous’’
mapping graph obtained using the proposed technique.

Activity transitions can pose a challenge as the dynamics of
a model may become complex and in many instances exhibit
deterministic chaos [17–24]. The spectrum of bifurcations and
dynamical phenomena that initiate bursting in the models of
mathematical neuroscience is rich and includes, but is not
limited to, period-doubling cascades, the blue sky catastrophe,
multistability, and the formation and subsequent breakdown of
a canard-torus in elliptic bursters. Transformative bifurcations
of repetitive oscillations, such as bursting, are most adequately
described by Poincaré mappings [25], which allow for global
bifurcation analysis. Time series based Poincaré mappings have
been heavily employed for examinations of voltage oscillatory
activities in mathematical neuroscience, as well as other applied
sciences [26–29], despite their limitation due to sparseness. Often
feasible reductions to mappings of the slowest variable can
be achieved through the aforementioned dissection tool in the
singular limit [30–34,25]. However, this method often fails for
elliptic bursters since no single valued mapping for the slow
variable can be derived for the particular slow motion manifold.

Elliptic bursters have been a focus of extensive studies, includ-
ing deterministic and stochastic modeling, see recently [35–39]
and references therein. Elliptic bursting models are not restricted
to the realm of neuroscience, however. A feature of elliptic bursters
is the occurrence of canard-based MMO [26–28] shown in In-
sets B of Fig. 3. MMOs are typical for excitable systems de-
scribing various (electro)chemical reactions, including the famous
Belousov–Zhabotinky reaction [29,40]. One way of examining the
core of MMO complex dynamics in such systems experimentally
and numerically is to reduce the model to the dynamics of a sin-
gle, significant variable, such as voltage in neuroscience. Fig. 1
demonstrates the pointwise mapping (black +) generated by the
local maxima of the voltage time series initiated from random ini-
tial conditions in the phase space of the FitzHugh–Nagumo–Rinzel
model, overlaid with a ‘‘continuous’’ mapping (blue) for contrast.
The approach, solely available in experimental studies, may typi-
cally reveal some selected fragments of the return mappings, very
similar to the mappings identified in the (electro)chemical reac-
tions [27,40,28], but not the mapping graph as a whole.

MMOs happen to be a typical phenomenon found in neuro-
physiology and have been found in elliptic bursters, and are tied
to the emergence of the Hopf-initiated canards [41–45] and the
references therein. The properties of MMOs, or broadly the cur-
rent description of transitions between bursting, tonic spiking and
subthreshold oscillations in elliptic bursters is incomplete and
presents a challenging problem for mathematical neuroscience
and the dynamical systems theory in general.
In this paper we refine and expound on the technique of
creating a family of one-dimensional mappings, proposed in
[18,46,47] for the leech heart interneuron, into the class of
elliptic models of endogenously bursting neurons. We will show
a plethora of information, both qualitative and quantitative, that
can be derived from the mappings to thoroughly describe the
bifurcations as such a model undergoes transformations. We also
demonstrate the power of deriving not only individual mappings,
but the additional benefits of having the entire family of mappings
created from an elliptic bursting model. We will also discuss
the limitations of our method and show the similarity of our
mappings to higher dimensional and biologically plausible models
of the elliptic bursters, namely: a bursting adaption of the classical
Hodgkin–Huxley model and a realistic Rubin–Terman model for
the external segment of the Globus Pallidus.

2. FitzHugh–Nagumo–Rinzel model

The mathematical FitzHugh–Nagumo–Rinzel model of the
elliptic burster is given by the following system of equations with
a single cubic nonlinear term:

v′
= v − v3/3 − w + y + I,

w′
= δ(0.7 + v − 0.8w),

y′
= µ(c − y − v);

(1)

here we fix δ = 0.08, I = 0.3125 an applied external current, and
µ = 0.002 is a small parameter determining the pace of the slow y
variable. The slow variable, y, becomes frozen in the singular limit,
µ = 0. We employ c as the primary bifurcation parameter of the
model, variations of which elevate/lower the slow nullcline given
by y′

= 0. The last equation is held geometrically in a plane given
by v = y−c in the three-dimensional phase space of themodel, see
Fig. 3. The two fast equations in (1) describe a relaxation oscillator
in a plane, provided δ is small. The fast subsystem exhibits either
tonic spiking oscillations or quiescence for different values of y
corresponding to a stable limit cycle and a stable equilibrium state,
respectively. The periodic oscillations in the fast subsystem are
caused by a hysteresis induced by the cubic nonlinearity in the first
‘‘voltage’’ equation of the model.

Stability loss of the equilibrium state in the fast subsystem is
known to be caused by a sub-critical Andronov–Hopf bifurcation
which occurs when an unstable limit cycle collapses onto the
equilibrium state. Both stable and unstable limit cycles emerge
in the fast subsystem through a saddle–node bifurcation. Using
a traditional slow–fast dissection, one can locate and continue
the corresponding branches, labeled by Mlc and Meq in Fig. 3,
composed of the limit cycles and equilibrium states respectively, of
the fast subsystem by varying the frozen y variable in the extended
(v, w; y)-phase space of the model (1).

Fig. 3(A) presents a 3D view of the slow motion manifolds
in the phase space of the FitzHugh–Nagumo–Rinzel model. The
tonic spiking manifold Mlc is composed of the limit cycles for
the model (1), both stable (outer) and unstable (inner) sections.
The fold on Mlc corresponds to a saddle–node bifurcation, where
the stable and unstable branches merge. The vertex, where the
unstable branch ofMlc collapses atMeq, corresponds to a subcritical
Andronov–Hopf bifurcation. The manifold Meq is the space curve
made from equilibria of the model. The intersection of the plane,
y′

= 0 with the manifold, determines the location of the
existing equilibrium state for a given value of the bifurcation
parameter c: stable (saddle-focus) if located before (after) the
Andronov–Hopf bifurcation point on the solid (dashed) segment
of Meq. The plane, y′

= 0, is called the slow nullcline, above
(below) which the y component of a solution of the model
increases (decreases). The plane moves in the 3D phase space as
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Fig. 2. (A) Transient solution in the FitzHugh–Nagumo–Rinzel model for c = −0.6192979 on the transition from chaotic tonic spiking (blue) to bursting (green), and (B) the
corresponding pointwise return mapping for the local v-maxima. Inset (C) gives the magnification of the mapping section revealing the period-doubling cascade preceding
the transition from tonic spiking to bursting (for comparison with the mappings in Figs. 13 and 14 obtained using the technique proposed in this paper). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. (A) Topology of the tonic spiking,Mlc , and quiescent,Meq manifolds. Solid and dashed branches ofMeq are made of stable and unstable equilibria of the model, resp.
The space curve, labeled by V ∗

max (in green) corresponding to the v-maximal coordinates of the periodic orbits composing Mlc . An intersection point of y′
= 0 with Meq is

an equilibrium state of (1). Shown in grey is the bursting trajectory traced by the phase point: the number of spikes per burst is the same as the number of turns the phase
point makes around Mlc . Spikes are interrupted by the periods of quiescence when the phase point follows Meq after it falls from Mlc near the fold. (B1) A voltage trace for
c = −0.67, displaying the voltage evolution in time as the phase point travels around the slowmotion manifolds. Green dots at the voltage maxima correspond to the green
spheres on V ∗

