
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 70 (2007) 2107–2111

www.elsevier.com/locate/neucom
Applications of the Poincaré mapping technique
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Abstract

A single neuron can demonstrate different spiking and bursting patterns which can be elicited naturally depending on modulation

status or artificially due to disturbances caused by distinct recording techniques. For example, when pharmacologically isolated with

bicuculline a leech oscillatory heart interneuron can show an endogenous bursting activity while recorded extracellularly, or the periodic

tonic spiking activity while recorded intracellularly. Transitions between these oscillatory patterns are in general non-local and could not

be understood using only the local analysis of the neuron’s rest states, but the global theory tools such as the Poincaré return mapping

analysis. The mappings constructed then predict the temporal characteristics of the spiking and bursting patterns and allow one to study

transitions between them. The technique is directly applicable to neuronal models of various types, as well as is aimed to be employed in

neurophysiological experiments.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Exploration of generic mechanisms of transitions
between distinct types of neuronal activity is a fundamental
task for determining the basic principles of a neuron’s
functioning. Commonly, neuronal networks controlling
rhythmic movements (central pattern generators) produce
bursting patterns of activity [4]. In systems like the leech,
the central pattern generator controlling heartbeat,
invariability of the pattern is important for survival. The
ability of an endogenous bursting of single oscillatory
interneurons brings robustness to the system versus
variations of the strength of the intra-network coupling
[3]. Thus, keeping the system away from the transitions
could be vital for this system. Previously, we have
developed a powerful averaging technique for the analysis
of oscillatory spiking and bursting modes in neuronal
models without their slow–fast decomposing. It allowed us
to discover two new scenarios of generic transitions
between bursting and tonic spiking activities [7,6].
e front matter r 2006 Elsevier B.V. All rights reserved.
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Here, we present a computationally more efficient
technique, which is based on the measurements of the
minimum values of voltage in spiking cycles and does not
involve the averaging, which gives a number of advantages
especially for experimental implementations.
2. Model

In this paper we employ a three-dimensional model of a
pharmacologically reduced oscillatory heart interneuron
[1,7,6]. It is given by

_V ¼ � 2½30m2
K2ðV þ 0:07Þ þ 8ðV þ 0:046Þ

þ 200f 3
1ð�150; 0:0305;V ÞhNaðV � 0:045Þ�,

_mK2 ¼ 4½f1ð�83;V 1=2 V shift
K2 ;V Þ �mK2�,

_hNa ¼ 24:69½f1ð500; 0:0333;V Þ � hNa�, ð1Þ

where V , mK2, and hNa are the membrane potential,
activation of the persistent potassium current, IK2, and
inactivation of the fast sodium current, INa, respectively;
f1ðk;V 1=2;V Þ ¼ 1=ð1þ e

kðV1=2þV Þ
Þ is a Boltzmann func-

tion describing dependence of kinetics of activation/
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inactivation of an ionic current. The state variables mK2

and hNa assume values between 0 and 1. If the voltage is
clamped to some value V , then each state variable (i.e. mK2

and hNa) approaches the corresponding value determined
by the Boltzmann function. Thus defined, V1=2 determines
the voltage at which the Boltzmann function equals 1=2.
Following up our previous studies we use V shift

K2 as the
bifurcation parameter which is a shift off V 1=2 for IK2

relative to its canonical value 0:018V . It ranges within
½�0:026; 0:0018�V ; its upper boundary value corresponds
to the hyperpolarized rest state of the neuron, whereas the
neuron fires tonically at the lower bound of V shift

K2 .
Dynamically, in the model (1) its variations move
vertically, along V, the slow nullcline _mK2 ¼ 0 thereby
delaying the activation of mK2 if shifted towards more
negative values. Its shifts cause the model to exhibit
multiple transitions between the activities at intermediate
values of V shift

K2 .

