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Abstract
Inhibitory circuits of relaxation oscillators are often-used models for 
dynamics of biological networks. We present a qualitative and quantitative 
stability analysis of such a circuit constituted by three generic oscillators 
(of a Fitzhugh–Nagumo type) as its nodes coupled reciprocally. Depending 
on inhibitory strengths, and parameters of individual oscillators, the circuit 
exhibits polyrhythmicity of up to five simultaneously stable rhythms. 
With methods of bifurcation analysis and phase reduction, we investigate 
qualitative changes in stability of these circuit rhythms for a wide range of 
parameters. Furthermore, we quantify robustness of the rhythms maintained 
under random perturbations by monitoring phase diffusion in the circuit. 
Our findings allow us to describe how circuit dynamics relate to dynamics 
of individual nodes. We also find that quantitative and qualitative stability 
properties of polyrhythmicity do not always align.

Keywords: cellular circuits, polyrhythmicity, phase lags, bifurcations, return 
maps, phase reseting curve, relaxation oscillators
Mathematics Subject Classification numbers: 37, 92, 65

(Some figures may appear in colour only in the online journal)

J T C Schwabedal et al

Qualitative and quantitative stability analysis of penta-rhythmic circuits

Printed in the UK

3647

NON

© 2016 IOP Publishing Ltd & London Mathematical Society

2016

29

Nonlinearity

NON

0951-7715

10.1088/0951-7715/29/12/3647

Paper

12

3647

3676

Nonlinearity

London Mathematical Society

IOP

0951-7715/16/123647+30$33.00 © 2016 IOP Publishing Ltd & London Mathematical Society Printed in the UK

Nonlinearity 29 (2016) 3647–3676 doi:10.1088/0951-7715/29/12/3647

mailto:ashilnikov@gsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/0951-7715/29/12/3647&domain=pdf&date_stamp=2016-10-14
publisher-id
doi
http://dx.doi.org/10.1088/0951-7715/29/12/3647


3648

1. Introduction

Relaxation oscillators and their multiple slow–fast generalizations have become a base for 
constituting coupled networks that generate cooperatively a variety of self-sustained rhythms. 
Such oscillators have been used to model a diversity of nonlinear phenomena including elec-
trical and mechanical systems, for example multi-vibrators initially, in the early 20th century 
[1–3], and later excitatory dynamics of cellular membranes and heart beats [4], harmful algae 
bloom [5], regulatory genetic networks [6, 7], and the population dynamics of pest cycles of 
forests [8], to name a few well-known applications.

Simple oscillations in such systems are due to reciprocal interactions of only two essential 
variables: an activity variable is associated with active and inactive states of a cell or a node, 
while a recovery variable regulates and completes activity cycles by eliminating the stable activ-
ity states, and thus leading to recurrent fast switching between these relatively slow transient 
states. The activity variable exhibits a phenomenon of dynamic hysteresis through which the 
activity state becomes bi-stable when the recovery variable is held constant. For example in 
neuronal dynamics, the level of the membrane voltage determines the state of cellular activity: 
the inactive or depolarized state of a cell occurs after a conductance of dissolved potassium-ions 
([K+ ]), i.e. the recovery variable, falls below a threshold. In return, the depolarized, active mem-
brane voltage opens voltage-dependent [K+ ]-gates causing the [K+ ]-conductance to increase. 
Its increase over another threshold triggers elimination of the stable active state and a successive 
switch to the inactive state of the membrane voltage, thereby completing the cycle of revolution.

While detailed, biologically plausible models can exhibit a variety of other complex types 
of neuronal activity, including sub-threshold oscillations, mixed-mode oscillations and burst-
ing [9–16], this basic mechanism of hysteresis, which guides relaxation (and bursting) oscil-
lations, is always retained.

Network coupling among oscillatory cells is introduced through interactions of their activ-
ity variables. Prominent biological examples of coupled systems include neuronal populations 
connected by chemical synapses and gap junctions [17–19], as well as single-cell organisms 
communicating via signaling molecules [20]. One distinguishes two types of connections: 
excitatory connections promote and support the active state, while inhibitory (repulsive) 
connections are meant to repress the active state and to hold the inactive state of the driven 
oscillator. Note that neuronal gap junctions (electrical coupling) and other types of diffusive 
coupling do not fall into either of these categories.

Oscillators coupled in a network demonstrate a certain degree of coordination, not neces-
sarily synchronization, and a phase locking among their individual cycles. Reciprocal excita-
tion between two oscillators is typically tend to lead to their in-phase synchrony, whereas fast 
reciprocal inhibition forces them to oscillate in anti-phase alternation [21]. Moreover, slow 
inhibition can promote synchrony in two coupled oscillatory neurons [18, 21–23], while fast, 
non-delayed inhibition allows for synchronous bursting dynamics due to weak spike interac-
tions [24, 25]. Generation of robust network rhythms is of particular relevance for neural 
ensembles that control the dynamics of motor patterns. The theme of central pattern genera-
tors (CPGs), described in the next section, has greatly inspired and influenced the research 
presented in this work.

1.1. Dynamics of central pattern generators

Small neuronal networks of interconnected spiking and bursting oscillators have been iden-
tified in a number of invertebrate CPGs [26–28]. These networks are structurally equal in 
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individuals of the same species, and show characteristic differences across related species 
[28]. A function of the network connectivity is to maintain a single rhythmic activity pattern 
generated by CPG interneurons, and to ensure resilience of the pattern against disturbances. 
Indeed, computationally extensive modeling studies of a three-node CPG that controls rhyth-
mic muscle motions in the stomach of lobsters revealed that a wide range of circuit parameters 
could produce the same rhythmic output [29–31]. This invariance of pattern generation with 
respect to parameter changes highlights the robustness of the network structure to stably pro-
duce certain rhythms.

More complex CPGs can support multiple rhythms to efficiently perform multiple func-
tions [32] (see [33] for a review on multistability). To study the dynamics of these CPGs, the 
state space of each circuit configuration needs to be analyzed for multistability and polyrhyth-
micity. Arguably, the numerical brute-force methods used in aforementioned lobster studies 
are to enhanced to deal with potential multistability of a network in question. One potentially 
viable approach relies on ideas and techniques of qualitative theory to understand and catego-
rize the relation between circuitry and rhythmogenesis [34–38].

In our recent qualitative studies on circuits consisting of biologically plausible endogenous 
bursters, we have concluded that (i) the duty cycle (e.g. the fraction of the active phase over 
the period of a burster) of individual neurons strongly affects feasible rhythms of the net-
work [15]; (ii) variations in coupling strength (and of duty cycles) among the bursters lead to 
predictable bifurcations of rhythms [38]; (iii) strong reciprocal inhibition can make network 
rhythms more vulnerable to perturbations such as noise [39]. Based on these results, we have 
been able to better understand dynamics and stability of the swim CPG of a sea slug, Melibe 
leonina [37, 40]. Our continuing goal is to develop the theory of rhythmogenesis to determine 
the robustness of rhythms in an oscillatory network given its circuitry, and to predict changes 
in rhythm stability and in terms of bifurcations.

In this paper, we adopt top–down approach to build up on prior results and generalize 
those for a family of three-node circuits constituted of generic relaxation-like oscillators 
with relevance outside of neuroscience related fields [41]. We adopt and counterpose a vari-
ety analysis techniques for polyrhythmic circuits and highlight their individual strengths. 
Our complimentary techniques of phase reduction, bifurcation theory, perturbation theory, 
and stochastic dynamics let us describe a near-maximal range of dynamical regimes includ-
ing different separations of time scales between activity and recovery variables, bifurca-
tions in individual nodes, and a range of coupling strengths from weak to strong. We find 
that stability and robustness of circuit rhythms strongly depend on the intrinsic parameters 
of oscillators in the circuit. In a vicinity of their individual bifurcations, abrupt qualitative 
changes in the circuit dynamics are observed. Furthermore, we demonstrate that qualita-
tive and quantitative stability of polyrhythms do not align completely, thereby leading us 
to new hypotheses concerning polyrhythmic circuits. Our results strengthen our recent 
findings obtained with Hodgkin–Huxley-type neuronal circuits. Moreover, synthesizing 
the outcome of various analysis techniques allows us to specify conditions under which an 
individual technique may efficiently extract particular dynamical features of stability for a 
given polyrhythmic circuit.

Note that resilience of the circuit to retain a rhythm under external disturbances is analyzed 
in two ways in this article, using the terms stability and robustness. Here, stability is meant 
to describe the response of the circuit dynamics to smooth, infinitesimal perturbations, while 
robustness describes its response to finite, including stochastic external perturbations of the 
state and parameters of the circuit.
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2. Methods

2.1. Circuit dynamics

We consider a circuit of three relaxation-like oscillators that are identical and coupled all-to-
all. The circuit dynamics are governed by the following equations:

( )

[ ( ) ]

∑

ε

= − + − −

= − =
≠

∞

V V V I x g G V V

x x V x i j

˙ , ,

˙ , , 1, 2, 3.

i i i i
i j

i j

i i i

3

 (1)

The state of the ith node is described by its activity variable Vi and recovery variable xi. We say 
that the node active if Vi exceeds the activation threshold V 0th = .