max in (A). (B2) While the maximal voltages in inset (B1) appear to be constant, enlarging the maxima reveals significant variations in the v-maximal values. (B3)
Enlargement for the subthreshold voltage oscillations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
the control parameter c is varied. When the slow nullcline cuts
through the solid segment of Meq, the model enters a quiescent
phase corresponding to a stable equilibrium state. Raising the
plane to intersect the unstable (inner) cone-shaped portion of Mlc
makes the equilibrium state unstable through the Andronov–Hopf
bifurcation, which is subcritical in the singular limit, but becomes
supercritical at a given value of the small parameter ε = 0.002,
see Fig. 6(A). Continuing to raise the slow nullcline by increasing
c gives rise to bursting represented by solutions following and
repeatedly switching between Meq and Mlc. Bursting occurs in the
model (1) whenever the quiescent Meq and spiking Mlc manifolds
contain no attractors, i.e. neither a stable equilibrium state nor a
stable periodic orbit exist. The number of complete revolutions,
or ‘‘windings’’, of the phase point around Mlc corresponds to the
number of spikes per burst. The larger the number of revolutions
the longer the active phase of the neuron lasts. Spike trains are
interrupted by periods of quiescencewhile the phase point follows
the branch Meq, onto which the phase point falls from Mlc near
the fold, see Fig. 3. The length of the quiescent period, as well
as the delay of the stability loss (determined mainly, but not
entirely, by the small parameter µ), begins after the phase point
passes through the subcritical Andronov–Hopf bifurcation onto
the unstable section of Meq. Further increase of the bifurcation
parameter, c , moves the slow nullcline up so that it cuts through
the stable cylinder-shaped section of the manifoldMlc far from the
fold. This gives rise to a stable periodic orbit corresponding to tonic
spiking oscillations in the model.

In this paper we are most interested in the scenarios or
the sequence of bifurcations which the solutions of the model
undergoes near the transitions between tonic spiking, bursting and
quiescence. MMOs occur at the transition between bursting and
quiescence. Prior to the onset of MMO, the model demonstrates
a plethora of small amplitude, subthreshold oscillations due to
the emergence and breakdown of an invariant torus, followed by
a period-doubling cascade involving unstable periodic orbits, see
Figs. 5(B) and 19.

The transition from tonic spiking and bursting is accompanied
by another sequence of period-doubling bifurcations. The bifurca-
tion startswhen the stable periodic orbit reaches the fold ofMlc and
becomes unstable, Fig. 5(A), depicting the first three stages of the
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Fig. 4. (V , c)-bifurcation diagram for the full model showing the intervals of tonic
spiking, bursting and quiescence in the model. All three branches of maximal Vmax ,
averaged ⟨V ⟩, and minimal Vmin values of the voltage variable of the periodic
orbits emerge from the subcritical Andronov–Hopf bifurcation (AH). Note two folds
corresponding to two saddle–node bifurcations occurring en route from bursting
to tonic spiking. Fig. 1 gives the corresponding 3D view of the tonic-spiking and
quiescent manifolds found parametrically, i.e. as the parameter c is varied, in the
phase space of the FitzHugh–Nagumo–Rinzel model.

B

A

Fig. 5. (A) Period-doubling cascades showing the large tonic spiking orbits of
period-1 at c = −0.6, period-2 at −0.6192 and of period-16 at −0.61926. (B)
Unstable subthreshold oscillations of period-1 at c = 0.894, period-4 at −0.89335
and chaotic at −0.89307.

cascade. Geometrically, this transition takes place while the slow
nullcline is lowered through the fold at ε = 0.002 on the space
curve ⟨v⟩ for the averaged values of the v coordinate of the peri-
odic orbits composing the slow-motion manifold,Mlc. The bifurca-
tion diagram in Fig. 4 elucidates there are at least two saddle–node
bifurcations involved in addition to the period-doubling cascade.
This is confirmed by the fragmentary pointwise mapping in Fig. 2
taken at the transition between tonic spiking and bursting.
A

B

C

Fig. 6. (A) Maximal Vmax , averaged ⟨V ⟩, and minimal Vmin branches plotted against
the averaged ⟨y⟩ variable of the periodic orbits moving along the tonic spiking
manifold Mlc as the bifurcation parameter c is varied. The slow nullcline ⟨y′

⟩ = 0
at c = −0.79 passes through the unstable segment of ⟨V ⟩ between the AH point
and the fold for bursting to occur in the model. (B) A zero, around 0.00105, of the
averaged function ⟨F⟩ defined in (2) plotted against ⟨y⟩ corresponds to a hyperbolic
equilibrium states of the average equation, and respectively to a stable periodic
orbit on Mlc . Inset (C) shows a zoomed-in section of the graph of ⟨F⟩ near the fold
in question, where the latter becomes amulti-valued function indicating the failure
of the averaging approach near the transition at c = −0.61.

2.1. Averaging method: pros and cons

The averaging method, introduced for slow–fast systems by
Pontryagin and Rodygin [13], may also be utilized. The averaging
method employs the detection of bifurcations for periodic orbits
by reducing the problem to stability analysis of corresponding
equilibrium states to a single average equation for the slow
variable, y in the model (1). The average equation is obtained
by making a parameter sweep for periodic orbits along the two-
dimensional manifold Mlc in the phase space of the entire model.
Suppose that the model, at µ = 0, has a T (y)-periodic orbit given
by v = ϕ(y, v0). Due to continuity the evolution of the y coordinate
of the phase point for |µ| ≪ 1 near the normally hyperbolic (i.e.
far from bifurcations) portion ofMlc can be evaluated in first order
approximation by the following average equation:

⟨y′(t)⟩ =
µ

T (y)

∫ T (y)

0
(c − y − ϕ(y, v0)) dt

≃ µ(c − ⟨y⟩ − ⟨v(y)⟩) , ⟨F(y, c)⟩, (2)

where ⟨v(y)⟩ is the v coordinate of the periodic orbit averaged
over the period. Note that Eq. (2) preserves the linear relation
of the arguments. The graph of the function ⟨F⟩ in the right-
hand side of (2) is shown in Fig. 6(B). A simple zero of ⟨F(y, c)⟩
is an equilibrium state, stable or not, of the average equation
that corresponds to a periodic orbit on Mlc of the whole model.
This periodic orbit could be stable, repelling (totally unstable),
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Fig. 7. Three sample orbits demonstrating the construction of the return mapping
T :Mn → Mn+1 defined for the points of the cross-section Vmax on the manifoldMlc .
Singling out the v coordinates of the points gives pairs (Vn, Vn+1) constituting the
voltage interval mapping at a given parameter, c .

or of the saddle type. The stability depends on: (1) location
on the stable/unstable, in the (v, w)-plane, section of Mlc and
(2) whether the graph of ⟨F(y, c)⟩ increases or decreases at the
given zero. Variations of the bifurcation parameter c translate
the graph of ⟨F⟩ vertically. The graph of the bi-folded average
function in the right-hand side of (2) is interpreted as follows:
the low section of the graph corresponds to ⟨F⟩ evaluated on
the stable, cylinder-shaped portion of Mlc, whereas the upper
section corresponds to ⟨F⟩ evaluated on the repelling, cone-shaped
portion which terminates at the Andronov–Hopf bifurcation. The
averaging technique elucidates whether there exists a periodic
orbit on either section of Mlc. The interpretation of the average
equation is ambiguous near the fold, when c = −0.61.

