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Variability of bursting patterns in a neuron model
in the presence of noise
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Abstract Spiking and bursting patterns of neurons are
characterized by a high degree of variability. A single
neuron can demonstrate endogenously various bursting
patterns, changing in response to external disturbances
due to synapses, or to intrinsic factors such as channel
noise. We argue that in a model of the leech heart
interneuron existing variations of bursting patterns are
significantly enhanced by a small noise. In the absence
of noise this model shows periodic bursting with fixed
numbers of interspikes for most parameter values. As
the parameter of activation kinetics of a slow potas-
sium current is shifted to more hyperpolarized values
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of the membrane potential, the model undergoes a
sequence of incremental spike adding transitions ac-
cumulating towards a periodic tonic spiking activity.
Within a narrow parameter window around every spike
adding transition, spike alteration of bursting is deter-
ministically chaotic due to homoclinic bifurcations of a
saddle periodic orbit. We have found that near these
transitions the interneuron model becomes extremely
sensitive to small random perturbations that cause a
wide expansion and overlapping of the chaotic win-
dows. The chaotic behavior is characterized by positive
values of the largest Lyapunov exponent, and of the
Shannon entropy of probability distribution of spike
numbers per burst. The windows of chaotic dynamics
resemble the Arnold tongues being plotted in the pa-
rameter plane, where the noise intensity serves as a
second control parameter. We determine the critical
noise intensities above which the interneuron model
generates only irregular bursting within the overlapped
windows.
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1 Introduction

Most networked neurons demonstrate oscillations of
the membrane potential either endogenously or due
to external perturbations. Bursting is a manifestation
of the slow–fast dynamics observed in neuroscience
(Izhikevich 2007; Steriade et al. 1990; Cymbalyuk et al.
2002). The functional role of bursting has been the
focus of various theoretical and experimental studies.
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Bursting on various time scales has been discovered in
pathological brain states (Steriade et al. 1993), while
Marder and Calabrese (1996) reveals its importance
for rhythmicity of central pattern generators controlling
motor behavior (Kopell 1988).

Deterministic description of endogenous oscillatory
activities, such as tonic spiking and bursting, in neu-
ronal dynamics is based on the examination of generic
properties of various mathematic models, in particular
realistic ones derived through the Hodgkin-Huxley for-
malism (Hodgkin and Huxley 1952). A typical neuronal
model falls into a special class of dynamical systems
with at least two distinct time scales, the so-called slow–
fast systems (Rinzel 1985; Rinzel and Ermentrout 1998;
Rinzel and Wang 1995; Jones and Kopell 1994; Arnold
et al. 1994; Bertram et al. 1995; Izhikevich 2000). Us-
ing the transparent geometric methods based on the
dissection of such a slow-fast system, one can detect
and follow the branches of equilibria and limit cycles in
the fast subsystem. Dynamics of a singularly perturbed
system are then determined by and centered around
the corresponding attracting segments of these slow
motion manifolds of its fast subsystem (Tikhonov 1948;
Pontryagin and Rodygin 1960; Fenichel 1979; Jones
and Kopell 1994). A neuron model possesses a pair
of such manifolds called quiescent and tonic spiking,
respectively.

Geometrical configurations for slow-fast neuron
models pioneered by Rinzel (Rinzel 1985; Rinzel and
Ermentrout 1998; Rinzel and Wang 1995), and fur-
ther enhanced in Bertram et al. (1995), Guckenheimer
(1996), Izhikevich (2000, 2007) give the classification
schemes for bursting based on planer bifurcations
which initiate or terminate fast trajectory transitions
between the slow-motion manifolds in the phase space
of the neuron model. They work exceptionally well in
the most low-order mathematical and realistic models
far from bifurcations of bursting. However, at activity
transitions, the bursting behavior can become drasti-
cally complex and even chaotic (Terman 1991, 1992;
Holden and Fan 1992; Wang 1993; Belykh et al. 2000;
Feudel et al. 2000; Deng and Hines 2002; Elson et al.
2002; Shilnikov and Cymbalyuk 2004; Cymbalyuk and
Shilnikov 2005; Channell et al. 2007a) due to reciprocal
interaction between the slow and fast dynamics, which
lead to the emergence of novel dynamical phenomena
and bifurcations that can only occur in the entire sys-
tem. Recently a novel method which identifies effective
low-dimensional local models to study the transition
between tonic and bursting regimes was developed in
Clewley et al. (2009). However, the current description
of transition routes between tonic spiking and bursting
activities is still incomplete. There have been a few such

bifurcation scenarios based on the nonlocal bifurcation
theory. The first generic mechanism leading to the
emergence of the square wave bursters (Rinzel 1985)
from tonic spiking through a homoclinic bifurcation
in a subsystem of the model was analyzed rigorously
in Terman (1991); chaotic dynamics at the transition
is its key signature. The breakthrough in this direc-
tion came in recently with the discovery of two novel
transitions occurring at the loss of stability of a tonic
spiking periodic orbit though the homoclinic saddle-
node bifurcation of periodic orbits. The first transition,
reversible and continuous, which occurs in the reduced
model of the leech heart interneuron (Shilnikov and
Cymbalyuk 2004, 2005) and in a modified Hindmarsh-
Rose model of square-wave burster (Shilnikov and
Kolomiets 2008), is based on the blue sky catastrophe
(Shilnikov et al. 1998, 2001). The feature of the sec-
ond transition mechanism is the bi-stability of the co-
existing tonic spiking and bursting in a neuron model
(Shilnikov and Cymbalyuk 2004; Shilnikov et al. 2005).
Another feature of this bifurcation is transient chaos
where the neuron generates an unpredictable number
of burst trains before it starts spiking tonically. The
most recent transition mechanics in this line is generic
for Fold-Fold and elliptic burster models of neurons: it
describes the onset of bursting through the breakdown
of a canard invariant torus at the fold of the tonic spik-
ing manifold of a model, so that transient modulations
of tonic spiking voltage traces are its evidently signature
(Kramer et al. 2008).

