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Generalized half-center oscillators with short-term synaptic plasticity
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How can we develop simple yet realistic models of the small neural circuits known as central pattern
generators (CPGs), which contribute to generate complex multiphase locomotion in living animals? In this
paper we introduce a new model (with design criteria) of a generalized half-center oscillator, (pools of) neurons
reciprocally coupled by fast/slow inhibitory and excitatory synapses, to produce either alternating bursting
or other rhythmic patterns, characterized by different phase lags, depending on the sensory or other external
input. We also show how to calibrate its parameters, based on both physiological and functional criteria and on
bifurcation analysis. This model accounts for short-term neuromodulation in a biophysically plausible way and is
a building block to develop more realistic and functionally accurate CPG models. Examples and counterexamples
are used to point out the generality and effectiveness of our design approach.
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I. INTRODUCTION

Central pattern generators (CPGs) are small neural circuits
that can autonomously (i.e., in the absence of sensory feed-
back or higher motor planning centers inputs) produce various
rhythmic patterns of neural activity [1]. They bear a funda-
mental function in both invertebrate and vertebrate animals
as they determine multiphase locomotion—the innate motor
behavior that requires sequential activation of body muscles in
a coordinated way [2]. Various approaches to the modeling of
CPGs and CPG-inspired control systems have been explored
in the last decades [3–7]. Recently, new methods have been
proposed to reduce large models of detailed neural networks
to smaller CPG circuits, trading off biological plausibility and
complexity of the model [3,4,8–10].

Although CPGs function autonomously, their activity is
modulated through the influence of hierarchically higher ar-
eas, which can, for example, prompt transitions between
gaits [11–13]. A single gait in a typical CPG model is ob-
tained by fixing the connectivity. By contrast, to generate
multiple gaits the CPG connections between constituent neu-
rons are typically changed acting on the synaptic weights to
model the control action of the brainstem [7–9,14]. The mod-
ulation from higher areas that controls the synchronization
between the CPG neurons, and thus triggers gait switches,
is conveniently integrated in CPG models to directly affect
the synaptic conductance strengths. However, in real CPGs
changes in conductance values are the result of long-term
synaptic plasticity, and therefore it is hardly a cause for quick
gait switches, which can instead be accounted for more real-
istically by short-term neuromodulation. Indeed, most natural
CPGs exhibit patterns of functional connectivity between neu-
rons or synchronized clusters of neurons that can undergo
spontaneous fluctuations and be highly responsive to pertur-
bations, e.g., induced by sensory input or cognitive tasks, on a

timescale of milliseconds or hundreds of milliseconds, respec-
tively, thus ensuring robustness and stability. This short-term
neuromodulation lacks in most CPG models.

One of the pivotal building blocks of many CPGs is a half-
center oscillator (HCO). The HCO-concept is widely used to
model two synchronous pools of neurons reciprocally inhibit-
ing each other to produce stable rhythmic alternation in animal
locomotion [15,16]. This basic structure has been largely stud-
ied from both biological and nonlinear dynamics standpoints.
For example, in Refs. [17–20] transitions between stable
synchronous states in the HCO occur by changing directly
synaptic weights and time constants, whereas in Ref. [21] a
large database of HCO models is swept using a brute-force
approach, without a focus on gait transitions. While the im-
portance of an interplay between inhibitory and excitatory
coupling has already been outlined [17], the thorough un-
derstanding of its functional role for determining multiple
states or patterns in such neural networks and how transi-
tions between them may stably occur remains yet insufficient.
Moreover, there is the growing evidence that (i) post-synaptic
potential (PSP) summation increasing with the spike fre-
quency in the pre-synaptic cell is a crucial factor for stable
functioning of some CPGs [22–25], while other experiments
indicate that (ii) the activity of some synapses is barely af-
fected by the spike frequency [7].