By construction, active, driving oscillators must slow down or repress the recovery dynam-
ics of driven oscillators with the inactive state (Vi  <  0) if coupling is inhibitory, or, on contra-
rily, facility or accelerate it, if coupling is excitatory.

Nodes are coupled via a sigmoidal coupling function using the so-called fast threshold 
formalism [17]

G V V V E V V E, , where
1

1 e
, and 1.5.i j i j j V Erev 100 j th

( ) ( ) ( ) ( ) ( )= − Γ Γ =
+

= −− −

This choice of Erev guaranteeing that G is positively defined for the given range of the V-variable 
and is modulated by Γ switching fast between 0 and 1, makes coupling inhibitory: inhibition 
or repression is intended to slow down the time derivative V̇  in equation (1) on upstrokes from 
the inactive (recovery) state of a driven cell. In a neuroscience context, equation (1) represents 
a phenomenological model of neuronal dynamics [4, 42]. Variables Vi and xi describe the 
membrane voltage and a voltage-dependent [K+ ]-conductance, while the coupling function 
models fast inhibitory (V Ej th> , which E 0th = , here) synapses.

Such on-off reciprocally inhibitory perturbations can result in and stabilize specific activ-
ity patterns generated by the circuit as demonstrated with two sampled trajectories in figure 1. 
Starting from arbitrary initial conditions, the phases of activity in each oscillator realign and 
converge to a stable circuit rhythm.

The more slow dynamics (due to 10 1ε∼ − –10−2) of recovery variable is determined by the 
second equation in (1). In the case under consideration, the equilibrium state, ẋ 0= , of the 
recovery variable is represented by the sigmoidal function:

x V
1

1 e
.

V V10 sh
( ) ( )=

+∞ − −

The corresponding curve in the (x,V)-plane is referred to as the slow x-nullcline. In what fol-
lows we set V 0sh = .

The fast V-dynamics of the uncoupled node is governed by the first of equations (1) deter-
mined by the V-nullcline, which is the cubic parabola given by x  =  V  −  V3  +  I, on which 
V̇ 0=  in the phase plane. This shape of this cubic V-nullcline provides the key feature of a 
relaxation-like oscillator—transient bi-stability [3].

There are two pivotal bifurcation parameters in equations (1) that determine the dynam-
ics of individual nodes: nullcline shift I and Vsh introduced in fast and slow equations. 
Geometrically, variations of I and Vsh shift the V-nullcline and x-nullcline, resp., horizontally 
and vertically. A transverse intersection point of both nullclines is a hyperbolic equilibrium 
states ( 0ε≠ ) of the individual node. These parameters are initially set so that there is a unique 
unstable equilibrium state surrounded by a stable limit cycle in the plane, as shown in figure 2. 
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These two nullclines coordinate the dynamics of each individual node. Whenever the phase 
point representing the activity state of the mode resides above the slow x-nullcline, its x(t)-
coordinate increases and the phase point shifts to the right along the upper active branch of the 
V-nullcline. After it reaches the right knee on the V-nullcline, it falls down to the lower, inac-
tive or recovery branch along which it slides to left, as below x-nullcline where ẋ 0< , toward 
the left knee, from where it takes off in the upstroke to complete another oscillation cycle, and 
so forth, see figure 2.

As shown in the figure, this leads to self-sustained relaxation-like oscillations in which 
the trajectory periodically bypasses the lower and upper fold or knee of the V-nullcline. The 
equilibrium state located on the middle segment of the V-nullcline at the intersection with the 
x-nullcline is unstable, and is encircled by the stable periodic orbit in the (V, x)-phase plane.

Increasing or decreasing the value of small parameter ε either slows down or accelerates 
the recurrent times of oscillations, as well as either smoothes the voltage traces or makes them 
look like relaxation oscillations featuring fast vertical transitions between the branches at the 
knee points.

Figure 1. Rhythms in the three-node circuit. Oscillations of V-variables (top traces) 
converge to one of the wave rhythms (a), and to one of the pacemaker rhythms (b), 
both simultaneously stable. The convergence is visible in the dynamics of phase lags, 

( )∆ = ∆ ∆,12 13 , that approach the characteristic fixed points ( / / )∆ = 2 3, 1 3 , and (0, 1/2) 
in panel (a) and (b), respectively. Boxes denote active states. Parameters: g  =  0.005, 
I  =  0.4, ε = 0.17. (a) Wave rhythm. (b) Pacemaker rhythm.

J T C Schwabedal et alNonlinearity 29 (2016) 3647
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With variations of I and Vsh one can stop oscillations in the node if there is an additional 
stable equilibrium state at the intersection of the x-nullcline with either stable branch, upper 
or lower, of the V-nullcline around where it folds. Specifically, we choose the sigmoidal 
shape of the slow nullcline so that both nullclines can intersect transversally due to a flat 
middle section of the x-nullcline, or have a quadratic tangency near the knees. In the former 
case, the loss of stability of the equilibrium state is due to an Andronov–Hopf bifurcation, or 
in the latter case, the stable equilibrium emerges and vanishes though a tangent saddle-node 
bifurcation. In this study we deliberately set the system up so that it features a saddle-node 
bifurcations and avoid uncertainty and unpredictability due to sensitive dynamics caused by 
particular French-duck solutions, emerging through a critical Andronov–Hopf bifurcation 
typical for slow–fast systems with a single slow equation, such as relaxation-like oscilla-
tors [41]. Moreover, a saddle-node bifurcation provides the model with desired two times 

Figure 2. Dynamics of individual nodes. Dynamics in the ( ) ( )=V x V x, ,i i  coordinates 
(see equation (1)) of each node in the circuit is governed by the geometric relation of 
the nullclines given by =ẋ 0 (red line), and =V̇ 0 (black thin line). (a) Unconnected 
block dots representing a stable limit cycle at I  =  0.5 and color dots representing 
the snapshots of the states of coupled nodes, and showing the velocity along it by 
the varying distance between them. When the nullclines almost touch at the lower  
(b, I  =  0.4), or upper fold (c, I  =  0.59), the limit cycle stagnates in a vicinity of the 
almost-tangency next to knee points. These configurations, called release and escape 
cases, can affect the whole network dynamics. Two arrows in (a) indicate the orientation 
of the limit cycle. The activation threshold (grey horizontal line) divides active (above) 
from inactive (below) states. The inset in panel (a) shows a sketch of the mutually 
inhibitory three-node circuit. Parameters: =ε 0.1.
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scales, and makes the relevance of the small parameter ε less vital. We note that all the results 
below hold true for at least several orders of magnitude of ε. Making it small, automatically 
increase the times of computations to collect the necessary data. In addition, it is not always 
clear whether various computational results obtained for nearly singularly perturbed system 
using numerical integration, parameter continuations etc are truly dynamical phenomena or 
artifacts.

Our supporting argument supporting the use and occurrence of saddle-node bifurcations is 
that such ones, even with associated homoclinic orbit (still remaining in a codimension-one 
class), are generic for broad class of neuronal models including the Purkinje cells, a family of 
leach heart interneurons, to name a few [16]. As an alternative of the this phenomenological 
model, we could have used the 2D Morris–Lecar model [43] with a similarly shaped fast-
nullcline but this would have shifted our study toward mathematical neuroscience, which is 
merely one of objectives of this paper.

In what follows we will refer to equations (1) as the generalized or multipurpose oscilla-
tor (GO or MPO) as it can be properly adjusted to demonstrate a whole necessary range of 
dynamical behaviors specific for the application fields including both types of excitability 
[21], post-inhibitory rebound and escape mechanisms [44] and release [45], to name a few.

2.2. Coupling and release, escape, and hard-lock transitions

The family of networked circuits is controlled by by a pair of primary bifurcation parameters: 
intrinsic nullcline shift I and coupling inhibitory strength g introduced above in section 2.2, 
as well as time-scale parameter ε. Small values of ε, e.g. 0.1ε = , indicate well-separate time 
scales between the dynamics of the V- and x-variables.

We investigate the circuit dynamics with individual node dynamics set at a range of param-
eters in between two saddle-node bifurcations controlled by the intrinsic parameter I. We 
begin with describing the individual dynamics at these bifurcations in the (V, x)-plane with a 
special emphasis placed on mutual interactions of the two nullclines introduced above.

2.2.1. Release. Variations of the parameter I shift the V-nullcline relative to the position of 
the x-nullcline, potentially causing bifurcations in the dynamics of individual nodes. Decreas-
ing I shifts the V-nullcline to the left. A tangency of both nullclines occurring near the lower 
fold of the V-nullcline corresponds to a saddle-node bifurcation (figure 2(b)). If the shifted 
nullclines locally cross twice, the node has two additional equilibrium states located in the 
inactive state: one unstable and one stable. This causes the oscillations to cease in the node 
which becomes permanently inactive.