Studies of bursting and its transformations in neu-
ronal models require a non-local bifurcation analy-
sis, which is based on the Poincaré return mappings
(Shilnikov et al. 1998, 2001). Return mappings have
been actively used in computational neuroscience, see
Chay (1985), Holden and Fan (1992), Medvedev (2006),
Shilnikov and Rulkov (2003, 2004) and references
therein. A drawback of mappings constructed from
time series is in their sparseness, as they reflect only
dominating attractors of a system. In some cases, fea-
sible reductions to one or two dimensional mappings
can be achieved through slow–fast scale decomposition
of the phase variables (Medvedev 2005; Shilnikov and
Kolomiets 2008; Griffiths and Pernarowski 2006). A
novel practical method for constructing a complete
family of onto mappings for membrane potentials of
slow-fast neuronal models was proposed in Channell
et al. (2007a, b) following an idea suggested originally in
Shilnikov (1993). Using this approach we have studied
spike adding transitions in a leech heart interneuron
model and revealed that this phenomenon is associated
with homoclinic bifurcations of a saddle periodic orbit
(Channell et al. 2007a).
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In general, chaos in slow–fast systems is an atypi-
cal phenomenon as it takes place mainly near transi-
tions between tonic spiking and bursting (Terman 1991,
1992; Wang 1993; Belykh et al. 2000; Cymbalyuk and
Shilnikov 2005; Feudel et al. 2000; Deng and Hines
2002). Indeed, robust regular dynamics of slow–fast
neuron models contrast to that of real isolated bursting
neurons exhibiting time dependent variability of oscil-
latory patterns. However, pure deterministic modeling
is incomplete as noise is inevitably present in any dissi-
pative physical system. Several sources of randomness
were identified in neural systems (Manwani and Koch
1999), including ion channel noise (Chow and White
1996), and synaptic noise. Noise can significantly mod-
ify deterministic neuronal dynamics leading to more
regular regimes with negative Lyapunov exponent re-
flected in enhanced spike timing reliability (Mainen and
Sejnowski 1995; Goldobin and Pikovsky 2005). On the
other hand, channel or synaptic noise may result in
irregular dynamics with positive Lyapunov exponent
(Rowat and Elson 2004; Carelli et al. 2005; Goldobin
and Pikovsky 2006).

In this paper we study spike adding bifurcations of
bursting patterns in a simplified model of the leach
heart interneuron. When isolated pharmacologically
from a leech heartbeat central pattern generator, an
individual interneuron shows an autonomous burst-
ing behavior (Cymbalyuk et al. 2002). A detailed bio-
physical model (Hill et al. 2001) was simplified in
Cymbalyuk and Calabrese (2001) and successfully
used to study fundamental bifurcation mechanisms of
bursting regimes in Cymbalyuk and Calabrese (2001),
Shilnikov and Cymbalyuk (2005), Shilnikov et al.
(2005), Channell et al. (2007a). Although spike adding
transitions were observed and studied in the Chay and
Hindmarsh–Rose mathematical models before (Chay
1985; Fan and Holden 1995; Gu et al. 2002; Yang
et al. 2006), the mechanism of spike adding bifurcations
in the interneuron model under consideration is very
distinct. First, we review the deterministic mechanism
of this transition. Next, we consider the influence of
random synaptic current with the aim to show that
addition of noise is necessary to account for variability
observed in experimental studies of real neurons and
neural networks.

2 Deterministic dynamics

2.1 Interneuron model

A reduced model of the leach heart interneuron is
given by the following set of three nonlinear coupled

differential equations (Cymbalyuk and Calabrese 2001;
Shilnikov and Cymbalyuk 2005; Shilnikov et al. 2005;
Channell et al. 2007a):

C
dV
dt

= −INa − IK2 − IL + Iapp,

IL = ḡL (V − EL), IK2 = ḡK2 m2
K2(V − EK),

INa = ḡNa m3
Na hNa (V − ENa),

τNa
dhNa

dt
= h∞

Na(V) − h, mNa = m∞
Na(V),

τK2
dmK2

dt
= m∞

K2(V) − mK2. (1)

Here, C = 0.5 nF is the membrane capacitance; V is the
membrane potential in mV; INa is the sodium current
with slow inactivation hNa and fast activation mNa; IK2

is the slow persistent potassium current with activation
mK2; IL is the leak current and Iapp is an applied cur-
rent. The values of maximal conductances are set as
ḡK2 = 30 nS, ḡNa = 200 nS and gL = 8 nS. The reversal
potentials are ENa = 45 mV, EK = −70 mV and EL =
−46 mV. The time constants of gating variables are
τK2 = 0.25 s and τNa = 0.0405 s. The steady state values
of gating variables, h∞

Na(V), m∞
Na(V), m∞

K2(V), are given
by the following Boltzmann equations,

h∞
Na(V) = [1 + exp(0.5(V + 33.3))]−1

m∞
Na(V) = [1 + exp(−0.15(V + 30.5))]−1

m∞
K2(V) = [1 + exp (−0.083(V + 18 + Vshift

K2 ))]−1. (2)

The intrinsic bifurcation parameter Vshift
K2 of the model

is a deviation from V1/2 = 18 mV corresponding to the
half-activated potassium channel at m∞

K2 = 1/2. In the
model (1), decreasing Vshift

K2 elevates the slow nullcline
dmK2

dt = 0 in the V-direction, thereby delaying the acti-
vation of mK2. In this study, the range of the control
parameter Vshift

K2 is [−26; 1.8] mV; the upper boundary
of the interval corresponds to the hyperpolarized qui-
escent state of the neuron, whereas it fires tonically at
the lower Vshift

K2 values. In this study the applied current
is zero for the deterministic case and is a zero-mean
Gaussian noise for the stochastic case.

