
Chaos ARTICLE scitation.org/journal/cha

Measuring chaos in the Lorenz and Rössler
models: Fidelity tests for reservoir computing

Cite as: Chaos 31, 093121 (2021); doi: 10.1063/5.0065044

Submitted: 29 July 2021 · Accepted: 30 August 2021 ·

Published Online: 20 September 2021 View Online Export Citation CrossMark

James J. Scully,1,a) Alexander B. Neiman,2,b) and Andrey L. Shilnikov1,3,4,c)

AFFILIATIONS

1Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, Georgia 30303, USA
2Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
3Department of Mathematics and Statistics, Georgia State University, 100 Piedmont Ave., Atlanta, Georgia 30303, USA
4National Research University Higher School of Economics, 25/12 Bolshaya Pecherskaya Ulitsa, 603155 Nizhny Novgorod, Russia

Note: This paper is part of the Focus Issue, In Memory of Vadim S. Anishchenko: Statistical Physics and Nonlinear Dynamics of
Complex Systems.
a)Author to whom correspondence should be addressed: jscully2@student.gsu.edu
b)Electronic mail: neimana@ohio.edu
c)Electronic mail: ashilnikov@gsu.edu

ABSTRACT

This study focuses on the qualitative and quantitative characterization of chaotic systems with the use of a symbolic description. We consider
two famous systems, Lorenz and Rössler models with their iconic attractors, and demonstrate that with adequately chosen symbolic partition,
three measures of complexity, such as the Shannon source entropy, the Lempel–Ziv complexity, and the Markov transition matrix, work
remarkably well for characterizing the degree of chaoticity and precise detecting stability windows in the parameter space. The second message
of this study is to showcase the utility of symbolic dynamics with the introduction of a fidelity test for reservoir computing for simulating
the properties of the chaos in both models’ replicas. The results of these measures are validated by the comparison approach based on one-
dimensional return maps and the complexity measures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065044

We employ the methods of qualitative theory and symbolic

dynamics to measure chaos and detect stability islands in one-

parametric sweeps in the Lorenz and Rössler models, as well as

to compare chaotic properties in their reservoir computed surro-

gates. We seek to test that reservoir computing algorithms are able

to pass all tests prepared for them: quantitative ones relying on

all three measures extracted from binary sequences such as block

entropy, Lempel–Ziv complexity, and Markov matrix structures,

as well as qualitative ones based on return maps. We hope that

our algorithms and findings will be helpful for a broad interdisci-

plinary audience including specialists and beginners in dynamical

systems and machine.

I. INTRODUCTION

Finding effective characterization of complex time series is a
pivotal task for the understanding of their underlying dynamics.1–3

The Lorenz and Rössler models are the classic examples of two

types of deterministic chaos observable in various low-dimensional
dynamical systems,4 with Lorenz-like attractors and spiral ones due
to the Shilnikov saddle-focus, respectively. A qualitatively differ-
ent mechanism of formation and structure of chaos is reflected
in distinct statistical properties of these systems.5–8 As such, the
Lorenz and Rössler models serve as test-benches for testing and
development of new tools in the field of nonlinear science.

The first goal of this paper is to showcase how one may measure
the degrees of chaotic, homoclinic dynamics in such systems based
upon the symbolic description and how well the proposed approach
complimentarily agrees with the conventional one employing the
Lyapunov exponents. We also argue that the symbolic approaches
work exceptionally well to detect the stability windows in para-
metric sweeps of such systems. The second goal of our paper is to
experiment to what degree machine learning tools such as reservoir
computing may well learn to reflect qualitatively and quantitatively
on the dynamical and probabilistic properties of original systems
and surrogated ones.
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While neither model needs to be introduced to the nonlinear
community, nevertheless, let us first of all describe some of the key
dynamical feathers of both systems, as well as how their chaotic
dynamics can be translated into the symbolic description to generate
long binary sequences to be further quantified and analyzed using a
simple technique of partitioning the phase space or phase variables
of these classic models.

This paper is organized as follows: first, we discuss the Lorenz
model, followed by the Rössler model, and introduce the suitable
symbolic description for both. Next, we introduce the complex-
ity measures used on the binary framework; they include block
entropies and source entropy of symbolic sequences, the Lem-
pel–Ziv (LZ) complexity. We argue that the entries of the Markov
transition matrix can effectively indicate structurally stable dynam-
ics in such a pseudo-hyperbolic system and, therefore, to detect
the stability windows in the parameter space. Next, we compare
these complexity measures with the largest Lyapunov exponent as
effective computational indicators of chaos and periodic dynam-
ics. Finally, we analyze and quantify the closeness of the original
chaotic dynamics occurring in the Lorenz and Rössler model and
their clones generated by various recurrent neural networks based
on reservoir computing principles.