Inhibition affects the oscillator, similarly, in shifting the V-nullcline to the left, in which 
case we speak of either the effect of hard-locking or soft-locking [23, 39, 41, 45] depending 
on whether the value of g is great enough to fully suppress the motion or only slow down 
transitions throughout the ‘ghost-zone’ near the lower fold on the V-nullcline in the driven 
cell. When inhibitory strength, g, exceeds a critical value, gcrit, a stable equilibrium state 
emerges there though a saddle-node bifurcation and the inhibited oscillator becomes tempo-
rally inactive in this locked-down state. We say that while inhibited, the oscillator remains 
locked down at this stable inactive state, and becomes oscillatory again after it is released 
from inhibition. This mechanism of oscillations emerging from a stable inactive state is 
called release. The release mechanism based on the saddle-node bifurcation works for weak 
coupling if the gap between the x-nullcline and V-nullcline at the lower fold is small. It is 
thus a combination of g and I that determine whether the release mechanism is in place in 
the circuit dynamics.

J T C Schwabedal et alNonlinearity 29 (2016) 3647
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2.2.2. Escape. Increasing I shifts the V-nullcline to the right and thereby leads to a bifurca-
tion scenario similar to release at the upper fold of the nullcline (figure 2(c)). Past the corre-
sponding saddle-node bifurcation the active state of the node becomes a stable equilibrium. 
Inhibition, which shifts the V-nullcline back to the left, lets the oscillator escape from this 
equilibrium towards the inactive state. This mechanism of oscillatory dynamics emerging 
from a stable active state is called escape.

At values of I close to these saddle-node bifurcations—one near I 0.4≈  and one near 
I 0.6≈ , respectively—the trajectory bypasses the designated folds, slowly [46]. Passage times 
of these stagnation regions can take a substantial part of the oscillation period. Each time is 
inversely proportional to the square-root of the gap separating the nullclines [46]. This square-
root law yields important intuition about the effect of coupling. Even weak inhibition can have 
a large effect on the oscillation period of the inhibited node, depending on the gap size. In this 
case, it is conceptually difficult to speak about weak coupling.

2.3. Construction of Poincaré return maps

Due to the oscillatory nature of the six-dimensional equations  (1), the dynamics can be 
explained with two variables, ,12 13( )∆ = ∆ ∆ , that describe a maximal number of linearly 
independent phase differences, synonymously phase lags, between the three oscillators. 
Herein, ij∆  describes the phase difference between node i and j. The phase difference between 
node 2 and 3, 23∆ , can be computed from the other two differences.

Following the method originally propose in [15], we compute these phase lags by first 
detecting events t k

1
( ) at which our chosen reference node 1 becomes active for the kth time, i.e. 

V1 increases through V t 0k
1 1( )( ) = . We also detect the crossings of nodes 2 and 3, t j

k( ) ( j  =  2,3) 
that directly follow each t k

1
( ). Next, we compute the time lags between t k

2,3
( ) and t k

1
( ). Normalizing 

these time lags by the kth period of the reference node, T t tk k k
1 1

1
1

( ) ( ) ( )= −+ , yields a trajectory 
of phase lags ∆ = ∆ ∆,k k k

12 13( )( ) ( ) ( ) :

t t

T

t t

T
and .k

k k

k
k

k k

k12
2 1

1
13

3 1

1

( )
( ) ( )

( )
( )

( ) ( )

( )∆ =
−

∆ =
−

 (2)

Truncated values j
k

1
( )∆  modulus-one tabulate the return map on a two-dimensional torus (shown 

in figure 3)

Π ∆ ∆ ∆ ∆+ +: , , ,k k k k
12 13 12

1
13

1( ) ( )  →( ) ( ) ( ) ( )
 (3)

which is computed from long phase-lag trajectories starting from a large number of initial 
phase lags between the nodes. As implied above, 23 13 12∆ = ∆ −∆ .

Figure 1(a) illustrates the relation between the V-traces of the oscillators and their phase 
lags. As the number of oscillations progresses, the phase lags converge exponentially to a 
locked state with 2 3, 1 3( / / )∆ =∗ , corresponding to a wave rhythm of consecutive activity with 
the order 1–3–2. This locked state is a stable fixed point (FP) of the return map (equation (3)). 
Using the return map (equation (3)), one can show that there co-exist several of such rhythms 
for the given circuit configuration. Figure 1(b) displays another example trajectory converging 
to a pacemaker rhythm characterized by a FP 0, 1 2( / )∆ =∗ .

To explore polyrhythmic circuit dynamics in its entirety and to identify all stable rhythms, a 

regular grid of initial conditions V x j l k n, 1, 2, 3 and , 1, ,j
lk

j
lk{ ( ) ( )     }ϕ ϕ | = = …  is constructed, 

so that the corresponding distribution of initial phase lags densely covers the torus. The shown 
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results were computed using grids of size 40-by-40; however, we also checked our results on 
grid mesh of 100 100×  size. For each of these initial conditions, we compute the phase trajec-
tory as exemplified in figure 1.

All initial conditions lie along the stable periodic orbit V x,( ( ) ( ))ϕ ϕ  of uncoupled, individ-
ual nodes, which is computed for the given node parameters. Specifically, node 1 is initialized 
with zero phase: 0lk

1ϕ = . The other two are initialized at phase steps δ along the orbit: llk
2ϕ δ=  

and klk
3ϕ δ= . We always set the phase of zero, where the periodic orbit intersects activation 

threshold from below.
An example for such a phase analysis is summarized in figure 4(a), where we show all phase 

trajectories on the torus, that were generated from the grid of initial conditions. This repre-
sentation gives the impression of a time-continuous flow of phase differences, rather than the 
discrete map (equation (3)). All stable and unstable FPs are visualized as con- or divergence 
regions: five coexisting stable FPs are discernible with color-coded attraction basins in the 
flattened torus 0, 1 0, 1[ ) [ )× . The coordinates of the stable FPs are associated with the locked 
phase lags of the corresponding rhythms. We differentiate between rhythms of pacemaker and 
wave type, which we identify by their phase lags. A pacemaker rhythm is defined to show one 
phase lag equal zero, and one phase lag close to 1/2. The map in figure 4(a) has three corre-

sponding FPs with the coordinates in the following ordered pairs: a FP at , 012
1
2 13( )∆ ≈ ∆ =  

shown in red, a FP at 0, 1
2

( ) (green), and a FP at ,1
2

1
2

( ) (blue). Note that, in the latter, 023∆ = . 
The other two FPs correspond to clockwise and counter-clockwise wave rhythms defined to 

show an ordered succession of equidistant phases. These are FPs at ,2
3

1
3

( ) (black) and ,1
3

2
3

( ) 
(pink), respectively. The attraction basins of the FPs are separated by incoming sets (stable 
separatrices) of six saddle FPs not shown in the figure. Examples of saddles in return maps are 
shown in figures 9 and 10.

Figure 3. A 2D torus formed by the phase lags ( )( ) ( )∆ ∆,k k
12 13 , mod 1. Different colors 

denote attractor basins of several fixed points of the Poincaré return map on the 
[ ) [ )×0, 1 0, 1 -torus (flattened in figure  4) that correspond to distinct phase locked 
rhythms generated by the 3-cell network at g  =  0.002.
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2.4. Mapping phase basins

Return maps (section 2.3) allow us to partition the phase torus into attraction basins of the 
coexisting stable FPs. Numerically, we compute a basin as a finite set of initial conditions con-
verging to a particular FP. The boundaries separating two neighboring basins are approximated 
by delineating adjacent initial conditions on the torus that result in two different rhythms.

To numerically determine these basins, we first create a grid of initial conditions densely 
covering the torus. We then attribute each point on the grid to a stable rhythm that establishes 
in the circuit after a transient. This method is illustrated in figure 4(b) showing the torus par-
titioned in the five color-coded attraction basins. For example, all initial states lying within 
the blue region converged to the pacemaker rhythm corresponding to the FP, ,1

2
1
2

( ), which is 
located in the middle of the torus.

Figure 4. Polyrhythmicity in the torus representation of phase lags. (a) At g  =  0.002, 
the return map, derived with the method of section 2.3, reveals the underlying flow of 
phases converging to five stable FPs (circles). (b) By color-coding initial conditions 
according to the final rhythm, the basins are visualized. (c) At g  =  0.08, convergence in 
the return map is fast and no phase flow is discernible. (d) The structure of color-coded 
attraction basins reveals rigid boundaries. Parameters: I  =  0.41, ε = 0.15.
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When coupling is weak, the basin approach does not add information to the knowledge 
deducted from return maps. For example, figures  4(a) and (b) disclose the basins equally 
well. This is no longer the case for stronger coupling, where the approach based on attrac-
tion basins becomes very handy. For example at g  =  0.08, the phase-basin representation 
shown in  figure 4(d) offers more insight into the circuit dynamics than the return map shown in 
 figure 4(c). Unlike maps for weak coupling, stronger coupling results in the faster convergence 
of V-traces and phase trajectories to corresponding stable FPs over the course of a few itera-
tions. Therefore, the return-map method gives a good projection of circuit dynamics only when 
a slow–fast decomposition is possible. Herein, the strength of phase coupling governs the slow 
time scale, which however, is not small anymore in the circuit whose dynamics are depicted in 
figures 4(c) and (d). A good indication of this limitation is the fractal break-up of basin bounda-
ries apparent in figure 4(d), and which is not observed if time scales are well separated.