In this paper, we propose a generalized half-center os-
cillator (gHCO) composed of two neurons or of two neural
pools that are coupled reciprocally by excitatory synapses,
in addition to the standard HCO’s reciprocally inhibitory
synapses. We show that this circuitry warrants a more bi-
ologically plausible mechanism of short-term plasticity to
implicitly control the phase-lag between the gHCO cells by
varying their spike frequency through sensory drive or exter-
nal currents, rather then directly manipulating the synaptic

2470-0045/2020/102(3)/032406(8) 032406-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1596-821X
https://orcid.org/0000-0002-0753-7017
https://orcid.org/0000-0003-4958-074X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.032406&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1103/PhysRevE.102.032406


BARUZZI, LODI, STORACE, AND SHILNIKOV PHYSICAL REVIEW E 102, 032406 (2020)

cell
1

cell
2

FIG. 1. gHCO neural circuit with inhibitory (denoted with � �)
and excitatory (•) synapses reciprocally coupling two oscillatory
cells.

conductance strengths. By doing so, we show how spike-
frequency dependent synapses can themselves dynamically
control the rhythmic outcomes of the gHCO from in-phase
bursting to antiphase bursting and vice versa, without chang-
ing time constants and conductances. This is an aspect that has
not been studied fully in the past literature and is a novelty
of our manuscript. Moreover, we are focused on obtaining
synchronization regimes other than phasic and antiphasic,
with different time lags between cells and hence different
gaits, keeping the time constants fixed and changing the spike
frequency. The mixed excitatory/inhibitory synapses bring
exactly this advantage, which is not already qualitatively ac-
counted for by inhibitory-induced synchronization. Finally,
we show how to calibrate the gHCO parameters (i.e., cellular
and synaptic parameters) to obtain the desired behaviors, also
carrying out a numerical bifurcation analysis.

II. THE GHCO AND ITS DESIGN CONSTRAINTS

The proposed generalized half-center oscillator is shown in
Fig. 1. It is made of two neurons or two neural pools, coupled
by both excitatory (marked by a black circle) and inhibitory
(marked by a black triangle) synapses.

There are a few simple constraints that neurons and
synapses must meet for the circuit to generate stably the
desired rhythmic outcomes: (a) both neurons are endogenous
bursters with (b) the spiking voltage range above the hyperpo-
larized voltage (i.e., they do not undershoot [26]) within each
burst, while (c) the mean spike frequency can be controlled.
The gHCO bursters are coupled by (d) slow synapses with
PSP summation whose strength increases with the growing
spike frequency in presynaptic cells, as well as by (e) fast
synapses without PSP summation.

In what follows, both gHCO cells are represented by the
Hodgkin-Huxley (HH) type model of the thalamic reticular
neuron [27,28] (see Appendix). This slow-fast model with
seven state variables can exhibit endogenous bursting activ-
ity of alternating trains of fast action potentials with long
quiescent intervals, as depicted in Fig. 2. The dynamics of
the membrane potential Vj and of the voltage-dependent state
variables (the vector y j) are governed by a generic set of
HH-like equations,

d

dt

[
Vj

y j

]
=

[−∑
k Ik + Isyn

j
f (Vj, y j )

]
, where j = 1, 2, (1)

where f (Vj, y j ) is a vector function describing y j-dynamics;
in particular, each f component for the HH gating variables is
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FIG. 2. Asymptotic antiphase (a) and synchronous (b) bursting
voltage traces V1 (red) and V2 (blue) at Ic = −0.43 and 0.13, re-
spectively, in gHCO (1–3), superimposed with excitatory/inhibitory
thresholds θ (horizontal lines) at 25 and −30 mV. (c, d) Synapse dy-
namics: fast modulatory sin

2 (t ) (gray) vs. slowly summating/decaying
sex

2 (t ) (black). See the Appendix for parameters.

a logistic function. In addition to intracellular currents,
∑

k Ik

includes a further external contribution, namely a control
current Ic acting essentially on the spike frequency within
bursts. For the given model, bursting activity occurs when
Ic ∈ [−0.43, 0.13] [ μA

cm2 ], with the mean intraburst interval de-
creasing from 15.36 to 4.13 ms. The term Isyn

j is the incoming
mixed, excitatory/inhibitory synaptic current originating from
the ith cell onto the jth, postsynaptic cell:

Isyn
j = gex(E ex − Vj )s

ex
i + gin(E in − Vj )s

in
i , (2)

where E ex/in are the reversal potentials for
excitatory/inhibitory synapses and 0 � sex/in

i � 1 is the
activation or neurotransmitter release rate of the synapse,
excitatory (Vj < E ex) or inhibitory (Vj > E in). For the slow
synapses with PSP summation we employ a first-order
dynamic synapse [29–31]. The dynamic evolution of its
activation rate is governed by the following equation

dsi

dt
= α (1 − si ) f∞(Vi ) − βsi, f∞ = 1

1 + e−ν(Vi−θ )
,

(3)
where θ is the synaptic voltage threshold, whereas α and
β are dimensional coefficients weighting the raise and de-
cay terms, respectively. To model the static synapses without
PSP summation we employ the fast threshold modulation
(FTM) paradigm [32] using the sigmoidal function: 0 �
si = f∞(Vi ) � 1, with θ being below the spiking voltage
threshold.