2.2 Spike adding cascade in bursting towards spiking

Bursting in the model (1) originates and evolves
through a spike adding cascade as the bifurcation pa-
rameter shifts the half-activation potential of the slow
potassium current towards more hyperpolarized values:
the number of spikes per burst grows incrementally
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with no bound until the interneuron model (1) starts to
fire spikes continuously. The initial stages of the spike
adding cascade are shown in Fig. 1. The spike adding
begins at Vshift

K2 � 8 mV after the loss of stability of
the stable hyperpolarized quiescent state of the neuron
leading to the emergence of a single spike bursting.
It continues until Vshift

K2 � −24.828 mV, beyond which
the tonic spiking phase of bursting becomes of infinite
length (Shilnikov et al. 2005; Channell et al. 2007a),
i.e. transforms into tonic spiking. Every spike addi-
tion occurs within extremely narrow parameter window
where the model shows a transient behavior resulting
in generation of a series of bursts with an unpredictably
changing number of spikes.

2.3 Onto Poincaré mapping near bursting manifold

Study of mechanisms of bursting and its transforma-
tions requires nonlocal bifurcation analysis, which is

V
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shift=−12 mV V

K2
shift=−23 mV

V
K2
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K2
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V
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Fig. 1 Incremental spike adding cascade progresses in the in-
terneuron model (1) as the parameter Vshift

K2 is shifted towards
more hyperpolarized potentials (a–h)

based on the derivation and further examination of
Poincaré return mappings. Here, we first discuss a
method of construction of one-dimensional Poincaré
mapping and then examine such a mapping to elucidate
the mechanism of spike adding bifurcations and the
origin of dynamical chaos in the model. The discussed
numerical technique of the mapping construction is
broadly applicable to most slow-fast neuronal models.
Observe that due to the disparity of the time scales
of the phase variables, the model (1) can be treated
within the framework of slow–fast systems. The ground
stage in the construction of the mapping is to single
out so-called slow motion manifolds, which correspond
to the tonic spiking and quiescent manifolds in the
computational neuroscience context. These manifolds,
labeled Mlc and Meq in Fig. 2, are comprised of the
periodic orbits and equilibria of Eq. (1), respectively.
Hence the fast subsystem is formed by the first two
equations from the slow-fast decomposition paradigm.
To locate the manifolds in the 3D phase space of the
model, we used an approach proposed in Channell et al.
(2007a, b). Its essence is the parameter continuation
technique applied to the entire set of Eq. (1) rather
than to its dissected fast subsystem. The advantage
of our approach is that it yields the sought manifolds
themselves in the phase space of the model rather than
approximations of the manifold in a singular limit. This
approach is especially valuable for neuronal models of
higher dimensions where slow–fast dissections could be
problematic because of multiple time scales for various
ionic currents involved in the dynamics.

Figure 2 shows the parametric slow motion mani-
folds, tonic spiking Mlc and quiescent Meq, and also il-
lustrates the procedure of building the one-dimensional
Poincaré mapping. To localize the tonic spiking man-
ifold a stable periodic orbit is first detected in the
phase space of the model: this small-amplitude orbit
at Vshift

K2 = −26 mV is the edge of the desired manifold
Mlc in Fig. 2. Next, a branch of the periodic orbits
is followed (using the software package CONTENT,
ftp://ftp.cwi.nl/pub/CONTENT) as Vshift

K2 is increased
from −26 through 1.8 mV. Approaching the latter
value, the stable manifold Mlc folds back, wraps around
the quiescent manifold Meq and touches its low hyper-
polarized fold. We stress that revealing such a topology
of the spiking manifold would be impossible with the
slow–fast dissection (Cymbalyuk and Shilnikov 2005).
Thus, by construction the aforementioned center mani-
fold Mlc is a parametrically sought two-dimensional sur-
face foliated by a large number of the spiking periodic
orbits of the model (1). A solution of Eq. (1) repeatedly
switching between Meq and Mlc represents the busting
activity. The hyperpolarized fold on Meq corresponds

ftp://ftp.cwi.nl/pub/CONTENT
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Fig. 2 (A) Slow motion manifolds and nullclines of the model
(1): the 2D spiking manifold Mlc is foliated by the periodic orbits
continued, from the left to the right, as the parameter Vshift

K2 is
increased from −26 through 1.8 mV. The space curves V∗

min and
〈V〉 are made of minimal and average coordinates of the periodic
orbits. Mlc glues to the quiescent manifold, Meq, comprised of
the equilibrium states of Eq. (1), at its lower fold where the
curve 〈V〉 terminates at. An equilibrium state of Eq. (1) resides
at the intersection point of Meq with the slow (yellow) nullcline

ṁK2 = 0 for given Vshift
K2 . The set {V0} contains the V-minimal

coordinated values of the periodic orbits Mlc. Thus selected
points are used to generate the outgoing trajectories that define
the Poincaré mapping taking V∗

min onto itself after one revolution
around Mlc. An initial point returning after a single, or several
turns around Mlc in itself, is a fixed (two balls UP2 and SP2) or a
periodic point (three balls on the coexisting bursting orbit shown
in grey) of the mapping, respectively

to the beginning of a burst. The number of complete
revolutions of the solution around Mlc before it reaches
the fold on the spiking manifold is the number of
spikes per burst. We use this winding number to classify
bursting regimes. Next, we construct numerically the
onto mapping taking a voltage interval onto itself. This
interval is comprised of the minimal values (denoted
by V0) of the membrane potentials found on the all
detected periodic orbits that constitute the manifold
Mlc. These minima form the space curve labeled V∗

min
in Fig. 2, and are used as the initial conditions for
the numerically integrated outgoing solutions of the
model (1). The integration of every such solution is
stopped when it reaches the successive minimal value
V1. The found pairs (V0, V1) constitute the graph of
the Poincaré mapping for selected values of the control
parameter, Vshift

