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Abstract – We study a heteroclinic bifurcation leading to the onset of robust phase-lag jittering
in bursting rhythms generated by a neuronal circuit. We show that the jitter phenomenon is
associated with the occurrence of a stable invariant curve emerging through a torus bifurcation in
2D return maps for phase lags between three constituent bursters. To study biologically plausible
and phenomenological models of rhythmic neuronal networks we have further developed parallel
computational techniques for parameter continuations of all possible fixed points and invariant
curves of such return maps. The method is based on a “fine” brute-force analysis of the large data
set generated by the computational techniques.

Copyright c© EPLA, 2015

Introduction. – Studies of dynamical complexity ex-
hibited by systems of globally coupled phase oscillators
are currently an active research trend [1–3]. In part,
this trend has additionally been stimulated by one of the
pivotal challenges of the new century —comprehending
brain activity. To unravel how such an incredibly sophis-
ticated conglomerate as the brain functions dynamically,
it is imperative to fully understand the dynamics of its
basic elements —neurons and small neuronal circuits or
motifs. Such motifs share the same characteristics de-
tected in oscillator networks [4–6]. In [7] it has been found,
later studied in [1,8], that robust “slow switching” oscilla-
tions are caused by the presence of heteroclinic attractors
emerging through codimension-one heteroclinic bifurca-
tions with symmetry. Oscillatory networks and simple
neuronal circuits have been identified to possess such het-
eroclinic cycles underlying the mechanism of “the winner-
less competition principle” [9,10]. These phenomena give
rise to robust, sequential repetitions of behaviors in small
neuronal networks.

(a)E-mail: rbarrio@unizar.es

A central pattern generator (CPG) is a neuronal circuit
of cells that autonomously produces rhythmic activity un-
derlying repetitive behavioral patterns in animals. CPGs
have been identified in many animals, where they have
been implicated in the control of diverse behaviors such
as heartbeat, sleep, respiration, chewing, and locomotion
on land and in water [11–13]. Mathematical studies of
reduced CPG models have come up with useful insights
shedding light onto some operational principles of biolog-
ical CPG networks, for example, the swim CPG of a sea
mollusk Melibe leonina [14,15]. One such insight is a dy-
namical explanation of phase “jittering” oscillations that
are recorded in voltage waveforms with periodically time
varying phase lags between burst initiations in the neu-
rons constituting the circuit. It is attributed to the oc-
currence of a stable invariant curve in the proximity of a
heteroclinic cycle composed of several saddles represent-
ing phase thresholds. In some cases the explicit equations
of the phase shift may be introduced so that with a blend
of analytical and continuation techniques one can describe
the dynamics of such oscillatory networks [1,3]. However,
for most of the plausible CPGs the explicit equations for
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the phase lags do not exist. Therefore, no computational
continuation routine can stably identify heteroclinic cycles
in individual and also in coupled systems. There is a class
of specific neuronal networks [16–19] in which one can lo-
cate equilibria corresponding to phase-locked rhythms and
examine stability conditions and their loss using local bi-
furcation analysis. Because of the limited applicability
of this analysis, a new computational technique was pro-
posed in [20–22] that permits one to examine in detail all
possible rhythmic states in larger CPG motifs [23].

In this paper we further develop and extend the applica-
bility of the computational suite of aggregated techniques
that was initially proposed in [20] to examine nonlocal
bifurcations of bursting polyrhythms in small networks of
weakly coupled neurons. The suite allows one to computa-
tionally perform the parameter continuation to determine
all possible rhythms and analyze their bifurcations, local
and non-local, occurring in a 3-cell circuit as its intrinsic
and coupling parameters are changed. The novelty of the
approach is the introduction of implicitly defined Poincaré
return maps for phase lags that can be understood geo-
metrically. Later a large number of such Poincaré return
maps, obtained for several values of the parameters, gen-
erates a large data set that permits to locate all the rele-
vant information, such as bifurcation points. Afterwards,
a refinement process is done, where the “exact” parameter
value at which the event takes place is automatically ob-
tained. So, this is an example of “fine” brute-force analysis
in neuronal circuits. This paper presents the methodology
and applies it, as an example, to the precise location of
“phase jitter” phenomena and the bifurcations that give
rise to its appearance (through a secondary Andronov-
Hopf bifurcation followed by the formation of a hetero-
clinic cycle).

