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A new computational technique based on the symbolic description utilizing kneading invariants
is proposed, and verified for explorations of dynamical and parametric chaos in a few exem-
plary systems with the Lorenz attractor. The technique allows for uncovering the stunning
complexity and universality of bi-parametric structures and detects their organizing centers —
codimension-two T-points and separating saddles in the kneading-based scans of the iconic
Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model
from nonlinear optics.

Keywords : Kneading invariant; symbolic dynamics; T-points; Lorenz attractor; chaos; homoclinic
and heteroclinic orbits.

1. Introduction

A great deal of analytical and computational stud-
ies have been focused on the identification of key
signatures to serve as structural invariants that
would allow dynamically alike nonlinear systems
with chaotic dynamics from diverse origins to be
united into a single class. Among these key struc-
tures are various homoclinic and heteroclinic bifur-
cations of low codimensions, which lie at the heart
of the understanding of complex behaviors because
of their roles in organizing centers of dynamics in
parameterized dynamical systems.

Dynamical systems theory has aimed to cre-
ate purely abstract approaches that are further pro-
ceeded by development of applicable tools designed

for the search and identification of such basic invari-
ants for simple Morse–Smale systems and ones with
complex chaotic dynamics. One such [computa-
tionally justified] approach for studying complex
dynamics capitalizes on the concept of sensitivity
of deterministic chaos. Sensitivity of chaotic trajec-
tories can be quantified in terms of the divergence
rate evaluated through the largest Lyapunov char-
acteristic exponent. The approach has been proven
to work exceptionally well for various systems with
chaotic and simple dynamics. In several low-order
dissipative systems, such as the Rössler model,
the computational technique based on the largest
Lyapunov characteristic exponent reveals that
they possess common, easily recognizable patterns
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involving spiral structures in bi-parametric planes
[Afraimovich et al., 1977; Bykov, 1993; Shilnikov,
1991; Shilnikov et al., 1993; Barrio et al., 2011b;
Gallas, 2010]. Such patterns turn out to be ubiq-
uitously alike in both time-discrete [Lorenz, 2008]
and time-continuous systems [Gaspard et al., 1984;
Barrio et al., 2009; Gallas, 2010], and they are
easily located when the spiral patterns have reg-
ular and chaotic spiral “arms” in the systems with
the Shilnikov saddle-focus [Shilnikov & Shilnikov,
2007].

Application of the Lyapunov exponents tech-
nique fails, in general, to reveal fine structures
embedded in the bi-parametric scans of Lorenz-
like systems. As such it cannot deliver the desired
insights into intrinsic bifurcations because regions
of chaotic dynamics appear to be uniform. This
basically means that the instability of the Lorenz
attractors does not vary noticeably as control
parameters of the system are varied. This holds true
too when one attempts to find the presence of char-
acteristic spiral structures that are known to exist
theoretically in the Lorenz-like systems [Bykov,
1993; Glendinning & Sparrow, 1986] and therefore
could only be identified using accurate bifurcation
continuation approaches [Shilnikov, 1991; Shilnikov
et al., 1993]. Such spirals in a bi-parametric dia-
grams of the system in question are organized
around the so-called T[erminal]-points correspond-
ing to codimension-two or -higher heteroclinic con-
nections between two or more saddle equilibria. For
Z2-symmetric systems with the Lorenz attractor,
the degeneracy is reduced to a cod-2 bifurcation of a
closed heteroclinic connection involving two saddle-
foci and a saddle at the origin. T-points have been
located in various models of diverse origins includ-
ing electronic oscillators [Bykov, 1998; Fernández-
Sánchez et al., 2002] and nonlinear optics [Forysiak
et al., 1991], etc.

Figure 1 sketches an idea of the structure of
the bifurcation unfolding near an ordinary T-point
in the parameter plane in a symmetric system
[Bykov, 1993; Glendinning & Sparrow, 1986]; var-
ious T-points configurations for other heteroclinic
connections were examined in detail in [Bykov,
1993]. Here, the heteroclinic connection is formed by
a pair of symmetric saddle-foci and a saddle whose
one-dimensional stable (incoming) and unstable
(outgoing), respectively, separatrices merge only at
the codimension-two T-point in the bi-parametric
space of the Lorenz model. It follows from the
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Fig. 1. Caricature of the bifurcation unfolding of the ordi-
nary T-point for symmetric Lorenz-like systems with a closed
heteroclinic connection evolving both saddle-foci and the sad-
dle. Point out that with each revolution approaching the
T-point along the curve (1-hom O), the number of turns
of the one-dimensional separatrix of the saddle, O, around
the saddle-focus increases by one in the homoclinic loop and
becomes infinite at the T-point.

theoretical analysis that the unfolding of this
bifurcation includes three main curves ending at the
T-point: a spiraling bifurcation curve, 1-hom O, cor-
responding to two simultaneous (due to the symme-
try) homoclinic loops of the saddle; a curve, 1-hom
O1,2, corresponding to two simultaneous homoclinic
loops of the saddle-foci; and another codimension-
one bifurcation curve, 1-het O1,2, corresponding to
a heteroclinic correction between both saddle-foci.
In addition, the unfolding includes infinitely many
subsidiary T-points in between the curves 1-hom
O1,2 and 1-het O1,2.

Despite a rather overwhelming number of stud-
ies reporting the occurrence of various spiral struc-
tures, there is yet unproportionately little known
about construction details and generality of under-
lying bifurcation scenarios giving rise to such
patterns. In this paper, we introduce a novel com-
putational toolkit capitalizing on the idea of the
symbolic representation for the dynamics of Lorenz-
like systems that employs a concept of the knead-
ing invariants [Milnor & Thurston, 1988]. We will
then show how the toolkit can be used for detect-
ing various structures in bi-parametric scans of such
systems with the given strange attractor. It is our
intention to enhance further the technique thus
allowing for systematic studies of the stunning com-
plexity and universality of T-points and spiral struc-
tures in models of diverse dynamics and origins.

The paper is organized as follows: in Sec. 2, we
review the homoclinic bifurcation theory and dis-
cuss the routes to chaos and the formation stages of
the strange attractor in the Lorenz model; in Sec. 3,
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we introduce basics of kneading theory; in Sec. 4,
we demonstrate the computational technique using
kneading invariants to reveal hidden structures of
bi-parametric chaos in the iconic Lorenz model; in
Sec. 5, we apply the technique to uncover bifur-
cation diagrams of the Shimizu–Morioka model.
Finally, in Sec. 6, the proposed technique will be
tested on a 6D model of the optically pumped, far
infrared red three-level laser [Moloney et al., 1989;
Forysiak et al., 1991] to confirm the universality of
the patterns produced by the deterministic chaos in
the Lorenz-like systems.

2. Homoclinic Bifurcations in
Systems with the Lorenz
Attractor

The strange chaotic attractor in the Lorenz equa-
tion from hydrodynamics has become a de facto
proof of deterministic chaos. The butterfly-shaped
image of the iconic Lorenz attractor, shown in
Fig. 5, has become the trademark of Chaos Theory
and Dynamical Systems. This theory elaborates on
complex trajectory behaviors in nonlinear systems
from mathematics, physics, life sciences, finance,
etc. Universality of the methods along with bifur-
cation tools has made them spread wide and deep
across all other disciplines of the modern science.

The Lorenz equation [Lorenz, 1963] is a system
of three differential equations:

ẋ = −σ(x − y),

ẏ = rx − y − xz,

ż = −bz + xy,

(1)

with three positive bifurcation parameters: σ being
the Prandtl number quantifying the viscosity of the
fluid, b being a positive constant of magnitude of
order 1 which originates from the nonlinearity of the
Boussinesq equation, and r being a Reynolds num-
ber that characterizes the fluid dynamics. Notice

that Eqs. (1) are Z2-symmetric, i.e. (x, y, z) ↔
(−x,−y, z), see more details in the original hand-
book on the Lorenz equation [Sparrow, 1982].

2.1. Uni-parametric cut through the
Lorenz equation

An exploration of primary bifurcations in the
Lorenz equation begins with a single-parameter
examination of the dynamics, where r serves as the
bifurcation parameter increasing from laminar to
weekly turbulent magnitudes around 25, while the
two other parameters are set to the original Saltz-
man values: σ = 10 (for the water, and σ = 1 for the
air) and b = 8/3. This would give a uni-parametric
cut through the Lorenz equation that was originally
explored in these independent studies [Afraimovich
et al., 1977; Kaplan & Yorke, 1979] (see Fig. 2):

• For r < 1, the only equilibrium state O(0, 0, 0) is
a global attractor in the 3D phase space of the
Lorenz equation.