2.5. Finite stochastic perturbations

Robustness of circuit rhythms to perturbations is probed by adding white noise to each 
V-equation of the circuit in the following way:

V V V I x g G V V t˙ , ,i i i i
i j

i j i
3 ( ) ( )∑ σξ= − + − − +

≠
 (4)

Figure 5. Example of 2D phase diffusion in the stochastic circuit. (a) An excerpt 
of the example traces Vj(t) shows erratic transitions between wave and pacemaker 
rhythms; color-coded bars indicate synaptic activation in the nodes. (b) Evolution of the 
corresponding phase lags (taken on modulo one and unwrapped by equation (5)) in a 
torus (left), and a phase plane (right) depicting a phase diffusion. Parameters: σ = 0.02, 
I  =  0.41, g  =  0.06, ε = 0.2.
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where t t t ti j ij⟨ ( ) ( )⟩ ( )ξ ξ δ δ= −′ ′ , i, j  =  1, 2, 3, and σ being noise intensity. Unlike the deter-
ministic case, the stochastic dynamics show sudden transitions among multiple coexistent 
rhythms, which are stably generated by the circuit otherwise. Such switching is intensified at 
greater noise intensity σ, but foremostly depends on properties of the polyrhythm at given cir-
cuit parameters. Figure 5(a) illustrates the evolution of a stochastic trajectory of the circuit that 

begins in the vicinity of ,1
2

1
2( )∆ = . The circuit mainly switches among the three coexistent 

pacemaker states, and sporadically transitions throughout the wave rhythms. This wander-
ing of the phase lags is shown in the return map (figure 5(b)). The phase lags, taken modulo 
one, form clusters in the vicinity of pacemaker rhythms. The unwrapped phase lags, defined 
without modulo-one and shown in figure 5(b), allow us to characterize the two-dimensional 
random walk.

To evaluate the unwrapped phase lags, we use a more general definition of phase. As 
before, we employ return-time sequences t j

k( ) for the oscillators (section 2.3). Then, define 
the unwrapped phase at each return time as follows t kj j

k( )( )ϕ = . Next, phase differences, tj( )ϕ  

are defined in between two successive return times using linear interpolation < < +t t tj
k

j
k 1( )( ) ( )  

[47]:

t
k t t k t t

t t

1
.j

j
k

j
k

j
k

j
k

1

1
( )

( )( ) ( )( ) ( )

( ) ( )ϕ =
+ − + −

−

+

+ (5)

This phase differs from the previous definition (equation (2)) in two principal aspects: (i) the 
newly defined phase lets us monitor continuous unwrapped phase differences j j1 1ϕ ϕ∆ = − , 
which cannot be recovered from the representation with modulo one. (ii) Through equation (2) 
we have phase lags normalized by the period of the reference node 1, whereas in equation (5), 
we normalize the phase of each oscillator with its individual period. By comparing two panels 
in figure 5 one can see that as long as the individual periods do not differ substantially, both 
definitions agree well on the torus.

2.5.1. Diffusion coefficient. The unwrapped phase lags perform a random walk. After many 
oscillations, the variance of each phase lag scales linearly in time: D nj

n
j1

2⟨( ) ⟩( )∆ = , wherein 
the proportionality constant Dj is the diffusion coefficient. We compute the joint diffusion 
constant as a sum, D D D2 3= + , because correlations between phase lags vanish in the sym-
metric circuit. The average is taken over representations of noise. To estimate Dj, we first 
compute a long phase trajectory n( )∆ . We divide the trajectory in segments of 50 oscillations 
and compute the two variances j

n
1

2⟨( ) ⟩( )∆ . Each diffusion coefficient is determined by a linear 
fit with respect to n, and then the two estimates are summed to obtain D.

Alternatively to perturbing V-variables, it is possible to add noise to the x-variables. While 
the diffusion motion at fixed values of σ differs, the qualitative results of polyrhythmic robust-
ness are comparable.

2.6. Standard phase reduction

A perturbation approach lets us derive phase equations  for two phase-difference variables 
defined on the periodic orbit of the individual nodes [48]. These phase variables can be 
approximated by those introduced in section 2.3. The computation requires the uncoupled 
periodic orbits and their phase resetting curves, which we find with AUTO (section 2.7).
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We map the uncoupled (g  =  0) periodic orbit y(t)  =  (V(t), x(t)) of period T to a phase varia-
ble y 0, 1( ) [ )ϕ ∈ . The phase is required to increase constantly: T˙ 1/ϕ ω= = . The last assertion 
fixes the definition of ϕ up to a constant phase shift. To quantify how coupling influences this 
phase, we compute the infinitesimal phase resetting curve Q( )ϕ  (PRC) for the V(t)-variable6. 
Then, the phase variable jϕ  for node j is given by (i, j  =  1, 2, 3)

gQ G V V˙ , .j j
i j

j j i i( ) ( ( ) ( ))∑ϕ ω ϕ ϕ ϕ= +
≠

 (6)

This already reduces the number of equations from six to three. Below we will use a short 
notation G ,j i( )ϕ ϕ  for G V V,j j i i( ( ) ( ))ϕ ϕ .

For g small compared with ω, the phase equations (equations (6)) hide a separation of time 
scales allowing for a further reduction to two variables. The separation becomes visible in 
figure 1 showing slow convergence to stable fixed points over the course of many oscillations. 
Therefore, we consider the phase differences, ;12 1 2 13 1 3(   )ϕ ϕ ϕ ϕ∆ = ∆ = − ∆ = − . Their 
dynamics are of the order of the coupling strength g, which is slow compared to ω:

∑ ∑
ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

∆ = ∆

= −
≠ ≠

g f

f Q G Q G

˙ ; , where

, , .

j j

j
i

i j
i j

j i

1 1 1

1 1
1

1

( )
( ) ( ) ( ) ( ) (7)

Introducing i i1 1ϕ ϕ= −∆  for i  =  2, 3, and integrating equation (7) over the fast variable 1ϕ  
on [0,1), we obtain

( )

( ) ( ) ∫ ϕ ϕ

∆ = ∆

∆ = ∆

g f

f f

˙ , where

; d .

j j

j j

1 1

1
0

1

1

 (8)

This calculation gives us a direct access to the vector field f j1 ( )∆  determining all fixed points 
of the circuit and their stability in the weak coupling limit. Moreover, the result depends on 
neither the choice of 1ϕ  as the reference phase, nor which phase variable is used for averaging.

We note that one can extract both quantitative and qualitative stability features from the 
phase reduction approach.

2.7. Bifurcation analysis and continuation of periodic solutions

2.7.1. Stability of periodic orbits. The circuit dynamics (equation (1)) can also be analyzed 
with numeric parameter continuation if circuit rhythms are period orbits [49]. Essentially, one 
computes the stability multipliers corresponding to a Poincaré map of the orbit. Let us treat the 
circuit as a system of six ordinary differential equations y f y p˙ ;( )=  with a vector p of bifur-
cation parameters. An observable circuit rhythm is a stable T-periodic orbit, y(t  +  T  )  =  y(t), 
of this system. Formal linearizing the system on the orbit leads to the following variational 
equation

v A t v A t Df y t p˙ , where ; ,( ) ( ) ( ( ) )= = (9)

with a 6 6×  matrix A(t) of periodic coefficients. This equation  describes how infini-
tesimal deviations 0( )ξ  from the periodic orbit may grow or decay as time progresses: 

t t 0( ) ( ) ( )ξ ξ= Ψ ; here t( )Ψ  is the fundamental matrix [46]. Its eigenvalues, kλ  k 0, , 5( )= … , are 

6 A phase resetting curve determines the phase shift an oscillator experiences upon an infinitesimal pulse.
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called the characteristic multipliers. For each kλ , there is an eigenvector vk(t) with the property 
v T v 0k k k( ) ( )λ= . In other words, the multiplier kλ  quantifies the growth rate of a perturbation 
from the periodic orbit in the direction vk after a single evolution of the circuit rhythm.

Each orbit always has one multiplier, say 0λ , equal to  +1. It corresponds to perturbations 
along the orbit, which neither increase nor decrease on average over the period T. If all other 
multipliers fulfill the condition 1kλ| | < , then the periodic orbit is Lyapunov stable. The values 
of three multipliers, say 3λ , 4λ , and 5λ , are close to zero at the coupling strength considered 
here. They correspond to strongly stable directions towards the stable periodic orbits in the 
individual nodes. These directions are perpendicular to those determined by the vector tangent 
to the periodic orbit, and hence to those on which the phase lags are defined on the periodic 
orbit. The remaining two multipliers, 1λ  and 2λ , correspond to perturbations parallel to the 
phase lags. These multipliers govern the stability of circuit rhythms, and are therefore called 
control multipliers below.

