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Coexistence of Tonic Spiking Oscillations in a Leech Neuron Model

GENNADY CYMBALYUK
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

gcym@phy-astr.gsu.edu

ANDREY SHILNIKOV
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

ashilnikov@gsu.edu

Received January 6, 2005; Revised January 18, 2005; Accepted January 19, 2005

Abstract. The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range
of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative
theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with
emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of
tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic
attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-
doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic
tonic spiking with either periodic or chaotic tonic spiking. Pontryagin’s averaging technique is used to locate the
periodic orbits in the phase space.
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1. Introduction

Neurons can be viewed as strongly non-linear dy-
namical systems capable of generating complex pat-
terns of activity. A ubiquitously observed pattern is
tonic spiking. Tonically spiking neurons have been
related to different functions of the nervous system,
such as coding of sensory information, information
processing, memory formation, attention and motor
control (Gray and Singer, 1989; Bazhenov et al.,
2000; Hoppensteadt and Izhikevich, 1998; Marder and
Calabrese, 1996; Marder et al., 1996; Vinogradova,
2001; Borisyuk and Kazanovich, 2004; Hounsgaard
and Kiehn, 1989; Schwarz and Thier, 1999; Hopfield
and Brody, 2001).

Neurons can exhibit multistability of activity like
bursting and tonic spiking as well as rest states. In

terms of dynamical systems, multi-stability means
coexistence of several attractors in the phase space
of a system. The particular attractor (mode) exhib-
ited by the neuron is determined by initial con-
ditions. The initial conditions of the model rep-
resent membrane potential and the states of the
ion conductances. The multistability of activity
modes has been observed in modelling studies
(Bertram, 1993; Canavier et al., 1993; Cymbalyuk
and Calabrese, 2001) and neurophysiological experi-
ments (Hounsgaard and Kiehn, 1989; Lechner et al.,
1996; Turrigiano et al., 1996). It sets a remarkable
framework for potential dynamical plasticity of neu-
rons with implications for dynamical memory, in-
formation processing and motor control (Canavier
et al., 1993; Turrigiano et al., 1996; Marder et al.,
1996; Hounsgaard and Kiehn, 1989; Hoppensteadt and
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Izhikevich, 1998). In a model, multistability may oc-
cur within a specific parameter range. Neuromodula-
tors can alter drastically the dynamics of the neuron
and it is plausible to suggest that they play an impor-
tant role in control of the multistability (Canavier et al.,
1994).

The coexistence of tonic spiking modes in
neurons has been experimentally demonstrated in
Lechner et al. (1996). Here we explain how this kind
of bi-stability can occur in a model of a leech neu-
ron. We study the model of a leech neuron under spe-
cific pharmacological conditions such that all known
currents, but the transient sodium current and non-
inactivating potassium current, are blocked. This model
possesses rich dynamics and shows a variety of dif-
ferent activities. Our previous studies demonstrated
that this model could explain long plateau-like oscil-
lations, observed in leech neurons under these phar-
macological conditions (Cymbalyuk and Calabrese,
2001). Under different parametric conditions it can also
show tonic spiking activity, bursting or silence. Re-
cently, we have reported and analyzed two novel sce-
narios of transition between tonic spiking and bursting
(Shilnikov et al., 2004, 2005a, b). One of these scenar-
ios (Shilnikov et al., 2005a) describes a smooth and re-
versible transition between tonic spiking and bursting.
The other (Shilnikov et al., 2004, 2005b) explains the
co-existence of bursting and tonic spiking modes which
are separated by a saddle periodic orbit. This mecha-
nism is based on a Lukyanov-Shilnikov bifurcation for
a saddle-node periodic orbit with non-central homo-
clinic orbits. To locate these periodic orbits and study
their bifurcations we developed a geometrical frame-
work for Pontryagin’s averaging method of singularly
perturbed systems. Here we report the conditions un-
der which this model demonstrates another kind of
bi-stability with two coexistent tonic spiking modes.
The developed averaging technique gives us a clear
geometrical interpretation of the phenomenon. More-
over, as a bifurcation parameter is varied we can ob-
serve the evolution of one of the tonic spiking regimes
from periodic spiking through a cascade of period-
doubling bifurcations into the chaotic tonic spiking
mode.