• This equilibrium state undergoes a pitchfork
bifurcation at r = rP = 1, and for r > 1 becomes
a saddle so that the stability is transferred to two
symmetric stable foci.

• At r = rhom ≈ 13.9162, the unstable separatrices
of the saddle return to the origin, thus forming
a homoclinic butterfly. This causes a “homoclinic
explosion” in the phase space of the model that
becomes filled in at once with countably many
saddle periodic orbits that would further compose
the skeleton of the Lorenz attractor.

• For rhom < r < rhet ≈ 24.0579, the model
exhibits transient chaos with two ultimate attrac-
tors: stable foci O1,2. Such transient chaos is asso-
ciated with a preturbulence regime.

• The value r = rhet corresponds to the onset of
the Lorenz attractor coexisting with stable foci
O1 and O2. The attraction basins of O1,2 are
bounded by the 2D cylindrically-shaped stable

|x|

rAHrhet rP r hom 

unstable limit cycle

1,2

O

O

parameter r

Fig. 2. Sketch of the uni-parametric bifurcation diagram for the Lorenz equation at σ = 10 and b = 8/3: plotted are the
coordinates, |x|, of the limit trajectories (equilibria, periodic and homoclinic orbits) against the bifurcation parameter r.
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manifolds of two saddle periodic orbits that ear-
lier bifurcated from the homoclinic loops of the
saddle at rhom ≈ 13.9162.

• As r increases to rAH ≈ 24.7368, the sad-
dle periodic orbits shrink the attraction basins
and collapse onto the stable foci O1,2 through a
subcritical Andronov–Hopf bifurcation.

• For rAH < r < rT ≈ 31, the Lorenz equation
possesses a genuinely strange chaotic attractor,
known as the Lorenz attractor, containing no
stable orbits.

2.2. Canonical 2D bifurcation
diagram of the Lorenz equation

The pilot study of the dynamics of the Lorenz
equation needs to be further enhanced by the bi-
parametric examination of the model, including at
large parameter values [Barrio & Serrano, 2007,
2009]. We will start off with the canonical bifur-
cation diagram, shown in the left panel of Fig. 3
(courtesy of [Shilnikov, 1980]), of the Lorenz equa-
tion that depicts the basic bifurcation curves in the

(r, σ)-parameter plane with fixed b = 8/3. The right
panel of Fig. 3 sketches the en route fragments in
the formation of the Lorenz attractor on the path-
way, σ = 10 [Afraimovich et al., 1977; Kaplan &
Yorke, 1979] through the bifurcation curves. For
r < 1, Eq. (1) has a single stable equilibrium state
at the origin. This equilibrium state undergoes a
pitchfork bifurcation at r = 1, so that for r > 1, the
origin becomes a saddle, O, of the topological type
(2, 1) due to the characteristic exponents λ3 < λ2 <
0 < λ1. The saddle has a 1D unstable manifold, W u

O,
which is made of O itself and a pair of 1D unsta-
ble separatrices, Γ1 and Γ2 (due to λ1) entering the
saddle as t → −∞, and a 2D stable manifold, W s

O,
containing the leading (due to λ2) invariant z-axis;
the eigenvector due to λ3 determines the nonleading
or strongly stable direction, W ss

O in W s
O. After the

pitchfork bifurcation, the separatrices of the sad-
dle tend to two symmetric attractors — equilibrium
states, O1,2(x = y = ±√

b(r − 1), z = r − 1)
[Fig. 3(a)] that become the global attractor for
all trajectories in the phase space of the Lorenz
equation other than in W s

O.

Fig. 3. (Left panel) (r, σ)-parameter plane depicting the primary bifurcation curves and the stages of the formation of the
Lorenz attractor that are sketched in the right panel. Curve l1 corresponding to the primary homoclinic butterfly shown in (b);
l2 being the first boundary of the existence region of the Lorenz attractor: stages (c)–(e); l3 corresponding to a subcritical
Andronov–Hopf bifurcation; and l4 and l5 (f), corresponding to the homoclinic loops (depicted in the insets) with the following
kneadings {+1,−1, 0} and {+1,−1, +1, 0}, respectively. Courtesy of [Shilnikov, 1980].
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A homoclinic butterfly bifurcation occurs in the
Lorenz equation when both separatrices, Γ1 and Γ2,
of the saddle come back to the origin along the
z-axis [Fig. 3(b)]. In virtue of the symmetry of the
Lorenz equation, such homoclinic loops are always
formed in pairs, and therefore constitute bifurca-
tions of codimension-one, in general. The bifurca-
tion of the homoclinic butterfly takes place on the
curve l1 in the (r, σ)-parameter plane. Bifurcations
of the separatrices of the saddle at the origin are
crucial for the Lorenz attractor.

The very first homoclinic butterfly made of two
separatrices looping a single round about the equi-
librium states O1,2, causes the homoclinic explo-
sion in the phase space of the Lorenz equation.
This bifurcation gives rise to an onset of countably
many saddle periodic orbits that form an unsta-
ble chaotic (saddle) set, which is not an attrac-
tor yet. For this explosion to happen, the so-called
saddle value S = λ1 + λ2, which is the sum of
the leading characteristic exponents of the saddle,
must be positive; alternatively, the saddle index
ν = |λ2|/λ1 < 1. Otherwise, if S < 0 (ν > 1), the
homoclinic butterfly produces a symmetric figure-8
periodic orbit in the aftermath of the gluing bifurca-
tion through which two stable periodic orbits merge
after flowing into the separatrix loops. Shilnikov
[1968] pointed out two more conditions, in addi-
tion to the primary one (1): σ �= 0, or ν �= 1,
needed for a separatrix loop of the saddle in R

3

and higher dimensions to produce a single saddle
periodic orbit only. They are: (2) Γ ∈ W ss, i.e. the
separatrix comes back to the saddle along the lead-
ing direction, (3) the so-called separatrix value (A
in the mapping Eq. (2) below) does not vanish, its
sign determines whether the separatrix loop is ori-
ented or twisted, and hence the stable manifolds
of the saddle periodic orbit are homeomorphic to a
cylinder or a Möbius band. Otherwise, he predicted
[Shilnikov, 1981] that the Lorenz attractor could
be born right near such codimension-2 bifurcations,
termed resonant saddle, orbit- and inclination-flip,
correspondingly [Shilnikov et al., 1998, 2001], as it
occurs in the Shimizu–Morioka and similar models
[Shilnikov, 1986; Robinson, 1989; Rychlic, 1990].

Out of many saddle periodic orbits, which
exploded the phase space of the Lorenz equation,
two ones L1,2, are special, as they demarcate the
thresholds of the “interior” of the chaotic unsta-
ble set [Fig. 3(c)]. Beyond the homoclinic butterfly
bifurcation, in the region between the bifurcation

Fig. 4. 3D version of inset 3(d). The birth of the Lorenz
attractor (gray): the attraction basins of the stable foci (pur-
ple dots) being blocked away from the extreme separatrices
(blue orbits), Γ1,2, of the saddle, O, at the origin and other
trajectories on the Lorenz attractor by the cylinder-shaped
2D stable manifolds W s

L1,2
(dark blue) of the saddle periodic

orbits L2,1 in the phase space of the Lorenz equation.

curves l1 and l2 in the (r, σ)-parameter plane, the
separatrices Γ1 and Γ2 of the saddle switch the
targets: now the right/left separatrix tends to
the opposite left/right stable focus O2,1.

In order for the unstable chaotic set to become
the Lorenz attractor, it must become invariant, i.e.
a closed set containing all ω-limit orbits, and hence
no loose trajectories escaping to stable foci O1,2.
This occurs on the bifurcation curve, l2, in the
parameter space [Fig. 3(d)]. To the right of the
curve, the basin of the Lorenz attractor is shielded
away from those of the stable equilibrium states by
the 2D cylinder-shaped stable manifolds of the two
“threshold” saddle orbits, L1,2 that have simulta-
neously emerged from both separatrix loops, Γ1,2

at the homoclinic explosion on the curve l1 in the
parameter plane.