3-cell neuronal network. – We consider an in-
hibitory neuronal circuit constituted by three endogenous
bursters [20,24] of the Hodgkin-Huxley type [25] that de-
scribes bursting phenomena in leech heart neurons [24]:















CV ′ = −INa − IK2 − IL − Iapp − Isyn,

τNa h′

Na = h∞

Na(V ) − hNa,

τK2m
′

K2 = m∞

K2(V ) − mK2,

(1)

with IL = ḡL(V − EL), IK2 = ḡK2, m2
K2(V − EK2),

mNa = m∞

Na(V ), INa = ḡNa m3
NahNa(V − ENa), where C

is the membrane capacitance; V is the membrane poten-
tial; INa is the fast voltage gated sodium current with slow
inactivation hNa and fast activation mNa; IK2 is the per-
sistent potassium current with activation mK2; IL is the
leak current and Iapp is a constant polarization or external
applied current. The term Isyn is the coupling factor via
fast chemical synapses. In the simulations of the isolated
neuron Isyn = 0. The values of the fixed parameters in
the model used in this paper are ENa = 0.045, ḡNa = 160,
EK2 = −0.07, ḡK2 = 30, EL = −0.046, ḡL = 8, C = 0.5,
τNa = 0.0405 and τK2 = 0.9. The steady-state values of

Fig. 1: (Color online) (V shift

K2 , Iapp)-parametric sweep using
the spike-counting method (color-coded bar on the right for
the spike range) with the superimposed bifurcation lines (for
Andronov-Hopf, saddle-node and homoclinic bifurcations) de-
marcating the regions of bursting, tonic-spiking and quiescent
activity in individual neurons.

gating variables are given by the experimentally calibrated
Boltzmann functions:

h∞

Na(V ) = [1 + exp(500(V + 0.0325))]−1,

m∞

Na(V ) = [1 + exp(−150(V + 0.0305))]−1,

m∞

K2(V ) = [1 + exp(−83(V + 0.018 + V shift

K2 ))]−1.

There are two principal parameters controlling the ac-
tivity in the model of the individual burster: the mag-
nitude of the external current Iapp that affects the fast
voltage dynamics, and the parameter V shift

K2 , which is
the deviation from the experimentally averaged value,
V = −0.018 V, corresponding to the half-activated gat-
ing channel for the slow potassium current. Both Iapp

and V shift

K2 are independent bifurcation parameters. Their
variations make the neuronal dynamics evolve and tran-
sition between tonic spiking, bursting and quiescence.
In terms of dynamical system theory, these regimes are
associated, respectively, with stable one- and two-time
scale periodic orbits (that can become chaotic at bifur-
cations) and equilibrium states (respectively) in the phase
space of the model. Figure 1 represents the (V shift

K2 , Iapp)-
biparametric sweep of the neuron model with use of the
spike-counting method [26]. Its core is the quantifica-
tion of spikes between consequent quiescent periods for
given parameter values. The spike numbers are corre-
spondingly color-coded in the bifurcation diagram (the
bar on the right). This allows us to identify stability
windows with fixed spike numbers, as well as to detect
the borders on which spike numbers change. One can
see these structures separated by spike-adding bifurca-
tions [27,28] in fig. 1 with clearly demarcated regions corre-
sponding to bursting, tonic-spiking and quiescence states.
The sweep diagram is overlaid with several key curves
that correspond to bifurcation transitions between differ-
ent activity states [24]. These are the saddle-node, SNeq,
bifurcation of equilibria between hyperpolarized quies-
cence and bursting; saddle-node limit cycles, SNlc, on the
tonic-spiking and bursting boundary; the Andronov-Hopf,
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Poincar é section

Vo
lta

ge
s

Symmetric coupling

Fig. 2: (Color online) 3-cell network with symmetric synaptic
connections generating voltage waveforms with clearly iden-
tified absolute phase lags {d21, d31} relative to the reference
burster 1.

AHeq, bifurcation on the boundary between depolarized
quiescence and tonic spiking; and the homoclinic bifurca-
tion, HB, giving rise to bistability of tonic spiking and
bursting. The combined bifurcation diagram serves as a
“road map” for individual ingredients (isolated neurons)
to build a properly functioning model of a multifunctional
CPG circuit [21].