II. MODELS, SYMBOLIC PARTITIONS, AND BINARY

FRAMEWORK

A. Lorenz model

The Lorenz equation or model is given by

x′ = −σ(x − y), y′ = r x − y + x z, z′ = bx + x y, (1)

with x, y, z being the phase variables and σ , r, b > 0 being bifur-
cation parameters; we will keep σ = 10 and b = 8/3 fixed through
this study. For r > 28, the model starts exhibiting chaotic behavior
associated with an iconic butterfly-shaped strange attractor depicted
in Figs. 1–3. As this model is Z2-symmetric, i.e., it supports the
group symmetry (x, y, z) ↔ (−x, −y, z). This is manifested in the
shape of the Lorenz attractor shown in the projection in Fig. 1(a),
which is filled in with flip-flopping patterns of a single solution of
Eq. (1). This is well seen from Fig. 1(b) representing a typical evo-
lution of the x-variable in time. One can see from this and similar
traces shown in Figs. 2(b) and 3(b) that switching x-patterns change
with variations of the bifurcation r-parameter. Specifically, one can
see that the x-patterns in the last two figures become periodic after
some chaotic transients. These correspond to the stable periodic
orbits, shown in green, embedded in the chaotic attractors in the
phase space as shown in Figs. 2(b) and 3(b). On the other hand,
for other r-parameter values, the Lorenz attractor remains chaotic
as shown in Figs. 8(a) and 9(a) and can be seen from time progres-
sions of the z-variable in Figs. 8(b) and 9(b). This property makes the
Lorenz attractor pseudo-hyperbolic or a quasi-attractor.9–14 Without
going into detail, the first means that it constantly changes due to
homoclinic bifurcations of its key contributor—the saddle at the ori-
gin with two outgoing separatrices that fill in the butterfly of the
Lorenz attractor in the given phase space projections. In contrast, a
pseudo-hyperbolic attractor becomes a quasi-attractor with homo-
clinic tangencies causing the emergence of stable periodic orbits

FIG. 1. (a) The Lorenz attractor at the classic value r = 29. The superim-
posed red dots defined by the x-variable critical events are well-aligned on some
straight-line intervals transverse to the wings of the Lorenz butterfly in the phase
space. (b) The x-variable plotted against time. Local maxima and minima marked
with red dots are detected to convert the x-dynamics into binary sequences using
the simple rule: {x′ = 0 | x > 0} → “0” and {x′ = 0 | x < 0} → “1” in this case.

within it that remains such on r-parameter intervals, known as the
stability windows or islands.

In this study, we will demonstrate how time-progressions of
both variables can be used to compare and contrast the chaotic and
periodic dynamics generated by the Lorenz model and to detect
stability islands in the parameter space.

Let us first discuss the way symbolic, binary representations
can be introduced to describe the flip-flop dynamics of the Lorenz
model. Figure 1 illustrates the concept: every turn of a phase tra-
jectory around the right “eye” in the wing of the butterfly, which
is given by the condition x′ = 0| x > 0, generates symbol “1” in
the binary sequence. Otherwise, a turn around the left eye, when
x′ = 0| x < 0, adds “0” symbol to the sequence. For example, the
sequence {10000 . . . 10111 . . .} for the x-variable progression shown
in Fig. 1(b) that corresponds to the right separatrix of the saddle
at the origin in the 3D phase space. Such a sequence can be aperi-
odic/chaotic for the canonical parameter value r = 28 and used in all
textbooks on nonlinear dynamics. For other values, the sequence can
become periodic with a repetitive block, e.g., [00001111] of period 8,
after some short or long transient, as in the case depicted in Fig. 2.
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FIG. 2. (a) Chaotic transient converging to a stable attractor (green), encoded as

[00001111], in the 3D phase space of the Lorenz model near a stability window
at r ' 69.67. (b) The x-variable time traces pass through a periodic pattern with
the Markov transition probabilities p00 = 3/4 and p01 = 1/4.

The periodic orbit in Fig. 3 has a shorter periodic block [000111] of
period 6 and so forth.

This outlines the method and ultimate goal of the symbolic
approach: first, one picks some typical, long steady-state trajectory
of the model and second, one examines the binary code/sequence
extracted from the x-variable progression. The question is how to
determine efficiently whether the sequence is periodic or aperiodic,
i.e., chaotic and what is the degree of chaoticity/complexity?

B. Rössler model

The Rössler model15,16 is another classical example of deter-
ministic chaos occurring in many low-order systems. We use the
following representation of the Rössler model:

x′ = −y − z, y′ = x + ay, z′ = bx + z(x − c), (2)

with x, y, z being the phase variables and a > 0 being bifurcation
parameters; here, we keep c = 4.8 and b = 0.3 fixed. The conve-
nience of the representation (2) is that one equilibrium (EQ) state
O1 is always located at the origin (0, 0, 0), while the coordinates of
the second one O2 are given by (c − ab, b − c/a, −(b − c/a)).

The best known feature of the Rössler model is the onset of
chaotic dynamics due to a Shilnikov saddle-focus;17–19 see Fig. 4. It
begins with a super-critical bifurcation of the stable equilibrium at
the origin, followed by a period-doubling bifurcation cascade as a
increases.

FIG. 3. (a) Convergence to the stable periodic orbit (green), encoded as [000111],
after a long chaotic transient in the 3D phase space of the Lorenz model at
r = 92.5. Superimposed red dots defined as critical events {x′ = 0| x > 0 and
x < 0} fill out two hooks on the bending wings of the butterfly in the phase space.
(b) The x-variable plotted against time reveals the attracting periodic pattern with
the Markov transition probabilities p11 = 2/3 and p10 = 1/3.

Recall that a 3D dissipative system with the Shilnikov saddle-
focus cannot produce a genuinely chaotic attractor but produces a
quasi-attractor10,14 instead. Homoclinic tangencies (literately stirred
by two saddle-foci in the Rössler model) inside such a quasi-
attractor cause the emergence of stable periodic orbits in the
phase space through saddle-node bifurcations followed by period-
doubling ones. Note that the chaotic attractor in the Lorenz model
is categorized as a pseudo-hyperbolic one according to Refs. 20–23;
at larger r-values, it becomes a quasi-attractor13 because of the pres-
ence of various stability islands seen in Fig. 6. The same is true for
the Rössler model as illustrated by Fig. 7.