As one moves further to the right in the
parameter plane, the saddle orbits, L1,2, keep
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narrowing the attraction basins of the foci O1,2,
and on the bifurcation curve l3 they collapse into
the stable equilibria. The equilibrium states become
saddle-foci of the (1, 2)-type through a subcritical
Andronov–Hopf bifurcation [Roshchin, 1978]. The
topological (1, 2)-type means that each saddle-focus
has 2D unstable and 1D stable manifolds; the lat-
ter is formed by two incoming separatrices. Some
local properties of the saddle-foci can be revealed
without evaluating their characteristic exponents
explicitly. Let λ1 < 0 stand for the real stable expo-
nent of O1,2, and λ2,3 stand for a complex conju-
gate pair such that Reλ2,3 > 0. Observe that the
divergence of the vector field defined by Eqs. (1) is
given by [−σ − 1 − 8/3], which equals

∑3
i=1 λi =

λ1 +2Re λ2,3 < 0. This implies λ1 +Reλ2,3 < 0, i.e.
the complex conjugate pair is closer to the imag-
inary axis than the real negative exponent, and
hence the saddle-foci meet the Shilnikov condition
[Shilnikov, 1965, 1967; Shilnikov & Shilnikov, 2007].
Therefore, as soon as the saddle-focus possesses
a homoclinic loop, such a bifurcation causes the
abundance of periodic orbits nearby. Those periodic
orbits constantly undergo saddle-node and period
doubling bifurcations as the parameters are varied.
Moreover, since the divergence of the vector field of
the Lorenz equation is always negative, saddle-node
bifurcations give rise to stable periodic orbits near
the homoclinic saddle-focus bifurcation. On fulfill-
ment of some global conditions, a single Shilnikov
saddle-focus bifurcation can lead to the formation of
a spiral or screw-like attractor. However, a strange
attractor due to the Shilnikov saddle-focus in a 3D
system with a negative divergence is no genuinely
chaotic set in the sense that it contains stable peri-
odic orbits within. Hence, such a chaotic attractor
is called quasi-attractor, thus referred to because
besides stable periodic orbits with weak basins, it
may have structurally unstable or nontransverse
homoclinic orbits [Afraimovich & Shilnikov, 1983;
Shilnikov, 1994, 1997]. Note that systems in higher
dimensions can possess genuinely strange attrac-
tors with the Shilnikov loop without stable peri-
odic orbits, the so-called wild chaotic attractors
[Shilnikov, 1994, 1997; Turaev & Shilnikov, 1998;
Shilnikov, 2002].

The Lorenz attractor is nonhyperbolic because
it includes the singularity at the origin — the saddle
equilibrium state with a 1D unstable manifold while
all other saddle periodic orbits on the attractor
have 2D stable and unstable manifolds. Moreover,

the manifolds of those orbits in the Lorenz attrac-
tor (self) cross transversally in the 3D phase space
thereby producing only structurally stable (trans-
verse) homoclinic and heteroclinic trajectories. This
condition imperative for the Lorenz attractor will
not always hold for larger parameter values and thus
further cause homoclinic tangencies of the mani-
folds which are followed by saddle-node bifurcations
in the Newhouse regions [Gonchenko et al., 1993,
1996] in the parameter plane of the system. Thus,
in order for the Lorenz attractor to be strange and
chaotic with no stable orbits, it must not include
the [homoclinic] saddle-foci, O1,2, as well as con-
tain only structurally stable homoclinic orbits due
to transverse intersections of the manifolds of saddle
periodic orbits.

3. Kneading Invariants

Chaos can be quantified by several means. One
customary way is through the evaluation of the
topological entropy. The greater the value of topo-
logical entropy, the more developed and unpre-
dictable the chaotic dynamics become. Another
practical approach for measuring chaos in simula-
tions capitalizes on evaluations of the largest (pos-
itive) Lyapunov exponent of a long yet finite-time
transient on the chaotic attractor.

After the stable foci have lost the stability
through the subcritical Andronov–Hopf bifurcation,
the Lorenz equation exhibits the strange attractor
of the iconic butterfly shape. The wings of the but-
terfly are marked with two symmetric eyes contain-
ing the saddle-foci isolated from the trajectories
of the Lorenz attractor. This attractor is struc-
turally unstable [Guckenheimer & Williams, 1979;
Afraimovich et al., 1983] as it undergoes bifurca-
tions constantly as the parameters of the Lorenz
equation are varied. The primary cause of structural
and dynamical instability of chaos in the Lorenz
equation and similar models is the singularity at the
origin — the saddle with two one-dimensional out-
going separatrices. Both separatrices fill in densely
two spatially symmetric [(x, y, z) ↔ (−x,−y, z)],
wings of the Lorenz attractor in the 3D phase
space (see Fig. 5). The Lorenz attractor undergoes
a homoclinic bifurcation when the separatrices of
the saddle change the flip-flop pattern of switch-
ing between the butterfly wings centered around
the saddle-foci. At such a change, the separatrices
comes back to the saddle thereby causing additional
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homoclinic explosions in phase space [Afraimovich
et al., 1977; Kaplan & Yorke, 1979].

The time progression of the “right” (or symmet-
rical “left”) separatrix of the origin can be described
geometrically and categorized in terms of the num-
ber of flip-flops around the equilibrium states O1

and O2 in the 3D phase space of the Lorenz equation
(Fig. 5). Or, alternatively, can be reduced to the
time-evolution of the x-coordinate of the separatrix,
as shown in panel (b) of Fig. 5. The sign-alternation
of the x-coordinate suggests the introduction of a
{±1}-based alphabet to be employed for the sym-
bolic description of the separatrix. Namely, when-
ever the right separatrix turns around O1 or O2,
we write down +1 or −1, respectively. For exam-
ple, the time series shown in panel (b) gener-
ates the following kneading sequence starting with
{+1,−1,−1,−1,+1,−1,−1,+1,−1, . . .} etc.

In what follows, we will introduce and demon-
strate a new computational toolkit for the analysis
of chaos in the Lorenz-like models. The toolkit is
inspired by the idea of kneading invariants intro-
duced in [Milnor & Thurston, 1988]. A kneading
invariant is a quantity that is intended to uniquely
describe the complex dynamics of the system that
admit a symbolic description using two symbols,
here +1 and −1. The kneading invariant is supposed
to depend monotonically on the governing parame-
ter so that any two systems can be compared and
differentiated, or equivalently, ordered in terms of
> and <, by the kneadings. Two systems with the
Lorenz attractors are topologically conjugate when
they share the same kneading invariant [Gucken-
heimer & Williams, 1979; Rand, 1978; Malkin, 1991;
Glendinning & Sparrow, 1993; Tresser & Williams,
1993] and the references therein. Moreover, for the

(a)

−20

0

20

time

x

+1

-1

(b)

Fig. 5. (a) Heteroclinic connection (in dark color) between the saddle at the origin and two saddle-foci (blue spheres) being
overlaid with the Lorenz attractor (green light color) on the background at the primary T-point (r = 30.38, σ = 10.2). Orange
spheres on the butterfly wings indicating the turning points around the right and left saddle-foci define the kneading sequence
entries, {±1}, respectively. (b) A typical time evolution of the x-coordinate of the right separatrix of the saddle.
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Lorenz-like systems, the topological entropy can be
evaluated though the kneading invariants by reduc-
ing consideration to piecewise monotone mappings
of a closed interval [Glendinning & Hall, 1996; Li &
Malkin, 2003].

Such mappings are closely related to the geo-
metric models of the Lorenz attractor which are
1D and 2D Poincaré return mappings defined on
some cross-section transverse to trajectories of the
Lorenz attractor. The basic idea behind either geo-
metric model capitalizes on extended properties
of the local Poincaré mapping near a homoclinic
butterfly of the saddle [Guckenheimer & Williams,
1979; Afraimovich et al., 1983; Shilnikov et al., 1998,
2001]. The mapping is assumed to meet a few other
conditions related to the global properties of the
flow far from the homoclinic butterfly. Such a 1D
constrained mapping shown in Fig. 6(a) can be
written as:

T : ξn+1 = (µ + A|ξn|ν) · sign(ξn), (2)

here ν = |λ2|/λ1 < 1 is the saddle index, µ con-
trols the distance between the returning separatri-
ces, Γ2,1, and the saddle, and A is a scalar whose
sign determines whether the homoclinic loops at
µ = 0 are oriented if A > 0, or twisted when A < 0,
see [Shilnikov et al., 1998, 2001] for more details.

