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Abstract

Tonically spiking as well as bursting neurons are frequently observed in electrophysiological

experiments. The theory of slow–fast dynamical systems can describe basic scenarios of how

these regimes of activity can be generated and transitions between them can be made. Here, we

suggest a biophysically plausible mechanism based on homoclinic bifurcations of a saddle

periodic orbit which explains a transition between tonic spiking behavior and bursting

behavior in a neuron model of Hodgkin–Huxley type. Also, this mechanism is featured by the

coexistence of tonic spiking and bursting oscillations.

r 2004 Elsevier B.V. All rights reserved.
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Neurons are observed in one of the three fundamental, broadly defined modes:
silence, tonic spiking and bursting. The functional role of bursting has been actively
discussed in recent theoretical and experimental studies. There is agreement that it is
an important mode for control of rhythmic movements and is frequently observed in
central pattern generators, neuronal networks controlling motor behavior [11]. Also,
see front matter r 2004 Elsevier B.V. All rights reserved.
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bursting has been widely observed in sleep and pathological brain states [20]. More
recently, bursting has begun to be identified with other functions. It has been proposed
to improve reliability of memory formation [9]. The coexistence of a tonic spiking mode
and of different bursting modes with each other has been observed in modeling [2,3,5]
and experimental [7,8,22] studies and this complexity adds potential flexibility to the
nervous system. Such multistability may be controlled by neuromodulators and thus
reflect the functional state of the nervous system. Multistability has many potential
implications for dynamical memory and information processing in a neuron [3,22,12].
A mathematical model of a single neuron may demonstrate similar regimes, and
variations of certain biophysical parameters in the model can cause transitions between
these regimes. These regimes co-exist in certain parameter ranges depending on initial
conditions or perturbation. Bursting behavior is well described and has been classified
within a framework of the methods of qualitative theory of slow–fast systems [15]. Of
special interest, here are various mechanisms for chaotic bursting analyzed in detail in
[21,23], which occur in transitions from the regime of continuous spikes to bursting.
Two other mechanisms of transition based on the blue-sky catastrophe [18] and saddle-
node periodic orbit with noncentral homoclinics [10] are reported in [16,17]. Here, we
report in detail a case in which the bifurcation behind the transition from tonic spiking
into bursting is based on homoclinic bifurcations of a saddle periodic orbit. We refer to
identified oscillator interneurons that are part of the leech heartbeat central pattern
generator. When isolated pharmacologically from the rest of the network, these
neurons show autonomous bursting behavior [5]. In these neurons, eight voltage-
dependent ionic currents have been identified and characterized, see [6] and references
therein. Classified by their ionic specificity, these currents are two sodium currents, a
fast sodium current (INa) and a persistent sodium current (INaP); three potassium
currents, a delayed rectifier-like potassium current (IK1), a persistent potassium current
(IK2) and a fast transient potassium (IKA); two low-threshold calcium currents, one
rapidly (ICaF) and one slowly inactivating (ICaS) and a hyperpolarization-activated
current (Ih). A canonical model of a single neuron has been constructed and tuned to
reproduce experimentally observed behaviors [5,6]. As alluded above, a comprehensive
analysis of this model would be quite difficult. Blockade of groups of currents in living
heart interneurons simplifies neuronal dynamics, and elicit characteristic behaviors, like
that observed under blockade of Ca2þ currents. In leech neurons, application of
divalent ions like Co2þ; which block Ca2þ currents, along with partial block of outward
currents, elicit slow plateau-like oscillations with up to 60 s period and up to 20 s
plateau duration [1,13]. This phenomenon persists after a blockade of Ih [13].
Previously, in our modeling studies [4], we derived a simplified neuron model