The bi-valued graph of ⟨F⟩ showing the separation into the
sections of Mlc is no longer obvious: the magnification of ⟨F⟩

in Fig. 6(C) indicates that there should be two saddle–node
bifurcations corresponding to double zeros of ⟨F⟩. One zero is
from a sharp cusp, whereas the other saddle–node, for a smaller
value of c , would yield a proper quadratic tangency typical for
such a bifurcation (this assertion is supported by examination
of the mappings in Fig. 7). Inset (C) of Fig. 6 shows that the
bifurcation sequence at this transition is more complex then a
trivial stability loss or disappearance of the round tonic spiking
orbit at the fold. Consequently, we need tools more advanced than
the slow–fast dissection or average differential equation (2) for the
global examination of the dynamics of the model. Examination of
the global dynamics can be accomplished through a reduction to
the interval Poincaré returnmappings, which allow for an accurate
description of complex oscillatory behaviors and bifurcations, such
as period doubling, for solutions of the model.

3. Voltage interval mappings

Methods of the global bifurcation theory are organically suited
for examinations of recurrent dynamics such as tonic spiking,
bursting and subthreshold oscillations [41,48,49], as well as their
transformations. The core of the method is a reduction to and
derivation of a low dimensional Poincaré return mapping with
an accompanying analysis of the limit solutions; fixed, periodic
and homoclinic orbits each representing various oscillations in
the original model. Mappings have been actively employed in
computational neuroscience, see [50,30,31,44,45] and references
therein. It is customary that such a mapping is sampled from
voltage traces, for example by identifying successive voltage
maxima, minima, or interspike intervals [51], Fig. 3(B1). Notice
that the v-maxima in the voltage trace, Fig. 3(B1), appear
constant. However, the enlargements in Insets (B2) and (B3) show
considerable variation in the v-maxima of the voltage traces. A
drawback of a mapping generated by time series is sparseness,
see Fig. 1, as the construction algorithm reveals only a single
periodic attractor of a model, unless the latter demonstrates
chaotic or mixing dynamics producing a large variety of densely
wandering points. Chaos may also be evoked by small noise
whenever the dynamics of the model are sensitively vulnerable
to small perturbations that do not substantially re-shape intrinsic
properties of the autonomousmodel [47,39]. Small noise, however,
can make the solutions of the model wander, thus revealing the
mapping graph.

A computer-assistedmethod for constructing a complete family
of Poincaré mappings for an interval of membrane potentials
for slow–fast Hodgkin–Huxley models of neurons was proposed
in [46] following [52]. Having a family of such mappings we
are able to elaborate on various bifurcations of periodic orbits,
examine bistability of coexisting tonic spiking and bursting, and
detect the separating unstable sets that are the organizing centers
of complex dynamics in any model. In this paper we employ and
enhance this technique to understand the bifurcations underlying
the transitions between various activity types in the models of the
elliptic bursters. Examination of the mappings will help us make
qualitative predictions about transitions before the transitions
occur in models.

By construction, the mapping T takes the space curve V ∗
max into

itself after a single revolution around the manifold Mlc, Fig. 7, i.e.
T : Vn → Vn+1. This technique allows for the creation of a
Poincaré return mapping; taking an interval of the voltage values
into itself. The found set of matching pairs (Vn, Vn+1) constitutes
the graph of the Poincaré mapping for a selected parameter
value c . Provided the number of paired coordinates is sufficiently
large and applying a standard spline interpolation we are able to
iterate trajectories of the mapping, compute Lyapunov exponents,
evaluate the Schwarzian derivative, extract kneading invariants for
the topological entropy, and many other quantities.

Varying the parameter, c , we are able to obtain a dense family
that covers all behaviors, bifurcations and transitions of the model
(1). A family of the mappings for the parameter, c , varied within
the range [−1, −0.55] is shown in Fig. 8. Indeed, for the sake of
visibility, this figure depicts a sampling of mappings that indicate
evolutionary tendencies of the model. A thorough examination
of the family allows us to foresee changes in model dynamics.
A family of mappings allows us to analyze all the bifurcations
whether stable or unstable fixed and periodic orbits including
homoclinic and heteroclinic orbits and bifurcations. By following
the mapping graph we can predict a value of the parameter at
which the corresponding periodic orbit will lose stability or vanish,
for example giving rise to bursting from tonic spiking.

A fixed point, v⋆, is discerned from the mapping as an
intersection of the graph with the bisectrix. Visually we determine
the stability of the fixed point by the slope of the graph at the
fixed point. If the slope of the graph is less than 1 in absolute
value the point is stable. When the slope of the graph at the fixed
point is greater than 1 in absolute value the fixed point is unstable.
Alternatively stability may be determined from forward iterates
of an initial point in the neighborhood of the fixed point which
converges to the fixed point. Two generic bifurcations through
which a stable fixed point becomes unstable or disappears in a
plane are: (1) a flip (period-doubling bifurcation), and (2) fold
(saddle–node), respectively. The latter occurs when the mapping
graph becomes tangent to a bisectrix. Prior to the fold bifurcation
there are two fixed points, stable and unstable, on the bisectrix.
After the bifurcation, both fixed points have merged and been
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Fig. 8. Coarse sampling of the c-parameter family of the Poincaré returnmappings
T : Vn → Vn+1 for the FitzHugh–Nagumo–Rinzel model at µ = 0.002 as c
decreases from c = −0.55 to c = −1. The grey mappings correspond to the
dominating tonic spiking activity in themodel. The greenmappings show themodel
transitioning from tonic spiking to bursting. The blue mappings correspond to the
bursting behavior in themodel. The redmappings show the transition frombursting
to quiescence. The orange mappings correspond to the quiescence in the model. An
intersection point of a mapping graph with the bisectrix is a fixed point, v⋆ , of the
mapping. The stability of the fixed point is determined by the slope of the mapping
graph, i.e. it is stable if |T ′(v⋆)| < 1. Nearly vertical slopes of graph sections are
due to an exponentially fast rate of instability of solutions (limit cycles) of the fast
subsystem compared to the slow component of the dynamics of the model.

annihilated through the tangency. The flip bifurcation, as a super-
critical flip for example, gives rise to the emergence of a period-
2 orbit after the fixed point loses stability, where the multiplier
becomes less than −1. Flip bifurcations often initiate a period-
doubling cascade bifurcation. In our case, such a cascade will be
shown to cause chaotic subthreshold oscillations and, once mixed
with large amplitude bursting, will give rise to MMO.

3.1. Materials and methods

Paramount to the process of creating the voltage interval return
mapping is the generation of the slow motion manifolds for the
model.We have developed a practical approach for the localization
of manifolds in the phase space of a slow–fast neuronal model
using the parameter continuation technique [53]. The core of the
parameter continuation technique is to scan the static manifold
in question by translating the slow nullcline in the phase space
as the bifurcation parameter is varied. This is possible since a
feature of a slow–fast model is that the solutions are constrained
to stay near the slow-motion manifolds that are composed of
equilibria and periodic orbits of the fast subsystem. Let there
be a stable, round periodic orbit of the entire model (1) for
some c on the outer section of the tonic spiking manifold Mlc.
Variations of c moving the slow nullcline in the v-direction make
the periodic orbit slide along Mlc, thereby revealing the manifold.
Hence without slow–fast dissection, but rather by parametrically
continuing the periodic orbit, we detect the sought manifold Mlc,
see Fig. 4. This parameter continuation approach yields the slow
manifolds themselves for a given ε. We stress that our approach
has been proven to work exceptionally well for several high-
dimensional (12D and 14D) models of neurons [46] (including
the 5D Terman–Rubin model below), in which application of the
standard slow–fast dissection for accurately singling out several
subsystems becomes problematic due to the presence of multiple
time scales of the state variables.