Loosely speaking, this geometric model (2)
should have no critical point on both branches, and
moreover possess a property of strong stretching
with a rate of expansion more than

√
2 [Afraimovich

et al., 1983]. This would guarantee that the Lorenz
attractor will be densely filled in by the forward
iterates of the separatrices, O± with no holes —
lacunas containing isolated periodic orbits inside,
stable or not. Strong stretching would also imply a
monotone dependence of the kneading invariants on
a governing parameter.

In a symmetric system with the Lorenz attrac-
tor, the kneading invariant is assigned to quantify
the symbolic description of either separatrix; in the
asymmetric case, one should consider two knead-
ing invariants for both separatrices of the saddle.
Thus, in respect, it reflects quantitatively a qualita-
tive change in the separatrix behavior, such as flip-
flopping patterns, as the parameter of the system is
changed.

By construction, kneading invariants are pro-
posed to serve as moduli of the topological equiv-
alence that are employed to compare or contrast
between any two Lorenz attractors or, equivalently,
any two Lorenz-like systems. Due to the symmetry
of the Lorenz mapping ξn+1 = T (ξn) = T n(ξ0) from
Eq. (2), forward iterates of the right separatrix,

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

ξ
n

ξ n+
1

T(O+)

T(O−)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

ξ
n

ξ n+
1

T(O+)

(a) (b)

Fig. 6. (a) 1D Lorenz mapping (geometric model) with the discontinuity corresponding to the saddle at the origin in the
3D phase space of the Lorenz equation. Shown are the forward iterates of the “right” separatrix, O+, of the discontinuity
point. Iterates on the right, x > 0, and left, x < 0, branches of the mapping are assigned to kneading symbols of +1, and −1,
respectively. Here ν = 0.65, A = 0.7 and µ = −0.06 in Eq. (2). (b) Alterative cusp-shaped mapping as it would be for the
z-variable of the separatrix at the turning points, given by z′max(t) = 0, on the Lorenz attractor.
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O+, of the discontinuity point (respectively, the
saddle) are detected to generate a kneading sequence
{κn(O+)} defined by the following rule:

κn(O+) =




+1, if T n(O+) > 0,

−1, if T n(O+) < 0,

0, if T n(O+) = 0;

(3)

here T n(O+) is the nth iterate of the right separa-
trix O+ of the origin. The condition T n(O+) = 0 is
interpreted as a homoclinic loop, i.e. the separatrix
returns to the origin after n steps.

The kneading invariant for the separatrix is
defined in the form of a formal power series:

P (q) =
∞∑

n=0

κnqn. (4)

Setting q ∈ (0, 1) make the series (4) convergent.
The smallest zero, q∗, if any, of the graph of (4) in
the interval q ∈ (0, 1) yields the topological entropy,
h(T ) = ln(1/q∗), of the 1D mapping (2).

Let us next draw a parallelism between the geo-
metric model and the Lorenz equation: the knead-
ing sequence {κn} comprised of only +1s of the
mapping (2) corresponds to the right separatrix
converging to the stable equilibrium state, O1 (or
possibly, a periodic orbit with x(t) > 0). The
corresponding kneading invariant is maximized at
{Pmax(q)} = 1/(1 − q). When the right separatrix
converges to an ω-limit set with x(t) < 0, like the
left stable focus, O2 then the kneading invariant is
given by {Pmin(q)} = 1− q/(1− q) because the first
entry +1 in the kneading sequence is followed by
infinite −1s. Thus, [{Pmin(q)}, {Pmax(q)}] yield the
range of the kneading invariant values; for instance,
[{Pmin(1/2)} = 0, {Pmax(1/2)} = 2]. Two samples
of the separatrix pathways shown in Fig. 7 generat-
ing the following kneading invariants
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illustrate the parallelism.
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Fig. 7. Truncated kneading sequences generated by the
right outgoing separatrix of the saddle at the origin
in the Lorenz equation at two distinct values of the
parameters.

To conclude this section we point out that
there is another approach for constructing 1D
return mappings through the evolution of the z-
variable of the separatrix of the Lorenz equa-
tion. The mapping generated by the turning points
where z′max(t) = 0 on the attractor has a dis-
tinct cusp-shaped form is depicted in Fig. 6(b).
The point corresponding to the cusp is used for
the initiation of the kneading sequence. The cor-
responding formal power series is then defined
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as follows:

P̃ (q) =
∞∑

n=0

κ̃nqn, where κ̃n =
n∏

i=0

κi, (5)

i.e. κ̃n = κn · κ̃n−1.

4. Kneading Scanning of the Lorenz
Equation

In this section, we carry the concept of the knead-
ing invariants to numerical studies of fine structures
of chaos in the Lorenz equation. For the sake of
simplicity, we employ a rough idea for defining the
kneading sequences of +1s and −1s that relies on
whether the right separatrix of the saddle makes
a revolution around the right equilibrium state,
O1, or the left one, O2, respectively, in the (x, z)-
projection of the 3D phase space. One can utilize
even a simpler approach where the sign of the cur-
rent kneading entry in the sequence is determined
by the sign of the x-coordinate of the separatrix
at the off-lying turning points, max|x(t∗)| (on the
butterfly wings), given by x′(t∗) = 0, see the trace
in Fig. 5(b). There are other alternative ways for
defining kneading entries, involving cross-sections,
z′(t), etc. which are not free of certain limitations
either. In the future, we plan to enhance the cur-
rent kneading algorithms by utilizing the incoming
1D separatrices of the saddle-foci and finding the
winding numbers around them instead.

In this computational study of the Lorenz equa-
tion and two other models below, we consider
partial kneading power series truncated after the
first 50 entries: P50(q) =

∑50
n=0 κnqn. The choice of

the number of entries is not motivated by numerical
precision, but rather simplicity, and a resolution of
the bitmap mappings for the bi-parametric scans of
the models. One has also to figure the proper value
of q: setting it too small makes the convergence fast
so that the tail of the series has little significance
and hence does not differentiate the fine dynamics
of the Lorenz equation on longer time scales.

At the first stage of the routine, we perform a
bi-parametric scan of the Lorenz equation within a
specific range in the (r, σ)-plane. The resolution of

scans is set by using mesh grids of [1000 × 1000]
equally-distanced points. Next by accurately inte-
grating the separatrix using Taylor series software
TIDES1 [Abad et al., 2011a, 2011b; Barrio et al.,
2011c], we identify and record the sequences {κn}50

for each point of the grid in the parameter plane.
Then we define the bi-parametric mapping: (r, σ) →
P50(q) with some appropriately chosen q, the value
that determines the depth of the scan. The mapping
is then colorized in Matlab by using various built-in
nonlinear spectra ranging between Pmin

50 and Pmax
50 .

In the mapping, a particular color in the spectrum
is associated with a persistent value of the kneading
invariant on a level curve. Such level curves densely
foliate the bi-parametric scans.

Figure 8 represents the kneading-based color
scan of the dynamics of the Lorenz equation
mapped onto a fragment of the (r, σ)-parameter
plane. In the scan, a window of a solid color cor-
responds to a constant kneading invariant. In such
windows the dynamics of the Lorenz equation are
dominated by simple attractors such as stable equi-
libria or stable periodic orbits to which the separa-
trix converge. A quick examination of the kneading
definition (4) reveals that the kneading invariant
does not vary at a supercritical Andronov–Hopf
bifurcation and a pitchfork bifurcation describing
continuous transitioning between stable symmet-
ric and asymmetric periodic orbits. This holds
true for a period-doubling bifurcation too, because
the kneading sequence, say {(+1,−1,−1)∞}, inher-
its the same block repeated twice {(+1,−1,−1,
+1,−1,−1)∞} in the code for the periodic orbit
of a double period and so forth. While the knead-
ing technique does not detect such safe bifurcation
boundaries [Shilnikov et al., 1998, 2001], having
crossed through which the phase point does not run
far from an old attractor to a new one, on contrary
it detects dangerous boundaries well, including a
generic saddle-node bifurcation, homoclinic bifur-
cations, and others.