This observation lets us introduce the partition using critical
events when the z-variable reaches its maximal values on the attrac-
tor. The binary sequence {kn} representing a trajectory is computed
as follows:

kn =

{

1 if zmax > zth,

0 if zmin / max ≤ zth,
(3)

where the z-threshold can be set relative to the location of
the secondary equilibrium state O2: zth = 0.1 (c − ab)/a as was
done in Ref. 19, for example, or even set it fixed zth = 0.03 or
zth = 1.0 as done in this study. The choice of partition is motivated
by its simplicity and may differ if it satisfies the purpose, namely,
to distinguish local dynamics concentrated around the Shilnikov
saddle-focus at the origin from large global pathways associated
with possible homoclinic excursions in such spiral attractors; see
Fig. 4. With this simple algorithm based on a threshold level zth,
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FIG. 4. (a) Long chaotic transient (gray) toward a stable periodic orbit (green)
in the 3D phase space of the Rössler model at a = 0.341 and c = 4.8.
Black dots indicate the location of z′ = 0 events to generate binary sequences
{. . . 00011 . . .} depending on where the critical events occur below or above
some z-threshold. (b) Spiking z-variable plotted against time becomes regularized
to produce a periodic pattern of low complexity.

we can convert the maximal values of the z-variable into the binary
framework: using 0 when a solution of the model turns around the
saddle-focus and 1 when it transitions toward the other equilibrium
state O2 and back to the origin. Figure 4(a) illustrates the concept in
the 3D phase space where the black dots indicate the critical events
on the attractors, while Fig. 4(b) represents the time-progression of
the z-phase variable.

III. METHODS: COMPLEXITY MEASURES

There are several approaches available to assess such a degree.
Perhaps the easiest implementation is to convert a time-progression
into a binary sequence, apply a compression application, such as
gzip, and then to compare the lengths of the original, Lorig, and com-
pressed, Lcomp, files. The compressibility measure can be introduced
as R = 1 − Lcomp/Lorig, and it is related to the redundancy of infor-
mation contained in the sequence. As two benchmarks, one can
choose (i) a non-redundant random Bernoulli sequence with the
least compressibility and (ii) a redundant periodic sequence with the
maximal compressibility. A sequence generated by the deterministic
chaotic system lies in between of these two benchmark limits.

In what follows, we will employ four different measures to
examine the degree of chaos in the Lorenz and Rössler models and
to determine the stability windows as the parameter is swept within

some ranges of interest for these systems. We state from the very
beginning that period-doubling bifurcations are beyond the scope of
this examination, and as such, our partition designs are not meant to
detect such transitions. This can be obviously refined and resolved
with additional constraints on the chosen partitions.

The proposed chaos measures are the source entropy (SE), the
Lempel–Ziv complexity (LZ), the Markov transition matrix, and the
largest Lyapunov exponent (LE). As the reader will see, all of these
measures work quite well to detect the stability islands in the chaos
sea. The key to understanding why this is the case is rooted in the
fact that the Lorenz attractor is pseudo-hyperbolic, and then, all four
measures change abruptly with parameter variations except for sta-
bility intervals where they remain constant. Specifically, SE, LE, and
LZ vanish after converging to exponentially stable and, therefore,
structurally stable, periodic orbits.

A. Block entropies and the source entropy of

symbolic sequences

A generic measure of complexity of a symbolic sequence is pro-
vided by the entropy of the source.24 Given a binary sequence S,
Shannon’s entropy of words of m-symbols long, the so-called block
entropy, is defined as25,26

Hm = −
∑

{sm}

P(sm) log P(sm), (4)

where P(sm) is the probability of occurrence of a word of length m
within the sequence § and summation is carried over all words of
length m occurring with nonzero probability. The m-block entropy,
Hm, is interpreted as average information contained in a word of
length m. The conditional entropies are defined as in Ref. 26,

hm = Hm+1 − Hm, h0 := H1, (5)

and provide the average information required for prediction of an
(m + 1) symbol given that the preceding m symbols are known. The
limit of m → ∞ gives the quantity of interest, entropy of the source,

h = lim
m→∞

hm = lim
m→∞

Hm

m
. (6)

For a dynamical system, the source entropy depends on a par-
ticular partition of the phase space, that is, on a rule that maps the
evolution of the dynamical system to a discrete symbolic sequence.
The metric or Kolmogorov–Sinai entropy is an upper bound of the
source entropy over all finite partitions; the entropies match for the
so-called generating partition.27,28

For a symbolic sequence generated by a periodic source, such
as a stable periodic orbit of the Lorenz model, the source entropy
equates to 0, while the conditional entropy, hm, drops to 0 when
the word length reaches the period, m = p, and therefore, hp = hp+1

= · · · = 0. That is, it is enough to observe a periodic sequence for
just a period to predict with certainty the next symbol. Equivalently,
no new information is gained after one period of periodic sequence
is observed.

For a random or chaotic sequence, the source entropy is
positive,25,29 reflecting the sole fact of uncertainty in prediction of
the next symbol in chaotic sequence even if the entire prehistory
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is known. The decay of the conditional entropy, hm, to its asymp-
totic value h is a generic measure of correlations in the sequence.25,30

In particular, for a Markov sequence of memory p, the conditional
entropy converges to the source entropy after exactly p steps; i.e.,
hp = hp+1 = · · · = h.