To illustrate the contrasting properties of these synapse
models, we refer to Fig. 2, showing the bursting voltage
traces V1 (red) and V2 (blue) and the synaptic activation dy-
namics, fast sin

2 (t ) (gray) and slow sex
2 (t ) (black) at the edge

of the Ic bursting interval. Observe that the neurotransmitter
release rate sin

2 (t ) of the FTM synapse (1) is maximized as
soon as the voltage V2(t ) in the presynaptic cell overcomes
the synaptic threshold θ in [indicated by the gray lines in
Figs. 2(a) and 2(b)], (2) remains constant regardless of the
spike frequency, and (3) vanishes with the burst termination.
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In contrast, the low spike frequency [Figs. 2(a) and 2(c)]
barely activates the slow synapse [see sex

2 (t )] that at high
spike frequency [Figs. 2(b) and 2(d)] exhibits the profound
PSP build up; the ascending rate is ruled by α > 0, and the
exponential decay due to β > 0 starts after the voltage lowers
below θ . As stated above, the strenght of the fast synapse
does not depend on spike frequency, whereas the strength of
the slow synapse does. Consequently, changing the spike fre-
quency through an incoming current allows to modify the ratio
between inibition and exhitation strengths and thus influences
the phase lag between the neurons.

III. PARAMETER CALIBRATION

The neuron and synapse models (1–3) are calibrated to
physiologically plausible values to meet the above require-
ments (a)–(e) and to ensure a smooth and reversible transition
from antiphase to in-phase bursting by way of stable inter-
mediate phase lags as the spike frequency changes due to
Ic variations. Just to clarify things, let us consider the dy-
namics of the gHCO with fast inhibitory and slow excitatory
synapses, whose thresholds are set at θ in = −30 and θ ex =
25 mV, respectively. As such, the inhibitory synapses with-
out PSP summation (de)activate quickly and their strengths
remain constant during each burst regardless of the spike
frequency. In contrast, the slow excitatory synapses exhibit
PSP summation that becomes stronger with an increase of the
spike frequency.

Figure 2 shows that at the low end Ic = −0.43 of the
bursting region, near the transition to the hyperpolarized qui-
escence, the gHCO neurons oscillate in antiphase with the
smallest number of spikes per burst and lowest spike fre-
quency [Figs. 2(a) and 2(c)], whereas on the opposite side
at Ic = 0.13 the neurons burst in phase with a larger number
of spikes per burst and with much higher spike frequency
[Figs. 2(b) and 2(d)]. Changing the value of Ic changes the
strength of the excitatory synapses, and hence the proportion
between inhibition and excitation that repel the gHCO neu-
rons or attract them to each other, respectively. The phase-lag
� between burst initiations in the neurons [33–35] allows
quantifying the phase-locked states produced by the gHCO.
The definition of phase-lag � assumes that isolated or coupled
neurons maintain relatively close temporal characteristics and
each one evolves on a structurally stable periodic orbit in the
state space of the corresponding model. The phase variable
φ j (t ), defined modulo 1, indicates the position on the periodic
orbit of the jth neuron. Consequently, the phase lags between
burst initiations in a network of two neurons can be described
by the state variable � = φ2 − φ1. The time evolutions of
this state variable, being quite complex due to nonlinear in-
teractions, can be determined through numerical simulations,
in which φ j (t ) is reset to 0 when the voltage Vj increases
above some synaptic threshold Vth at times t (q)

j . We compute
the phase lags between coupled cells in a discrete set of time
instants as

�(q) = t (q)
2 − t (q)

1

t (q)
1 − t (q−1)

1

, mod 1. (4)

In our simulations, we set Vth = −30 mV.

In the case of synchronous or in-phase bursters, � = 0
(or � = 1). When they burst in alternation, with � = 0.5,
we say that they are in antiphase. The intermediate values
of � correspond to patterns transitional between the in- and
antiphase states generated by the gHCO. Their physiological
relevance is related to the different gaits that one can obtain
using the gHCO as basic element. For instance, there are
quadruped gaits characterized by phase lags not correspond-
ing to in-phase (i.e., phase lag of 0 or 1) or antiphase (i.e.,
phase lag of 0.5) synchronization [36,37]: the gallop, indeed,
requires a phase lag of 0.1 between right fore and hind legs
and of 0.6 between left fore and hind legs; the walk requires
a phase lag of 0.25 between left fore and hind legs and of
0.75 between left fore and right hind legs. The possibility
of having different phase lags at steady state by changing
Ic should allow obtaining all these gaits, as shown in our
previous works [9,14].