2. Model

Here we employ our previously developed model of
a leech neuron under certain pharmacological condi-
tions (Cymbalyuk and Calabrese, 2001). It is based

on the canonical model of identified leech oscil-
lator interneurons that are part of the leech heart-
beat central pattern generator (Hill et al., 2001).
It utilizes dynamics of the seven voltage-dependent
ionic currents quantified in the voltage-clamp ex-
periment and incorporated into a system of differ-
ential equations through Hodgkin-Huxley formalism,
see (Hill et al., 2001; Opdyke and Calabrese, 1994)
and references therein. In addition to these currents,
the model adopts the transient sodium current from
the original work by Hodgkin and Huxley (1952).
The canonical model has been shown to replicate
the activity of the leech oscillator interneurons under
different pharmacological conditions and treatments
(Hill et al., 2001; Cymbalyuk and Calabrese, 2001;
Cymbalyuk et al., 2002). The complete, canonical neu-
ron model appears to be quite a challenge for a com-
prehensive analysis. For the reason of simplicity we
use the pharmacologically reduced model. It represents
the activity of the single neuron under pharmacological
conditions such that all Ca currents, hyperpolarization-
activated current, persistent, non-inactivating sodium
current and two potassium currents, a delayed rectifier-
like potassium current and a fast transient potassium
current, are blocked, while a persistent potassium cur-
rent (IK2) is partially blocked.

Our simplified model, based on the dynamics of INa

and IK2 currents, is described by a system of the fol-
lowing three differential equations:

CV̇ = −(
ḡK2 m2

K2(V − EK
) + gl (V − El)

+ ḡNa f (−150, 0.0305, V )3hNa(V − ENa)),

ṁK2 = f
(−83, 0.018 + V shift

K2 , V
) − mK2

τK2
,

ḣNa = f (500, 0.0333, V ) − hNa

τNa
, (1)

where the variables V , mK2, and hNa are the mem-
brane potential, activation of IK2 and inactivation of
INa, respectively. The parameters are: C is the mem-
brane capacitance, ḡK2 is the maximum conductance
of IK2; EK and ENa are the reversal potentials of K+

and Na+, respectively; ḡNa is the maximal conductance
of INa; gl and El are the conductance and reversal po-
tential of the leak current, respectively; τK2 and τNa

are the time constants of activation of IK2 and inac-
tivation of INa, respectively; V shift

K2 is the shift of the
membrane potential of half-activation of IK2 from its
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canonical value. The function f is a Boltzman func-
tion: f (A, B, V ) = 1/(1 + eA(B+V )). The values of
the parameters used in this study are C = 0.5 nF,
ḡK2 = 30 nS, EK = −0.07 V, ENa = 0.045 V, ḡNa =
200 nS, gl = 8 nS, El = −0.046 V, τK2 = 0.25 sec
and τNa = 0.0405 sec. We use V shift

K2 as a bifurcation
parameter.

3. Finding Periodic Orbits

In the model (1), the activation of IK2 is almost ten
times slower than V and the inactivation of INa. Hence,
we may treat it as the slow state variable. The other
variables,V and hNa, will be treated as the fast state
variables. Thus, we can view (1) as a singularly per-
turbed system that is recast in the following appropriate
form:

ẋ = f(x, z) ż = µ[g(x, α) − z], (2)

where x = (x, y) and z ∈ R1, α is a single control
parameter, and 0 < µ � 1. Since the rate of change
of the z-variable is much smaller than that of x, the
equations in (2) are called fast and slow subsystems,
respectively. In terms of the model (1), x ≡ V , y ≡
hNa, z ≡ mK2 and α ≡ V shift

K2 .
Let the functions, f and g, be smooth enough. Note

that the way the righthand side of the slow equation
is written is quite typical for neuron models of the
Hodgkin-Huxley type. The surfaces, f(x, z) = 0 and
z = g(x, α), are called the nullclines, fast and slow,
respectively. By varying α, we can move the slow null-
cline in the phase space of the system. Let its projec-
tion onto the (z, x)-plane have a typical logarithmic
shape like a biophysically realistic one in a Hodgkin-
Huxley-type model. This slow nullcline will be labelled
as ż = 0 in Fig. 1. It states the fact that the z-component
of the vector field generated by Eqs. (2) equals to zero
on it. Above the slow nullcline, the z-component of
the vector field is oriented rightward because ż > 0,
and leftward underneath it where ż < 0 . In the pro-
jection onto the (z, x)-space, the fast nullcline (Meq