The number of words grows quickly with the word length. For
example, in the case of a Bernoulli binary sequence, the number of
possible words of length m is Mm = 2m. In a numerical experiment,
the length of a sequence generated by the dynamical system is always
finite, which creates a well-known problem in estimation of long-
word probabilities.30,31 That is, some words cannot be observed or
encountered only few times simply because the sequence is not long
enough. In result, the block entropies, Hm, are systematically under-
estimated, and finite-size correction must be applied. As we are
interested in an indicator of chaotic or periodic dynamics, we limit
the word length to m = 6 and use h6 for estimation of the source
entropy for parameters scans. We collect long sequences, N � 26,
and use the finite-size correction,30

Hobserved
m ≈ Hm −

Mm − 1

2N
, (7)

where Hobserved
m is the observed m-block entropy calculated from the

observed sequence of length N, Hm is the true entropy, and Mm is
the number of distinct m-words, Mm ≤ 2m.

B. The Lempel–Ziv complexity

Given a binary sequence, the Lempel–Ziv complexity (LZ)
is related to the number of substrings of increasing lengths that
the given sequence is made of. For example, for the sequence,
{1|0|10|010|0101|11|110}, scanned from left to right, that number
s is 7. Then, LZ-complexity can be defined as

LZ = s log(N)/N, (8)

where N is the length of the sequence. Indeed, the LZ algorithm can
be used as an effective estimator of the source entropy.32 Thus, we
expect the source entropy estimate, h6, and the LZ to be strongly
correlated, as the parameter of a dynamical system varies.

C. The Markov transition matrix

The simplest measure is introduced when it is based on ele-
ments of the transition matrix of the single-step Markov process
underlying the symbolic sequence,

M =

[

p11 p01

p10 p00

]

,

where p11 and p10 are probabilities of flop and flip, respectively, i.e.,
of transitions 1 → 1 and 1 → 0. Because the Lorenz attractor is
symmetric, p11 ' p00, which implies that p10 ' p01 as well. The situ-
ation is different when the attractor is a stable asymmetric periodic
orbit or either one in a pair of asymmetric chaotic attractors that
emerged through a period-doubling cascade. The transition proba-
bilities p11 and p01 can be compared with 0.5, e.g., with a Bernoulli
trial of an unbiased coin. For example, the Markov matrices for
the symmetric stable periodic orbits shown in Figs. 2 and 3 are,

respectively,
[

4/5 1/5
1/5 4/5

]

and

[

3/4 1/4
1/4 3/4

]

,

and will remain such within the corresponding stability windows in
the parameter space.

D. The largest Lyapunov exponent

A Lyapunov exponent is meant to indicate how quickly nearby
trajectories may converge/diverge in the phase space. The sum of
positive Lyapunov exponents is related to the Kolmogorov–Sinai
(KS) entropy via Ruelle’s inequality, KS ≤

∑

3i>0 3i.33 Since the
Lorenz system is a strongly dissipative system that may have a sin-
gle positive Lyapunov exponent on the chaotic attractor, then the
largest Lyapunov exponent (LE) is directly related to the KS entropy,
KS ≤ 3. Thus, the measures introduced for symbolic dynamics can
be compared against the LE,

3 = lim
t→∞

1

t
log

|δx(t)|

|δx0|
,

that measures the average rate of convergence or divergence between
two trajectories. Therefore, 3 < 0 means a trajectory converges to a
stable equilibrium state; 3 = 0 corresponds to the case of a stable
periodic orbit along which the distance between two solutions does
not change over its period. The case 3 > 0 indicates that solutions
of the system under consideration run on some chaotic attractor.

For a fair comparison with symbolic-sequence measures, such
as the source entropy, the LE should be normalized using a charac-
teristic time of the system, τ , so that the quantity λ = 3τ becomes
dimensionless. For the Lorenz attractor case, as the characteristic
time, we use the mean dwelling time intervals between the events
x′ = 0, such as ones marked as the red dots on the butterfly wings
in Fig. 1. One can observe from Eq. (1) that increasing the parame-
ter r speeds up the time derivative y′ and hence x′, which results in
shortening of the dwelling time intervals between transition events,
which is compensated by the growing size of the Lorenz attractor;
compare the coordinate axis in Figs. 1 and 9, for example. Similarly,
for the Rössler model below, we used the dwelling times between
similar critical events.

IV. DATA AND RESULTS

Figure 5 presents the conditional entropies for chaotic and peri-
odic regimes of the Lorenz model. The first examples in Fig. 5(a)
illustrate the practicality of the conditional entropy in distinguish-
ing two chaotic regimes: a larger hm value for the aperiodic binary
sequence generated at r = 30 compared to that at r = 75 is a direct
indicator of the higher degree of uncertainty of symbol predic-
tions in the former. This implies that chaos at a nearly canonical
parameter value is superior than that at r = 75; see Fig. 9(a). One
indirect justification for that is that the Lorenz model at r ≥ 31
no longer exhibits genuinely chaotic attractors but quasi-attractors
with homoclinic tangencies causing the emergence of stable periodic
orbits such as the one occurring at r = 68.75 and shown in Fig. 2.
This should imply that binary sequences generated by chaotic solu-
tions of the Lorenz model at this parameter range include multiple
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FIG. 5. Conditional entropy vs the word length for the Lorenz model. (a) Condi-
tional entropy for chaotic sequences withN = 16 988 for r = 30 andN = 28 475
for r = 75. (b) Conditional entropy for periodic sequences with lengthN = 25 672
for r = 59.25 and N = 32 058 for r = 92.5. Open circles refer to the conditional
entropy hm estimated from a sequence generated by the genuine Lorenz model.
Filled black circles show hm estimated from sequences generated by the trained
reservoir computer with the same lengths of binary sequences.