We say that a bifurcation in the circuit occurs when one, or both, multipliers 1,2λ  cross a 
unit circle outward, i.e. λ| | = 1k , as circuit parameters are varied. This bifurcation gives rise to 
the stability loss of a circuit rhythm though a pitchfork or a flip (period doubling) bifurcation, 
or the disappearance of the stable rhythm through a generic saddle-node bifurcation. The case 
where a pair of complex conjugate multipliers 1,2λ  leaves a unit circle corresponds to a torus 
or a secondary Andronov–Hopf bifurcation. This bifurcation can give rise to the emergence 
of a stable invariant circle in the Poincaré return map. Such a stable circle is attributed to the 
onset of phase jiggling in the voltage traces [15, 38]. The jiggle frequency is determined by 
the angle θ of the multipliers, i.e. e1

iλ = θ± . Moreover, if θ is a simple multiple of π, the torus 
bifurcation unfolding becomes more complex because of the occurrence of strong resonances 

at θ π= , 2
3
π, and 

4
π [46].

2.7.2. Numerical computation. The bifurcation analysis of periodic orbits in the circuit was 
carried out with use of parameter continuation package AUTO-07p [50]. Specifically, we set 
up equations  (1) in AUTO to investigate the stability of the wave and pacemaker rhythms 
under the variation of parameters ε, I, and g.

In our simulations, AUTO was initially used to compute the stable periodic orbit (PO) and 
phase resetting curves (PRCs) for each individual oscillator. Before, an uncoupled oscillator 
(g  =  0) was numerically integrated until a transient relaxed onto the PO, and an individual 
oscillation was recorded. The data was used as an initial guess for AUTO to approximate the 
PO as precisely as possible. By simultaneously solving the adjoint equation, we also obtained 
the PRC describing perturbations of the V-variable.

Next, AUTO was employed to investigate POs in the full, coupled circuit, to examine their 
dependence on the control parameters I, g, and ε. We first found an initial guess for the circuit PO 
at parameter values I  =  0.51, 0.3ε = , and g  =  0.01. At these values, the two coexisting wave-
rhythm POs of the circuit are pre-dominantly stable and can be easily detected. We then contin-
ued either solution in the parameters I, ε, and g to examine its bifurcations, as well as to monitor 
quantitative variations in the multipliers of the circuit PO. This allowed us to detect bifurcations 
and changes in stability. Similarly, we also investigated properties of the three symmetric pace-
maker rhythms dominating the dynamics of the circuit at I  =  0.41. Below we analyze in detail the 
bifurcation boundaries demarcating the stability and existence regions of the circuit polyrhythm.

We performed all of our computations with Motiftoolbox, an in-house developed simula-
tion package that combines powerful computation software libraries such as compute unified 
device architecture, GNU Scientific Library, python-scipy, python-matplotlib, and AUTO-
07p. Motiftoolbox is freely available at https://github.com/jusjusjus/Motiftoolbox.
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3. Results

3.1. Qualitative stability of polyrhythms

3.1.1. Phase analysis of polyrhythmicity. The three-node circuit (equation (1)) exhibits up to 
five stable rhythms, for example at the parameter values I  =  0.41, g  =  0.08, and 0.15ε = , 
as shown in figure 4. Two rhythms are of the wave type and three are of the pacemaker type. 
While these numbers are formally due to permutation symmetries of the circuit [51, 52], the 
question of whether the given rhythm exists and is stable or unstable solely depends on the 
parameters of the circuit [38].

Return-map analysis. We investigated the stability of the rhythms for a broad range of cir-
cuits by systematically varying the three parameters I, g, and ε. For every point in a grid of 
this parameter space, we identified all stable rhythms by analyzing the phase dynamics of the 
circuit, as shown in figure 4. We examined the following parameter ranges of 0.1, 0.3[ ]ε∈ , 
g 0.001, 0.1[ ]∈ , and I 0.4, 0.6[ ]∈  to span dynamical scenarios of slow–fast versus normal time 
scales, weakly versus strongly coupled circuits, and release versus escape mechanisms of 
node dynamics, respectively.

We found regions in the three-dimensional parameter space where either wave, pacemaker, 
or both rhythms are stable. This is illustrated in figure  6, where we show four parameter 
sweeps in g and I, each one with a different value of ε.

As evident in the figure, we find that the Pacemaker rhythms are stable in a vicinity of the 
release and escape case, for which I 0.4≈ , and I 0.6≈ , respectively. The region of instability, 
enclosed by solid black lines, did not seem to depend on ε.

On the contrary, stability regions of wave rhythms depend on ε. At values of 0.1ε< , at 
which time scales are well-separated, the wave rhythms are stable in the whole parameter 
space. At ε larger than 0.11, regions in parameter space form in which wave patterns are 
unstable. The dependence is visible in figure 6(c) at 0.13ε = , where a region of wave instabil-
ity becomes visible at g  >  0.08 and I 0.45≈ . The region grows with ε and then merges with 
another region emerging from the release border at I  =  0.4.

We analytically determined the hard-lock transition of inhibitory coupling (dashed–dotted 
(pink) lines in figure 6), beyond which one, active oscillator is able to lock down another 
oscillator at a stable inactive state. Because active phases in wave rhythms tend to overlap in 
time, the mechanism could influence the stability of these rhythms. Indeed, we found at large 
values of ε, that the boundary of wave stability correlates well with the hard-lock transition of 
coupling strength, for example at 0.17ε =  shown in figure 6(a). At smaller values of ε we did 
not find such good correspondence.

Standard phase reduction. Return-map analysis is impractical at weak coupling because 
convergence of transients to stable rhythms become very long. To analyze the stability of 
polyrhythms in this weak-coupling case, we used the methods of standard phase reduction 
(section 2.6).

We computed phase resetting curves (PRC) for a dense grid of parameters I 0.4, 0.6[ ]∈  and 
0.1, 0.3[ ]ε∈ . From these PRCs, we constructed the flow for the phase differences on a torus 

(equation (8)). We identify all equilibria of this flow. Applying the numerical differentiation 
tools, we can also assess the Lyapunov characteristic exponents of the equilibria. Our findings 
are documented in figure 7(a) representing the bifurcation digram in the ( I,ε )-parameter plane 
of the weakly coupled circuit.
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We find that pacemaker rhythms show a region of stability for values of I close to release 
and escape, while enclosing a region where only wave rhythms are stable. This is in line with 
our results from the return map analysis (see figure 6). The boundaries of the pacemaker region 
weakly depend on ε, such that the region shrinks as ε increases. We note that wave rhythms 
always coexist for the range of parameter values in ε and I considered in  figure 6. Nevertheless, 
at larger values of 0.23⩾ε , a region emerges in which the wave rhythms becomes unstable, 
and pacemaker rhythms are the only stable attractors. Compared to moderate values of cou-
pling, the regions found here are very thinly around the release and escape case. Our findings 
align with the results reported earlier in [53].

The phase-reduced circuit dynamics (summarized in figure 7) are primarily determined by 
the coupling function G V V,i j( ) and the phase resetting curve (PRC) Q( )ϕ  given by equation (6). 
As G does not depend on the parameters, differences in PRCs are responsible for the variations 
in circuit dynamics shown in figure 7. We computed PRCs for a series of parameters I and ε to 
understand how the different patterns of polyrhythmicity relate to these fundamental functions.

Figure 6. Qualitative stability of circuit polyrhythms in three parameters. For a grid 
of I, g and ε, we determine the stability of wave and pacemaker rhythms using the 
phase-basin method (section 2.4 and figures  4(b) and (d)). Each plot (a)–(d) shows 
a bi-parametric sweep in I and g at fixed ε as indicated. The regions of stability for 
wave (light blue), and pacemaker rhythms (navy) can be distinct, or show an overlap 
(dark blue), at which both rhythms are stable. Pure pacemaker regions at low I  <  0.5 
and large ε> 0.15 correlate with the soft-to-hard lock transition (dashed dotted line). 
Region borders indicate bifurcations where one rhythm becomes unstable. Bifurcation 
lines of a pitchfork and a torus bifurcation (Bif.) were determined with AUTO. Panels 
(b)–(d) share the ranges of the parameters I and g in panel (a).
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Six representative PRCs are shown in figure 8 for the escape case in panels (a) and (b); for 
the centered nullclines in panels (c) and (d); and for the release case in panels (e) and (f), at 
two different values of the time-scale parameter 0.1ε =  and 0.25. Each curve was character-
ized by a negative and a positive inflection, or bump. These inflections appeared in each of 
the phase-parameterized stagnation regions at the lower and upper fold of the V-nullcline. The 
upper stagnation region appeared first in the PRC. The associated negative inflection indicates 
that a perturbation with positive sign causes a phase delay, thus prolonging the active state. 
The opposite is true for the latter, positive inflection that was located at the lower stagnation 
region. Note also that the PRC amplitudes are arbitrary because the phase theory is taken to a 
linear order only. Parameter I affects PRCs in two ways: increasing I shifts the first inflection 
to later phases. It also rebalances the inflection amplitudes towards the first one. The time-
scale parameter ε, on the other hand, affects the width of the inflections.

3.1.2. Bifurcation analysis of circuit rhythms. We investigated the dynamical scenarios 
through which circuit rhythms lose or gain stability at the region borders shown in figure 6. 