taking into account that the experimental conditions eliminated or reduced the
contribution of certain currents into the dynamics of the neuron. To bring the
canonical model developed in [6], in accordance with the experimental conditions
described above, we remove from the model the equations and terms describing
blocked currents: ICaF; ICaS; and Ih: For simplicity, we assume that the partial block
of outward currents completely removes IK1 and IKA; whereas it reduces IK2: The
current INaP is removed for simplicity. Here, we employ the model described in [4]
with the parameter values taken from [16] (for the equations, see Appendix). In terms
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of dynamical systems, co-existence of tonic spiking and bursting corresponds to the
co-existence of two distinct attractors in the phase space of the system (Fig. 1). Here,
we describe bifurcations of a saddle periodic orbit with homoclinic trajectories,
which explain this phenomenon. We present a mechanism for this type of bi-stability
in a general slow–fast 3D system, as well as provide a qualitative understanding for
how either attractor can be observed by varying initial conditions. Our analysis also
explains a smooth transition between the regimes. Furthermore, through the
analysis, we identify a physiologically plausible parameter that can control the
duration of the burst phase and the number of spikes in a burst. We introduce a
prototype dynamical system with bifurcation features essential for the phenomenon
of bi-stability of tonic spiking and bursting. The bifurcations in our biophysically
realistic model are analogous to those in a generic slow–fast 3D system of ODEs
written in the form

_x ¼ F ðx; z; aÞ; _z ¼ mðgðx; aÞ � zÞ; (1)

where x 2 R2 and z are phase space variables, a is a vector of control parameters,
and 0om51: At m ¼ 0; the fast subsystem described by the first equation decouples
from the second slow one. In this case, the slow variable z becomes a parameter in
the fast subsystem. As for the function F, its essential properties are illustrated in
Fig. 2. First, it ensures that the fast subsystem has either one or three equilibrium
states, depending on z. The branch Meq of the equilibria curve for the fast subsystem
has a distinctive Z-shape in its projection onto the ðz;xÞ-phase plane. Its equation is
given by F ðx; z; aÞ ¼ 0: The two turning points of Meq; at zsn and z�sn; correspond to
the saddle-node bifurcations in the fast subsystem where two equilibrium states
coalesce forming a double one. Thus the fast subsystem has three equilibria within
the interval zsnozoz�sn: The middle branch of Meq is comprised of saddle points.
The upper branch of Meq; when stable, corresponds to a depolarized state of the
model, whereas the lower one corresponds to a hyperpolarized state. The stable
Fig. 1. Co-existence of spiking and bursting modes in the model in the ðV ;mK2Þ-projection at the control

parameter V shift
K2 ¼ �0:02598V: The small round periodic orbit in A corresponds to the tonic-spikes shown

in B; the larger complex orbit in A corresponds to the bursting cycle shown in C. The topology of this

bursting cycle (B) is illustrated in Fig. 2. (D) The burst period increases as � j lnðV shift
K2 þ 0:2600866Þj:

Logarithmic fit of the dependence of the burst duration on the control parameter V shift
K2 : Note that the

burst duration obeys the same law because the interburst interval hardly changes within the indicated

parameter interval. Here, V shift
K2 ¼ �0:2600866 is the transition value between the only tonic spiking regime

and bi-stability.



ARTICLE IN PRESS

G.S. Cymbalyuk et al. / Neurocomputing 65–66 (2005) 869–875872
focus on the upper branch Meq is supposed to become unstable, for example,
through the supercritical Andronov–Hopf bifurcation at z ¼ zAH: This means that
the stability of the upper branch of Meq will be imparted, as z increases, onto the
parabolic-like surface MLC composed of limit cycles of the fast subsystem. As z

increases further, the forthcoming evolution of the stable limit cycle can follow either
of two potential scenarios. In the first case, the stable limit cycle is terminated at the
homoclinic bifurcation at some zh when the saddle point on the middle branch of
Meq has a homoclinic orbit. In addition, the saddle value which is the sum of the two
characteristic exponents at the saddle point has to be negative. This means that the
stable periodic orbit may merge into the homoclinic loop. In the second case, which
is realized in the considered model, a homoclinic bifurcation also occurs, but the
saddle value is positive. This means that another unstable limit cycle bifurcates from
the homoclinic orbit as z goes through zh: As z grows further, the stable and unstable
limit cycles get closer, and they merge into a double limit cycle at some zlcsn: This is a
saddle-node bifurcation for limit cycles in the fast subsystem. After zlcsn is passed,
there exists no limit cycle. This scenario makes the surface MLC look like as being
turned inside out, see Fig. 2. After the stable limit cycle disappears for z4zlcsn; the
phase point moves to another attractor. Such an attractor is a stable equilibrium
state on the lower branch of the curve Meq: If the parameter z is decreased, the phase
point will follow the lower branch towards the saddle-node bifurcation at zsn: Then
the steady-state attractor disappears and the phase point jumps to the stable limit
cycle on MLC: Now that we have described the bifurcation structure of the fast
subsystem, let us consider the complete 3D system when ma0: It follows from the
work by Fenichel that when jmj51; the manifold Meq; whenever it is normally
hyperbolic (i.g. far from bifurcations), will persist in the form of some m-close
invariant manifold in the singularly perturbed system. Introduce a nullcline z ¼