“laminar” or periodic substrings, leading to lower values of con-
ditional entropy. We will proceed with more direct arguments in
Sec. V.

As for stable periodic orbits generating stable periodic orbits
after some chaotic transients, the conditional entropy quickly van-
ishes when the word length reaches the period; see Fig. 5(b). The
distinction between two periodic regimes is clearly captured by the
entropy. First, the obvious observation is that the stable periodic
orbit observed at r = 59.25 has a longer period than the orbit found
at r = 92.5. A less obvious observation is related to the value of
H1 (or h0), that is, the entropy of words of length 1. For r = 92.5,
H1 is given by log 2, reflecting that probabilities of “0” and “1” are
the same. This indeed reflects the symmetry of an underlying sta-
ble periodic orbit. On the contrary, for r = 59.25, the entropy H1

is significantly smaller than log 2, reflecting the asymmetry of the
underlying periodic orbit.

Figures 6 and 7 with several charts are the graphical culmina-
tion of our simulations in the first part of this study dealing with
a complexity measure of dynamics demonstrated by the Lorenz
and Rössler models. As we said above, leaving the chaos is due

to period-doubling bifurcations apart from our consideration, as
follows directly from the choice of partitions in either case.

Therefore, Fig. 6 represents a r-parametric sweep of dynam-
ics of the Lorenz model starting with the classical parameter value
r = 28: its panel B depicts empirically the way the complexity mea-
sures vary and all correlate with an r-parameter increase. The low
panel B in Fig. 6 shows variations of two (asymmetric) entries, p11

and p01, within the same r-range. Note that here, p11 and p01 taken
from different columns of the transition matrix, and hence do not
add up to 1 always, are used to detect stability windows with paired
mirror-asymmetric periodic orbits within.

Let us first observe the sharp peaks and plaques in these sweeps
where all three measures, LE, SE, and LZ drop down to zero. One
can conclude that such r-intervals correspond to narrow or wider
stability windows within which the Lorenz model will eventually
demonstrate periodic dynamics. The corresponding periodic orbit
can be symmetric like those shown in Figs. 2 and 3. By analyzing
the values of p11 and p01-probabilities from Fig. 6(b), one can deduct
without visual inspection of Fig. 3 that the plateau around r = 92.5
corresponds to the symmetric stable orbit, while sharp peaks near
r = 100 are indicative of the stability windows with a pair of co-
existing stable orbits within; either one, the transient converges
eventually.

One can see from Fig. 6(a) that at the initial stage prior to two
first stability windows around r = 59, the values of the SE and LE
agree quite well with each other, while after that, the LE-curve starts
diverging from the LZ and SE curves. As we pointed out above,
increasing r-parameter increases on average the time-derivatives
of the x and y-phase variables, accelerating the time course in the
Lorenz model. While we used the average time interval between the
critical events at assigning binary symbols as the normalizing factor
for comparison of LE and SE, the distinction is still noticeably grow-
ing with an r-parameter increase. A possible reason can be that at
larger r-values, the dynamics of the Lorenz model is no longer flip-
flop due to homoclinic bifurcations of the saddle at the origin but
becomes mostly determined by period-doubling bifurcations that
our binary framework is not designed to account. In other words, the
used binary partition is far from a generating partition. Such regimes
will have inclusions of longer, self-similarly regularized blocks such
as . . . 111000111000 . . . that result in lower entropy- and LZ-based
measures, whereas the average rate of divergence of two nearby
trajectories in the phase space remains basically intact.

Figure 6(a) suggests non-ambiguously that chaos in the Lorenz
model at low r-values is more unpredictable and homogeneous due
to shorter flip-flop dynamics caused by homoclinic bifurcations of
the saddles than at higher parameter values where the dynamics
is mostly dominated by longer recurrent patterns due to period-
doubling bifurcations. Figure 6(b) supports this assertion that the
complexity is maximized until the entries of the transition matrix
remain close to 1/2 on the left in the sweep before the very first
stability islands.

One-parametric sweeps of the largest Lyapunov exponent, the
LZ complexity, and the source entropy for the Rössler model are
presented in Fig. 7(a), while Fig. 7(b) depicts the way the Markov
transition probabilities change accordingly with variations of the
a-parameter. One can see from its initial phase a < 0.33 that com-
plexity measures stay close to zero, while the LE is indicative of
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FIG. 6. Complexity measures vs the parameter r of the Lorenz model. For each parameter r value, symbolic sequences of the length 104 were collected. (a) The largest
Lyapunov exponent (LE, blue); the source entropy estimate, h6 (entropy, orange); and Lempel–Ziv complexity (LZ, green) vs the parameter r . The largest Lyapunov exponent
was normalized to the average inter-symbol interval, λT . (b) Markov probabilities p11 and p01 show sharp peaks and plateaus that are also indicative, respectively, of narrow
and wide stability windows with periodic orbits within.

the origin of chaotic dynamics alternating with periodic dynam-
ics in the phase space of the Rössler model. The examination of
Fig. 7(a) reveals that the probability p00 = 1 until a < 0.33, which
indicates by the phase space partition that the dynamics of the
Rössler model remains “flat” near the origin (see Fig. 4) that became
a saddle-focus after a super-critical Andronov–Hopf bifurcation
followed by period-doubling cascades through which the dynam-
ics becomes weakly chaotic as indicated by the positive largest
Lyapunov exponents.