The bifurcation analysis of the system (1–3) was carried
out using the computational toolbox CEPAGE [38]. Since we
want the gHCO to transition smoothly from antiphase regime
to in-phase regime varying Ic, we need the proportion between
inhibition and excitation to be significantly different for the
two values of Ic at the edges of its range. To this end, we
seek maximum difference in the mean values of sex

i (over one
period) at the two extreme values of Ic, i.e., −0.43 (antiphase
pattern) and 0.13 (in-phase bursting). We set the numerical
values of θ ex, α and β according to this principle, running a set
of simulations over a grid of parameter values: θ ex = {10, 25},
10 evenly spaced values of α ∈ [0.05, 1] and 10 evenly spaced
values of β ∈ [0.005, 0.1]. The considered values of θ ex indi-
cate voltage levels representative of two different conditions:
at θ ex = 10 each spike appears broader, namely Vj stays above
θ ex for a longer time window; at θ ex = 25 each spike appears
narrower, namely Vj stays above θ ex for a shorter time period.
We choose the parameter setting that provides maximum dif-
ference in the mean values of sex

i for the two extreme values
of Ic (see Appendix B). We re-emphasize that the values of
θ ex, α, and β, chosen as explained above, remain fixed dur-
ing all simulations, according to our initial assumptions: we
want to study how spike-frequency dependent synapses can
themselves dynamically control the rhythmic outcomes of the
gHCO from in-phase bursting to antiphase bursting and vice
versa, without changing time constants and conductances and
passing through intermediate steady-state values of �. Fol-
lowing the same line of reasoning, the synaptic conductances
gin/ex are set to constant values, which are chosen to obtain
antiphase synchronization for low spike frequency, condition
in which the mean value of sex

i is minimum, and in-phase
synchronization for high spike frequency, condition in which
the mean value of sex

i is maximum. If the value of gex is too
high, then the neurons will always manifest in-phase steady
state behavior no matter the value of Ic, whereas if the value
of gin is too high, they will always stabilize in antiphase. We
set gin/ex tweaking their values through a set of simulations
for the two extremes of the Ic range, reaching the desired ratio
gin/gex that gives antiphase synchronization for minimum Ic

and in-phase synchronization for maximum Ic.
The results are summarized in Fig. 3, and reveal the de-

pendence of the phase-lag � on the Ic-current, and hence
explicitly on the spike frequency within bursts. As expected,
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FIG. 3. Bifurcation diagram showing how the phase-lag � be-
tween the gHCO neurons is affected by the current Ic; here, 30 initial
�-values were sampled evenly between 0.05 and 0.95 for each of the
50 Ic-values. Parameters listed in the Appendix.

at low Ic-values between −0.43 and −0.40, the fast recip-
rocal inhibition within the gHCO dominates and makes its
neurons burst in alternation with � = 0.5. As the Ic-current
is increased, the spike frequency raises, which in turn makes
the slow excitatory synapses strength increase, on average.
With larger Ic values, the reciprocal excitation gradually pre-
vails over the reciprocal inhibition, which gives rise to the
smooth onset of the stable in-phase bursting in the gHCO.
This is revealed in the bifurcation diagram with a character-
istic pitchfork shape of the dependence of the phase-lag �

on the Ic-current. We also note that this diagram has been
obtained by making a multishooting for each parameter value,
namely, running sufficiently many (30 in our case) trials with
initial conditions equally spaced in the � range [0,1]. This
is a direct indication that there is no hysteresis and therefore
the absence of multistability or the coexistence of anti- and
in-phase bursting for the same parameter values, and that
the transition between activity rhythms is continuous and
reversible. We would like to re-emphasize that the maxi-
mal synaptic conductances gin/ex in Eq. (2) once set are not
changed, and the transition is solely determined by the gradual
increase/decrease of the mean sex

i -value caused by the spike
frequency variations in the gHCO neurons.