gðx; aÞ on which the z-variable does not change, i.e. _z ¼ 0; see Fig. 2. Below this
surface, _z is negative, while _z40 on upper branch of Meq as well as on the surface
MLC: If the above conditions are fulfilled, then the phase point of the 3D system will
Fig. 2. (A) Points of transverse intersections of h_zi ¼ 0 with hxi are the images of the two periodic orbits:

one stable and one saddle in the phase space of the 3D singularly perturbed system. (B) Bi-stability starts

when the stable manifold of the saddle periodic orbit bounds the attraction basin of the stable orbit.

Transition occurs when the unstable manifold of the saddle periodic orbit becomes homoclinic to the orbit.



ARTICLE IN PRESS

G.S. Cymbalyuk et al. / Neurocomputing 65–66 (2005) 869–875 873
behave as follows. It drifts slowly along the lower branch of Meq leftward till the
fold. Then it makes a rapid jump up on to the perturbed surface MLC: Afterwards, it
drifts slowly rightward in circular motion around MLC: After its z-component passes
through the critical value zlcsn; the phase point falls down on to the lower branch Meq;
and the cycle starts over again. Such behavior of a trajectory is associated with
bursting in neuron models. The number of spikes in a burst is that of complete
revolutions around MLC between the jump points. A point where the nullcline
crosses Meq is an equilibrium point in the singularly perturbed system. The co-
ordinates of this point can be found from the condition of the simultaneous
vanishing of the right-hand sides of the system (1). We need that nullcline _z ¼ 0
crosses Meq within an unstable interval of Meq to avoid stable equilibria in the phase
space of the whole system.
Let us first discuss the behavior of the trajectories near the surface MLC in the

singularly perturbed system. By construction, the outer surface Ms
LC is spanned by

the stable limit cycles of the fast system at m ¼ 0: Define the average value hxi on
such a limit cycle jðt; z; aÞ over its period T for a given value of z as follows:

hxi ¼
1

Tðz; aÞ

Z Tðz;aÞ

0

ðjðt; z; aÞ; zÞt:

By the construction, this curve hxi originates from the Andronov–Hopf bifurcation
at zAH and terminates at the homoclinic bifurcation at the homoclinic value zlcsn as
increases from zAH: Note that the curve has a distinctive fold where the stable and
unstable limit cycles coalesce (Fig. 2).
It follows from Pontryagin–Rodygin theory [14] that the dynamics of the

singularly perturbed system around Ms
LC is determined by following ‘‘averaged’’

slow subsystem

_z ¼
m

Tðz; aÞ

Z Tðz;aÞ

0

ðgðjðt; zÞ; aÞ � zÞdt ¼ hGðz; aÞi:

Hence, if the integral is positive within z1snpzpzlcsn; then surface MLC is transitive for
solutions of the system (1) that coil around MLC translating slowly (at the rate of
� m) rightward. Such behavior of the system produces the bursting activity.
Introduce an average nullcline h_zi ¼ 0 as the parametrically given curve ðz ¼

hgðzÞi;x ¼ hxðzÞiÞ with

hgðzÞi ¼
1

Tðz; aÞ

Z Tðz;aÞ

0

gðjðt; zÞ; aÞdt

and

hxðzÞi ¼
1

Tðz; aÞ

Z Tðz;aÞ

0

jðt; z; aÞdt:

Any of its intersection points with the curve hxi corresponds to a zero, z0; of hGi; i.e. to
a periodic orbit of our system, see Fig. 2. Let there be two such crossing points, i.e. two
periodic orbits in the phase space of system (1). The point (periodic orbit) is stable if
hGðz0; eÞizo0; or unstable otherwise. The stability of the periodic orbit in the x-direction
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is determined by that of the corresponding limit cycle MLC of the fast subsystem at the
given z0: Therefore, to study bifurcations of stable periodic orbits of the singulary
perturbed system, we need to examine the upper branch of the curve hxi corresponding
to the stable component Ms