The slowmotionmanifold,Mlc, is found by following the branch
of the periodic orbits of the model starting from a subcritical
Andronov–Hopf bifurcation using the parameter continuation
software package CONTENT 1.55 [53]. Each of 5840 orbits are
sought with a mesh of 401 points. To determine the exact location
corresponding to a local maximum v′

= 0, we use a close point
from the mesh data to shoot a solution by integrating the full
model in the MATLAB ode15s solver with events set as follows:
absolute tolerance 10−11, relative tolerance 10−11, BDF ‘on’. We
repeat this process for each limit cycle of the manifold, hence
creating the smooth curveV ∗

max (green in Fig. 3).We then utilize the
set {V ∗

max} as initial conditions and integrate the model (1) again;
stopping integration when the next maxima is reached for each
member of {V ∗

max}. Thus we created a new set of pairs (Vn, Vn+1),
where Vn ∈ {V ∗

max} and Vn+1 is found from integration of the
model (1), see Fig. 7. We then graph the pairs (Vn, Vn+1) and used a
cubic spline to computationally smooth the data. This allows us to
compute trajectories of the mappings. Hence we create continuous
(computationally smooth) mappings that can be fully analyzed.

4. Qualitative analysis of mappings

The family of mappings, given in Fig. 8, allows for global
evolutionary tendencies of the model (1) to be qualitatively
analyzed. One can first see the flat mappings in grey have a single
fixed point corresponding to the tonic spiking state.We can further
deduce the saddle–node bifurcation that gives birth to the two
unstable fixed points, at the mapping and bisectrix crossing. The
fixed points diverge from each other and one fixed point moves
towards the stable fixed point in the upper corner. We can now
predict that bursting will be born through another saddle–node
bifurcation. The green mappings show the actual transition and
saddle–node bifurcation after which we have regular bursting
patterns, bluemappings.We also see the other unstable fixed point
clearly moving to the lower corner. The red mappings indicate the
transition from bursting to quiescence, as the fixed point changes
stability.

Amajor benefit of using the voltage interval mapping is that we
are able to understand transitions between the activity states of the
model by analyzing and comparing the bifurcations between the
states. Activity transitions commonly occur in a slow–fast model
near the bifurcations of the fast subsystem where the description
of dynamics in the singular limit is no longer accurate because
of the failure of (or interpretation of) the slow–fast dissection
paradigm. This happens, for example, when the two-dimensional
fast subsystem of the model (1) is close to a saddle–node
bifurcation (near the fold on the tonic spiking manifoldMlc) where
the fast dynamics become of the time scale of the slow subsystem.
Such an interaction may cause new peculiar phenomena, such as
torus formation and subsequent breakdown near the fold on the
spiking manifold [54,44]. We return to the torus bifurcation in the
Discussion section below. We now turn our attention to a more
thorough analysis of the individual mappings.

4.1. Transition from tonic spiking to bursting

Figs. 9–13 elucidate the transformative stages of the voltage
mappings for c ∈ [−0.594, −0.620625] as the dynamics
transform from periodic tonic spiking to complex bursting while
the FitzHugh–Nagumo–Rinzel model is being ‘‘hyperpolarized’’. It
should be stated again that though the given model is a purely
phenomenological model with variables and parameters without
any biophysical correlation to exactmodels of neurons, it produces
dynamics with vivid similarities typical for the many models
within the elliptic bursting class and real neurons.
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Fig. 10. (A) Poincaré mapping at c = −0.595 depicts the formation of 2 unstable fixed points immediately after a saddle node bifurcation. (C) Poincaré mapping at
c = −0.615 depicts the beginning of a hidden transformation aimed to terminate the tonic spiking stable fixed point TS through the secondary saddle–node bifurcation. (B
and D) The corresponding traces of maximal voltage values.
We begin where the model is firmly in the tonic spiking regime
at c = −0.59. Tonic spiking is caused by the presence of a
stable periodic orbit located far from the fold on the manifold Mlc
(Fig. 3). The only v-maximum of this orbit corresponds to a stable
fixed point, labeled TS in Fig. 9(A). The flat section of the mapping
graph adjoining the stable fixed point clearly indicates a rapid
convergence to the point in the v-direction, as shown by the trace
in inset (B). The point, Q, of the mapping located at the quiescent
level atV = −1 corresponds to the terminal vertexwhere the tonic
spiking manifold, Mlc, merges with the quiescent manifold, Meq,
through the subcritical Andronov–Hopf bifurcation, Fig. 3. Here the
slope of the mapping reflects the exponential instability (stability)
of the quiescent (tonic spiking) branch,made of unstable equilibria
and stable limit cycles of the fast subsystem of the model.

We next examine the mapping in Fig. 9(C), (D), taken for the
parameter c = −0.594255. Compared to the upper mapping
branches in the family represented in Fig. 8, one can clearly spot
a definite trend resulting in a change of the mapping shape where
the convex portion has begun turning into a cusp around V0 ≈

1.1, Fig. 9(C), (D). The formation of the cusp is an indication of a
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Fig. 12. (A) Chaotic bursting in the mapping at c = −0.62. Fixed point TS has become unstable thus initiating a cascade of period-doubling bifurcations, as the local
segment of themapping graph near TS changes concavity. The shape of themapping elucidates the effects of small perturbations on themodel, which could result in iterates
at drastically different locations caused by the chaotic behavior. Each spike train is followed by a quiescent period to the left from the threshold UP1 , separating it from the
spiking zone (on the right). (B) Chaos is clearly evident in the voltage trace as bursts vary in length (number of spikes) and amplitude. (C) The magnification of the right
upper corner of themapping reveals that chaotic bursting is due to a cascade of period-doubling bifurcations that locally raises the instability level of themapping. (D) Upper
portion of chaotic burst trains.
change in dynamics for the mapping. Thus the mapping insinuates
a transition in dynamics of the model (1) prior to it becomes
noticeable in the model itself. Note that the maximal voltage trace
provides no indication of any eminent transition in the model’s
behavior.

The mapping in Fig. 10(A) and (B), taken for the parameter
c = −0.595, clearly illustrates that after the cusp has dropped
below the bisectrix, then two additional fixed points, UP1 and
UP2, are created. UP1 and UP2 have emerged through a preceding
fold or saddle–node bifurcation taking place at some intermediate
parameter value between c = −0.594255 and c = −0.595. We
draw the reader’s attention to the (v, c)-bifurcation diagram in
Fig. 4. The diagram reveals two turning points labeled SN1 and
SN2, corresponding to saddle–node bifurcations that occur near the
geometric fold on the tonic spiking manifoldMlc. The saddle–node
bifurcation in the mapping here corresponds to the turning point
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Fig. 13. (A) Return mapping at c = −0.620625 demonstrates regular bursting with six spikes per burst followed by a single quiescent point located to the left from the
thresholdUP1 . This period-6 bursting orbit co-existswith a stable fixed point TS that has a narrow attraction basin. (B) The corresponding bursting trace. (C) Themagnification
of the right upper corner of the mapping c = −0.620625 shows the coexistence of a stable tonic spiking fixed point (TS) and period-6 bursting orbit. Both points, TS and
UP2 , are about to annihilate through a saddle–node bifurcation. (D) Voltage trace shows that the magnitude of spikes does decrease to the end of the burst. The number of
the spikes per burst equates to the number of iterates the phase point makes near the section of the mapping tangent to the bisectrix.
SN1 occurring on route from tonic spiking to bursting. Again, let us
stress that the singular limit of the model at µ = 0 gives a single
saddle–node bifurcation through which the tonic spiking periodic
orbit loses stability after it reaches the fold on the tonic spiking
manifold. We point out that for an instant the model becomes
bistable right after the saddle–node bifurcation in Fig. 9 leading
to the emergence of another stable fixed point with an extremely
narrow basin of attraction. Here, as before the hyperbolic tonic
spiking fixed point, TS, dominates the dynamics of the model.