K2 shown in Figs. 3 and 4.
Let us first focus on bursting solutions, such as the

one depicted in inset (d) of Fig. 1. An example of the
onto Poincaré mapping is shown in Fig. 3. Its five V-
minima per burst period comprise the period-5 orbit of

the mapping. A fixed point of the mapping refers to
the single minimum of a periodic orbit of the model,
which comes back to the same point after one cycle
around the spiking manifold Mlc. The fixed point shown
in red in Fig. 3(b) is unstable (repelling) because the
absolute value of the slope of the mapping graph at
the fixed point is greater than one. This unstable fixed
point sets a threshold (shown in red in Fig. 3) that
identifies the quiescent (below it) and the tonic spiking
(above it) phases of bursting. The bursting orbit must
overcome this threshold to gain an extra spike. We will
show that the homoclinic bifurcations of this threshold
orbit are the primary cause of complexity occurring at
spike adding transitions in the interneuron model under
consideration. Figure 4 shows Poincaré mappings for
several values of Vshift

K2 . At the beginning of the spike
adding cascade the fixed point in the Poincaré map-
ping is stable (SP1 in Fig. 4), corresponding to a tonic
spiking orbit. The stability of the orbit is determined by
whether the slope (multiplier of the fixed point) of map-
ping graph is less or greater than one in absolute value.
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Fig. 3 Five-spike bursting orbit in the model (1) (a) and in the
corresponding Poncaré model (b) at Vshift

K2 = −23 mV. Its V-
minima comprise the periodic bursting solution of the Poincaré
mapping. Shown in red in (a) is a saddle periodic orbit cor-

responding to the unstable fixed point, UP1 in (b) that sets a
threshold between the quiescent and the tonic spiking sections
of the mapping graph (correspondingly, left and right)

With the decrease of the control parameter the fixed
point becomes unstable: the model generates bursting
consisting of duplets of spikes. In the Poincaré mapping
this corresponds to a stable period-2 orbit. In contrast
to a typical period doubling cascade, the next transition
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V 1 
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Fig. 4 Vshift
K2 -parameter family of onto unimodal Poincaré map-

pings for the membrane potential V. A crossing point of the
graph of the mapping with the 45◦-line, is its fixed point cor-
responding to a round periodic orbit with a single V-minimum
in the phase space of the model. When the shape of the map-
ping graph (bold blue curve) changes from concave up (SP1)
to concave down (UP1), the fixed point at the inflection point
changes stability, undergoing a period doubling bifurcation when
its multiplier goes through −1. A tangency of the graph (bold
magenta) with the 45◦-line corresponds to the saddle-node bi-
furcation where two fixed points merge: stable SP2 and unstable
UP2; here its slope equals +1

leads to burst trains with three, not four spikes. Thus
the loss of stability of the initial tonic spiking orbit leads
to the onset of spike adding cascade, see Fig. 1.

Figure 5(a) shows a bifurcation diagram of the
Poincaré mapping. Note that each spike adding oc-
curs within a very narrow parameter window where
the model exhibits chaotic bursting. The dynamical
chaos observed in these narrow windows is due to
the homoclinic bifurcations of the unstable fixed point
(Channell et al. 2007a). Detection of primary homo-
clinic orbits of the unstable fixed point capitalizes on
a particular property of this unimodal mapping (Mira
1987; Sharkovsky et al. 1997). Namely, the primary
homoclinic orbit can be detected by following a finite
number of forward iterates, HO+, of the critical point
CP, of the mapping graph shown in Fig. 6. This critical
point makes the mapping non-invertible, because some
of the mapping points have two pre-images, i.e., one
pre-image on each monotonic segments of the mapping
graph. On restriction to the left from CP (decreasing
segment) the unstable fixed point UP1 is attracting
for backward iterates HO−. These backward iterates
converge exponentially fast to UP1 as time goes to
−∞. On other hand, UP1 is unstable and hence the
forward iterates, HO−, of the same initial point may
not converge to but jump onto UP1 right after a finite
number of steps. This number of steps defines the order
of a primary homoclinic orbit, HO− ∪ HO+ when it
passes right through the critical point CP. An occur-
rence of a primary (also known as tangent) homoclinic
orbit gives rise to the abundance of other homoclinics
(Gavrilov and Shilnikov 1972). This phenomenon is
known as a homoclinic explosion (Shilnikov et al. 1998,
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2001) and leads to deterministic chaotic dynamics in a
system. In order to quantify the degree of chaos in a
1D mapping vn+1 = f (vn), one evaluates the Lyapunov
exponent λ = limn→∞ log(|df n(vo)/dv|). We found λ �
0.23 in the first chaotic window, descends to � 0.1 by
the end of the spike adding cascade, respectively in the
insets (a) and (b) of Fig. 6.

Use of the onto mapping, along with the accompa-
nied interpretation of both local and global bifurcations
of its limit sets explains the whole spike adding se-
quence documented in the bifurcation diagram Fig. 5(a)
exceptionally well. One sees that spike adding tran-
sitions occur more frequently towards more negative
values of Vshift

K2 following a logarithmic scaling law
(Channell et al. 2007a) illustrated in Fig. 5(b). The cas-
cade accumulates at a critical parameter value Vc

K2 =
−24.828 mV, near which the model generates bursting
with arbitrarily large number of spikes; this parameter
values corresponds to the transition to tonic spiking in
the interneuron model (Channell et al. 2007a).