LC: Thus, by construction, one periodic orbit is stable, while
the second one is of saddle type because of its instability in the z-direction.
Here, a very special interest is an interplay between the stable manifold of the

saddle periodic orbit that is shown as a grey disk in this figure and the way the phase
point jumps up at � zsn (the left fold on the Z-shape curve of equilibria of the fast
subsystem) on to the surface MLC: Two robust situations are possible here. The first
shown in Fig. 2(a) is when the phase point gets, once or after some intermediate
phase, into the attraction basin of the stable periodic orbit. The system will generate
tonic spikes. In the second case illustrated in Fig. 2(b), the stable manifold of the
saddle cycle does separate the attraction basin of the stable periodic orbit. This
corresponds to the bi-stability in the system, where the tonic-spike solution co-exists
with the bursting solution, see the numerical results presented in Fig. 1(a). The
choice of the regime is determined by the initial conditions.
When the parameter V shift

K2 is decreased, the unstable manifold of the saddle orbit
can no longer bound the attraction basin of the stable orbit where the phase point
tends to as it jumps off the hyperpolarized phase of the bursting. Observe that the
duration of bursting phase may grow with no bound as the control parameter is
moved toward the transition value between the regimes, while the interburst interval
remains nearly constant. The estimate for the growth of the burst period is given by
Tðz; a�Þj lnða� a�Þj [19], where a� is a deviation of a control parameter from the
transition value between the regimes and Tðz; a�Þ is the period of the limit cycle on
the surface MLC of the fast subsystem at the given z. Also note that the bursting
behavior is not necessarily regular here but can be chaotic as well, especially when
the phase point may pass close by the stable periodic orbit.
We have described a mechanism governing transitions between tonic spiking and

bursting regimes. It is based on homoclinic bifurcations of a saddle periodic orbit.
This mechanism explains two qualitatively different situations. First, tonic spiking
and bursting regimes co-exist and are separated by the saddle periodic orbit. Either
regime can be attained by appropriate choice of initial conditions. Second, only tonic
spiking is the attracting regime. Also, we studied how the major temporal
characteristics of the bursting mode are changing along with the changes of the
bifurcation parameter. As a bifurcation parameter we used V shift

K2 ; which is the
potential of half-activation of the slow persistent potassium current. This parameter
controls the dynamics of the slowest current. As the control parameter is decreased
the duration of the burst grows logarithmically in accordance with the theory of
homoclinic bifurcations. At the same time, the interburst interval remains
constant.This mechanism and the geometry of the bifurcation are both quite typical
for neuronal models based on the Hodgkin–Huxley formalism.
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Appendix

The model studied here is given by

CV0 ¼ �ðḡK2m
2
K2ðV � EKÞ þ glðV � ElÞ þ ḡNaf ð�150; 0:0305;V Þ

3hNaðV � ENaÞÞ;

m0
K2 ¼ ½f ð�83; 0:018þ V shift

K2 ;V Þ � mK2�=tK2;

h0
Na ¼ ½f ð500; 0:03391;V Þ � hNa�=tNa;

where the variables V ; mK2; and hNa are the membrane potential, activation of IK2
and inactivation of INa; respectively; f ðx; y; zÞ ¼ 1=ð1þ exðyþzÞÞ: The parameters are:
C ¼ 0:5 nF is the membrane capacitance, ḡK2 ¼ 30 nS is the maximum conductance
of IK2; EK ¼ �0:07V and ENa ¼ 0:045V are the reversal potentials of Kþ and Naþ;
respectively; ḡNa ¼ 200 nS is the maximal conductance of INa; gl ¼ 8 nS and E l ¼

�0:046V are the conductance and reversal potential of the leak current, respectively;
tK2 ¼ 0:9 s and tNa ¼ 0:0405 s are the time constants of activation of IK2 and
inactivation of INa; respectively; V shift

K2 ; which is the shift of the membrane potential
of half-activation of IK2 from its canonical value, is a bifurcation parameter in this
study.
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