IV. COUNTEREXAMPLES

The proposed gHCO concept can fall apart whenever one
or more of the conditions on the neuron and synapse models
are not fulfilled. If the bursting condition (a) is broken, then
the approach is no longer applicable. Two neurons, spiking in
isolation, can burst in alternation due to reciprocal inhibition,
but not through reciprocal excitation, which makes both even
more synchronously depolarized with a higher frequency. If
the neurons undershoot [condition (b)], which is typical for
elliptical bursters [40] [see Fig. 4(a)], then the choice of the
inhibitory threshold θ in to warrant evenly constant activation
sin

i requires additional considerations. Indeed, this choice can
result in less robust dynamics of the gHCO, due to inhibition-
excitation competition [see Fig. 4(b)]. Condition (c), outlining
the importance of being able to control spike-frequency and
not only burst duration of the pre-synaptic cell, is quite crucial
for obtaining many stable values of �. To point out its sig-
nificance, we employ the exponential integrate-and-fire (eIF)
neuron model [41], where an external current Iext primarily
controls the burst duration with insignificant spike-frequency
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FIG. 4. (a) Asymptotic bursting voltage trace with undershoot
produced by the Plant neuron model [39,40]. (b) Voltage traces
produced by the gHCO with two coupled Plant neurons. See the
Appendix for parameters.

variations, as shown in Fig. 5(a). In this scenario, the acti-
vation of both inhibitory and excitatory synapses is mainly
determined by the burst duration in the eIF neurons, and
thus Iext variations can only cause proportional changes in
the average excitation (sex

i ) and inhibition (sin
i ). As a result,

the ratio between excitation and inhibition does not vary
significantly within the given Iext range, and thus, for fixed
conductances and time constants, the phase lag remains prac-
tically unaltered, as shown in Fig. 5(b). Conversely, changing
the parameter ge of the eIF neuron model significantly mod-
ifies the spike frequency, and the corresponding bifurcation
diagram has the characteristic pitchfork shape shown in Fig. 6,
as expected. However, the parameter ge is a conductance,
and thus is not a realistic control parameter, according to our
guidelines.
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FIG. 5. (a) Mean values (over 5 s) of the IBI (green line) and
the burst duration (black line) plotted against Iext for the exponential
IF-model [41]. Corresponding bifurcation diagram for the phase lag
� between the cells in the gHCO, in which each cell is an exponential
IF-model (b).
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FIG. 6. (a) Mean values (over 5 s) of the IBI plotted against ge for
the exponential IF-model [41]. Corresponding bifurcation diagram
for the phase lag � between the cells in the gHCO, in which each
cell is an exponential IF-model (b).

Condition (d) follows condition (c), as the synaptic thresh-
old θ , for the slow synapses, has to be within the spike voltage
range of the pre-synaptic neuron and the dynamics is to be
slow enough to allow si(t ) to grow and the synapse to exhibit
PSP summation. Condition (e) guarantees that the activation
of the fast synapse does not exhibit PSP summation and hence
does not change due to spike frequency variations in the pre-
synaptic neuron.

V. TOWARD A LOCOMOTION CPG

As the gHCO often happens to be a CPG building block,
we discuss some solutions ensuring that both the phase lags
and the burst frequency are consistent for the modeled gaits.
For instance, in left-right alternation of the mouse locomo-
tion, a phase lag � = 0.5 occurs at low burst frequencies
(walk and trot gaits), whereas a phase lag � close to 0 (or
to 1, equivalently) occurs at high burst frequencies (gallop
and bound gaits) [14,36,37]. Recall that the thalamic reticular
neuron model in isolation exhibits high frequency bursting
at small Ic-values and slow bursting at greater Ic-values.
Therefore, for the gHCO built with such models to produce
in-phase/antiphase synchronization at high/low burst fre-
quencies for the desired gaits, the time-scale of the synapses
in its circuitry should be swapped: slow inhibitory synapses
with PSP summation and fast excitatory ones without PSP
summation, see the Appendix for details. Moreover, we use a
modified version of the first-order synapse to model slow in-
hibitory synapses. The dynamics of its activation is governed
by the following equation:

dsi

dt
= α si (1 − si ) f∞(Vi ) − βsi, (5)

where the new multiplicative term delays and hence slows
down the synaptic activation for low spike-frequency in the
pre-synaptic neuron; the synapse remains inactive near Ic =
−0.43. The synapse given by Eq. (5) maintains a greater

-0.4 -0.3 -0.2 -0.1 0   0.1 
0  

0.5

1  

FIG. 7. Bifurcation diagram showing the flat-even phase-lags,
� = {0, 1} (in-phase) and � = 0.5 (antiphase), between the bursters
plotted against the current Ic for the gHCO with slow inhibitory
and fast excitatory synapses; here, 30 initial �-values were sampled
evenly between 0.05 and 0.95 for every Ic value out of 50. Parameters
listed in the Appendix.