The neurons in the 3-cell circuit are reciprocally cou-
pled (via the term Isyn) by non-delayed, fast chemical
synapses described using the fast threshold modulation
(FTM) paradigm as follows:

Isyn = gsyn(Vpost − Esyn)Γ(Vpre − Θsyn),

Γ(Vpre − Θsyn) = [1 + exp(−1000(Vpre − Θsyn))]−1,

where Vpost and Vpre are voltages of the post- and the pre-
synaptic cells. Here, gsyn = −0.0004 is a fixed coupling
strength, Esyn = −0.0625 V and Θsyn = −0.03 V are the
reversal potential and the synaptic threshold, respectively.
We point out that alternative models of synapses, such as
the α-synapse model, do not essentially alter the dynam-
ical interactions between bursting cells [29].

“Fine” brute-force bifurcation analysis: location

of burst jittering state. – Following [20,21], detailed
studies of rhythms generated by neuronal circuits can be
reduced, in the absence of noise, to the analysis of fixed
points (FPs) and invariant circles (ICs) of Poincaré re-
turn maps for phase lags between constituent bursters.
By choosing the first burster as the reference one, we

introduce the absolute phase lags {d
(n)
21 , d

(n)
31 }, as shown

by fig. 2. Once obtained the phase lags, we normalize

them, ϕ
(n)
j1 = d

(n)
j1 /P (n), with P (n) the period or recur-

rent time) of the reference burster 1 on the n-bursting cy-

cle, giving the relative phase lags {ϕ
(n)
21 , ϕ

(n)
31 }. Dense and

even allocations of initial phase lags let us generate the
desired 2D return map demonstrating time evolutions of
phase lags transitioning toward stable FPs corresponding
to phase-locked rhythms produced by the network under
consideration.

In what follows, we will focus our consideration on the
onset of a particularly remarkable rhythm that possesses
not fixed, but periodically varying phase lags. Such a
rhythm, called phase jitter, was frequently reported in
coupled systems in nonlinear optics [30,31], as well as
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Fig. 3: (Color online) Progressions of phase lags of the network
bursters converging to several fixed (locked) states (top pan-
els), and the corresponding 2D map at V shift

K2 = −0.01871 with
five stable FPs, and a magnification depicting a stable FP at
(ϕ21 = 1/3, ϕ31 = 2/3) with oscillatory convergence (bottom
panels). Illustrative videos of the convergence of the 3-cell
voltages Vi to all the different stable FP are shown as supple-
mentary material: Black-FP.mp4, Blue-FP.mp4, Green-FP.mp4
and Red-FP.mp4.

in neuroscience [21]. In the parameter space (fig. 1)
of the bursters, these rhythms occur and persist on a
short pathway V shift

K2 ∈ [−0.01886, −0.01871] at the level
Iapp = 0.006. The underlying bifurcations occurring in
the 3-cell network are detailed in a series of 2D return
map snapshots shown in figs. 3–5. Figure 3 depicts the
progressions of representative phase lags converging to
phase values (top panels), as well as the corresponding 2D
map at V shift

K2 = −0.01871 (bottom panels). There are
five stable FPs (color-coded dots and attraction basins)
in this map. The coordinates of a stable FP correspond
to a synchronized rhythm with phase lags locked at the
specific values. The right-bottom panel is a magnifi-
cation of the attraction basin of the FP corresponding
to the clockwise (CW) traveling, or peristaltic rhythm,
with phase lags locked at (ϕ21 = 1/3, ϕ31 = 2/3). Respec-
tively, the counterclockwise (CCW) traveling wave in the
3-cell network symmetrically corresponds to a stable FP
at (ϕ21 = 2/3, ϕ31 = 1/3) in the 2D map. Both FPs are
stable foci with complex conjugate Floquet multipliers lo-
cated within a unit circle, as evidenced by the spiral be-
havior of the trajectories nearby. The other three FPs are
stable nodes to which transients converge more monotoni-
cally. Every such FP corresponds to the voltage waveform
with locked phase lags where one interneuron bursts in
anti-phase with the other two, which burst in-phase.