A borderline between two solid-color regions
corresponds to a bifurcation through a dangerous
boundary which is associated with a jump between
the values of the kneading invariant. For example,
the borderline in Fig. 8 between the brown region
with the kneading sequence {(+1)∞} and the blue

1Freeware TIDES is a versatile numerical ODE solver for integration of ODEs with an arbitrary precision, especially for
chaotic systems.
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Fig. 8. (a) Kneading-based bi-parametric scan revealing multiple T-points and saddles that organize globally complex chaotic
dynamics of the Lorenz equation in the (r, σ) parameter plane. Solid-color regions associated with constant values of the
kneading invariant correspond to simple dynamics dominated by stable equilibria or stable periodic orbits. The borderline
between the brown and blue regions corresponds to the bifurcation curve of the homoclinic butterfly. The borderline between
the blue and yellow-reddish regions corresponds to the formation of the Lorenz attractor (below σ � 50). (b) Zoom of the
vicinity of the primary T-point at (r = 30.4, σ = 10.2) to which a homoclinic bifurcation curve spirals onto. Data for the
homoclinic curves (in blue) are courtesy of Kuznetsov. (c) Original bifurcation diagram of the Lorenz equation depicting the
two detected T-points and primary homoclinic bifurcation curves; courtesy of [Bykov, 1993].
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region, with the kneading sequence {+1, (−1)∞},
corresponds to the primary homoclinic butterfly of
the saddle. The second borderline of the blue region
corresponds to the onset of the Lorenz attractor
existing on the right from it. One can see that above
σ � 50, this border is adjoined by windows of solid
colors thus indicating that the separatrices start
converging to stable equilibria after chaotic tran-
sients, long or short. Indeed, crossing the curve, l2
(or la in Fig. 3), above σ = 18 does not imply that
the Lorenz equation will have a strange attractor,
but a chaotic saddle set [Bykov & Shilnikov, 1989,
1992].

What the proposed kneading technique does
extraordinary well, compared to the bi-parametric
screening based on the finite-time Lyapunov expo-
nent approach is the detection of bifurcations within
the Lorenz strange attractor. The corresponding
yellow-reddish regions in the parameter plane in
Fig. 8 clearly demonstrate the evidence of the para-
metric chaos that, like in turbulence, is enriched by
vortices of multiple T-points. Panel (b) of this figure
depicts the kneading mapping near the left-bottom
corner of the bifurcation diagram in panel (a).
In it, the black (blue in panel (a)) region corre-
sponds to the chaotic saddle dynamics transition-
ing into the Lorenz attractor after the mapping
color shifts to the yellow-reddish spectrum. Blue
curves in panel (b) are the bifurcation curves of a
few homoclinic orbits with short admissible knead-
ings. One can see from this panel that the map-
ping spectrum is clearly foliated by the kneading
invariant level curves of the colors gradually pro-
gressing from red to yellow. This indicates that
the new born Lorenz attractor, while being struc-
turally unstable and sensitive to parameter varia-
tions, persists initially with the pseudo-hyperbolic
property because the foliation remains uniform,
and transverse to the classical pathway σ = 10
(Fig. 3). The homogeneous foliation starts break-
ing around a saddle point after which one single
bifurcation curve spirals onto the primary T-point.
Far from this point, the curve corresponds to the
formation of the homoclinic loop with the knead-
ing (1,−1,−1,−1, 0); i.e. the right separatrix makes
one excursion around the saddle-focus O1, fol-
lowed by three revolutions around the saddle-focus
O2, and then returns to the saddle at the origin.
While moving along the spiraling curve toward the
T-points, the separatrix makes progressively more
turns around O2, or more precisely around the 1D

incoming separatrix of this saddle-focus. With each
incremental turn around O2, the separatrix comes
closer to O2 while the bifurcation curve becomes
one scroll closer to the T-point simultaneously. Due
to this feature the T-point Q0(r = 30.4, σ = 10.2) is
called a Terminal point. The T-point corresponds
to the following symbolic sequence {+1, (−1)∞}.
In virtue of the symmetry of the Lorenz equa-
tion, the codimension-two T-point actually corre-
sponds to a closed heteroclinic connection involving
all three saddle-equilibria, see Figs. 1 and 5. The
merger of the right (left) separatrix of the saddle
O with the incoming separatrix of the saddle-focus
O2(O1), increases the codimension (degeneracy) of
this heteroclinic bifurcation to two; note that inter-
sections of the 2D unstable manifolds of the saddle-
foci, with the 2D stable manifold of the saddle at
the origin are transverse in the 3D phase space
in general. Breaking the 1D heteroclinic connec-
tion gives rise to a primary homoclinic orbit to the
saddle-focus, as well as to a heteroclinic connection
between both saddle-foci (see the sketch of the
bifurcation unfolding of the T-point in Fig. 1). The
corresponding bifurcation curves of these homo-
clinic and heteroclinic bifurcations originate right-
ward from the T-point bounding a sector containing
subsidiary T-points [Bykov, 1993; Glendinning &
Sparrow, 1984]. Each new T-point produces other
self-similar structures scaled like fractals. Panel (c)
shows two such identified T-points: primary Q0

and secondary Q1(r = 85, σ = 11.9). The primary
T-point in the Lorenz equation was originally dis-
covered by Yudovich [Pertovksaya & Yudovich,
1980].

As soon as the saddle-foci and their bifurca-
tions become involved in the dynamics of the Lorenz
equation near the primary T-point, the Lorenz
attractor loses the purity of the genuine chaotic
attractor that used to have neither stable periodic
orbits nor nontransverse homoclinic trajectories.
It transforms into a quasi-chaotic attractor with
weakly stable orbits of small basins and nontrans-
verse homoclinic orbits. The idea of nontransver-
sality or tangency was employed in [Bykov &
Shilnikov, 1989, 1992] to numerically identify the
second boundary, lK , in addition to the first one, la
(l2 in Fig. 3), that bounds the existence region of the
Lorenz attractor in the parameter plane, see Fig. 9.
Note that lK crosses the initial boundary, la. This
means that above the intersection point, crossing la
(l2 in Fig. 3) rightwards does not guarantee that
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Fig. 9. The (r, σ)-bifurcation diagram of the Lorenz equa-
tion depicting the existence region (shaded) of the Lorenz
attractor. The second bifurcation curve, lk, passing through
the primary T-point, Q(r = 30.4, σ = 10.2), crosses the first
boundary, la (l2 in Fig. 3), at a point, labeled by K, thus
closing the existence region. Crossing the branch la right-
ward above the point K does lead to the emergence of the
Lorenz attractor: after a long chaotic transient, the separa-
trix of the saddle will be attracted to either stable foci, O1

or O2. Courtesy of [Bykov & Shilnikov, 1992].

the basin of the Lorenz attractor will necessarily be
isolated from the basins of the stable foci, O1,2 by
the stable manifolds of the saddle periodic orbits,
L1,2 (Fig. 4). This implies that the separatrices of
the saddle will demonstrate chaotic transient behav-
ior, long or short, prior to them converging to O1,2,
see [Shilnikov, 1986, 1989; Bykov & Shilnikov, 1989;
Shilnikov, 1991; Bykov & Shilnikov, 1992; Shilnikov,
1993; Shilnikov et al., 1993] for full details.

The other feature of the boundary, lK , is that
it passes through the primary T-point, thereby sep-
arating the existence region of the Lorenz attractor
from bifurcations of the saddle-foci, and conse-
quently from all subsidiary T-points existing on
the right from it in the parameter plane. Here the
chaotic dynamics of the Lorenz equation become
even wilder and less predictable [Shilnikov, 1994,
1997; Turaev & Shilnikov, 1998; Shilnikov, 2002].
Thus, Fig. 8(a) reveals, through the kneading scan,
a parametric turbulence in the (r, σ)-parameter

plane with fractal explosions in the forms of mul-
tiple spiral structures — “tornado eyes” centered
around T-points. Note that basins of spiraling
T-points are separated by corresponding saddles.
One can spot self-similar smaller-scale spiral struc-
tures within large-scale ones and so forth. The
richness of such fractal structures in the parame-
ter plane results from the synergy of the Lorenz-
like dynamics amplified by chaos induced by the
Shilnikov saddle-foci.