contrast in the mean si-values corresponding to the low and
high ends of the bursting Ic-range for the given neuron
model. The results are summarized in Fig. 7, representing
the bifurcation diagram for this gHCO. It demonstrates that
the gHCO bursters oscillate robustly in-phase (� = {0, 1})
for negative Ic-values and transition to the stable antiphase
(� = 0.5), phase-locked state as the drive is increased above
−0.2. Despite the abrupt jump in the bifurcation diagram,
the time evolution between in-phase and antiphase bursting
occurs smoothly [see Fig. 8(b), which shows a fragment of the
smooth time transition from in- to antiphase bursting] as the
control current Ic is step-wise increased from −0.43 to 0.13
[see the dashed green lines in Fig. 8(a)].

Notice that the abrupt transition in Fig. 7 means that with
this configuration we cannot generate every possible gait, but
only the ones that require in-phase or antiphase synchroniza-
tion. This is a suboptimal situation, of course, to which we aim
only when a specific neuron model fails in hitting the original
target, which is finding a bifurcation diagram like that shown

-50
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0

0.5

-0.13

-0.1

FIG. 8. (a) Time evolution of the phase lag � between the gHCO
cells (black line) in response to step-wise changes of Ic (green dashed
lines); Ic increased over 25 steps from −0.43 to 0.13, only the time
window in which � transition occurs is shown. (b) Voltage traces
progressing from in-phase to antiphase bursting within the time win-
dow bounded by the grey vertical lines in panel (a).
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in Fig. 3, with the smooth transition between antiphase and
fully in-phase steady-state dynamics as a function of Ic.

VI. CONCLUDING REMARKS

We developed a generalized HCO-model with a short-term
plasticity mechanism, which accounts for short timescale gait
transitions induced by sensory input or cognitive tasks. The
proposed concept is based on simple constraints (i) sub-
jecting models for cells and synapses and (ii) optimizing
the trading-off between physiological plausibility and model
functionality. The generality of our approach suggests that it
will be applicable for other biologically plausible and phe-
nomenological models of endogenous (square-wave) bursters,
and for other dynamic synapse models.

Many previous works on the phasic/antiphasic synchro-
nization of neurons or groups of neurons analyzed the
influence of synaptic changes on the circuit dynamics. In
Ref. [20] the authors study the synchronization of spiking
cells coupled by slow inhibitory synapses such that the inhi-
bition decay is about equal to (or longer than) the interspike
interval, controlled by the synaptic time constant in the FTM
model. This is a well-known result [42] due to a small initial
phase difference, falling in a tight window that lets both cells
spike together. Otherwise, either active cell suppresses the
other by long lasting inhibition that does not let the latter
spike. When the synapses have smaller time constants and
smaller weights, the network does not produce any steady
pattern of activity. This is different from our case, where
the convergence to phasic or antiphasic steady state is in-
dependent of the initial state, and is not suitable for CPGs
that are supposed to be reliable pattern generators with preset
qualities. Moreover, we want to obtain steady-state phase lags
other than in-phase and antiphase. Finally, in our network, we
fix all synaptic conductances and constants.

In Ref. [18] the same approach is used, with a pair of recip-
rocally coupled endogenous bursters that oscillate in antiphase
as long as the inhibition is set short. For higher values of
the synaptic time constant, both cells burst in phase provided
that their initial states are close and the inhibitory current
decays slowly and lasts as long as the interburst interval.
In the discussion the authors mention “The duration of the
interburst interval will control the time of burst initiation, and
thus the relative phase of bursting in the postsynaptic and
presynaptic neurons.” This strategy is far from our approach,
since, as shown in the counterexamples, the burst duration and
the interburst interval are not key elements in determining the
stable phase differences.

In Ref. [19], a pair of IF cells are coupled by inhibitory
and electrical synapses. The conclusion is that increasing
electrical coupling makes the cells spike in sync, if prior they
spiked in antiphase. Again, the authors change the coupling
parameters to ensure phasic or antiphasic synchrony. It is well
known that repulsive/inhibitory coupling in general either
makes the cells fire in antiphase or makes one cell get shut
down, whereas both electrical and excitatory coupling make
the cells fire together.