Fig. 10(C) demonstrates that as the parameter is decreased
further to c = −0.615, the gap between the new fixed
points widens as the point UP2 moves toward the stable tonic
spiking point, TS, to form a fold, SN1 corresponding to the
second saddle–node bifurcation on the route from tonic spiking
to bursting documented in the diagram in Fig. 4. Through this
saddle–node bifurcation, these fixed points merge and annihilate
each other; thereby terminating the tonic spiking activity in the
FitzHugh–Nagumo–Rinzel model. Before that happens, several
bifurcations involving the fixed point, TS, drastically reshape the
dynamics of the model. First, the multiplier becomes negative
around c = −0.619, that is the first indication of an impending
period-doubling cascade. This is confirmed by the mapping at
c = −0.6193 in Fig. 11(C) and (D) showing that the fixed point
has become unstable through the supercritical period-doubling
bifurcation. This period-doubling bifurcation gives rise to a stable
period-2 tonic spiking orbit in the mapping and to a stable orbit of
the doubled period compared to that of the pre-bifurcating tonic
spiking orbit in the phase space of the model (1). The location
of the period-doubling bifurcation may be identified by simple
geometric means in the bifurcation diagram in Fig. 4. Indeed, let us
observe that once the fixed point becomes unstable, the multiplier
becomes less than −1. Geometrically this implies that the fixed
point slides from the concave up to the concave down section of the
mapping graph. Therefore the inflection point between the folds
in the bifurcation diagram, Fig. 4, corresponds to the given period-
doubling bifurcation. Another inflection point, labeled PD, on the
unstable branch in the diagram corresponds to a period-doubling
bifurcation of a subthreshold periodic orbit discussed below.
The new-born period-2 orbit becomes the new tonic spiking
attractor of the mapping. Observe from the voltage trace in
Fig. 11(B) and (C) the long transient bursting behavior, thus
indicating that boundaries of the attraction basin of the period-
2 orbit become fractal. Next, the model approaches bursting
onset, chaotic at first as represented in Fig. 12. This figure
depicts the behavior of the mapping at c = −0.62 and
shows the rapid bifurcation sequence that eliminates the period-
2 attractor causing the mapping to initiate chaotic dynamics at
the transition from tonic spiking to bursting. Correspondingly, the
FitzHugh–Nagumo–Rinzel model starts generating chaotic trains
of bursts with randomly alternating numbers of spikes per burst.
The number of spikes depends on how close the trajectory of the
mapping comes to the unstable (spiraling out) fixed point, TS, that
is used to represent the tonic spiking activity. Each spike train is
interrupted by a single quiescent period. The fixed point UP1 sets
a threshold between the quiescent (left) and tonic spiking (right)
sections of the mapping graph. This unstable point corresponds to
a saddle periodic orbit of themodel, that is located on the unstable,
cone-shaped section of the tonic spiking manifold Mlc in Fig. 3.
Recall that this saddle periodic orbit is repelling in the fast variables
and stable in the slow variable.

By comparing Figs. 9–12 one could not foresee that the
secondary saddle–node bifurcation eliminating the tonic spiking
fixed point TS, or corresponding round stable periodic orbit on the
manifold Mlc, would be preceded by a dramatic concavity change
in the mapping shape causing a forward and inverse cascade of
period-doubling bifurcations right before the tonic spiking orbit
TS. Observe that regular or periodic bursting emerges before the
disappearance of the tonic spiking orbit through the saddle–node
bifurcation, see Fig. 13. The corresponding fixed point, TS,
becomes stable again through a reverse sequence of period-
doubling bifurcations before annihilating through the secondary
saddle–node bifurcation. However, the basin of attraction becomes
so thin that bursting begins to dominate the bi-stable dynamics
of the model. Note that the bursting behavior becomes regular as
the phase point passes through the upper section of the mapping
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Fig. 14. (A) Periodic bursting with five spikes in the Poincaré interval mapping for the FitzHugh–Nagumo–Rinzel model at c = −0.625. The single unstable fixed point UP1
separates the tonic spiking section of themapping from the quiescent or subthreshold section (left). The number of iterates of the phase point adequately defines the ordinal
type of bursting (B). Note the presence of a small hump around (V0 = 1.6, V1 = −0.5) which is an echo of the saddle–node bifurcation. (C) Poincaré return mapping at
c = −0.89. The model is further hyperpolarized as the threshold, UP1 moves further leftward so that the phase point makes more subthreshold oscillations, here nine, after
a single spike per burst. (D) The voltage trace of 1–9 bursting: a single high amplitude spike is followed by nine subthreshold oscillations.
tangent to the bisectrix. The number of iterates that the orbit
makes here determines the duration of the tonic spiking phase of
bursting and is followed by a quiescence period initially comprised
of a single iterate of the phase point to the right of the threshold
UP1. The evolution of bursting into MMO and on to subthreshold
oscillations will be discussed in the next section.

4.2. From bursting to mixed-mode oscillations and quiescence

The disappearance of the tonic spiking orbit, TS, accords
with the onset of regular bursting in the mapping and in the
FitzHugh–Nagumo–Rinzel model (1). In the mapping a bursting
orbit is comprised of iterates on the tonic spiking and quiescent
sections separated by the unstable threshold fixed point, UP1, of
themapping, Fig. 14. The shape of the graphundergoes a significant
change reflecting the change in dynamics. The fixed points in
the upper right section of the mapping disappears through a
saddle–node bifurcation. One of the features of the saddle–node
is the bifurcation memory such that the phase point continues
to linger near a phantom of the disappeared saddle–node. The
mapping near the bisectrix can generate a large number of iterates
before the phase points diverges towards the quiescent phase. The
larger the number of iterates near the bisectrix corresponds to a
longer tonic spiking phase of bursting. Fig. 14 demonstrates how
the durations of the phases change along with a change in the
mapping shape: from a single quiescent iterate to the left of the
threshold, UP1, to a single tonic-spiking iterate corresponding to a
bursting orbit with a single large spike in the model. Notice that,
as the phase point is taken closer to the unstable section Q near
V = −1, the quiescent phase of bursting becomes longer. The
number of tonic spiking iterates decreases as the threshold fixed
pointmoves to the left and the number of subthreshold oscillations
increases. These ‘‘winding’’ numbers during the tonic spiking and
quiescent phase define the ordinal type of bursting, for example
5–1 and example 1–9 shown respectively in Fig. 14 Insets (A), (B)
and (C), (D).