Figure 7. Polyrhythms stability in the weak-coupling limit. For a grid of I and ε, 
we determine the stability of wave and pacemaker rhythms using the standard phase 
reduction (section 2.6). (a) A bi-parametric sweep in I and ε for infinitesimal g. The 
regions of stability for wave (light blue), and pacemaker rhythms (navy) can be distinct, 
or show an overlap (dark blue), at which both rhythms are stable. Region borders 
indicate bifurcations where one rhythm becomes unstable. A torus bifurcation (Bif.) 
was determined. (b) The imaginary part of the wave rhythm’s Lyapunov exponent is 
color-coded. The exponent is imaginary at the border of wave instability indicating a 
torus bifurcation (green dashed line).
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Such bifurcations for the wave and pacemaker rhythms, respectively, were visible in return 
maps for small enough values of coupling strength, g. It was also possible to characterize 
some of the bifurcations with AUTO.

Pacemaker rhythms. Our analysis of return maps revealed that every pacemaker rhythm 
first loses, and then gains stability back through a pitchfork bifurcation as the parameter I 
is increased from 0.4 through 0.6. At the pitchfork bifurcation a stable fixed point (corre-
sponding to either pacemaker) becomes unstable after it merges with two nearby saddle 
fixed points to become a saddle itself, that next becomes stable again through a reverse 
bifurcation. Such a bifurcation sequence was clearly visible in the maps for small g, as 
exemplified in figure 9.

Figure 8. Phase resetting curves of activity variable. The infinitesimal phase resetting 
curve is tabulated for values of I and ε, wherein the dashed line indicates the zero value. 
Values for I correspond to ((a), (b)) escape- (I  =  0.6), ((c), (d)) normal- (I  =  0.5), and 
((e), (f)) release- (I  =  0.4) cases, which are shown for separate and similar time scales, 
at ε = 0.1 and ε = 0.25, respectively. Note that amplitudes of infinitesimal PRCs are 
unit-free because perturbations are linearized in g (which does not affecting the shape 
of the linearized curves.)
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We used AUTO to trace the bifurcation in two parameters with high accuracy. For this, we 
initialized one of the pacemaker rhythms as a periodic orbit at I  =  0.41. The results do not 
depend on the choice of rhythm because symmetry ensures that all pacemaker rhythms have 
the same stability properties. We found the numerically precise parameters of the bifurcations 
by increasing I at fixed ε and g when the control multiplier of the orbit becomes to equal  +1. 
We then continued the bifurcation in I and g through the entire parameter range (black lines 
in figure 6). The procedure was repeated for each ε. We found that the bifurcation curves pre-
cisely correspond to the region borders found in return maps.

Wave rhythms. We found the bifurcation of wave rhythms to be more complex. Along the 
border of instability (blue and dark-blue region in figure 6(a)), the bifurcation changed its 
type from torus bifurcation at small g, to saddle-node bifurcation involving three saddles at 
larger g.

At small g, the bifurcation type was discernible in return maps as documented in figure 10. 
Decreasing I at low values of g, we found a torus bifurcation leading to an invariant cycle 
(figure 10(a)). The circle grew in size with further decreases of I until it became a hetero-
clinic orbit connecting three saddle fixed points. The heteroclinic bifurcation completed the 
sequence: once the heteroclinic connection broke down, the pacemaker rhythms dominated 
the dynamics of the circuit. By performing AUTO simulations we could accurately detect 
the torus bifurcation in the diagram. As before, we initiated the circuit on either stable wave 
rhythm at I  =  0.4. The corresponding periodic orbit was then numerically continued by vary-
ing I at fixed ε and g until AUTO detected the torus bifurcation. Next, the torus bifurcation 
was parametrically continued in I and g, thus tracing down the bifurcation curve represented 
by dashed lines in the diagram shown in figure 6. The found segment of the corresponding 
bifurcation curve is located in proximity of the associated region border found through the 
return maps. We were not able to detect or continue the heteroclinic bifurcation.

Figure 9. Pitchfork bifurcation of a pacemaker rhythm. When I increases from (a) 0.43 
to (b) 0.46, the pacemaker rhythms undergo a pitchfork bifurcation, here shown for a 
part of the full torus (figure 4). Two saddles (black squares) collide with the fixed point 
corresponding to the blue pacemaker rhythm (circle in the center). Beyond I  =  0.46, 
only the two wave rhythms (circles in upper-left, and lower-right corners) are stable. 
Parameters: ε = 0.17, and g  =  0.01.
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Despite all efforts, we were also unable to continue the torus-bifurcation curve for values g 
greater than 0.05 when using AUTO. To find out the cause of its malfunction, we examine the 
behavior of the pair of complex-conjugate multipliers, e iθ± , corresponding to the torus bifurcation.  
Given that =θ±e 1i∥ ∥  at the bifurcation, we assessed the angle, θ= | |θ±arge i , as a function of 
g. In the uncoupled case, the angle is zero because all phase lags are constant. We found that 
for increasing g the angle grows monotonically until it reaches π, as illustrated in figure 11 
for 0.17ε = . We also detected the values of g at which the angle reaches strong resonances. 

Of special interest to us is the 2
3
π-strong resonance. In theory this resonance gives rise to the 

emergence of a resonant invariant circle (torus) containing a saddle-node orbit of period three 

[46]. It is known too that the bifurcation unfolding of the 2
3
π-resonance case involves a further 

bifurcation resulting in that three saddle fixed points collapse into the bifurcating one making 

Figure 10. Destabilization of the wave rhythms. At ε = 0.3, When we decrease I 
from 0.415 to 0.4 the wave rhythms located at ( / / )∆ = 2 3, 1 3  loses stability. At values 
I  >  0.415, the basin of attraction of the wave rhythm persistently shrinks. Around 
I  =  0.41, a torus bifurcation gives birth to a stable invariant cycle, through which 
the  wave rhythm also loses stability. The invariant cycle grows until it merges with 
three saddles (black diamonds) in a heteroclinic bifurcation around I  =  0.406. After the 
heteroclinic bifurcation, the former wave basin is divided among the pacemaker rhythms. 
Parameters: g  =  0.003.
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it a saddle with six separatrices. Studies of such codimension-two bifurcations are the state of 
the art that no simulation package can handle.

3.2. Quantitative stability of polyrhythms

We assess quantitative stability of the circuit rhythms by applying infinitesimal and finite 
stochastic perturbations. Infinitesimal perturbations do not induce switching from rhythm to 
rhythm; instead, they offer insight into the local stability of wave and pacemaker rhythms 
separately. Finite perturbations induce switching, and therefore inform about the stability of 
the polyrhythm, which we also call robustness.

3.2.1. Linear and local stability. The standard phase reduction method (section 2.6) approxi-
mates the phase dynamics as follows: ∆= ∆g f˙ ,( )  ( ,12 13( )∆ = ∆ ∆ ) The stability of an equilib-
rium state ∆∗ is determined by the eigenvalues 1,2λ  of the differential Df ( )∆∗ . It is exponentially 
stable if 01,2λ| | < . Coupling strength g scales the exponent values proportionally: increasing g 
enhances the stability of a stable rhythm, while pronouncing the instability of an unstable one.

We counterpose this assertion with the exact calculation of the leading characteristic expo-
nent µ using AUTO (section 2.7). For weak coupling, µ is equivalent to the leading eigenvalue 
λ evaluated through phase reduction.

For a grid of parameter values I, g and ε, we computed the leading exponent µ for the 
traveling wave and a pacemaker rhythm. Note that all permutation-symmetric rhythms have 
the same set of exponents [51, 52]. The corresponding bifurcation diagrams for 0.17ε =  are 
shown in figure 12 (see figure 6(a)). The exponents changed signs exactly at the pitchfork 
and torus bifurcations for the pacemaker and wave rhythms, respectively. For weak coupling 
strength g, the exponent µ shows a monotonous dependence on g, which breaks down in a 
vicinity of the bifurcations. Strengthening g for the wave rhythm revealed a parabola-shaped 
set of minimal values of µ in the bifurcation diagram. At these parameter values, the local 

Figure 11. Bifurcation scenario of the wave rhythm. The wave rhythm’s complex-
conjugate multipliers µ = θei  at the torus bifurcation change their critical angle θ along 
the bifurcation curve (inset). The angle θ, grows with increasing coupling strength g. 
It passes resonances /π 2 and /π2 3 after which θ approaches π. The angle decreases to 
zero when extrapolated to g  =  0 (dashed-line). Parameters: ε = 0.17, ( )I g,  as shown 
in figure 6(d).
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linear stability of wave rhythms reached its maximum. At low values of I, the wave rhythms 
become highly unstable.

3.2.2. Robustness of polyrhythmicity. We tested the robustness of polyrhythmic circuit 
dynamics under noisy perturbations. Robustness was quantified by the phase diffusion con-
stant for the phase-lag variables described in section 3.2.2. We found that the diffusion con-
stant varies by orders of magnitude across the tested parameter space of I, g, and ε. Therefore, 
we selected a value of noise intensity σ that allowed us to sample the wide range of parameters 
with comparable accuracy. At small σ, noise caused only few switching events within 20 000 
circuit-rhythm periods, and therefore no feasible estimation for D was possible. We therefore 
present our results for 0.01σ = , below. The value, 0.02σ = , yielded similar results.