Our paper is not based on the above findings. Its focus is
on how spike-frequency dependent synapses can themselves
dynamically control the rhythmic outcomes of the gHCO from

in-phase bursting to antiphase bursting and vice versa, with-
out changing time constants and conductances. Moreover, we
are focused on obtaining (owing to the excitatory synapses
and keeping the time constants fixed) all possible time lags
between cells and hence gaits that require synchronization
regimes other that phasic and antiphasic.
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APPENDIX A: NEURON MODELS

1. Thalamic reticular neuron model

The thalamic reticular neuron model [27,28] is defined by
the following state equations:

dV

dt
= −IT − IL − INa − IK − Ic + Isyn

C
dCa

dt
= − kIT

2Fd
− KT Ca

Ca + Kd
(A1)

dy

dt
= y∞ − y

τy
y = {h, m, n, mT , hT }

where V is the membrane potential of the neuron; the ion
currents IT (calcium), INa (sodium), IK (potassium), and IL

(leakage) evolve according to the following equations

IT = gCam2
T hT (V − ECa), IL = gL(V − EL ),

INa = gNam3h(V − ENa), IK = gkn4(V − Ek ),

which depend on V , on the intracellular calcium concentra-
tion Ca and on a set of further state variables (called gating
variables) h, m, n, mT , hT . The differential equations govern-
ing these gating variables have the common structure written
above (for the generic gating variable y), where

y∞ = ay/(ay + by), τy = 1/(ay + by) (y = {h, m, n})

ah = 0.128e
17−V

18 , bh = 4

e−0.2(V −40) + 1
,

am = 0.32(13 − V )

e0.25(13−V ) − 1
, bm = 0.28(V − 40)

e0.2(V −40) − 1
,

an = 0.032(15 − V )

e0.2(15−V ) − 1
, bn = 0.5e

10−V
40 ,

m∞
T = 1

1 + e− V +52
7.4

, τmT = 0.44 + 0.15

e
V +27

10 + e− V +102
15

,

h∞
T = 1

1 + e
V +80

5

, τhT = 62.7 + 0.27

e
V +48

4 + e− V +407
50

.

In the above equations, h and m are the inactivation and
activation variables of the Na+ current; n is the activation
variable of the K+ current; mT and hT are the activation and
inactivation variables of the low-threshold Ca2+ current; the
leakage current IL has conductance gL = 0.05 [ mS

cm2 ] and rever-
sal potential EL = −78 [mV]; INa and IK are the fast Na+ and
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TABLE I. Parameter values. Notice that for columns C and D the synaptic conductances are expressed in nS instead of nS/cm2.

A B C D E

αex [kHz] 0.1556 — 10 10 0.5
βex [kHz] 0.005 — 0.26 26 0.0005
θ ex [mV] 25 −30 −40 −40 −42
gex [nS/cm2] 0.0005 0.00001 1 0.4 0.0001
E ex [mV] 60 60 20 20 50
αin [kHz] — 0.5 — — —
β in [kHz] — 0.02 — — —
θ in [mV] −30 25 −48.5 −48.5 −53
gin [nS/cm2] 0.0005 0.01 0.6 0.1 0.0001
E in [mV] −80 −80 −110 −110 −80
ν [mV−1] 10 10 10 10 10

K+ currents responsible for the generation of action poten-
tials, with conductances gNa = 100 [ mS

cm2 ] and gk = 10 [ mS
cm2 ]

and reversal potentials ENa = 50 [mV] and Ek = −95 [mV];
IT is the low-threshold Ca2+ current that mediates the rebound
burst response, with conductance gCa = 1.75 [ mS

cm2 ] and rever-
sal potential ECa = k0

RT
2F log( Ca0

Ca ); Isyn is the synaptic current
[Eq. (2) in the paper].

When the control current Ic is in the range
[−0.43, 0.13] [ μA

cm2 ] the neuron exhibits bursting behavior.
The other parameters are set as follows: C = 1 [ μF

cm2 ], Ca0 =
2 [mM], d = 1 [μm], KT = 0.0001 [mM ms], Kd =
0.0001 [mM]. F = 96.489 [ C

mol ] is the Faraday constant,
R = 8.31441 [ J

mol K ] is the universal gas constant and the
temperature T is set at 309.15 [K].