Indeed, decreasing Vshift
K2 elevates the slow nullcline

ṁK2 = 0 thereby bringing it closer to the spiking man-
ifold Mlc. This results in the mK2-component of the
bursting orbit slowing down to make extra turns around
the spiking manifold Mlc. For the mapping this means
that the depolarization elevates the quiescent section
(on the left from the threshold unstable fixed point) of
the mapping graph so that the iterate following the qui-
escent point of the bursting orbit is brought up higher
into the spiking section (on the right from the threshold
point). This increases the number of points comprising
the bursting orbit. Moreover, a further elevation of the
slow nullcline can make the spiking manifold Mlc non-

�Fig. 5 Bifurcation diagrams of the model, showing the coordi-
nates and the number of V-minima of bursting orbits plotted
versus the control parameter without noise (a and b) and with
noise (c). Panel (a) shows the evolution of bursting (black) and
threshold orbits (red) in the onto Poincaré mapping. The dashed
vertical lines indicate the parameter values for the first three
homoclinic bifurcations. H1 and H∞ indicate the homoclinic
bifurcations, respectively, initiating and terminating bursting in
the mappings depicted in Fig. 6. Spike adding cascade intensifies
as the control parameter becomes more negative towards the
tonic spiking activity emerging right after the upper fold in the
diagram. Panel (b) shows the bifurcation diagram obtained by
direct numerical simulations where the minima of the bursting
orbit of the interneuron model are plotted on the horizontal log-
arithmic scale log[(Vshift

K2 − Vc)10−3], where Vc = −24.828 is the
accumulation point of the spike adding cascade; it corresponds
to the terminating homoclinic bifurcation at H∞ in panel (a).
Panels (b) and (c) show the bifurcation diagram obtained by
direct simulations of the model without noise and with added
noise of the intensity D = 10−7 nA2/s

transitive for iterates throughout its spiking segment.
The underlying cause is a saddle-node bifurcation lead-
ing to emergence of periodic orbits (stable and saddle)
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Fig. 6 Chaos in the Poincaré mapping. Grey lines show Lamerey
stairs of the mapping iterations. The mapping itself is shown by
blue lines. Panel (a) shows mapping after a primary homoclinic
bifurcation of the unstable threshold fixed point, UP1 (red circle)
which initiates the spike adding cascade around H1 of the bifur-
cation diagram of Fig. 5(a). Forward HO+ and backward HO−
iterates of the critical points (CP) shown by red lines form the
primary homoclinic orbit of the threshold fixed point UP1. Panel
(b) shows chaos due to the very heteroclinic connection between

the unstable fixed points UP1 and UP2, which concludes the spike
adding cascade at H∞ = Vc = −24.828 mV in the bifurcation
diagram of Fig. 5(a). The stable fixed point, SP, corresponding to
the tonic spiking orbit on the manifold Mlc, emerges along with
UP2 through the saddle-node bifurcation (see also Fig. 4). The
unstable fixed point UP2 separates the basins of attraction of the
stable tonic spiking fixed point, SP, and the bursting attractor. As
soon as the critical point is taken above UP2, bursting becomes
transient towards the spiking attractor SP

on the spiking manifold.1 The saddle-node bifurcation,
also called the tangent bifurcation for one-dimensional
mappings, occurs when the graph of the mapping be-
comes tangent to the 45◦ line (see Fig. 4). The newly
formed fixed point separates basins of attraction of
bursting and tonic spiking. This is illustrated in Fig. 7
showing coexisting spiking and bursting orbits (a) along
with corresponding Poincaré mapping (b) and voltage
traces (c, d).

3 Stochastic dynamics

A Gaussian noise term ξ(t) was added to the first equa-
tion of the model (1) to simulate synaptic fluctuations,
C dV

dt = −INa − IK2 − IL + ξ(t). Normally, the fluctua-
tions of synaptic currents occur on a time scale shorter
than the characteristic time scales of a postsynaptic
neuron, so that synaptic noise can be considered as
δ-correlated. The autocorrelation function of the ran-
dom term is given by 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ ), where D
is the noise intensity in units of nA2/s. Our simulations
showed that finite correlation times of the noise source
ξ(t) do not change the qualitative picture of noise ef-
fects on bursting.

One expected effect of noise on the bifurcation di-
agram is shown in Fig. 5(c): addition of noise lead to

1The stable periodic orbit corresponds to tonic spiking.

randomization of neuron firing so that for the given
noise intensity, D = 10−7 nA2/s, only the first four spike
adding transitions can be clearly identified. Further
insights concerning the effects of noise can be obtained
by calculating the largest Lyapunov exponent (LE).
Figure 8(a) shows the LE plotted versus Vshift

K2 for sev-
eral values of the noise intensity. For weak noise (D =
10−9 nA2/s) the LE is positive in the narrow areas cen-
tered around the spike adding transitions, thus indicat-
ing an exponential divergence of the phase trajectories
of the model. Outside these regions the LE is close to
zero prior to a spike adding transition, but becomes
negative in a narrow window right after the bifurcation.
This contrasts with the purely deterministic case above,
where the LE is zero everywhere except the narrow
chaotic windows where it becomes positive. Thus, the
effect of weak noise can be different, depending on the
value of the control parameter. This reveals that noise
significantly broadens the chaotic windows near the
spike adding transition. With the increase of the noise
intensity, regions of positive values of the LE become
wider, so that eventually, starting with some critical
value of the noise intensity, the LE becomes only pos-
itive regardless of Vshift

K2 . This is depicted in Fig. 8(b),
which demonstrates clearly a non-trivial dependence
of the LE versus the noise intensity: for a bifurca-
tion parameter value in between any two spike adding
transitions, the LE first decreases with the increase of
noise, then reaches some minimal negative value and
then increases becoming positive. For Vshift