For a > 0.33, the Shilnikov saddle-focus starts contributing
to more developing chaotic dynamics when its 2D stable mani-
fold bends so that trajectories come closer to the proximity of the

origin. With large a-values, the chaotic attractor appears to look
more like iconic spiral chaos in the Rössler model. The growing
values of the complexity measures along with the p01-probability
in the transition matrix approaching 1/2 from below are all syn-
chronous indicators that the degree of chaos and unpredictability
on the Rössler model increases as it transitions further from period-
doubling type toward spiral and multi-funnel chaos with countably
many homoclinic orbits originated by and stirred by both Shilnikov
saddle-foci in the model; see Ref. 19 for more details. As was said
earlier, in addition to chaos, the Shilnikov homoclinic bifurcations
lead to the emergence of homoclinic tangencies and hence the abun-
dance of saddle-node bifurcations that determine the borders of

FIG. 7. Complexity measures vs the parameter a of the Rössler model. For each parameter a value, symbolic sequences of length 104 were collected. (a) The largest
Lyapunov exponent (LE, blue); the source entropy estimate, h6 (entropy, orange); and Lempel–Ziv complexity (LZ, green) vs the parameter a. The largest Lyapunov exponent
was normalized to the average inter-symbol interval, λT . (b) Markov probabilities p00 and p01. Sharp dropping peaks and plateaus are indicative of narrow and wide stability
windows with periodic orbits within.
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multiple stability windows in the parameter space that are popu-
lated by sequential period-doubling cascades within. This is well
seen in the sweep in Fig. 7. The reader is welcome to consult with
Refs. 34–37 that elucidate computationally the contribution of the
Shilnikov saddle-focus bifurcation in the formation of the so-called
T-points for heteroclinic connections between saddles and saddle-
foci in various Lorenz-like systems and the role of inclination-flip
bifurcations in such unfolding that amplify homoclinic tangencies in
producing Shilnikov flames—stability islands nearby such T-points.

To conclude this section, we re-iterate that the conditional
entropy captures well the parameter dependence of the dynamics,
showing qualitatively the same dependence as the largest Lyapunov
exponent and LZ complexity as de facto depicted by the parametric
sweeps of the Lorenz and Rössler model. Let us remind that for a fair
comparison, the largest Lyapunov exponent was normalized by the
average time intervals between the critical events used in the binary
framework design. Finally, the transition probabilities can be effec-
tively used as indicators to detect stability windows in parametric
sweeps as well.

V. RESERVOIR COMPUTING

Symbolic dynamics can be used to study the properties of
systems identification techniques for chaotic systems. Echo State
Networks (ESNs), a form of reservoir computing (RC), are one such
method for systems identification that has recently become popular
in the nonlinear dynamics community.38,39 We apply a fidelity test to
echo state networks, trained for time series prediction. The fidelity

test includes two components: a quantitative test through complex-
ity measures, specifically conditional entropies of various block sizes
LZ complexity, and a qualitative test through canonical 1D Poincaré
return maps: T: zn

max → zn+1
max .

In an ESN, the input is embedded into the reservoir’s vec-
tor space by a random linear transformation. The resulting input
and reservoir vectors are summed and passed through some generic
point-wise nonlinearity, hyperbolic tangent in this case. This is
derived from the discretization of a nonlinear leaky integrator,
yielding the update relation for the reservoir,38

Rn+1 = (1 − α)Rn + α tanh(WRRn + Winyn), (9)

where Rn is the reservoir and yn is either the teacher input or the last
prediction: WoutRn.

The input reservoir and input matrices are WR and Win, respec-
tively. The final prediction is obtained from Rn as

xn = WoutRn, (10)

where Wout is the matrix representation of the best fitting linear
transformation of the reservoir sequence, found by ridge regression.
Detailed methods for both Lorenz and Rössler models can be found
in Secs. V A and V B. The results are summarized for each and
followed by a brief discussion below.

A. Lorenz model’s replica

The results of the quantitative test are summarized in Fig. 5.
Shown in circles are the values of the conditional entropy hm

FIG. 8. (a) The Lorenz attractor at r = 28. Superimposed black dots are the z-critical events well-aligned on two line segments transverse to the butterfly wings in the phase
space. (b) 1D maps T : znmax → zn+1

max generated by sequential pairs of local maxima of the z-variable in the Lorenz model (black dots), while the map filled out with red dots
is generated from the emulated trace (red) shown in (c). (d) The z-variable plotted against time is superimposed with local maxima given by {z′ = 0| z′′ < 0} to generate
the Poincaré return maps shown in (b). The Lorenz z-map has a characteristic cusp-shape [due to high outbursts of the separatrix of the saddle, see (a)] and an emerged
fold at r = 75 giving rise to stable orbits due to tangent (SN) bifurcations. The emulated map adequately captures some characteristics of the original on average.
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FIG. 9. (a) The Lorenz attractor at r = 75. Superimposed black dots are the z-critical events well-aligned on two line segments transverse to the butterfly wings in the phase
space. (b) 1D maps T : znmax → zn+1

max generated by sequential pairs of local maxima of the z-variable in the Lorenz model (black dots), while the map filled out with red dots
is generated from the emulated trace (red) shown in (c). (d) The z-variable plotted against time is superimposed with local maxima given by {z′ = 0| z′′ < 0} to generate the
Poincaré return maps shown in (b). The Lorenz z-map has a characteristic cusp-shape [due to high outbursts of the separatrix of the saddle, see panel (a)] and an emerged
fold at r = 75 giving rise to stable orbits due to tangent (SN) bifurcations. The emulated map adequately captures some characteristics of the original on average.

estimated from binary sequences generated by the Lorenz model,
while the black dots represents the hm-values estimated from binary
sequences generated by the trained reservoir computer.