in Fig. 1) has a distinct Z -shape with the two knee
points at z1

sn and z2
sn. When µ = 0, the slow z-variable

becomes a parameter in the independent fast subsys-
tem. By varying z, one can trace the curve of equilibria
of the fast subsystem. Its knee point corresponds to a
saddle-node bifurcation where two equilibrium states
merge and annihilate themselves. The lower branch of
the fast nullcline, which corresponds to the hyperpolar-

ized state of the neuron, is formed by stable equilibria
of the fast subsystem. The middle one consists of sad-
dles, and the upper branch, which corresponds to the
depolarized state of the neuron, consists of totally un-
stable equilibria of the fast subsystem.

The upper branch is surrounded by a cylindric sur-
face Mlc comprised of the stable, Ms

lc, and unstable, Mu
lc

limit cycles of the fast subsystem, see Fig. 1. The sur-
face Mlc has an edge at zlc

sn where both branches merge,
which corresponds to a saddle-node bifurcation of the
limit cycles of the fast subsystem.

Let us consider the full system at small µ �= 0.
An equilibrium state of (2) lies in the intersection of
the fast and slow nullclines. When the slow nullcline
crosses transversally the hyperpolarized branch of the
Z -shaped fast nullcline from below, the equilibrium
state, which is already stable in the x-subspace, is sta-
ble in the z-direction as well. This is because the inter-
section point divides the stable hyperpolarized branch
so that to the right of the point, ż < 0 in Meq, and ż > 0
on the left of it. As α is varied, the intersection point
moves along the nullcline Meq. Let the slopes of both
the nullclines be such that there is a single intersection
point. However, this equilibrium state may change its
stability when the slow nullcline ż = 0 passes through
the left knee point at z1

sn. Observe that at this point
the equilibrium state of the full system at µ = 0 has
two zero characteristic exponents. When 0 < µ � 1,
the slow and fast equations are linked, and so are the
characteristic exponents of the equilibrium state resid-
ing near the fold. The characteristic exponents become
complex conjugates remaining close to the origin in
the complex plane. Their real part is negative when the
equilibrium state is on the hyperpolarized branch, but
becomes positive when the points move onto the mid-
dle branch of Meq. Therefore, just as the equilibrium
state passes through the knee point, it losses its stability
through an Andronov-Hopf bifurcation, which can be
either super- or sub-critical. A small amplitude stable
or unstable periodic orbit emerges from or collapses
into the equilibrium state respectively. It is shown in
Arnold et al. (1994), that the type of criticality, i.e. sub-
or super-, of this bifurcation in a singularly perturbed
system is determined by the sign of f′′′ at a fold in ap-
proximation of µ = 0. This criterion is extremely sim-
ple and easily applicable for all neuron models of the
considered type. After the bifurcation, the equilibrium
state becomes a saddle-focus with a two-dimensional
unstable manifold and one dimensional stable mani-
fold. The latter is due to a third characteristic exponent
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Figure 1. Bifurcation diagram of the fast subsystem in the (z, x)-
phase space. Here, Meq and Mlc are the α-parametric manifolds com-
prised of equilibria and periodic orbits, respectively. The intersection
point of the slow nullcline, ż = 0 and Meq, yields an unstable equi-
librium state; curves 〈x〉 and 〈ż〉 = 0 are the average nullclines.
Their three intersection points correspond to three periodic orbits:
stable Ln and saddle Ls on the attracting branch Ms

lc, and one of un-
determined stability that lies on the unstable branch Mu

lc. The latter
is foliated by the repelling limit cycles of the fast subsystem. The
stable manifold W s of the saddle orbit bounds the attraction basin of
Ls corresponding to the periodic tonic spiking in the neuron system.
Compare this figure with the phase portrait of the neuron model (1)
shown in Fig. 2.