The transition from bursting to quiescence in the model is
not monotone because the regular dynamics may be sparked by
episodes of chaos. Such subthreshold chaos in the corresponding
mapping at c = −0.9041 is demonstrated in Fig. 15(A).
This phenomena is labeled MMO because the small amplitude
subthreshold oscillations are sporadically interrupted by larger
spikes (Inset B). Use of the mapping makes the explanation of
the phenomena in elliptic bursters particularly clear. In Fig. 15(A),
after the mapping (or the model) fires a spike, the phase point is
reinjected close to the threshold point, UP1, from where it spirals
away to make another cycle of bursting. Note that the number
of iterates of the phase point around UP1 may vary after each
spiking episode. This gives rise to solutions that are called bi-
asymptotic or homoclinic orbits to the unstable fixed point UP1
(Inset C). The occupancy of such a homoclinic orbit to a repelling
fixed point is the generic property of a one-dimensional non-
invertiblemapping [55], since the point of a homoclinic orbitmight
have two pre-images. Note that the number of forward iterates
of a homoclinic point may be finite in a non-invertible mapping,
because the phase point might not converge but merely jump
onto the unstable fixed point after being reinjected. However, the
number of backward iterates of the homoclinic point is infinite,
because the repelling fixed point becomes an attractor for an
inverse mapping in restriction to the local section of the unimodal
mapping, see Fig. 15(C) and (D). The presence of a single homoclinic
orbit leads to the abundance of other emergent homoclinics [56]
via a homoclinic explosion [25].

A small decrease of the bifurcation parameter causes a rapid
change in the shape of the mapping, as depicted in Fig. 15(A) and
(C); the sharp peak near the threshold becomes lower such that the
mapping can no longer generate large amplitude spikes. Instead
of MMO dynamics, the mapping exhibits small-amplitude chaotic
subthreshold oscillations, which are still caused by homoclinic
orbits of the fixed point, UP1. Loosely speaking, this means
that the iterates of the mapping come close to the fixed point,
that would be isolated in a lacuna otherwise. This fixed point
corresponds to a single v-maximum of the saddle periodic orbit
of the FitzHugh–Nagumo–Rinzel model. The orbit is located on the
inner, cone-shaped section of the tonic-spiking manifoldMlc.
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Fig. 16. (A) and (C) Stable period-4 and period-2 orbits (green) of the interval mapping at c = −0.906 and c = −0.9075. Shown in light-blue are the corresponding
mappings T 4 and T 2 of degree four and twowith four and two stable fixed points correspondingly. The traces of the orbits are shown in Insets (B) and (D). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
As the parameter is decreased further, the unstable fixed point,
UP1, becomes stable through a reverse period-doubling cascade.
The last two stages of the cascade are depicted in Fig. 16(A)
and Fig. 17. Insets (A) and (C) of the former figure show stable
period-4 and period-2 orbits, and their traces in Insets (B) and (D),
as the parameter c is decreased from −0.906 to −0.9075. Here
we demonstrate another ability of the interval mappings derived
directly from the flow. In addition to the original mapping, T , in
Fig. 16 we see two superimposed mappings, T 2 and T 4 (shown in
light blue), of degree two and four respectively. The four points of
the periodic orbit in Inset (A) correspond to the four fixed points
of the fourth degree mapping T 4 at c = −0.9075, whereas the
period-2 orbit in (C) correspond to two new fixed points of the
mapping T 2 in (C) at c = −0.9075. We see clearly that both
periodic orbits are indeed stable because of the slopes of the
mappings at the fixed points on the bisectrix. Using the mappings
of higher degrees we can evaluate the critical moments at which
the period-2 and period-4 orbits are about to bifurcate. We point
out that a period-doubling cascade, beginning with a limit cycle
near the Hopf-initiated canard toward subthreshold chaos, has
been recently reported in slow–fast systems [24,57].

Decreasing c further, the period-2 orbit collapses into the fixed
point, UP1, which becomes stable, Fig. 17 inset (A). The multiplier,
first negative becomes positive but is still less than one in the
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Fig. 17. (A) Full scale Poincaré return map at c = −0.91 has a single stable fixed point corresponding to a stable periodic orbit of the FitzHugh–Nagumo–Rinzel model
exhibiting regular, periodic subthreshold oscillations. The oscillations are extinguished after the orbit collapses into the equilibrium state. Inset (C) shows the corresponding
mapping with a stable fixed point near V = −1. (B) and (D) The voltage traces illustrating the transients converging to the periodic subthreshold orbit and the quiescent
fixed point.
absolute value. When the fixed point lowers to the left bottom
corner of the mapping near V = −1 the corresponding periodic
orbit reaches the vertex of the tonic spiking manifold. In terms
of the model, this means that the periodic orbit collapses into a
saddle-focus through the subcritical Andronov–Hopf bifurcation.
After that, the equilibrium state, located at the intersection of the
manifold Meq with the slow-nullcline (plane) in Fig. 3, becomes
stable and the model goes into quiescence for parameter values
smaller then c = −0.97, see Fig. 17(C). The stable equilibrium state
corresponds to the fixed point, Q, which is the global attractor in
the mapping.

5. Quantitative features of mappings: kneadings

In this sectionwe discuss quantitative properties of the interval
mappings for the dynamics of themodel (1). In particular, we carry
out the examination of complex dynamicswith the use of calculus-
based and calculus-free tools such as Lyapunov exponents and
kneading invariants for the symbolic description of MMOs.

Chaos may be quantitatively measured by a Lyapunov expo-
nent. The Lyapunov exponent is evaluated for one-dimensional
mappings as follows:

λ = lim
N→+∞

1
N

N−
i=1

log |T ′(vi)|, (3)

where T ′(vi) is the slope (derivative) of the mapping at the current
iterate vi corresponding to the i-th step for i = 0, . . . ,N . Note that
by construction the mapping graph is polygonal and to accurately
evaluate the derivatives in (3)weused a cubic spline. The Lyapunov
exponent, λ, yields a lower bound for the topological entropy
h(T ) [58]; serving as a measure of chaos in a model. The Lyapunov
exponent values λ ≃ 0.24 and λ ≃ 0.58, found for the interval
mappings at c = −0.9041 and c = −0.90476 resp., show that
chaos is developed more in the case of subthreshold oscillations
than for MMOs.

The topological entropy may also be evaluated though a
symbolic description of the dynamics of the mapping that requires
no calculus-based tools. The curious reader is referred to [59,60] for
the in-depth and practical overviews of the kneading invariants,
while below we will merely touch on the relevant aspects of the
theory. For unimodal mappings of an interval into itself with a
single critical point vc , like for the case c = −0.90476 (Fig. 18
inset B), we need only to follow the forward iterates of the critical
point to generate the unsigned kneading sequence κ(vc) = {κn(vc)}
defined on {−1, +1} by the following rule:

κn(vq) =


+1, if T n(vc) < vc
−1, if T n(vc) > vc,

(4)

where T n(vc) is the n-th iterate of the critical point vc .
The kneading invariant of the unimodal mapping is a series of

the signed kneadings {κ̃n} of the critical point, which are defined
through the unsigned kneadings, κi, as follows:

κ̃n =

n∏
i=1

κi, (5)

or, recursively:

κ̃n = κnκ̃n−1, i = 2, 3, . . . . (6)

Next we construct a formal power series;

P(t) =

∞−
i=0

κ̃it i. (7)