The critical value V shift

K2 ≃ −0.018735 corresponds to
the occurrence of a secondary super-critical Andronov-
Hopf (torus) bifurcation through which both CW and
CCW FPs of the Poincaré map simultaneously become un-
stable. This bifurcation also gives rise to the emergence of
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Fig. 4: (Color online) Progressions of phase lags of the net-
work bursters exhibiting self-sustained oscillations associated
with recurrent phase jitter in the voltage waveforms (top pan-
els), and the corresponding 2D map at V shift

K2 = −0.01876, and
a magnification depicting a stable IC around the unstable FP
at (ϕ21 = 1/3, ϕ31 = 2/3) after the torus bifurcation (bottom
panels). An illustrative video of the convergence of the 3-cell
voltages Vi to the burst jittering state is shown as supplemen-
tary material: Cyan-Jitter-IC.mp4.

a stable invariant curve (IC) bifurcating from each point.
Each coexisting IC, which is made of either a finite num-
ber of periodic points or of infinitely many points, corre-
sponds to quasi-periodic dynamics with two rationally or
irrationally commensurable frequencies, respectively. The
voltage waveforms, oscillations of phase lags and the cor-
responding map featuring a newly born pair of stable ICs
are shown in fig. 4. One can see from the top panels that
the depicted waveforms correspond to stable ICs that ex-
hibit jitter with periodically varying phase lags.

As V shift

K2 increases, the IC (and phase jitter, respec-
tively) increases in size so that at −0.0187875 it becomes
a closed heteroclinic connection between three saddle
FPs nearby. The stable sets (separatrices) of these sad-
dles bound the attraction basins of the remaining stable
FPs (green, blue and red).

At the heteroclinic bifurcation, the outgoing separatrix
of one saddle coalesces and then crosses over with the in-
coming separatrix of the other saddle. Due to the symme-
try of the 3-cell network, there are two such heteroclinic
connections in the 2D map. Each forms a closed hete-
roclinic cycle, similar to those occurring in Z3-symmetric
systems [1]. Near this bifurcation, the number of iterates
on each ICs increases while the phase points pass by the
saddle FPs. As a result, this slows down the frequency of
phase jitter near the corners of the heteroclinic cycle. The
quasi-periodicity of bursting waveforms vanishes with the
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Fig. 5: (Color online) 2D Poincaré return map for phase lags
at V shift

K2 = −0.01886, and its magnification near an unsta-
ble CW FP at (ϕ21 = 1/3, ϕ31 = 2/3) (after the heteroclinic
bifurcation).
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Fig. 6: (Color online) Attraction basins of the stable IC and
FPs before, V shift

K2 = −0.01876 (left), and after, V shift

K2 =
−0.01886 (right), the heteroclinic bifurcation, leading to dy-
namical uncertainty for nearby solutions.

breakdown of heteroclinic cycles. This breakdown leads
to a re-arrangement in the relative orientation between
the stable and unstable separatrices of the saddle FPs.
Before the bifurcation, the CW-FP (a stable focus) is an
ω-limit set (as n → +∞) for unstable separatrices of the
saddle FPs. After each heteroclinic cycle breaks down
outwardly, an unstable focus FP becomes an α-limit set
(as n → −∞) for stable separatrices of the near saddles.
In other terms, the unstable separatrices that used to be
oriented inward to spiral onto the stable CW-FP, become
re-directed outward, tending to the remaining three sta-
ble FPs (see fig. 5). This gives rise to a peculiar phe-
nomenon of dynamical uncertainty: an initial point taken
near an unstable CW-FP will unpredictably spiral away
converging to one of the stable FPs, as shown in fig. 6.
For waveforms, this means that neither traveling rhythm
is observable any longer, and that after a transition the
network will begin stably generating one of the three anti-
phase bursting rhythms remaining in its repertoire.

The torus and heteroclinic cycle bifurcations in the 2D
maps for phase lags determine the pivotal stages of the
genesis of the bursting rhythms generated by a homoge-
neous circuit described by a 9D system of coupled ODEs.
Other existing computational techniques would not allow
one to predict and trace down the undergoing bifurcations
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Fig. 7: (Color online) 3D bifurcation diagram revealing the
torus and heteroclinic cycle bifurcations in the V shift

K2 -extended
phase space of the 2D return maps for phase lags: a paraboloid-
shaped surface being spanned by the stable ICs emerging
through a supercritical torus (AH) bifurcation from the sta-
ble CW-FP. It is terminated by a heteroclinic cycle bifurca-
tion. The parametric evolution of stable and unstable FPs is
represented by solid and dashed lines (respectively).

in such a transparent and geometrically intuitive manner
rather than using the Poincaré return maps for phase lags.