Figure 2. Numerical phase portrait of the neuron model (1) and the
bifurcation diagram of its fast subsystem (A) and the graph of the
function 〈G(mK2)〉 (B) for V s

K2 = −0.0254 V. The blue z-shaped
line, Meq, consists of the equilibrium states of the fast subsystem
(dotted and solid segments represent unstable and stable ones). The
green cylinder-shaped surface Mlc = Ms

LC∪Mu
LC is comprised of the

stable and unstable limit cycles of the fast subsystem. The line 〈V 〉
shows the dependence of the V -coordinate of the limit cycle averaged
over its period on mK2. The dashed, blue line is the average nullcline
〈ṁK2〉 = 0. The intersection points of 〈V 〉 and 〈ṁK2〉 = 0 correspond
to the periodic orbits presented by black solid closed curves. (B) The
sign of the derivative 〈Ġ〉|z0 determines the stability of this periodic
orbit in the mK2-direction. It is stable when the derivative is negative
(the left point), and unstable when it is positive (the middle and right
points).

Figure 3. Bi-stability of two tonic spiking attractors for the different
values of V shift

K2 : (A) V shift
K2 = −0.026V , (B) V shift

K2 = −0.02555V ,
(C) V shift

K2 = −0.0255V , (D) V shift
K2 = −0.025361V . The smaller

amplitude spiking does not change much as the parameter is varied
(A2, B2, C2, D2), while the larger amplitude spiking undergoes a
series of period-doubling bifurcations. Initial conditions are provided
in the Appendix.

which is negative. Recall that in the restriction to the
subspace of the fast subsystem at µ = 0, the given
equilibrium state is a saddle. Following the terminol-
ogy of Shilnikov et al. (1998, 2001), we emphasize that
the point is a saddle-focus not because it has a pair of
complex exponents but because this pair is closer to
the imaginary axes in the complex plane than its third
negative exponent. This implies that shall the saddle-
focus possess a homoclinic orbit, the fulfilment of the
Shilnikov conditions is guaranteed (in the backward
time). Hence, the system should have a chaotic set with
narrow islands containing weakly stable periodic or-
bits. This follows from the fact that the divergence of
the vector field is negative.

As the equilibrium state climbs the middle branch
of Meq up further away from the fold, its characteristic
exponents become real and distinct. One characteris-
tic exponent of this simple saddle remains positive and
small, of order µ (it is due to the contribution of the
slow subsystem) while the other two are large and of
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opposite signs. This means that if one of its two stable
one-dimensional separatrix of the saddle becomes ho-
moclinic to it, only a saddle periodic orbit may emerge
from the loop. These conditions ensure that no stable
periodic orbit may emerge as a result of a homoclinic
bifurcation of such a saddle of the full system. As far as
homoclinic bifurcations of its fast subsystem are con-
cerned, the problem is also reduced to evaluating the
sign of the saddle-value, which is a sum of the positive
and negative characteristic exponents of the 2D saddle.
By the proposed construction, this saddle value is to be
positive in our case, which means that only a repelling
limit cycle emerges from this bifurcation at zh . As the
parameter is increased, this unstable limit cycle traces
out the surface Mu

lc, then meets the stable limit cycle at
zlc

sn and vanishes. Let such a periodic solution of the fast
subsystem be given by x = ϕ(t, z) of period T (z). The
exponential stability of the limit cycle is determined by
the magnitude of the single positive Floquet multiplier

ρ1(z) = e
∫ T (z)

0 Div f(ϕ(t,z)) dt . (3)

If it is strictly inside of a unit circle, then the limit cy-
cle is exponentially stable, otherwise it is repelling. The
other multiplier of the limit cycle is always +1 because
it corresponds to the zero Lyapunov characteristic ex-
ponent along the cycle (Shilnikov et al., 1998, 2001).
Observe from (3) that a saddle-node bifurcation occurs
when the multiplier ρ1 of the half-stable limit cycle
equals one, i.e. the average divergence of the vector
field on this orbit equals zero.

Let the slow nullcline ż = 0 pass underneath the sur-
face Ms

lc in the phase space of system (2) at 0 < µ � 1
and intersect the middle segment of fast nullcline Meq.
In this case a bursting activity is observed (Cymbalyuk
and Calabrese, 2001; Shilnikov et al., 2004, 2005a) of
“fold/fold cycle” type according to the classification
suggested in Izhikevich (2000). A neighboring trajec-
tory gets attracted to this cylinder-shaped surface so
that it starts coiling around Ms

lc while translating right-
wards. This part of the trajectory is the spiking phase
of bursting waveform. Having reached the fold of the
surface Mlc the phase point falls down to the hyperpo-
larized state and moves leftward. This part of trajectory
is the quiescent phase of bursting. Then, the phase point
returns to the spiking phase after passing the left knee
point of the curve Meq and thus completes the bursting
cycle.