The results of the qualitative test are illustrated in the sequence
of Figs. 8 and 9. Each figure includes four panels: two panels on
the left and right depict the phase space projections of the orig-
inal Lorenz attractor (gray) and its RC reconstruction (purple).
The black/red dots in these panels indicate the critical events when
the z-variables become maximized. The bottom panel shows the
time progression of the original z-variable overlapped with that
of the surrogate, as well as the zmax map in the middle panel.
This is a standard approach that is also applicable to RC surrogate
systems.40,41

Let us begin with the return maps shown in Fig. 8(b). One can
see that both maps, ordinal and surrogate, produce the expected
cusp-shape at r = 28 with the slope being steeper than ±1 by com-
paring the graph with the bisectrix or the 45◦-line presented in this
figure as well; i.e., the map is an expansion. One can see that the cusp
graph populated by the zmax-values (black dots) extracted from the
Lorenz model is exceptionally well fitted by those (red dots) from
the RC surrogate.

Such a cusp map constitutes a de facto computational proof
that the Lorenz attractor has no stable orbits and is made only of
countable many unstable/saddle periodic orbits whose 2D stable and
unstable manifolds cross transversely in the 3D phase space of the
model. This assertion follows also indirectly from the visual inspec-
tion of the dots, given by the condition x′

max / min = 0, that fill out two

straight-line segments on the opposite sides of the symmetric wings
of the Lorenz attractor shown in Fig. 8(a), while its RC surrogate is
shown in Fig. 8(c).

This is no longer the case at greater r-values in the Lorenz
model, as was first shown computationally in Ref. 13; specifically,
stable and unstable manifolds of saddle periodic orbits populat-
ing such quasi-attractors may no longer cross transversely, thereby
causing homoclinic tangencies that give rise to the onset of stable
periodic orbits (inside stability windows in the parameter space)
through saddle-node bifurcations. Let us first discuss the change that
the shape of the return map undergoes at higher r-values; specifi-
cally, the maps at r = 75 are contrasted with corresponding maps
with r = 28. One can observe first of all from Fig. 9(b) that the
map becomes extended with the bending section on the right. This
fold is where the map loses its expansion property due to the flat
portion with a zero derivative. This is a direct cause for forthcom-
ing saddle-node bifurcations producing stable periodic orbits, which
can coexist with the chaotic pseudo-hyperbolic subset (compris-
ing countably many periodic orbits) in bistability or become global
attractors in the phase space. The images of such [close to, due to
strong contraction in the transverse direction] a 1D folded return
map can also be observed in the phase space projections of the
chaotic set in the Lorenz model in Fig. 9(b) and its RC surrogate
in Fig. 9(c). These maps populated by the black and red dots (given
by x′

max / min = 0) demonstrate the distinctive hooks/folds where the
wings of the attractors bend in the phase space unlike the case r = 28
where they remain straight and flat.
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FIG. 10. True (a) and predicted solutions (c) for the Rössler model are shown with orange dots indicating local maxima with z > 1 and blue dots indicating local minima.
Accompanying time series are given in (d) and (e), respectively. Panel (b) shows the characteristic shape of the znmax return maps for the original (purple dots) and emulated
(black dots) systems.

The ground truth trajectory was integrated with Matlab’s ode45
with fixed time steps at 0.005. The Lorenz ESN was based on the
Matlab code by Lukoševičius.42 Detailed parameters can be found
on our GitHub, cited in Ref. 43.

B. Rössler model’s replica

The qualitative results for the Rössler model’s fidelity test are
displayed in Fig. 10. Panels (a) and (d) correspond to the real
model, and panels (c) and (e) correspond to the predicted trajec-
tories. The zmax-return map fits remarkably well, shown in panel
(b). The geometric distortion of the predicted attractor is an arti-
fact of smoothing that is applied to ameliorate the detection of
“false” critical points when calculating the symbolic dynamics, but
the distortion was included for illustrative purposes.

Quantitative results can be seen in Fig. 11. The conditional
entropies show tight agreement, even as block size increases, demon-
strating the effectiveness of the approach.

We note that because of the slow–fast nature of the Rössler
model and the lack of symmetry, it was not easy to achieve such a
good representation when compared with the Lorenz model. Several
additional steps were necessary to obtain a close replication of the
Rössler model by ESN. In the particular example of Fig. 10, the
true solution of the Rössler system was obtained for the parame-
ters a = 0.341, b = 0.3, c = 4.8 and was integrated with an adaptive
3rd-order Bogacki–Shampine method.44,45 The solution was stored
at time steps of 0.02. Noise sampled from a normal distribution with
mean 0 and variance 0.3 was subsequently added. Selecting an ade-
quate noise level proved critical in obtaining consistent results, but
setting it too high tended to yield periodic orbits rather than chaotic
attractors.