K2 near every
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Fig. 7 Seven-spike bursting orbit (black line) coexisting with
the tonic spiking orbit (solid blue line) in the phase space of
the model (1) at Vshift

K2 = −24 mV (panel (a)). Red line shows
unstable threshold periodic orbits with corresponding fixed point
UP1 and UP2. All seven V-minimum of bursting trace (panel
(c)) and the repeating voltage minimum of the spiking trace

(panel (d)) are the period-7 orbit and the stable fixed point (SP)
in the corresponding Poincaré mapping (panel (b)). The stable
fixed point SP emerges through a saddle-node bifurcation on the
spiking manifold Mlc along with another unstable fixed point,
UP2 that separates the basin of attraction of tonic spiking and
bursting

spike adding transition the LE remains positive and
depends weakly on the noise intensity until D reaches
a critical value, above which the LE starts to increase
rapidly. Figure 8(c) summarizes the dependence of the
LE on the control parameter and the noise intensity
for several spike adding transitions. Each spike adding
bifurcation gives rise to a tongue-shaped chaotic zone
expanding towards higher values of the noise intensity,
which is surrounded on sides by the regions of negative
LE. The regions of negative values of the LE persist
through a certain critical noise intensity, Dc above
which the LE stays positive for an entire range of Vshift

K2 .
This critical noise intensity decreases as the control
parameter Vshift

K2 shifts towards more hyperpolarized
values corresponding to the progression of the spike
adding transitions.

The sign of the largest Lyapunov exponent for a
neuron model can be interpreted in terms of the reli-
ability of the neural responses to a repeated stimula-
tion with a single realization of noise. Such stimulation
protocols are routinely used in experimental neuro-
science (Mainen and Sejnowski 1995). An ensemble
of stimulation trials is equivalent to an ensemble of
identical neurons subjected to common noise. Then,
a negative LE corresponds to the convergence of the

phase trajectories of the systems, which is reflected in
stereotypical responses of a single neuron. In other
words, neural responses to an identical realization of
noise become reliable (Mainen and Sejnowski 1995).
On the contrary, in a region of positive LE, neural
responses to an identical realization of noise diverge
(Goldobin and Pikovsky 2006). Figure 9 illustrates this
interpretation of LE for the control parameter value in
a middle of the period spike adding transition from five
to six spikes per burst. We simulated 100 identical neu-
rons with randomly chosen initial conditions subjected
to the same realization of noise. Equivalently, such
simulation can be viewed as 100 responses of a single
neuron to the same segment of noise. In Fig. 9 a neuron
firing a spike is represented by a dot. In the absence
of noise, the LE is zero, which corresponds to a stable
periodic orbit or bursting. Since neurons were started
with random initial conditions, spikes are distributed
randomly, as shown in Fig. 9(a). With the increase of
noise the LE becomes negative. Consequently, vari-
ous trials converge, demonstrating reliable neuronal
responses, see Fig. 9(b). In other words, noise synchro-
nizes a population of identical neurons (Goldobin and
Pikovsky 2005). On the contrary, for larger noise the
LE is positive, which leads to a randomization of neural



J Comput Neurosci

Fig. 8 (a) Largest Lyapunov
exponent (LE) versus Vshift

K2
for the indicated values of the
noise intensity, D. (b) LE
versus the noise intensity for
the indicated values of the
bifurcation parameter. The
values of Vshift

K2 , −23 and
−22.33 mV are taken in the
region between the successive
spike adding transitions, see
panels (a) and (c), while
values −22.74 and
−23.27 mV are picked close
to the spike adding points.
(c) LE is shown for a
fragment of spike adding
bifurcation sequence as a
function of the bifurcation
parameter Vshift

K2 and the
noise intensity D. The color
map with indicated contour
levels is shown on the right
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responses, reflected in unreliable firing in response to
identical noise stimulation shown in Fig. 9(c).

The transition to noisy chaos is well illustrated us-
ing a Poincaré mapping of consecutive minima of the
membrane voltage traces shown in Fig. 10. In con-
trast to the construction of the onto Poincaré mapping
described above, here such a mapping is obtained by
direct simulation of a single bursting solution of the
model (1) in the presence of noise. Consequently, in
the noise free case, the model demonstrates a periodic
bursting comprised of n0 = 7 spikes per burst giving
periodic orbit with 7 points in the mapping (red dots
in Fig. 10(a)). Weak (D = 10−9 nA2/s) noise induces
chaos in the model revealing the entire structure of
the mapping, including the unstable branch around the

unstable (threshold) fixed point. The effect of noise is
clearly seen in the changes of the probability density
of the consecutive voltage minima shown in Fig. 10(b).
In the absence of noise the probability density, p(V),
is represented by a sequence of delta peaks centered
at the periodic points of the mapping. Noise leads to
widening of those peaks and to the appearance of non-
vanishing probability near the unstable fixed point (at
≈ −40 mV) (blue line in Fig. 10(b)). Let us stress that
while noise can only slightly affect the spiking part
of the bursting attractor, it changes the quiescent part
significantly, as indicated by a wider peak around V =
−47.0 mV.