2. Exponential integrate and fire neuron model

The exponential integrate and fire (eIF) neuron model [41]
is defined by the following state equations:

dV

dt
= −gL(V − EL ) + gee

V −VT
�T − u + Iext + Isyn

C
du

dt
= a(V − EL ) − u

τw

(A2)

where V is the membrane potential of the neuron; u is the
adaptation variable; gL = 30 [nS] is the leakage conductance
and EL = −70.6 [mV] is the leakage reversal potential; Isyn is
the synaptic current [Eq. (2) in the paper].

When the conductance ge is set at 110 [nS], the ex-
ternal current Iext is varied in the range [690, 1110] [pA]
(Fig. 5). When the external current Iext is set at 800 [pA],
the conductance ge is varied in the range [20, 160] [nS]
(Fig. 6). For this range of parameter values, the neuron
exhibits bursting behavior. The other parameters are set
as follows: C = 2007.4 [pF ], VT = −50.4 [mV], �T =
2 [mV], τw = 285.7 [ms], a = 4 [nS].

3. Plant neuron model

The Plant neuron model [39,40] is defined by the following
state equations:

dV

dt
= −IT − IL − INa − IK − IKCa + Iext + Isyn

C
,

dCa

dt
= ρ[Kcx(VCa − V ) − Ca], (A3)

dy

dt
= y∞ − y

τy
y = {h, n, x},

where

IT = gT x(V − EI ), IL = gL(V − EL ), INa = gI m
3
∞h(V − EI ), IK = gK n4(V − EK ), IKCa = gKCa

Ca

Ca + 0.5
(V − EK ),

m∞ =
0.1(50−Vs )

e
50−Vs

10

0.1(50−Vs )

e
50−Vs

10
+ 4e

25−Vs
18

, h∞ = 0.07e
25−Vs

20

0.07e
25−Vs

20 + 1

1+e
55−Vs

10

, τh = 12.5

0.07e
25−Vs

20 + 1

1+e
55−Vs

10

, n∞ =
0.01(55−Vs )

e
55−Vs

10
− 1

0.01(55−Vs )

e
55−Vs

10
− 1+ 0.125e

45−Vs
80

,

τn = 12.5
0.01(55−Vs )

e
55−Vs

10
− 1 + 0.125e

45−Vs
80

, x∞ = 1

e0.15(−V −50) + 1
, Vs = 127V

105
+ 8265

105
,

where V is the membrane potential of the neuron; Ca is the
intracellular calcium concentration; x is the activation vari-
able of the slow inward Ca2+ current; h is the inactivation
variable of the Na+ current; n is the activation variable of
the K+ current; IL is the leakage current, with conductance
gL = 0.003 [ nS

cm2 ] and reversal potential EL = −40 [mV]; INa

and IK are the fast inward Na+ and outward K+ currents, re-
spectively, with conductances gI = 8 [ nS

cm2 ] and gK = 1.3 [ nS
cm2 ]

(these values ensure undershoot, see Fig. 4) and reversal
potentials EI = 30 mV and EK = −75 [mV]; IT is the slow
inward tetrodotoxin-resistant Ca2+ current, with conductance
gT = 0.01 [ nS

cm2 ] and reversal potential ET = 30 [mV]; IKCa
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is the outward Ca2+ sensitive K+ current, with conductance
gKCa = 0.03 [ nS

cm2 ] and reversal potential EK; Isyn is the synap-
tic current [Eq. (2)].

The external current Iext is set to 0.028 [ μA
cm2 ].

The other parameters are set as follows:
C = 1 [ μF

cm2 ], ρ = 0.00015 [mV−1], Kc = 0.0085 [mV−1],VCa =
140 [mV], τx = 235 [ms].

APPENDIX B: SYNAPSE PARAMETER VALUES

In Table I, column A lists the parameter values used for the
gHCO with the thalamic reticular neuron model, first-order
dynamic excitatory synapses and static inhibitory synapses

(Figs. 2 and 3). Column B lists the parameter values used
when simulating the gHCO with the thalamic reticular neu-
ron model, modified first-order dynamic inhibitory synapses
[Eq. (5)] and static excitatory synapses (Figs. 7 and 8 in
the paper). Column C lists the parameter values used for the
gHCO with the eIF neuron model when varying Iext, first-order
dynamic excitatory synapses and static inhibitory synapses
(Fig. 5). Column D lists the parameter values used for the
gHCO with the eIF neuron model when varying ge, first-order
dynamic excitatory synapses and static inhibitory synapses
(Fig. 6). Column E lists the parameter values used for the
gHCO with the Plant neuron model, first-order dynamic ex-
citatory synapses and static inhibitory synapses (Fig. 4).
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