The smallest zero, t∗ (if any), of the series within an interval
t ∈ (0, 1) defines the topological entropy, h(T ) = ln(1/t∗). The
sequence of the signed kneadings, truncated to the first ten terms,
{−+++−+++−+} for themapping in Fig. 18 inset B, generates
the polynomial P10(t) = −1+t+t2+t3−t4+t5+t6+t7−t8+t9.
The single zero of P10(t) at t∗ ≈ 0.544779 yields a close estimate
for the topological entropy h(T ) ≈ 0.6073745, see Fig. 18(A).
The advantage of an approach based on the kneading invariant
to quantify chaos is that evaluation of the topological entropy
does not involve numerical calculus for such equationless interval
mappings, but relies on the mixing properties of the dynamics
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A

B

Fig. 18. (A) Graphs of the three polynomials, P10(t), P60(t) and P110(t) defined on the unit interval, and generated through the series of signed kneadings at c = −0.90476.
Inset (B) shows the corresponding interval mapping. The iterates of the critical point, vc , determine the symbolic dynamics for the unsigned kneading symbols: −1 if the
phase point lands on the decreasing section of the mapping graph to the right of the critical point, and +1 if it lands on the increasing section of the mapping, which is to
the left of the critical point.
A B

Fig. 19. (A) Pointwise mapping for c = −0.945 obtained from voltage traces using random initial conditions clearly illustrating a torus formation in the subthreshold
voltage oscillations. (B) A repelling torus leaving two circles on the cross-section bounds the attraction basin of the subthreshold stable periodic orbit emerging through a
supercritical Andronov–Hopf bifurcation.
instead. Moreover, it requires a relatively few forward iterates of
the critical point to compute the entropy relatively accurately,
as the polynomial graphs in Fig. 18 suggests. Besides yielding
the quantitative information such as the topological entropy, the
symbolic description based on the kneading invariants provides
qualitative information for identifying the corresponding Farey
sequences describing the MMOs in terms of the numbers of
subthreshold and tonic spiking oscillations.

6. Discussion

We present a case study for an in-depth examination of
the bifurcations that take place at activity transitions between
tonic spiking, bursting and mixed mode oscillations in the
FitzHugh–Nagumo–Rinzel model. The analysis is accomplished
through the reduction to a single-parameter family of equationless
Poincaré return mappings for an interval of the ‘‘voltage’’ variable.
We stress that these mappings are models themselves for
evaluating the complex dynamics of the full three-dimensional
model. Nevertheless the dynamics of the single accumulative
variable, v, reflects the cooperative dynamics of other variables in
the model. The reduction is feasible since the model is a slow–fast
system and, hence, possesses a two-dimensional, slow-motion
tonic-spiking manifold around which the oscillatory solutions of
themodels linger.While a reduction to a slow variable through the
averaging equation such as (2) might seem more mathematically
sound [31,30,25,33,34], for the sake of applicability of our results
we show the computational technique for the mappings. We have
specifically concentrate on the dynamics of the voltage [18,47], as
it is typically the only measurable, and thus comparable, variable
in experimental studies in neuroscience and physical chemistry.

The algorithm for intervalmapping construction has two stages.
First, one needs to identify the tonic spiking manifold in the
phase space of the slow–fast neuron model in question. This is
accomplished by either using the geometric dissection method,
or the parameter continuation technique. The more accurately
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and completely the first stage is performed the more natural and
smooth these numerically derived mappings will be. The second
stage is to build the mappings for a range of parameter values. The
analysis of such mappings lets one identify not only attractors, but
more importantly, the unstable sets including fixed, periodic and
homoclinic orbits, which are known to be the globally organizing
centers governing the dynamics of any model. In addition, having
computationally smooth mappings allows one to create symbolic
descriptions for dynamics, compute kneading invariants, evaluate
Schwarzian derivatives, etc, as well as estimating other quantities
measuring the degree of complexity for the trajectory behavior like
Lyapunov exponents and topological entropy.

Our computational method allows us to thoroughly describe
the bifurcations that the model (1) undergoes while transitioning
between states: from tonic spiking to bursting and then to
quiescence. Taken individually, eachmapping offers only a glimpse
into the system behavior. However, with an entire family of
mappings we obtain a deep insight into the evolution of the
model’s dynamics through the interplay and bifurcations of the
fixed points and periodic orbits of themappings. This allows for not
only the description of bifurcations post factum, but also to predict
the changes in the dynamics of the model under consideration
before they actually occur. The predicting ability of our technique
helps to classify all bifurcations in the models of elliptically
bursting neurons. We accomplished this through a comparison of
the family of mappings derived for the FitzHugh–Nagumo–Rinzel
model with the family of mappings of other models without
explicitly finding the bifurcations occurring in other models.

Finally, we mention the cons of the approach. First there is a
price to pay for the scrutiny as such simulations are time expensive.
Anotherminor drawback of the approach is a small detuning offset
in parameter values at which the model and the mapping have
nearly the same dynamics, matching orbits, or undergo the same
bifurcations. This is caused by the fact that a one-dimensional
mapping for a single voltage variable does not fully encompass the
dynamics of other,major andminor, variables of the corresponding
model. In general, most features of a dissipative model with a
negative divergence of the vector field, that results in a strong
contraction of the phase volumes, are adequately modeled by
a 1D Poincaré mapping. However, this is not true when such a
contraction is no longer in place. For example,when the divergence
becomes sign-alternating. There are two such places near the
manifold Mlc in the model (1): one is near the fold, while the
second is close to the cone-shaped tip where the model has an
equilibrium state of the saddle-focus type with a pair of complex
conjugate eigenvalues with small positive real part and a real
negative eigenvalue due to the Andronov–Hopf bifurcation and the
smallness of ε.

Under the above conditions a (small) torus can possibly occur
locally in the phase space. A small canard torus at c = −0.945
is shown in Fig. 19(B). The torus is unstable: it bounds a basin
of attraction of stable periodic orbit that emerged through the
supercritical Andronov–Hopf bifurcation. As c increases, the torus
collapses into the periodic orbit (see the bifurcation diagram
in Fig. 4) and makes the orbit unstable. The unstable orbit
then initiates the period-doubling cascade for the subthreshold
oscillations depicted in Fig. 5(B) and captured in the mappings in
Figs. 15 and16. The stability of the torus near the single equilibrium
state of the model, a saddle-focus, can be evaluated through the
examination of the Lyapunov exponents, as their sum yields the
divergence. Hence, making the middle equation of the model (1)
faster by setting δ = 0.5 changes the type of the torus bifurcation
from sub- to supercritical. The stages of the torus’s formation and
vanishing are depicted in Fig. 21. The stable torus emerges from
a periodic orbit with complex Floquet multipliers (Fig. 21(A) and
(B)). Then it comes close to the fold of the manifold Mlc (Fig. 20),
Fig. 20. (A) a 2D torus near the fold of the tonic spiking manifold Mlc at δ = 0.5
and c = −0.38. (B) Voltage trace revealing slow (∼ µ) characteristic modulation
of oscillations.