An alternative coarse-grained description of a spike
adding sequence employs symbolic dynamics. We can
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Fig. 9 Raster plots of the responses of 100 identical neuron models (1) to the same segment of noise of the indicated intensities; here
Vshift

K2 = −23 mV. Values of the largest LE are indicated for each panel
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Fig. 10 (a): Poincaré mappings for Vshift
K2 = −23.84 and the in-

dicated values of the noise intensity. Red circles and the lines
show periodic seven-spike orbit for the noiseless case. Black dots
show Poincaré mapping for the stochastic model. Noise reveals

the entire mapping including unstable branch crossing 45◦ line
at a steep angle. (b) Probability density of consecutive minima
corresponding to the Poincaré mappings in panel (a)

take advantage of the fact that the interspike intervals
inside bursts depend weakly on the control parameter
(Channell et al. 2007a) and introduce a new variable,
n(t), which is the number of spikes within a burst. The

probability distribution, P(n), of this integer is then
used to characterize the coarse-grained dynamics of the
system. In the stability regions, where the LE is neg-
ative, noise causes weak fluctuations of the interspike

Fig. 11 (Color) Noise
influence on short, of 7
spikes, and long, of 25 spikes,
bursting near the spike
adding transitions at (a)
Vshift

K2 = −23.84 mV and (b)
Vshift

K2 = −24.767 mV. On the
left panels the membrane
voltage V(t) is shown in grey,
while the number of spikes,
n(t) (left vertical scale) is
shown in red. Right panels
show the corresponding
distributions of the number
P(n) of spikes per burst for
the indicated values of noise
intensities
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Fig. 12 (Color) (a) Mean
number 〈n〉 of spikes per
burst plotted versus the
control parameter for two
values of the noise intensity,
D = 10−9 nA2 (green line)
and D = 10−7 nA2 (red line).
(b) Entropy (defined through
Eq. (3)) against Vshift

K2 for the
indicated values of the noise
intensity
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intervals but leads to neither new spikes nor shortening
bursts. As a result, the number of spikes per burst
stays constant. In contrast near a spike adding tran-
sition even weak noise can change the spike number
n(t) so that it start jumping between several values.
Figure 11 shows the membrane potential traces for
Vshift

K2 near two spike adding transitions for relatively
short and long bursting. In the absence of noise both are
periodic, which is indicated by constant n(t) = n0 and
the probability distributions P(n) = δn,n0 , where δi, j is a
Kronecker delta. With noise added, n(t) varies sporadi-
cally from burst to burst thus generating the probability
distribution peaked around n0. The dependence of the
mean number of spikes per burst, 〈n〉 on the control
parameter shown in Fig. 12(a) reveals a staircase-like
structure for weak noise: 〈n〉 is locked to constant values
in the stability zones where the LE is negative, while it

increases drastically fast from one step to another in the
vicinity either spike adding transition. The width of the
locking steps decreases with the increase of the number
of spikes per burst (compare the green and red lines
in Fig. 12(a)), or alternatively with the increase of the
noise intensity.

The Shannon entropy of the distribution P(n) can
be used to quantify the stochastic bursting dynamics.
For the discrete random variable n(t) the entropy H is
given by

H = −
M∑

n=1

P(n) log2 P(n), (3)

where M is the number of attainable states of n(t). Zero
values of entropy reflect the absence of any variability

Fig. 13 Logarithmic plots of
the critical noise intensity,
Dc, versus the number of
spike per burst (a) and versus
log[(Vshift

K2 − Vc)10−3], where
Vc = −24.828 mV is the
accumulation point of the
spike adding cascade. Filled
circles indicate numerically
found values; solid lines are
the logarithmic fits

n

4 10 12
−8.5

−8.0

−7.5

−7.0

−3.4 −3.2 −3.0 −2.8

lo
g(

 D
c 

)

(a)

log[(V
K2     - V

c )10
-3
]

(b)

6 8

shift



J Comput Neurosci

in n(t). As the spike adding sequence progresses, the
distances between the consecutive transitions become
shorter so that the number of possible values which
n(t) can attain increases leading to the growth of the
entropy. This is summarized in Fig. 12(b), which mimics
the graph for the LE in Fig. 8. The entropy takes on
maximal values at the spike adding bifurcations. In
the regions between the transitions, H is 0 for weak
noise. However, with the increase of the noise intensity
the entropy becomes positive for the entire range of
the intrinsic bifurcation parameter Vshift

K2 . Figure 11(a)
shows bursting with randomized spike numbers attain-
ing seven possible values (seven bars in the probability
distribution). A much higher variability is observed in
Fig. 11(b); here the neuron can use up to 21 different
states yielding a wider range of attainable numbers
of spikes per burst. Such variability is characterized
by positive values of the LE and entropy. For each
spike adding transition there is a critical noise intensity,
Dc, beyond which the dynamics of the model becomes
chaotic in the entire region of that transition. This criti-
cal noise intensity can be estimated as follows. For each
spike adding transition we determine a local minimum
of the Shannon entropy at some control parameter, and
then determine noise intensity for which this minimal
value of H becomes positive. Such a procedure gives
the critical noise intensity Dc and also the control
parameter value Vshift

K2 at which the minimum occurs.
Figure 13 shows Dc versus the number of spike per
burst, and Dc versus Vshift

K2 plotted on some logarithmic
scales. The critical noise intensity decreases as spike
adding cascade progresses towards larger number of
spikes per burst. For example, for a noise intensity D
greater than 10−7 nA2/s, the neuronal dynamics become
globally chaotic starting with the parameter values cor-
responding to bursting with five spikes per burst. The
same is true for D greater then 10−7 nA2/s, where the
LE remains positive for all values of Vshift

K2 less then
−23 mV. This is in agreement with the noisy bifurcation
diagram represented in Fig. 5(c) showing that at D =
10−7 nA2/s only first four spike adding transitions are
noticeable. Similarly, for D greater then 10−8 nA2/s, the
dynamics of the model become globally chaotic starting
after the number of spikes per burst exceeding nine,
and so forth.

We note that the seemingly small values of noise
intensities of 10−9–10−6 nA2/s correspond to random
synaptic current with standard deviations ranging from
0.03 to 1 pA, which are physiologically realistic pertur-
bations for the leech heart interneurons (Cymbalyuk
et al. 2002). In fact, a few pA perturbations of the leak
current are enough to result in switching from bursting

to tonic spiking regimes in the leach heart interneurons
(Cymbalyuk et al. 2002).