However, if the nullcines intersect, the situation be-
comes less clear. Namely, while the phase point moves

about the surface Mlc above the nullcline ż = 0, its z-
component increases so that the point translates slowly
to the right. However, when it moves below the slow
nullcline, the vector field pushes it to the left because
here ż < 0. If these factors cancel each other out, the
z-component of the phase point stays the same on aver-
age, and the phase point repeats the path over and over
again. As a result, a periodic orbit of the full system is
born near the surface Mlc. To draw a parallel with the
evolution of the equilibrium states described above, be-
low we introduce a slow, “average” nullcline 〈ż〉 = 0 as
follows. It comes from Pontryagin and Rodygin (1960)
that the overall normalized contribution of the slow
subsystem on the trajectory on Mlc is given by

〈G(z; α)〉 = µ

[
1

T (z)

∫ T (z)

0
g(x(t ; z), α) dt − z

]
≡ 〈ż〉.

(4)

One can see that this “averaged” equation describes
the dynamics of the z-component of trajectories on
Mlc. After integration, we obtain a function 〈G(z)〉 of
a single variable z. The domain of this double-valued
function is defined by the range of Mlc. By construc-
tion, a zero z0 of 〈G(z)〉 is an equilibrium state of the
system (4) and hence corresponds to a periodic orbit
of the full system. The sign of the derivative 〈Ġ〉|z0

determines the stability of this periodic orbit in the z-
direction (Fig. 2B). It is stable when the derivative is
negative, and unstable when it is positive. The periodic
orbit of the full system corresponding to a zero is stable
if it lies in the intersection of the plane z = z0 and the
stable branch Ms

lc. Otherwise, if 〈Ġ〉|z0 > 0, the peri-
odic orbit is of saddle type. It has two two-dimensional
manifolds, stable W s and unstable W u . Locally, the un-
stable manifold W u is a cylinder which is a part of Ms

lc.
The stable manifold of a saddle periodic orbit is formed
by the trajectories that converge to the orbit in the for-
ward time. If µ is small enough, then the plane tangent
to W s is given by z = z0. When zh < z0 < zlc

sn, there
is another periodic orbit on the unstable branch Mu

lc. It
is an unstable, either saddle or repelling, periodic orbit
depending on the sign of the derivative 〈Ġ〉|z0 .

Thus, if there are two simple zeros (〈Ġ〉|z0 �= 0),
then there are two periodic orbits on the manifold Ms

lc:
stable Ln and saddle Ls . The stable manifold of the
saddle periodic orbit bounds the attraction basin of the
stable one. This periodic attractor represents observ-
able periodic tonic spiking activity of the neuron, see
Figs. 2 and 3.
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Also, the system can demonstrate bi-stability, if there
is a second attractor. In the next section, we discuss
possible scenarios of its formation and the role of the
third periodic orbit in it.

3.1. Average Nullclines

To make the idea of Pontryagin’s averaging technique
more illustrative, let us introduce the notion of the
average nullclines. For the sake of simplicity, sup-
pose that the function g(x, α) is linear, i.e. the slow
nullcline is a straight line. Variation of α governs ei-
ther its slope or translates it in (z, x)-plane. Let the
system (2) have a periodic orbit on Mlc at some α,
which lies in the plane z = z0(α), then the aver-
age value of its fast x-coordinate can be defined as
〈x(α)〉 = 1

T (z)

∫ T (z)
0 ϕ(t ; z(α)) dt . So, by varying α, a

parametric curve (z0(α), 〈x(α)〉) can be defined. This
curve is labelled 〈x〉 and 〈V 〉 in Figs. 1 and 2, respec-
tively. Note that it has an easily recognizable fold point
and terminates at the homoclinic bifurcation on the
middle branch of the fast Z -shaped nullcline. It is worth
noticing that the shape of the curve 〈x〉 does not depend
on the choice of the shape of the slow nullcline.