Figure 12. Leading exponent of circuit rhythms. The largest, non-zero exponent 
determines the linear stability of the (a) pacemaker and (b) wave rhythms. The values, 
indicating stability (µ< 0) or instability (µ> 0) of the rhythms, are proportional 
to g at weak coupling, unless in the vicinity of bifurcations (black-solid, and green-
dashed lines). The wave rhythms are the most stable on a parabola-shaped set in the 
(g, I )-parameter plane, and highly unstable at low values of I.
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In the region where waves are the only stable rhythms, the phase diffusion constant showed 
a monotonous dependence on all parameters (see figure 13 between the solid black lines). 
Outside this region, the parameter dependence of D shows considerable complexity. In 
 figure 14, we supplement our findings with exemplary traces of the circuit dynamics.

Close to the escape case, the phase diffusion constant D(I ) at fixed g and ε shows a series 
of minima and maxima. A comparison with the deterministic bifurcation diagram (figure 6) 
revealed that the minima of D somewhat align with both, the soft-to-hard lock transition line 
and the wave-instability line at 0.13ε> . However, this is not the case at 0.1ε =  where the 
wave rhythm did not bifurcate, while D still showed a pronounced valley of stable dynamics 
(see figures 14(a) and (b)).

The diffusion constant D becomes increasingly large as I approaches the boundary 0.4 for 
all values of g and ε. This is related to the highly vulnerable dynamics of the individual oscil-
lators near the saddle-node bifurcation.

4. Discussion

Previous studies have demonstrated that mutually inhibitory three-node circuits of neuronal 
bursters synchronize in up to five coexistent stable rhythms [15, 38, 39]. Out of these five, 
three are pacemaker rhythms, and two are the clockwise and counterclockwise wave rhythms. 
Disturbances with external current pulses or noise can cause switching among the rhythms. 
To better understand mechanisms of stability and robustness of polyrhythmicity, we have 
explored in this paper circuit dynamics constituted by generic relaxation-like oscillations. We 

Figure 13. Phase diffusion constant D of stochastic circuit dynamics. Random pertur-
bations induce rhythm switching in the circuit, resulting in a finite phase diffusion constant 
D. Where the circuit demonstrates only wave rhythms (between black lines), D depends 
weakly on I, g, and ε. Elsewhere, the dependence is complex and cannot be explained by 
the local bifurcation structures in the coexistence region of all five polyrhythms. σ = 0.01. 
(a) ε = 0.17. (b) ε = 0.1. (c) ε = 0.13 and (d) ε = 0.15.
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set out to explore a wide parameter range to catalogue and describe the circuit dynamics in 
its entirety.

In particular, we investigated the circuit dynamics (equation (1)) depending on three prin-
ciple parameters: the time-scale separation ε determines the speed of the recovery variable 
x with respect to the activity variable V in each node; parameter I shifts the position of the 
V-nullcline and thus controls the release and escape mechanism (see figures 2(b) and (c)); and 
the inhibitory coupling strength g determines how strong the node dynamics are tied to each 
other in the circuit. Here, we also distinguished a hard-lock coupling regime where inhibition 
is strong enough to fix the inhibited node in the inactive state.

Figure 14. Stochastic circuit dynamics at different levels of robustness. The examples 
illustrate specific regions of interest in the complex rhythm robustness of stochastic circuit 
dynamics. Colors (gray scales) in panels (a) and (b) are coded according to figure 13. 
(a) ε = 0.1. (b) ε = 0.17. (c) ε = = =g I0.1, 0.09, 0.44. (d) ε = = =g I0.1, 0.097, 0.48. 
(e) ε = = =g I0.17, 0.09, 0.48. (f) ε = = =g I0.17, 0.09, 0.42.
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We used in our circuit a Fitzhugh–Nagumo model with an x-nullcline, x V( )∞ , that shows a 
sigmoidal shape and thereby deviates from the standard linear function. This choice is relevant 
especially for biological applications: it closely resembles corresponding Boltzmann and Hill 
functions that appear in Hodgkin–Huxley-type neuronal dynamics and enzyme kinetics, for 
example. Moreover, our choice allowed us to study transitions in the circuit dynamics related 
to the release and escape mechanisms, which are fundamental mechanisms of rhythmogenesis.

4.1. Qualitative stability of polyrhythms

Circuit dynamics were particularly sensitive to the V-nullcline shift I when set close to the 
release or escape case (figures 2(b) and (c)). In both cases, the dynamics of individual oscil-
lators are close to a saddle-node (SN) bifurcation emerging around the lower or upper fold of 
the V-nullcline, respectively. Such SN ghosts are known to substantially reduce the individual 
oscillation frequencies. Our results show that the two mechanisms qualitatively affect the 
circuit dynamics through interactions with inhibitory coupling, as described further below.

Let us first discuss the generic case of intermediate I-values. Here, individual oscillators 
are not close to any bifurcations, and we observed wave rhythms as the only stable circuit 
dynamics (see figure 6). The inhibition exerted by an individual oscillator is not strong enough 
to overcome mutual phase repulsion of the other two oscillators. Conversely, the pacemaker 
rhythms were unstable in this region.

4.1.1. Release case. At low values of I, corresponding to the release case, inhibitory cou-
pling has a drastic effect on the dynamics of the inhibited nodes, specifically in the region 
of stagnation at the lower fold. Weak inhibition brings the dynamics of individual oscillators 
closer to the SN bifurcation at the lower fold; inhibition where the coupling parameter is larger 
than gcrit induces a transient SN bifurcation, leading to a stable equilibrium state [39]. With 
such strong inhibition, one oscillator locks down the other oscillators in the inactive state for 
the time it is active. As a result, the distribution of phases along individual orbits is highly 
non-uniform, and condensed around the stagnation region: each oscillator is either in a short 
active state, or it stagnates near the SN equilibrium. Naturally, two of the three oscillators 
must collapse in one of these two states, and thus synchronize. According to this description 
of two quasi-discrete states, the three-state wave rhythms are very unstable. Evidence for this 
heuristic description is the close proximity of the border of wave stability (border of blue to 
navy region in figure 6(a)) and the hard-lock transition line (magenta dashed–dotted line), that 
was visible at 0.17ε = . For smaller values of ε however, i.e. at large time-scale separation, 
we did not observe this mechanism (see figure 6(b) where 0.1ε = ). At these values, the slow 
dynamics of the recovery variable spreads active and inactive states along the branches of the 
slow manifold. Therefore, the heuristic description is not valid in this case.

4.1.2. Escape case. When increasing I towards the escape case, we again found a region of 
parameter space wherein pacemaker rhythms are stable. As shown in figure 6, the effect did not 
depend on ε and was most pronounced at small coupling strengths, which we also confirmed 
in the weak-coupling limit (figure 7(a)). The SN ghost, here located at the upper fold (figure 
2(c)), plays a key role in the emergence of pacemaker rhythms. Analogous to the release case, 
the upper fold forms a stagnation region that leads to a highly non-uniform distribution of 
phases. Consider oscillators 1 and 2, that are in active states. The states approach each other 
as they slow down in the vicinity of the stagnation region. When the third oscillator becomes 
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active, its inhibition breaks stagnation by widening the gap between V- and x-nullcline. Thus, 
oscillators 1 and 2 can simultaneously ‘escape’ from the ghost and synchronize in a pace-
maker rhythm. With only this mechanism, the pacemaker region should extend to higher cou-
pling strengths, which is not the case (see figure 6). The mutual interaction of the oscillators 
1 and 2, in the example, prevents their synchronization for strong coupling: if they strongly 
inhibit each other in the stagnation region, the oscillator 1 slightly lagging behind will repress 
oscillator 2 and push it through the stagnation region into the inactive state. In effect, oscil-
lator 2 will cease to inhibit oscillator 1 which, thus, lingers on in the stagnation region. This 
explains our observation that the pacemaker rhythm was unstable.

The results for the release case are in line with those of [15]. In their model of neuronal 
 bursting, which closely resembles the neuronal electrophysiology, a shift of a [K+ ]- conductance 
parameter induces the same series of bifurcations of the wave rhythms as those shown in 
 figure 10. A dynamical analysis revealed that the shift widens the gap between the slow and 
fast nullclines at the lower fold [39], thus completing the analogy of the two observations. On 
the contrary, the escape mechanism is not observed due to inhibitory interactions of spikes 
[24]. In these parameter regimes, the burster models show different circuit dynamics com-
pared with our relaxation-like oscillators.

4.2. Quantitative stability of polyrhythms

Functional circuits often operate in environments where perturbations and noise interrupt their 
dynamics. In polyrhythmic circuits, this can lead to switching between coexistent rhythms and 
the switching process strongly depends on the circuit parameters. To analyze how robustly the 
circuit sustains a rhythm in such an environment, we randomly perturbed the circuit dynamics 
and monitored how individual phases diffused apart in consecutive random switching events. 
We found that the phase diffusion constant, indicating robustness of the polyrhythm, strongly 
depended on circuit parameters. However, we were unable to predict robustness by the bifur-
cation structure in the circuit or by linear-stability measures of individual circuit rhythms. One 
may still speculate why certain circuit configurations are more robust than others based on 
these information, for which we give two examples below.