The use of parallel computational techniques available
with utilization of multiple CPUs and/or Graphic Proces-
sor Units (GPUs) lets one reduce the necessary simulation
time to merely seconds [32] for one plate of the progres-
sions of phase lags of the network bursters. For instance,
in our simulations we have selected a grid of 40×40 points
in the [0, 1)×[0, 1) set. Each pair represents the initial con-
ditions of the simulations, that is, the delays of the second
and the third neuron with respect to one bursting of the
first one. Computing these delays measured when cross-
ing the Poincaré surface, we plot a line that represents
the evolution of the bursting pattern. As the computa-
tion of each line is independent of the others, this task
can be easily parallelized on any multi-core CPU and/or
GPU device. In our plots we have computed 30 Poincaré
sections for each neuron (a total of 90 points for each ini-
tial condition, and so a total of 144000 points per each
2D picture) with an error tolerance of 10−6 in the nu-
merical ODE solver (the embedded Runge-Kutta method
DOPRI5(4)), enough for this tough search. It is interest-
ing to remark the great improvement on efficiency when
computing using GPU devices (in our simulations around
85 times faster). In fact, the time reduction when GPU
technology is used allows real-time simulations (note that
a simulation time of 2 or 3 seconds per plot, as obtained
in our case, is in such range of time).

Therefore, the use of parallel devices allows us to obtain
in just a few minutes all the relevant data for studying a
complete bifurcation analysis, where we have to compute
a large number of such simulations changing one or sev-
eral parameter values. This gives rise to new direct ap-
proaches to obtain bifurcation analysis. In our case, by
extracting the relevant information from the big-data set
(a set of 100 plates, each with 144000 points) to automat-
ically detect the coordinates of both stable and unstable
FPs as parameters of the network vary we have developed
a new continuation technique. Having exhaustive infor-
mation on FPs, ICs, heteroclinic cycles, attraction basins,
etc., we have compiled a 3D bifurcation diagram repre-
senting the complete bifurcation route (fig. 7). This 3D
diagram in the extended V shift

K2 -parameterized phase space
is dissected in order to visualize the paraboloid-like surface
spanned by the stable ICs emerging through a supercritical
torus bifurcation from the stable CW-FP and terminat-
ing through the heteroclinic cycle bifurcation. The evolu-
tion of stable and saddle FPs is traced down by solid and
dashed lines (respectively) representing the parametric de-
pendence of their coordinates. This consolidated diagram
(fig. 7) provides a wealth of information for in-depth un-
derstanding of the dynamics of the circuit constituted by
three bursting neurons. The precise location of the bifur-
cation is obtained after a refinement process. That is, to
accurately detect the bifurcation points we select the ini-
tial conditions of the network such that the first Poincaré
events projected into the delay phase space are set close
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to the (stable or unstable) point (ϕ21 = 1/3, ϕ31 = 2/3).
By doing so, we can decide whether the phase trajectory
converges to the stable targeted fixed point, or becomes
repelled to converge to another attractor whether it is a
point or an invariant cycle, associated with the burst jitter
phenomenon.

Conclusions. – We have presented a case study of the
onset and breakdown of phase jitter phenomena observed
in bursting rhythms generated by a homogeneous 3-cell
neuronal network. We have further developed a big-data
computational approach for geometric interpretations dis-
closing all intrinsic structures, both dynamical and bifur-
cation ones, of the network under consideration. This
approach permits us to discover detailed information ex-
ploiting the whole range of synchronized patterns. We have
been able to predict and detect “stealth” bursting rhythms
by tracing down invariant curves and heteroclinic cycles
existing in the return map for phase lags. Both bifur-
cations provide the theoretical background necessary for
understanding the universal phenomenon of phase jitter
synchronization frequently reported in a range of diverse
applications from physics and life sciences.
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