3. Central manifolds of slow motion

One may notice from (1) that the time constant of the
potassium current in the model is several times slower than
those of the other variables in the system. Hence, due to
this disparity of time scales, Eqs. (1) could be considered
within a framework of fast–slow systems. The feature of
such a system is that its dynamics is centered around the
manifolds of slow motions. In other words, no matter how
system is perturbed for a short time, it will be found again
near the stable manifolds of slow motions. Also, while
demonstrating any pattern of activity the system’s solu-
tions spend almost all the time close to these manifolds
thus forming the skeleton of possible activity patterns in
the system. This is the reason for these manifolds to be
Fig. 1. Central manifolds of slow motions: 2D spiking surface M lc is foliated b

the later value, the spiking manifold glues to the quiescent manifold, Meq, at it

yields an equilibrium state of the model at given V shift
K2 .
called central. A Hodgkin–Huxley-type model has two such
manifolds: tonic spiking and quiescent.
The corresponding manifolds of the model under

consideration are shown in Fig. 1: the spiking manifold,
M lc, consisting of the periodic solutions of the system, and
the quiescent one Meq comprised of its equilibrium states.
The lower branch of Meq is correlated with the hyperpo-
larized state of the neuron. A solution of the model,
switching repeatedly between these manifolds, is associated
with bursting activity of a neuron. The lower knee of Meq

indicates the beginning of a burst. A solution of the system,
periodic or aperiodic, coiling permanently around M lc

without entering a quiescent phase, is associated with the
continuous spiking.
One may wonder about the conditions under which the

neuron starts to burst, and how this bursting activity
evolves into tonic spiking activity as the control parameter
is varied. An evident observation that both tonic spiking
and bursting activities have the oscillatory character, lets
one take the full advantage of the technique of Poincaré
return mappings to reveal the hidden mechanisms govern-
ing transitions between activities.

4. Poincaré mapping toolkit

A straightforward approach for constructing a Poincaré
mapping is the following: one needs a relatively long
recoding of the membrane potential where pairs ðVi;V iþ1Þ

of successive minima (or maxima) in V are singled out;
these points comprise the graph of a one-dimensional
Poincaré mapping: T : Vi ! V iþ1. A drawback of this
approach is obvious: if the number of distinct pairs is
relatively small, the graph is sparse, and gives limited
information about the prevailing type of neuronal activity
y the periodic orbits of (1) as V shift
K2 increased from �0:026 to 0:0018V. At

s lower knee. An intersection point of Meq with the slow nullcline _mK2 ¼ 0
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corresponding to an attractor of the mapping. Besides,
unstable solutions cannot be detected with this procedure.

The approach applied in this study allows for the creation
of the complete family of the onto Poincaré return
mappings. First, we single out the spiking manifold in the
phase space of the full model. It should be emphasized that
we find the manifolds of the slow motion without engaging
the standard slow–fast decomposition. Instead, we apply a
parameter continuation technique yielding the manifold
itself, not its approximation. To apply the continuation
technique a stable periodic orbit is detected in the phase
space of (1) at a low value of the bifurcation parameter
V shift

K2 . Here we observe that the small amplitude orbit is the
edge of the manifold M lc in Fig. 1. Next, the branch of the
periodic orbits is continued numerically using the package
Content/Matcont [2] as V shift

K2 is increased. Approaching to
V shift

K2 ¼ 0:002V, the stable manifold M lc folds back, wraps
around the quiescent manifold Meq and terminates at the
homoclinic saddle-node equilibrium state on the low knee
point on Meq. Thus, by its construction the aforementioned
Fig. 2. Types of activity in the model at V shift
K2 ¼ �0:012, �0:0170, �0:0200812

evolves into bursting with the increasing number of intra-spikes. Insets (A) sho

space projection: tonic spiking with a single revolution around the manifold M

quiescence period. Insets (B) show the evolution of the Poincaré mapping and i

burst in traces (C).
center manifold M lc is a parametrically sought surface
foliated by a large number of the spiking periodic orbits of
model (1).
At the second stage, we determine the minimum voltage

value ðV 0Þ on each periodic orbit. The corresponding phase
point is then used as an initial one for integration of the
solution of (1). Then we determine the following minimum
of the voltage in the thus generated voltage trace. This
procedure is repeated for all periodic orbits composing the
center spiking manifold M lc. All found pairs ðV 0;V 1Þ

comprise the graph of the mapping for the selected
bifurcation parameter value.
Four Poincaré mappings are shown in Fig. 2 in insets