4 Discussion

We have presented a case study of a mechanism of
spike adding transitions in bursting dynamics of leech
heart interneuron model in the presence of noise. The
analysis of the deterministic model showed periodic
bursting patterns except narrow chaotic islands around
spike adding bifurcations. Thus, without knowing the
exact location of these bifurcations in the parameter
space of the model, the bursting dynamics revealed by
direct numerical simulation would be judged as regular
with no variability in burst pattern. This contrasts to
experimental studies on bursting in isolated neurons,
which showed that variability of burst durations is a rule
rather than exception (Bal et al. 1988; Elson et al. 1999;
Hayashi and Ishizuka 1995). We have demonstrated
that the bursting dynamics in the interneuron model
is highly sensitive to external random perturbations
near the spike adding transitions. Furthermore, the
variability of the bursting patterns increases with the
progression of spike adding transitions expanding into
tongue-shaped zones of noise-induced chaotic dynam-
ics. These chaotic zones are separated by the regions
of regular bursting with constant number of spikes per
burst, or, equivalently, by constant burst durations as
the interspike intervals within a burst does not vary
much. Finally, we found a logarithmic scaling relation
for the critical noise intensity beyond which dynamics
of the model becomes fully chaotic within every spike
adding transition parameter window.

Bursting is a manifestation of slow–fast dynamics
possessing subcomponents operating at distinct time
scales. Topologically, bursting is a modular activity
composed of various limiting branches, corresponding
to oscillatory and equilibrium states of the fast sub-
system, and connected by transients between them.
Due to such a complex shape of a bursting pathway, a
bursting neuron responses quite unevenly to perturba-
tions as follows from the phase resetting curve analysis
(Sherwood et al., unpublished manuscript). Noise has a
significant effect on bursting as well. Analytical studies
have shown the effect of noise-mediated shortening of
burst duration in square wave and elliptical bursters
(Kuske and Baer 2002; Su et al. 2004; Pedersen and
Sorensen 2007), causing, in particular, irregularity of
burst patterns due to stochastic delayed loss of stabil-
ity near, respectively, homoclinic and Andronov-Hopf
bifurcations.
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The source of instability in the interneuron model
studied here is due to extended transformations of
bursts through the multiple spike adding transitions.
More specifically, each spike adding transition is ac-
companied with homoclinic bifurcations of a saddle
periodic orbit that can be revealed and studied via the
reduction to one-dimensional Poincaré mappings for
the membrane potential. It follows from the theory of
homoclinic bifurcations that the presence of a single
homoclinic orbit implies a plethora of similar ones
(Arnold et al. 1994; Shilnikov et al. 1998, 2001) that
generate chaotic dynamics in a system. Consequently,
noise may amplify transient chaos near homoclinic bi-
furcations (Bulsara et al. 1990; Jaeger and Kantz 1997).
In the given model the winding or ordinal number of
the primary homoclinic orbit increases logarithmically
as the bifurcation parameter approaches the critical
value, beyond which the system exhibits tonic spiking
activity. Accordingly, the parameter windows of bursts
with fixed numbers of spikes become progressively nar-
rower. With noise taken into account, chaotic tongue-
shaped zones of neighboring spike adding transition
overlap, leading to global chaotic behavior with a posi-
tive Lyapunov exponent. The true cause of the complex
dynamics at spike adding transitions in both the map-
ping and the model is the existence of multiple burst-
ing orbits with weak and narrow basins of attraction.
Random perturbations induce transitions among vari-
ous basins of attraction, resulting in complex bursting
patterns with variable numbers of spikes and thus with
variable burst durations. Therefore, chaotic variability
observed in the purely deterministic case only within
narrow transition windows expands due to noise.

Noise-enhanced variability characterized by posi-
tive values of the Lyapunov exponent reflects unreli-
able neural responses to the same realization of noise
(Goldobin and Pikovsky 2006). This can be contrasted
to highly reliable oscillating neurons which use spike
timing to encode external stimuli and thus require
stereotypical responses to identical stimulus trials with
a negative Lyapunov exponent (Mainen and Sejnowski
1995; Galan et al. 2008). Indeed, the leach heart inter-
neuron is a part of a central pattern generator (CPG).
CPG neuronal networks serve to sustain rhythmic ac-
tivity corresponding to various oscillatory behaviors of
animals such as breathing, walking and swimming. For
such neurons a rich repertoire of accessible oscillatory
patterns may be beneficial to achieve robustness and
adaptability of a CPG network to external environ-
mental perturbation (Rabinovich et al. 2006). In the
particular example studied here, an addition of synaptic
noise as small as 1 pA of standard deviation leads
to a global chaotic dynamics with bursts of variable

durations, which otherwise was not observed. In other
words, with noise taken into account the model shows a
rich repertoire of various burst patterns at a fixed value
of control parameter.

In this paper we have considered a simplified version
of the canonical interneuron model (Cymbalyuk et al.
2002) in presence of a synaptic noise. Following the
algorithms proposed, one can reveal the structures of
Poincaré return mapping for other models having noise
due to stochastic cluttering of ion channels (Rowat
and Elson 2004; Rowat 2007). Such voltage mappings
can be determined directly from experimental voltage
time series, or by using a voltage clamp technique, as
described in Channell et al. (2007b). The completeness
or sparseness of such mapping may vary, depending
on the particular regime or on the amount of noise in
a system. In the case of a sparse mapping an applied
noise current can be injected to the neuron. In a too
noisy case, proper statistical tests for revealing unstable
periodic orbits can be used to verify whether observed
bursting variability is of a low-order dynamical origin
(Schiff et al. 1994; So et al. 1996; Pei and Moss 1996).
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