By introducing

〈g(α)〉 = 1

T (z)

∫ T (z)

0
g(ϕ(t ; z(α))) dt, (5)

we can define the slow averaged nullcline as follows:
it is a parametrically set curve (〈g(α)〉, 〈x(α)〉). Ob-
serve that 〈g〉 = C(α) · 〈x〉, where C(α) is the slope
of the nullcline ż = 0. In other words, in the linear
case, the slow average nullcline coincides with the slow
nullcline.

Typically, since the function on the righthand side of
the slow subsystem is not linear, the shape of the aver-
aged slow nullcline can be strongly nonlinear as well
and thus can differ from the slow nullcline, as shown in
Fig. 2 where it is labelled by 〈ṁK2〉 = 0. Observe that
the slow average nullcline and 〈V 〉 has the same range
in the second variable by construction. An intersection
point of both curves is a sought zero of (4) provided it
occurs at the same α. Note that the overlapping may oc-
cur at different values of the parameter α, see Fig. 1; the
same is true for the neuron model (1) whose nullclines
are shown in Fig. 2.

Assume that variation of the parameter α preserves
the first two intersections on the left, i.e. the sta-
ble Ln and saddle Ls periodic orbits persist. The

stable orbit represents the periodic tonic spiking in
the neuron. If there are no intersection points on
Ms

lc within z1
sn < z < zlc

sn, then this attracting cylin-
drical manifold becomes transient for the trajecto-
ries of the system. This supports the bursting activ-
ity. Such behavior may take place when the periodic
orbits vanish off the manifold Ms

lc through the saddle-
node bifurcation. Depending on the global structure
of the bifurcation, two distinct scenarios are possible
(Shilnikov et al., 2004, 2005a). In the first case, the
tonic spiking is replaced by the bursting as a result
of the blue sky catastrophe. This transition is smooth
and reversible. Its key signature is that the bursting
is periodic, and, moreover, burst duration is regu-
lated as 1/

√
α − α∗, where α∗ is the critical param-

eter value. In the second case, where the saddle-node
periodic orbit has noncentral homoclinics, the transi-
tion is characterized by bi-stability of co-existent tonic
spiking and bursting modes. Also, in contrast to the
former case, the duration of the bursting is estimated
as |1 log /(α − α∗)|. Furthermore, the bursting can be
weakly chaotic (Shilnikov et al., 2005b).

Here, we report that in the neuron model (1) the
averaged nullclines may indeed intersect three times,
as shown in Fig. 2. The third intersection point may
correspond to another stable periodic orbit, as long as
it belongs to the upper branch of the curve 〈x〉. This
periodic orbit is unstable when the intersection point is
on the low branch of the curve 〈x〉 below the fold point.

Recall that the only way a stable periodic orbit may
become repelling is through the secondary Andronov-
Hopf bifurcation, also called the torus bifurcation. Note
that the torus bifurcation may not occur in a 3D system
with the sign-constant divergency. This condition may
not be fulfilled near the fold of the manifold Mlc as fol-
lows from (3) provided that the contribution of the slow
subsystem into the divergency is small when |µ| � 1.
This yields that another multiplier of the periodic or-
bit is close to +1 as well. This torus can be called a
Hopf-initiated canard (Guckenheimer et al., 2000), as
it is extremely thin and breaks down quickly thereby
leading to the onset of chaos (Shilnikov and Rulkov,
2003, 2004; Shilnikov et al., 2004). As a parameter
governing the averaged slow nullcline is changed, a
pair of complex-conjugate multipliers with a positive
real part, cross the unit circle inwards while the 2D
torus collapses and the periodic orbit regains stability.
So, by lowering the slow averaged nullcline 〈ż〉 = 0,
the third intersection point slips towards the the homo-
clinic bifurcation of the saddle equilibrium state on the
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middle branch of Meq. It follows from the discussion
above that no stable, but saddle periodic orbit can ter-
minate at this homoclinic orbit. Therefore, the stable
periodic orbit undergoes some evolution to become of
saddle type.