In the wave-rhythm regions in figure 13, the dependence of D on parameters I, g, and ε 
is the most homogeneous. Strengthening inhibition, by increasing g, generally increases the 
local robustness of polyrhythms against noise as explainable in the linear stability theory (sec-
tion 3.2.1). However, we find a vastly complex behavior in the region close to the release case 
(figures 14(a) and (b)). At small ε, a strip of stable wave rhythmicity is observed (figure 14(c)). 
By shifting I to larger values, the robustness of the circuit becomes less pronounced. In this 
region, linear theory predicts pacemaker rhythms to be more stable (figure 12(a)). We specu-
late that increased stability of pacemaker rhythms facilitate switching, because they can better 
serve as intermediates in the switching process (figure 14(d)).

Generally, robust pacemaker rhythms can be achieved at larger values of ε, where the wave 
rhythms are less stable. At I  =  0.48, g  =  0.09, and 0.17ε = , for example, all five rhythms 
coexist, but the wave rhythm is close to its stability boundary (see figure 6(a)). Here, pace-
maker rhythms were commonly observed in randomly perturbed traces of circuit dynamics, 
as shown figure 14(e). One might expect to enhance stability of pacemaker rhythms by further 
reducing I below the stability boundary of the wave rhythms. However, the circuit dynamics 
closer to the release case turns out to be highly vulnerable, especially below the hard-lock 
trans ition (dashed–dotted (pink) line). In this region, switching caused by noise among the 
three coexisting pacemaker rhythms becomes very frequent (see figure 14(f)). The increased 
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intensity of switching is analogous to the observations in three-cell motifs of the Hodgkin–
Huxley type bursters in [39], that demonstrated even weak noise can disrupt the pacemaker 
rhythms subjected to the hard-lock inhibition occurring in the release case.

The closer the circuit is set to the release case (lower I ), the higher the diffusion rate, D, 
becomes in the two-dimensional plane of phase differences.

4.3. Comparison of methods for stability analysis

We used several methods to carry out the qualitative and quantitative stability analysis of the 
circuit polyrhythms. The qualitative stability was assessed by standard phase reduction, phase 
mappings, phase-basin analysis, and direct bifurcation continuation. The quantitative stability 
was assessed by local methods of stability analysis derived from standard phase reduction, 
and the Lyapunov exponents of continued periodic orbits. It was also counterposed to random 
perturbation analysis in its effect on phase diffusion.

4.3.1. Qualitative methods. Geometric and symmetry arguments in an all-to-all coupled cir-
cuit of oscillators grants the existence of periodic orbits [51, 52, 54, 55]. However, these argu-
ments cannot be applied to show whether the corresponding rhythms (orbits) are stable or not, 
which is the qualitative property we assessed. Methods of automatic bifurcation analysis can 
answer this question successfully as demonstrated in this study (see figure 6). The approach 
fails, however, if circuit rhythms bifurcate. In the example of the wave rhythm, a torus bifur-
cation leaves the associated periodic orbit unstable; disregarding the resulting low-amplitude 
jiggle, the wave rhythm is still intact. In the example, the torus-bifurcation line (green dashed 
line in figure 6(a)) still coincides well with the border of wave instability, but only by the coin-
cidence that the torus is stable for a small range of parameters. In such cases, the methods of 
phase description, such as return maps, are able to qualify that the torus orbit is still close to 
the wave rhythm (see figure 10(c)).

The phase approach is applied with three different methods in this work to derive qualitative 
stability properties. In the weak coupling approximation, the standard phase reduction allows 
us to describe phase perturbations of individual periodic orbits by the phase resetting curve 
(PRC) to linear order. The method has many numerical advantages. The PRC is obtained by 
only regarding an individual oscillator; subsequently it can be used to explore the phase dynam-
ics of arbitrarily large networks. Moreover, a high precision can be reached because the method 
does not require forward integration of the full circuit dynamics. One can therefore compute 
fixed points, as well as their eigenvalues of the phase flow, as demonstrated in figure 7.

As coupling is strengthened, the standard phase reduction fails to produce correct results 
because the individual periodic orbits become increasingly distorted by the inhibitory cou-
pling. However, in principle, the phase dynamics remain slow compared to that for the ampl-
itudes. Therefore, one can still compute the return maps from first return times of individual 
oscillations to reconstruct the phase flow. The distance between consecutive phase lags in the 
mapping will increase with stronger coupling because the phase dynamics become fast com-
pared to the oscillation period. Eventually, phase trajectories are not discernible anymore and 
the phase-mappings method will fail.

Nevertheless, when phases jump erratically, it is still possible to re-construct some practi-
cal aspects of the phase dynamics, for example, the basins of attraction and their boundaries. 
In the brute-force scheme, the initial conditions can only form a topological equivalent of 
the individual periodic orbit. Therefore, the geometry of the basins is strongly distorted. For 
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example, the basins of the pacemaker rhythms may not appear equally sized, even though they 
are in this symmetric circuit (see figure 4(d)).

Especially for intermediate and strong coupling, our results may not generalize well to 
higher-dimensional oscillators where additional degrees of freedom may activate more com-
plex dynamical modes, as is visible in the rough basin boundaries presented in figure 4(d).

4.3.2. Quantitative methods. Harder than the stability or instability of a circuit rhythm is the 
evaluation how stable a rhythm is, which is the quantitative property we assessed. We used 
two approaches, in this work, to quantify stability depending on the assumed disturbances to 
the circuit dynamics: approaches of linear stability measure the effect of infinitesimal pertur-
bations, whereas approaches with finite perturbations such as noise investigate the full poly-
rhythmic stability, or robustness.

Infinitesimal perturbations cannot excite the circuit to switch from a stable rhythm to 
another. Therefore, the wave and pacemaker rhythms have to be regarded separately. From 
such an element-wise description of polyrhythmicity, it is hard to predict the outcome of 
the switching behavior through Kramer’s rates, for example. This would only be possible if 
one were able to quantify a height of an assumed potential barrier separating stable circuit 
rhythms. Phase diffusion coefficients of noise-perturbed circuit dynamics, on the other hand, 
quantify random transitions between stable circuit rhythms. This measure is typically domi-
nated by the most stable circuit rhythms, as highlighted in the examples in figure 14. The least 
stable rhythms take the role of unstable saddles at finite noise strengths, but may also serve as 
facilitating intermediates.

5. Conclusions

Small circuits of inhibitory relaxation oscillators appear in many natural systems in order 
to flexibly generate rhythmic patterns of activity phases. In this article, we applied several 
computational methods to gain global understanding of the dynamical transitions in a cir-
cuit of three mutually inhibitory relaxation oscillators. We find that the two wave and three 
pacemaker rhythms, predicted to coexist in the circuit due to permutation symmetry, strongly 
depend on quantitative and qualitative features of the node dynamics and inhibitory coupling.

As a generic model of relaxation oscillations, we adopted a Fitzhugh–Nagumo-like system 
that exhibits two saddle-node bifurcations, beyond which oscillations stall. One bifurcation 
inactivates the oscillators, while the other stabilizes its active state. These dynamical regimes 
are non-generic for oscillators, but occur often in natural systems to facilitate flexible control 
of frequency and rhythmicity. Comparison of our results using the generic model and those of 
[15] and [24] highlight to what extent the generic model can approximate Hodgkin–Huxley 
type bursting models. While the release case is well represented [15], the two models differ in 
the escape case where spikes play an active role in rhythmogenesis [24].

In our investigations, we find that closeness to bifurcations of individual oscillators has a 
profound effect on the dynamics of the whole circuit: a generic inhibitory circuit produces 
the wave rhythms, but close to the inactivating bifurcation, we find that the wave rhythms 
can become unstable to give room for pacemaker rhythms. The same dynamical instability 
occurs in the case of strong inhibition where suppressed oscillators are locked down. We note 
that in the latter case, all active phases of mutually inhibitory neurons are necessarily non-
overlapping, which may become pivotal to the dynamics of circuits consisting of more nodes. 
In these, the inactive state could become increasingly crowded.
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The method of phase basins described in this article gives a natural extension to the return 
maps of [15], that allows for the treatment of strong coupling in polyrhythmic circuits. Tracking 
phase basins across coupling strengths allows us to identify bifurcations that can be utilized for 
the control of rhythms in the circuit. Such coupling control may be of particular experimental 
relevance in neuroscience, because inhibitory synaptic strengths are easily modifiable by chemi-
cal agents.

Quantitative stability of polyrhythmicity is particularly hard to explore because transitions 
can occur at any phase of a stable periodic orbit to another. We add noise to the dynamics to 
excite this potentially large number of switching paths. For weak noise, only the most prob-
able paths are excited, thus, revealing a skeleton of vulnerability in the full polyrhythmic 
dynamics. The adoption of phase diffusion to quantify such stability features has advantages 
over other possible methods, such as deviants of recurrences [39], or coarse-grained Markov 
chain descriptions [33]. The main advantage is the intrinsic invariance of the phase diffusion 
constant [56], that allows for a reliable estimation of complex features of the circuit dynamics. 
To understand the unfolding complexity of polyrhithymic switching, more refined techniques 
of stochastic analysis will be necessary.
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