(B)’s for different V shift
K2 along with the corresponding

attractors (A)’s of model (1) and the traces (C)’s of the
membrane potentials.
The top-left portrait represents the ðmK2;V Þ-phase

portrait of the tonic spiking attractor in (A) of the model
at V shift

K2 ¼ �0:012V. Its single V -minimum corresponds to
the only stable fixed point of the Poincaré mapping (B) at
and �0:0225V, as the neuron becomes more depolarized: the tonic activity

w the corresponding attractors of the neuron model in the ðmk2;V Þ-phase

lc, and bursting ones with two and more turns around M lc followed by the

ts attractors: the number of the points in the attractor is that of spikes per
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the crossing point of the graph with the 45� line. A decrease
of V shift

K2 depolarizes the neuron and counterintuitively the
tonic spiking turns into bursting shown at V shift

K2 ¼

�0:017V. The bursting attractor makes now two complete
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Fig. 3. Poincaré return mapping at V shift
K2 ¼ �0:02V and the local minima

pairs on it generated by five distinct voltage traces introduced through the

voltage clamp. The initial voltages for the traces are: 0.015, �0:015,
�0:042, �0:030, and �0:025V. The initial values for hNa and mK2 are

found by plugging the initial voltage values into the Boltzmann function.

The corresponding pairs localized in the voltage traces are marked by r,

n, &, � and %.

Fig. 4. A bursting solution switching between the central spiking and quies

manifolds are shown in the projections onto central variables (left) and onto no

orbit no longer lingers around the spiking manifold. The other evident distinct

are the way the spiking manifold folds at a saddle-node bifurcation and th

bifurcation.
revolutions around the spiking manifold M lc. The trace in
(C) shows two action potentials separated by a period of
quiescence. One sees from the Poincaré mapping (B) that
the transition into bursting occurs when the fixed
point attractor becomes unstable, thereby giving rise to a
period-two attractor. Two bottom insets in Fig. 2 depict
the chaotic transition from the bursting with two to three
intra-spikes, and the robust four-spike-burster at
�0:0225V.
In addition to this precise correspondence of the stable

activity patterns observed in the model to those in the
mapping, we can demonstrate the applicability of the
mapping technique to studies of the transient activity too.
Essentially, the advantage of the technique is that it can
predict activity of the neuron after any biophysically
plausible perturbations of the initial conditions. Let us
apply a voltage clamp technique to the model. By doing so,
we set the membrane voltage to any biophysically mean-
ingful value. If we keep the voltage clamped for a
sufficiently long time, the activation and inactivation state
variables, determining the conductances of the ionic
currents, will reach their stationary values. Then, we
release the neuron from the clamp and analyze the voltage
trace generated for the given initial conditions. The
corresponding V -minima pairs ðVi;V iþ1Þ are detected
and the trace are mapped. As the system transiently
approaches the stable activity pattern, it illuminates
different points on the mapping, that are labeled with
different markers in Fig. 3 for five distinct initial
cent manifolds in the original 14D leech heart interneuron model. The

n-principal phase variables (right). In the ‘‘non-central’’ case, the bursting

ions between the projections onto the principal and non-principal currents

at it does not encircle the quiescent branch after the Andronov–Hopf
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conditions. Thus, by reapplying this approach, we may
expect to reveal the entire stable, as well as partly unstable,
sections of the mapping.

5. Conclusions

New tools are developed allowing for a reduction to a
one-dimensional Poincaré mapping revealing the hidden

organizing centers of dynamics of the membrane potential
in Hodgkin–Huxley-type models. The method is applicable
for a broad class of neuronal models with fast–slow
dynamics including square-wave type [5]. This assertion is
supported in Fig. 4 illustrating two-dimensional projec-
tions of the spiking and quiescent central manifolds onto a
3D projection of the phase space of the 14-dimensional
model of the leech heart interneuron [3]. We add that the
term cental bears two meanings here: first, the manifolds,
being the Birkhoff centers [8], capture the essential
dynamics of the system; second, the manifolds shown in
the projection onto the phase variables are directly
involved in the bifurcations in a complete analogy with
the central manifolds in the bifurcation theory. Thus, we
can identify the corresponding currents that determine the
dynamics of the model.

The analysis of the mapping lets one describe accurately
transitions between various types of neuronal activities and
understand their origin. A similar approach can be
implemented in experiments through voltage clamp.
Finally, let us point out one more advantage: these exact

onto mappings may be used to replace the ordinal models
in time consuming numerical simulations of dynamics of
large scale neural networks.
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