To conclude this section, we contrast the scans
of the Lorenz equation obtained using the proposed
kneading technique with the sweeps based on the
evaluation of the largest Lyapunov exponent, Lmax,
for the separatrices of the saddle evaluated over a
finite time interval [Barrio & Serrano, 2007, 2009;
Barrio et al., 2011a]. Figure 10 shows a fragment
of the typical bi-parametric sweep of the Lorenz
equation: the dark region at small values of the
Reynolds number, r, is where Lmax is negative on
the stable foci. The sweep yields a clear border-
line between the regions of the simple and chaotic
attractors. The chaotic region (yellow-reddish) is
characterized by a small positive Lyapunov expo-
nent, variations of which are not significant enough
to reveal fine structures, as spiraling T-points.
The method can detect stability islands well in

Fig. 10. Finite-time largest-Lyapunov exponent, Lmax, scan
of the Lorenz equation showing no sign of spiral structures
in the (r, σ)-parameter plane. The dark region corresponds
to trivial attractors, where Lmax ≤ 0, while the red color
indicates Lmax > 0 in chaotic regions. The red dot points
out the location of the primary T-point.
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(a) (b)

Fig. 11. (a) Kneading-based scan revealing a fractal structure and a chain of spiral vortices centered at T-points alternating
with saddles in the extended (r, σ)-region of the Lorenz equation. (b) Lmax-based sweeping of the Lorenz equation singles out
stability windows (dark) corresponding to steady state and emergent periodic attractors with Lmax ≤ 0 within the chaotic
region (white) associated with Lmax > 0.

the bi-parametric diagram which correspond to
emergent stable periodic orbits.

Two panels in Fig. 11 represent the expanded
scans of the Lorenz equation: panel (a) is the knead-
ing invariant mapping on the grid of [1000 × 1000]
points and panel (b) shows Lmax-based sweeping of
the (r, σ)-parameter plane. While panel (a) reveals
a chain of large-scale spiral hubs around T-points,
panel (b) reveals none but stability windows (dark).
We would like to point out that the stability win-
dows can also be detected in the kneading scan in
panel (a) showing the border of the solid color (dark
yellow) island stretched horizontally at small values
of the parameter σ.

5. The Shimizu–Morioka Model

Next we perform the kneading-based bi-parametric
scanning of another classical three-dimensional sys-
tem called the Shimizu–Morioka model [Shimizu &
Morioka, 1980; Shilnikov, 1986, 1989, 1991,
1993]:

ẋ = y, ẏ = x − λy − xz, ż = −αz + x2; (6)

here, α and β are positive bifurcation parameters.
Like the Lorenz equation, this Z2-symmetric model
has three equilibrium states: a saddle of the (2, 1)-
topological type at the origin, and two symmet-
ric stable-foci or saddle-foci of the (1, 2)-topological
type.

This model was originally introduced to exam-
ine a pitchfork bifurcation of the stable figure-8
periodic orbit that gives rise to multiple cascades
of period-doubling bifurcations in the Lorenz equa-
tion at large values of the Reynolds number r. It was
proved in [Shilnikov et al., 1993] that Eqs. (6) are a
universal normal form for several codimension-three
bifurcations of equilibria and periodic orbits on
Z2-central manifolds. The model turned out to be
very rich dynamically: it exhibits various interest-
ing global bifurcations [Shilnikov, 1986, 1991, 1993]
including T-points for heteroclinic connections.

While the model inherits all basic properties
of the Lorenz equation, in addition, and of spe-
cial interest, are two homoclinic bifurcations of
codimension-two: a resonant saddle with the zero
saddle value or the saddle index ν = 1, and the
orbit-flip bifurcation corresponding to a zero sepa-
ratrix value A in Eq. (2). Recall that the sign of the
separatrix value determines whether the homoclinic
loop, here double-pulsed, is oriented or flipped.
These codimension-two points globally organize the
structure of the compact (α, λ)-parameter region
of the Shimizu–Morioka model, including struc-
tural transformations of the Lorenz attractor in the
model. This also includes the emergence of stability
islands — lacunae inside the strange attractor.

Figure 12 represents a partial (α, λ)-diagram
of the Shimizu–Morioka model and depicts pri-
mary bifurcation curves and the corresponding
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Fig. 12. A partial (α, λ)-diagram of the Shimizu–Morioka model depicting initial bifurcation curves and corresponding insets
for the separatrix behaviors. Legend: AH stands for a supercritical Andronov–Hopf bifurcation, HB stands for the homoclinic
butterfly made of two separatrix loops; SN stands for a saddle-node bifurcation of periodic orbits; it connects the codimension-
two points, the resonant saddle σ = 0 on HB and the Bautin bifurcation at GH. LA stands for the Lorenz attractor formation;
A = 0 stands for an orbit-flip bifurcation for the double-loop homoclinics on H2. The dashed line separates, with good precision,
the Lorenz attractor region from the region of a quasi-attractor (below). Vertical pathway showing the gluing bifurcation on
HB. Courtesy of [Shilnikov et al., 1998, 2001].

phase portraits of the separatrix behaviors. Among
those are the Andronov–Hopf bifurcation curve,
AH, above which the equilibrium states, O1,2, are
stable, and are saddle-foci below. This bifurcation
is primarily supercritical, but becomes subcritical
at smaller values of the parameter α. The bifur-
cation curve, HB, corresponds to the formation of
the homoclinic butterfly, or figure-8 at larger val-
ues of α. The transition between the branches on
the curve is not a bifurcation like the inclination-
switch because the saddle value, σ is negative here.
The pathway at α = 1.15 demonstrates the evo-
lution of the simple Morse–Smale dynamics of the
model from the stable equilibrium states to a sta-
ble symmetric periodic orbit. This orbit emerges
through a gluing bifurcation after which two sta-
ble periodic orbits existing below the supercritical
Andronov–Hopf curve AH form the homoclinic but-
terfly with σ < 0. The saddle value becomes posi-
tive to left from the codimension-two point, labeled
as σ = 0 on the bifurcation curve HB. The left

segment of the curve HB is similar to the bifur-
cation curve, l1, of the Lorenz equation (Fig. 3);
namely, the homoclinic butterfly with σ > 0 causes
the homoclinic explosion in the phase space of the
Shimizu–Morioka model. The curve LA [LA1 in
Fig. 13] being an analog of the curve l2 in the bifur-
cation diagram in Fig. 3 is the upper boundary of
the existence region of the Lorenz attractor in the
parameter plane of the given model. Below LA the
separatrices of the saddle no longer converge to sta-
ble periodic orbits but fill in the strange attractor,
as in Fig. 4. The bifurcation unfolding of the homo-
clinic resonant saddle includes various bifurcation
curves: among them in the figure we depict, in addi-
tion to LA, the curve, SN, corresponding to saddle-
node of merging stable (through the supercritical
Andronov–Hopf bifurcation) and saddle (through
the homoclinic bifurcation on HB) periodic orbits.
The curve labeled by H2 corresponds to a pair of the
double-pulsed homoclinic loops. Continuing further
away from the codimension-two point, σ = 0, the
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Fig. 13. Detailed (α, λ)-parameter plane of the Shimizu–Morioka model obtained by the parameter continuation method
(courtesy of [Shilnikov et al., 1993]) and by the bi-parametric scan based on the kneading invariants. The scan revealing
multiple T-points and saddles that globally organize complex chaotic dynamics of the model. Solid-color regions associated
with constant values of the kneading invariant correspond to simple dynamics dominated by stable equilibria (brown) or stable
periodic orbits (blue). The border between the brown and blue regions corresponds to the bifurcation curve of the homoclinic
butterfly. The codimension two point, σ = 0, gives rise to loci of bifurcation curves including LA1 below which the Lorenz
attractor exists. Bifurcation loci of the other codimension two point: R1 (or A = 0 in Fig. 12), A = 0 (orange zone) giving rise
to subsidiary orbit-flip bifurcations on turns of spirals around T-points, are separated by saddles (two large scale ones) in the
parameter plane.
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curve H2 frames the chaotic region in the param-
eter plane. The point, A = 0, on this curve is a
codimension-two orbit-flip homoclinic bifurcation:
to the left of it, the loops become flipped like the
median of a Möbius band. The dashed line, AZ orig-
inating from the point A = 0 is like the curve lk in
Fig. 9 for the Lorenz equation. This curve is the sec-
ond boundary of the existence region (above) of the
Lorenz attractor in the Shimizu–Morioka model,
that separates wild chaos from homoclinic tan-
gencies (below). This passes through the primary
T-point in the (α, λ)-parameter plane. Figure 12
depicts a few more bifurcation curves originating
from the point, A = 0: two four-pulses homo-
clinic curve terminating at subsidiary T-points and
the curve labeled as “−1” corresponding to a
period-doubling bifurcation. An intersection of the
dashed line with a homoclinic bifurcation curve
corresponds to another orbit-flip bifurcation and
so forth.