The presence of the two stable periodic orbits in the
phase space means bi-stability of tonic spiking activ-
ities of the neuron model, see Fig. 3A. The attraction
basins of both the attractors are separated by the stable
manifold of the saddle periodic orbit. This remains true
even when the second periodic orbit becomes a saddle
through a period-doubling bifurcation, see Fig. 3. After
the bifurcation its stability is inherited by a stable peri-
odic orbit of the doubled period (Fig. 3B1 and B2). In
turn, the stable orbit of doubled period loses its stabil-
ity through a consequent period-doubling bifurcation
so that a stable periodic orbit of period four is born
(Fig. 3C2) and so forth. This gives rise to a period-
doubling cascade leading to chaos (Fig. 3D). Thus, the
model can demonstrate coexistence of two tonic spik-
ing modes. One is always periodic, the other can be
either periodic or chaotic depending on the value of
the control parameter (Fig. 3). There are two cases of
how a chaotic tonic spiking attractor may vanish. In the
first case, it undergoes an internal crisis when its trajec-
tories reach the fold of the manifold Mlc and fall down
onto the hyperpolarized branch Meq that tunnels them
into the attraction basin of the primary periodic tonic
spiking attractor. In the second case, the trajectories of
the chaotic attractor start deserting through the separat-
ing saddle periodic orbit when the chaotic attractor on
Mu

lc touches the stable manifold of the saddle periodic
orbit. In either case, after the chaotic attractor has van-
ished, the system becomes mono-stable so that the pe-
riodic tonic spiking activity is observed for most initial
conditions.

4. Conclusions

Bi-stability of tonic spiking has been observed in neuro-
physiological experiments (Lechner et al., 1996). Here
we found bi-stability of tonic spiking in the model
of leech oscillatory interneurons. We have shown that
this model (1) can demonstrate bi-stability where
two types of tonic spiking activity co-exist. Under
control parameter variation one tonic spiking mode
stays always periodic while the other undergoes a
complex evolution so that it ranges from periodic to
chaotic, experiencing a cascade of period-doubling
bifurcations.

This cascade is one of the typical routes to chaos.
The period-doubling cascade has been frequently ob-
served in various neuron models (Terman, 1992; Feudel
et al., 2000; Rowat and Elson, 2004; Wang, 1993;
Rinzel and Ermentrout, 1989). A distinction of the
model under consideration is that the chaotic attractor
represents a co-existent alternative to the periodic tonic
spiking activity. The period-doubling cascade is also a
characteristic feature for transitions from tonic spik-
ing into bursting described in Terman (1992), Feudel
et al. (2000), Rowat and Elson (2004), Wang (1993),
and Rinzel and Ermentrout (1989).

Pontryagin’s averaging method provides us with a
clear geometrical interpretation of the bi-stability phe-
nomenon for the case of coexisting oscillatory modes.
The mechanism which we present here differs from
bi-stability reported in the same model (Shilnikov et
al., 2005a, b) where a periodic tonic spiking and a
bursting activities co-exist. Similarly to the bi-stability
considered in Shilnikov et al. (2004, 2005b), the sys-
tem has several periodic orbits and two of them di-
rectly correspond to the stable periodic orbit and the
unstable periodic orbit of saddle type. In our previous
work (Shilnikov et al., 2004) the unstable periodic or-
bit separates the basins of attraction of two co-existing
modes: the tonic spiking periodic orbit and bursting
regime. Here, it separates two modes in a similar fash-
ion, except it has a tonic spiking regime coexisting
with another spiking regime rather than with a bursting
regime.

Appendix

The initial conditions for the two tonic spiking regimes
presented in Fig. 3 are provided in the form (V , mK2,
hNa) as follows:

(A) V shift
K2 = −0.026V , for (A2) and (A3) the ini-

tial conditions are (−0.0293215, 0.0955228,
0.0997786) and (0.0259645, 0.356993, 0.197492)
respectively;

(B) V shift
K2 = −0.02555V , for (B2) and (B3) the

initial conditions are (−0.00893104, 0.103985,
0.0380690) and (−0.0353596, 0.331244,
0.200898) respectively;

(C) V shift
K2 = −0.0255V , for (C2) and (C3)the ini-

tial conditions are (−0.0179769, 0.0986789,
0.0683255) and (−0.0227637, 0.370310,
0.0182421) respectively;



262 Cymbalyuk and Shilnikov

(D) V shift
K2 = −0.025361V , for (D2) and (D3)

(−0.0252204, 0.115693, 0.00855340) and
(−0.0376925, 0.297170, 0.524276) respectively.
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