A random search over a broad space of hyper-parameters
of the ESN was conducted at a reservoir dimension of 80. Each
ESN generated in the search was trained over 30 000 time steps
after discarding a 2000 time step transient using the Julia’s library
ReservoirComputing.jl,46 and the score was computed over a test

FIG. 11. Conditional entropy vs the word length for the Rössler system and its
reservoir computer clone. The parameters are the same as in the previous figure.
Open circles refer to the conditional entropy hm estimated from a sequence gener-
ated by the genuine Rössler system. Filled black circles show hm estimated from
sequences generated by the trained reservoir computer with the same lengths of
binary sequences.
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prediction of additional 30 000 time steps according to the following
system:

• Score = LZ × Transient × Entropy + Symmetry.
• Lz is the absolute value of the difference between the LZ complex-

ity of the test and predicted sequences.
• Transient is the squared error over the first 1000 steps, testing for

initial synchronization.
• Entropy is the sum of the differences in block entropies over block

sizes ranging from 2 to 10.
• The symmetry term is designed to disqualify symmetric sys-

tems which were commonly generated. It simply adds 109 if the
trajectory dips below z = −1.

Symbolic sequences were calculated as a sequence where local
min are marked as “0” and local maxima with z > 1 are marked
as “1.” Thus, when the trajectory completes a rotation around
the origin without crossing the z= 1 plane, a “00” is recorded.

Computing the local minima for the predicted trajectories was
complicated by the existence of “false” local minima, which were
ameliorated by three applications of a moving average filter with
window 20. This seemed to outperform other combinations of
higher order Savitzky–Golay filters, although no rigorous analysis
was performed. Critical points were computed using FindPeaks.jl
with a minimum prominence set at 0.1 with a minimum distance
of 150.

Each ESN generated for the search was trained over 30 000 time
steps after discarding a 2000 time step transient using Reservoir-
Computing.jl, and the score was computed over a test prediction of
additional 30 000 time steps. The top 50 scoring trajectories were
inspected in the phase space by eyes alongside a plot of their asso-
ciated block entropies calculated over a longer trajectory of 168 000
steps. The top candidate was chosen, and the zmax return map and
long run conditional block entropies were computed, with the final
entropies calculated over 9 968 000 time steps yielding sequences
of lengths 69 994 and 66 322 characters for the true and simulated
solutions, respectively.

FIG. 12. 3D projections of four surrogate attractors generated by the Rössler random search, each from the same Rössler parameters but displaying different qualitative
properties. The top legend shows the results of the short-run scoring system, and the trajectory in the phase space (background) illustrates each. The actual and predicted
conditional entropies are plotted, along with the znmax return maps superimposed on the right. The true return map is represented by the black dots, and the predicted return
maps are depicted by the white dots.
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VI. DISCUSSION

In conclusion, we would like to reiterate the symbolic approach
used for the characterization of complex chaotic dynamics, followed
by the application of the quantitative measure such as Shannon’s
block entropies.

The quick block-entropy method or a longer Lempel–Ziv com-
plexity approach or even a simple algorithm based on a Markov
transition matrix works exceptionally well for the given purpose.
One may argue that its only “flaw” is the choice of the proper parti-
tion for the phase space to introduce the symbolic description. While
such a partition for the Lorenz model seems evident when we study
the homoclinic portion of its parameter space that results in chaotic
flip-flop patterns, nevertheless, it becomes ineffective in the period-
doubling region of the parameter space for larger r-values. We stress
again that period-doubling bifurcations were out of the scope of our
study focused specifically on homoclinic ones in both systems: the
Lorenz and Rössler models. Last, let us add that this approach should
be viewed not as a substitution but a novel and welcome addition to
the computational approach based on the Lyapunov characteristic
exponents. Our findings are meant to validate this assertion.

There are two pivotal impressions gained as a result of our
experimentation with ESNs. First, it must be acknowledged that
while the echo state networks presented here show excellent sta-
tistical agreement, that is not necessarily an inherent property of
the ESN framework. Curiously, the Lorenz model showed immedi-
ate statistical agreement upon finding a parameter set. The Rössler
model, on the contrary, did not. Many Rössler ESN surrogates had
a relatively long initial synchronization but performed poorly sta-
tistically. One potential reason for that is that the Rössler model is
a slow–fast system, where the z-variable happens to be the fast one
with sharp low and high peaks. Furthermore, the Lorenz model was
much easier to train than the Rössler one. Rössler surrogates often
displayed inappropriate symmetry, collapsed into periodic orbits of
various lengths or converged to visually similar but qualitatively
distinct systems. A few examples with accompanying statistical
portraits are displayed in Fig. 12.

We found ESNs to have poor stability in general and require
a significant amount of tweaking. We also found that the generally
accepted guidelines for hyper-parameter selection were not partic-
ularly useful. The spectral radius, for example, did not have any
obvious relation to performance. The best surrogates were found
widely distributed throughout the hyper-parameter search space.
That said, we make no claim to expertise in the domain but do note
it requires patience and luck. Perhaps someone else with more skill
can do better. As such, a method for systematic reservoir construc-
tion with improved stability and intuitive parameters would be a
welcome contribution.

The second worthy note is that the fidelity test proved to
be highly valuable as a tool for automatically filtering ESN search
results. Error alone is not a sufficient test for chaotic systems due
to sensitivity to initial conditions. The incorporation of statisti-
cal quantification into the search criteria proved to be immensely
practical, albeit imperfect. The further development of search tech-
niques based on symbolic dynamics, perhaps combined with cross-
validation or a Monte-Carlo search, is a promising area for future
research, which would yield an immediate practical value for chaos
prediction methods of many varieties.

In any case, we can attest that reservoir computing passed all
our fidelity tests, a qualitative one based on the methods of dynam-
ical systems and a quantitative test based on statistical properties
of chaotic solutions of the original systems such as the Lorenz and
Rössler models.
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