Indeed the skeleton of the bifurcation set of
the Shimizu–Morioka is more complex in this fig-
ure. The detailed bifurcation diagram is shown in
the top panel of Fig. 13. It reveals several T-points,
the pitchfork bifurcation curve, PH, among other
bifurcation curves for various homoclinic and hete-
roclinic connections. The detailed description of the
bifurcation structure of the Shimizu–Morioka model
is out of scope of this paper. The curious reader can
find a wealth of information on bifurcations of the
Lorenz attractor in the original papers [Shilnikov,
1986, 1989, 1993; Shilnikov et al., 1993]. We point
out that those bifurcation curves were continued in
the (α, λ)-parameter plane of the model using A.
Shilnikov’s home-made software also based on the
symbolic kneading toolbox.

The bottom panel of Fig. 13 is de facto proof
of the new kneading invariant mapping technique.
The panel represents the bi-parametric color scan of
the dynamics of the Shimizu–Morioka model that
is based on the evaluation of the first 50 knead-
ings of the separatrix of the saddle on a grid of
1000 × 1000 points in the (α, λ)-parameter region.
The mapping took about one hour on a high-end
workstation without any parallelization efforts. The
color scan reveals a plethora of large-scale T-points,
as well as nearby smaller ones (Fig. 14) invisible in
the given parameter range, as well as the saddles
separating spiral structures.

The solid-color zones in the mapping corre-
spond to simple Morse–Smale dynamics in the

Fig. 14. Zoom of the (α, λ)-parametric mapping in
Fig. 13(b) near the primary T-point revealing self-similar
structures embedding smaller-scale spirals around secondary
T-points in the Shimizu–Morioka model.

model. These trivial dynamics are due to either the
separatrix converging to the stable focus O1(O2)
and emergent periodic orbit with the same knead-
ing invariant (brown region), or to the symmetric
and asymmetric stable figure-8 periodic orbits (dark
blue region). The borderlines between the sim-
ple and complex dynamics in the Shimizu–Morioka
model are clearly demarcated. On the top, it is the
curve, LA1, (see the top panel of Fig. 13). The tran-
sition from the stable figure-8 periodic orbits to
the Lorenz attractor (through the boundary, LA2)
is similar though more complicated as it involves
a pitchfork bifurcation and bifurcations of double-
pulsed homoclinics, see [Shilnikov, 1993; Shilnikov
et al., 1993] for details.

One can clearly see the evident resemblance
between both diagrams found using the bifurcation-
aly exact numerical methods and by scanning the
dynamics of the model using the proposed knead-
ing invariant technique. The latter reveals a richer
structure providing finer details. The structure can
be enhanced further by examining longer tails of
the kneading sequences. This allows for the detec-
tion of smaller-scale spiral structures within scrolls
of the primary T-vortices, as predicted by the the-
ory [Bykov, 1993]. Figure 14 shows a magnification
of the scan of the Shimizu–Morioka model near the
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(a) (b)

Fig. 15. (a) Attractors of the Shimizu–Morioka model being differentiated by the sign of the largest Lyapunov exponent,
Lmax. Color legend for the attractors of the model: green — stable equilibrium states, Lmax < 0; blue — stable periodic
orbits with a nodal normal behavior, Lmax = 0; magenta — a periodic orbit with a focal normal behavior; red — chaotic
attractors with Lmax > 0, with identified lacunae. Courtesy of [Gonchenko et al., 2005]. (b) Lorenz attractor (blue) with a
lacuna containing a symmetric figure-8 periodic orbit (dark red).

primary T-point that depicts several other small-
scale T-points.

Finally, we compare the new kneading scan-
ning apparatus with the customary bi-parametric
sweeping (shown in Fig. 15) of the Shimizu–Morioka
model that is based on the evaluation of the
Lyapunov exponent spectrum computed over a
finite time interval [Gonchenko et al., 2005]. Like-
wise the case of the Lorenz model, the sweeping
based on the Lyapunov exponents shows no sign
of spiral or saddle structures inside the region of
deterministic chaos. The regions of the solid col-
ors are associated with the sign of the largest
Lyapunov exponent, Lmax: negative Lmax values
correspond to steady state attractors in the green
region; Lmax = 0 corresponds to periodic attractors
in the blue region; and the red region with Lmax > 0
is associated with chaotic dynamics of the model.
Note blue islands in the red-colored region that
correspond to stability windows in chaos-land. In
such windows the Lorenz attractor has an emer-
gent lacuna containing, initially, a single symmet-
ric saddle periodic orbit. The orbit then undergoes
a pitchfork bifurcation that makes it stable. The
basin of the stable orbit, which is first bounded by
the 2D stable manifold of two asymmetric saddle
periodic orbits, increases so that the stable orbit
starts to dominate over chaotic dynamics in the

corresponding stability window. These bifurcations
underlie the transition from simple dynamics (blue
region) due to the symmetric stable periodic orbit
to chaos through the curve, H2, as the parameter α
in decreased.

6. 6D Optically Pumped Laser
Model

The coexistence of multiple T-points and accom-
panying fractal structures in the parameter plane
is a signature for systems with the Lorenz attrac-
tor. A question though remains whether the new
computational technique will work for systems of
dimensions higher than three. In fact, to apply the
technique to a generic Lorenz-like system, only wave
forms of a symmetric variable progressing in time,
that consistently starts from the same initial condi-
tion near the saddle are required. Next is an exam-
ple from nonlinear optics — a 6D model of the
optically pumped, far infrared three-level molecu-
lar laser [Moloney et al., 1989; Forysiak et al., 1991]
given by

β̇ = −σβ + gp23,

ṗ21 = −p21 − βp31 + αD21,

ṗ23 = −p23 + βD23 − αp31,

ṗ31 = −p31 + βp21 + αp23,
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Ḋ21 = −b(D21 − D0
21) − 4αp21 − 2βp23,

Ḋ23 = −b(D23 − D0
23) − 2αp21 − 4βp23.

(7)

Here, α and b are the Rabi flopping quantities rep-
resenting the electric field amplitudes at pump and
emission frequencies. The parameter α is a nat-
ural bifurcation parameter as it is easily varied
experimentally. The second bifurcation parameter,
b, can be varied to some degree at the laboratory by
the addition of a buffer gas. This system presents,
like the Lorenz equations, a symmetry (β, p21, p23,
p31,D21,D23) ↔ (−β, p21,−p23,−p31,D21,D23).
The laser model has either a single central equilib-
rium state, O (with β = 0), or additionally, through
a pitchfork bifurcation, a pair of symmetric equilib-
rium states, O1,2 (with β ≥ 0); the stability of the
equilibria depends on the parameter values.

Optically pumped, far infrared lasers are known
to demonstrate a variety of nonlinear dynamic
behaviors, including Lorenz-like chaos [Hubner
et al., 1995]. An acclaimed example of the mod-
eling studies of chaos in nonlinear optics is the two-
level laser Haken model [Haken, 1975] to which the
Lorenz equation can be reduced. A validity that
three-level laser models would inherently persist

with the Lorenz dynamics was widely questioned
back then. It was comprehensively demonstrated
in [Forysiak et al., 1991] that this plausible laser
model possesses a plethora of dynamical and struc-
tural features of the Lorenz-like systems, includ-
ing the Lorenz attractor per se (with lacunae as
well), similar to Andronov–Hopf, Z2 pitchfork, vari-
ous homoclinic and heteroclinic bifurcations includ-
ing codimension-two T-points, see Fig. 16. Similar
structures were also discovered in another non-
linear optics model for a laser with a saturable
absorber which can be reduced to the Shimizu–
Morioka model near a steady state solution with
triple zero exponents [Vladimirov & Volkov, 1993].