A

C

B

D

Fig. 21. 2D cross-section w = −0.09 revealing the stages of the torus’s formation
and vanishing in the model at δ = 0.5: (A) stable periodic orbit (two spiraling-onto
points) at c = −0.55 loses stability to a 2D torus (B) (two circles) at c = −0.5478
that, having approached the fold on the tonic spikingmanifoldMlc at c = −0.53 (C)
and (D) at c = −0.45 (dark blue), shrinks back to the tonic spiking periodic orbit at
c = 0.363 (green) and 0.3 (black). Shown in red is the saddle-focus equilibrium
state of the model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

where it shrinks back to the periodic orbit that corresponds to the
tonic spiking activity in the model. It should be noted that, since
for smaller values of δ the divergence of the vector field of this
3D model is negative near the fold, the stability loss of the nearby
periodic orbit initiates a period-doubling cascade instead of the
torus bifurcation, see also [19].
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Fig. 22. (A) Tonic spiking manifold Mlc on the (n, h, V )-projection of the phase space for the Hodgkin–Huxley model. Plane h′
= 0 is the slow nullcline. The mappings are

defined on the space curve V ∗
max made of local maxima of the periodic orbits spanning Mlc . Near the unstable, ‘‘canard’’ section of Mlc the points initiated on V ∗

max return to
the curve V ∗∗

max instead. (B) Family of Poincaré return mappings for the bursting Hodgkin–Huxley model as the bifurcation parameter c is varied between −0.19 and −0.05.
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Fig. 23. Tonic spiking Mlc and quiescent Meq manifolds in the (n, Ca, V )-projection of the phase space of the Rubin–Terman model. Shown in light color are bursting
oscillations. (B) The GPe mapping family displays the typical shape for the Poincaré return mappings of the maximal voltage values in all three models of the elliptic buster.
It is evident that no 1D return mapping of the interval is
intended to detect a torus in the phase plane, whereas the
pointwise mappings generated by a forward time series of the
voltage can identify the torus formation in the phase space, Fig. 19.
Note that the torus has a canard-like nature, that is the torus exists
within a narrow parameter window. A torus formation in a 3D
model with two slow variables near the fold was reported also
in [61]. Another parallel of the FitzHugh–Nagumo–Rinzel model
with electrochemical systems, including the Belousov–Zhabotinky
reaction, is that the latter also demonstrates a quasiperiodic
regime [62]. The emergence of the torus near the fold of the
tonic spiking manifold first described in [44,19] has turned out to
be a generic phenomenon observed recently in several plausible
models [63,64], including amodel for the Purkinje cells [54,65], and
in a 12D hair cell model [66].

Our future plan is to further develop the tools of the Poincaré
return mappings for voltage intervals to study complex, slow–fast
dynamics and activity transitions in some representative high-
order models of square-wave busting interneurons identified in
several central pattern generators.
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Appendix. Poincarémappings for theburstingHodgkin–Huxley
model and the GPe Rubin–Terman model

The interval mappings capture the key features common for
the models belonging to the same elliptic class. Here we present
for comparison the families of the return mappings and the slow-
motion tonic spiking manifolds for two other, exemplary models
of elliptic bursters: the four-dimensional ‘‘bursting’’ adaptation of
the classical Hodgkin–Huxleymodel [36] and the five-dimensional
Rubin–Terman model for the external segment of the Globus
Pallidus [67]. The similarities of the manifolds are evident as are
the similarities of the mappings for all three models, see Figs. 22
and 23. Note the ‘‘instability’’ of vertical sections in the mappings;
this instability is due to exponentially fast transitions between
the slow-motion manifolds, tonic spiking Mlc and quiescent Meq,
compared to the change in rate of the slowest variable in each
givenmodel. Alsoworthmentioning is the instability of themiddle,
unstable section of Mlc, comprised of the saddle or canard-like
periodic orbits. As the result of this instability, the mapping may
take the space curve V ∗

max not exactly into itself, as meant by
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construction, but to a curve close to V ∗∗
max, depicted in Fig. 22 for

the bursting Hodgkin–Huxleymodel. For sake of compatibility, the
equations of the bursting version of the models used are given
‘‘as is’’ so the reader can cut-and-paste directly from this pdf
document. The first is a bursting Hodgkin–Huxley model [36]:

V′
= 2 + 36 ∗ pow(n, 4) ∗ (−12 − V) + 60 ∗ pow(m, 3) ∗ h

∗ (115 − V) + 0.3 ∗ (10.613 − V);

n′
= 0.005 ∗ (−V + 10)/(exp(−0.1 ∗ V + 1) − 1)

∗ (1 − n) − 0.125 ∗ exp(−V/11) ∗ n;

m′
= 0.1 ∗ (−V + 25)/(exp(−0.1 ∗ V + 2.5) − 1) ∗ (1 − m)

− 4 ∗ exp(−V/18) ∗ m;

h′
= 0.002 ∗ (0.2 ∗ exp(−V/20) ∗ (1 − h)

− 1/(exp(−0.1 ∗ V + 3) + 1) ∗ h + c).

In the model, c ∈ [−0.19, −0.05] is the sweeping parameter
used to scan the slowmotion manifoldMlc, as well as generate the
corresponding mapping family sampled in Fig. 22. Note that c only
moves the slow nullcline given h′

= 0 in the phase space of the
model.

The third model of the elliptic burster considered in this study
was proposed and studied in [67]. The model is meant to describe
the voltage dynamics in the external segment of the Globus
Pallidus in connection with complex oscillatory activity observed
in neurons of the basal ganglia. The equations for the model are
read as follows:
V′

= −0.1 ∗ (V + 55) − 30 ∗ pow(n, 4) ∗ (V + 80) − 120
∗pow(1/(1 + exp(−(V + 37)/10)), 3) ∗ h ∗ (V − 55)
− 0.5/(1 + exp(−(V + 57)/2)) ∗ pow(1/(1 + exp(
− (V + 57)/2)), 2) ∗ r ∗ (V − 120) − 0.15 ∗ pow(1/(1
+ exp(−(V + 35)/2)), 2) ∗ (V − 120) − 30 ∗ (V + 80)
∗(Ca/(Ca + 30));

n′
= 0.05 ∗ ((1/(1 + exp(−(V + 50)/14)) − n)/(0.05

+ 0.27/(1 + exp((V + 40)/12))));

h′
= 0.05 ∗ ((1/(1 + exp((V + 58)/12)) − h)/(0.05

+ 0.27/(1 + exp((V + 40)/12))));

r′
= (1/(1 + exp((V + 70)/2)) − r)/30;

Ca′
= ϵ ∗ (−0.15 ∗ pow(1/(1 + exp(−(V + 35)/2)), 2)

∗ (V − 120) − 0.5 ∗ pow(1/(1 + exp(−(V + 57)/2)), 3)
∗ r ∗ (V − 120) − 20 ∗ Ca + c);

with ϵ = 0.0001; here c is a sweeping parameter in the slow
equation used to detect the tonic spiking, Mlc, and quiescent
manifolds in the phase space of the model, see Fig. 23.

The reader is referred to the original work that discusses the
subjects of the model, and examines in detail the dynamics and
bifurcations in it. The Rubin–Terman model is employed here
to test the algorithm for mapping derivations and verify that
intrinsically the mappings for the model are shaped uniformly
similar across a diverse set of the class of elliptic bursters. The
tonic spiking and quiescent manifolds, as well as the family
of Poincaré return mappings for an interval of the maximal
voltage values, are shown in Fig. 23. The tonic spiking manifold
has the characteristic cone-like shape indicating a subthreshold
Andronov–Hopf bifurcation, and the fold corresponding to a
saddle–node bifurcation. The family of mappings for an interval
of the voltage, ‘‘accumulating’’ the dynamics of all other currents,
including calcium, reveals the close similarity to the return
mappings for all three elliptic busters discussed in this paper.
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