The laser model (7) is quite rich in bifurcations;
the list also includes a supercritical Andronov–Hopf
bifurcation of the central equilibrium state that
gives rise to a stable figure-8 shaped periodic orbit
(in proper projections) for the parameter values to
the left of the bifurcation curve, AH0, in the bifur-
cation diagrams shown in panels (b) and (c) of
Fig. 17. Observe from the diagram that the curve
AH0 originates from the point labeled, BT. This
point corresponds to a codimension-two Khorozov–
Takens bifurcation of an equilibrium state with two
zero Lyapunov exponents. The bifurcation is an
extension of the Bogdadov–Takens bifurcation on

(a) (b)

Fig. 16. (a) Lorenz attractor with a lacuna in the laser model at a = 1.14, b = 0.2, q = 50 and σ = 10. (b) (α, b)-bifurcation
diagram of the model for g = 52 and σ = 1.5. BP and HB here denote the pitchfork and Andronov–Hopf bifurcations,
respectively. HO and HE denote the branches of the primary homoclinic (of the saddle) and heteroclinic orbits (of the saddle-
foci). C2 is the codimension two Khorozov–Takens point for the equilibrium state with double zero eigenvalues, and T is the
primary terminal point. The spiraling curve connects the T-point with the homoclinic resonant saddle on HO, near which
separatrix loops are double pulsed ones. Courtesy of [Forysiak et al., 1991].
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Fig. 17. (a) Bi-parametric scan of the laser model featuring the T-points and saddles typical for the Lorenz-like systems,
mapping the dynamics of the 6D optically pumped far-infrared-red laser model onto the (electric-field-amplitude, omission-
frequency)-diagram at g = 50 and σ = 1.5. Solid-color windows and fractal regions correspond to trivial and chaotic dynamics
generated by the laser model. (b) Partial bifurcation diagram through the parameter continuation showing the curves for
pitchfork (PF) and Andronov–Hopf (AH0) bifurcations for the equilibrium state, O, and another similar supercritical one for
O1,2. The homoclinic curve, Hom begins from the codimension-two point, BT for the Khorozov–Takens bifurcation and ends
up at the resonant saddle point. (c) Elevating σ = 2 leads to the Hom being turned by a saddle point in the parameter plane
and terminated at the primary T-point.

a symmetric central manifold. The unfolding of this
bifurcation includes two more curves: AH1,2 stand-
ing for the Andronov–Hopf bifurcation for the sec-
ondary equilibrium states, O1,2; and Hom standing
for a homoclinic connection made of two symmet-
ric separatrix loops bi-asymptotic to the saddle, O.
The continuation of the curve, Hom, away from
BT reveals rather peculiar details that substan-
tially organize the bifurcation diagram of this laser
model. Near BT the curve, Hom, corresponds to
a homoclinic figure-8 of the saddle with a nega-
tive saddle value, on the Z2-symmetric 2D central
manifold in the 6D phase space of the model. Recall
that the figure-8 homoclinic connection stands for
the case where the 1D unstable separatrices come
back to the saddle, O, from the symmetrically oppo-
site directions along the eigenvector corresponding
to the leading stable exponent at the equilibrium
state. This bifurcation gluing two stable periodic
orbits emerging from O1,2 through the supercritical
Andronov–Hopf bifurcation gives rise to the stable

symmetric figure-8 periodic orbit existing nearby
BT. As the curve, Hom, is continued further away
from BT, the stable leading direction at the sad-
dle, O, changes: it becomes the invariant β-axis
(like the z-axis in the Shimizu–Morioka model) so
that the separatrix loops start returning tangent to
each other and hence form the homoclinic butter-
fly. Nevertheless, this is a gluing bifurcation, not a
codimension-two bifurcation of the change of the
leading direction (inclination switch) as the sad-
dle value remains negative on this branch of the
curve, Hom. The saddle value vanishes, making
the saddle resonant at the codimension-two point,
and becomes positive further down on Hom. As
the curve is continued, the homoclinic butterfly
undergoes another codimension-two orbit-flip bifur-
cation so that the separatrices loops of the saddle,
O become non-oriented. As a result, further down
the curve, each loop gains an extra turn around
the incoming separatrix of the opposite saddle-
focus, i.e. becomes a double-pulsed one with the
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{1,−1, 0} kneading. Depending on the parameter
cut σ, there are two scenarios for termination of
the curve, Hom, in the (α, b) diagram (compare
the bifurcation diagrams in panels (b) and (c) of
Fig. 17): first, when σ = 1.5, it terminates at the
codimension-two T-point corresponding to the het-
eroclinic connection between all saddle equilibria,
O and O1,2 as shown in panel (b). The second sce-
nario is less predictable at σ = 2: the branch, Hom,
of double-pulsed separatrix loops ends up at the
codimension-two point of the resonant saddle with
the zero saddle-value (panel (c)). The answer to the
question of what that makes the curve change its
destination is a saddle point in the parameter dia-
gram that the kneading scan reveals in Fig. 13. By
varying the σ-parameter cut in the 3D parameter
space, this bifurcation curve is destined by the sad-
dle to finish at either terminal point, see details in
[Shilnikov et al., 1993]. In the case where it spi-
rals onto the T-point, there is another bifurcation
curve corresponding to the same {1,−1, 0} knead-
ing that connects the codimension-two orbit-switch
point and the point corresponding to the resonant
saddle located on the curve Hom.

Figure 17(a) represents the kneading scans of
the dynamics of the laser model which is mapped
onto the (α, β)-parameter plane with g = 50 and
σ = 1.5. The scan is done using the same 50
kneading entries. It has the regions of chaotic
dynamics clearly demarcated from the solid color
windows of persistent kneadings corresponding to
trivial attractors such as stable equilibria and peri-
odic orbits. The region of chaos has a vivid frac-
tal spiral structure featuring a chain of T-points.
Observe also a thin chaotic layer bounded away
from the curve Hom by a curve of double-pulsed
homoclinics with the kneading {1,−1, 0} connect-
ing the codimension-two points: the resonant sad-
dle and the orbit-flip both on Hom. One feature of
these points is the occurrence of the Lorenz attrac-
tor with one or more lacunae [Afraimovich et al.,
1983; Shilnikov, 1986, 1993; Shilnikov et al., 1993].
Such a strange attractor with a single lacuna con-
taining a figure-8 periodic orbit in the phase space
of the given laser model is shown in Fig. 16(a).

7. Conclusions

We have demonstrated the new proposed computa-
tional toolkit for thorough explorations of chaotic
dynamics in three exemplary models with the

Lorenz attractor. The algorithmically easy though
powerful toolkit in based on the scanning technique
that maps the dynamics of the system onto the bi-
parametric plane. The core of the approach is the
evaluation of the kneading invariants for regularly
or chaotically varying flip-flop patterns of a single
trajectory — the separatrix of the saddle singu-
larity in the system. In the theory, the approach
allows two systems with the structurally unstable
Lorenz attractors to be conjugated with the mean
of a single number — the kneading invariant. By
using ready-for-use tools in Matlab, we could have
the parameter plane of the model in question be
foliated by the level curves of distinct colors corre-
sponding to distinct values of the kneading invari-
ants. The kneading scans revel unambiguously the
key features in the Lorenz-like systems such as
a plethora of underlying spiral structures around
T-points, separating saddles in intrinsically fractal
regions corresponding to complex chaotic dynam-
ics. There are no other scanning techniques, includ-
ing approaches based on the Lyapunov exponents,
that can reveal the discovered parametric chaos
with such stunning clarity and beauty. Figure 18
for the Shimizu–Morioka model shows that a fine
scan based on the finite-time Lyapunov exponents
is able to indicate some presence of spiral and sad-
dle structures and differentiate between the chaotic
dynamics due to the Lorenz attractor and those due
to additional degrees of instability brought in by
saddle-foci.

The kneading based methods should be benefi-
cial for detailed studies of other systems admitting
reasonable symbolic descriptions. It bears an edu-
cational aspect as well: the kneading-based scan-
ning can be used for in-class presentation to reveal
the fascinating complexity of low-order models
in the cross-disciplinary field of nonlinear dynamics.
The bi-parametric mapping technique can be eas-
ily adopted for parallel multicore GPU platforms
allowing for ultra-fast simulations of models in ques-
tions. Additional implementation of high-precision
computations of long transients shall thoroughly
reveal multilayer complexity of self-similar fractal
patterns near T-point vortices. In future research,
we intend to enhance and refine the toolkits for
exploration of other symmetric and asymmetric
[Shilnikov & Shilnikov, 1991] systems of differential
and difference equations, like 3D Poincaré mappings
[Shilnikov et al., 1993; Gonchenko et al., 2005],
including 4D models with saddle-foci, that require
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Fig. 18. Fine scan based on the Lyapunov exponents indicating the presence of the saddle (in the Lorenz attractor region
shown in cold blue) and spiral structures (in the reddish regions with larger Lyapunov exponents for wild chaos due to
saddle-foci) in the (α, λ)-parameter space of the Shimizu–Morioka model.

two and more kneading invariants for the compre-
hensive symbolic description.
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