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We study the rhythmogenesis of oscillatory patterns emerging in network motifs composed of
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1. Introduction

A plethora of vital rhythmic motor behaviors, such
as heartbeat, respiratory functions and locomotion
are produced and governed by neural networks
called central pattern generators (CPGs) [Selver-
ston, 1985; Bal et al., 1988; Marder & Calabrese,
1996; Frost & Katz, 1996; Kristan et al., 2005;
Katz & Hooper, 2007]. A CPG is a microcircuit
of interneurons whose mutually synergetic interac-
tions autonomously generate an array of multiphase
bursting rhythms underlying motor behaviors.
There is a growing consensus in the community of
neurophysiologists and computational researchers
that some basic structural and functional elements
must be shared by CPGs in invertebrate and verte-
brate animals. As such, we should first understand

these elements, find the universal principles, and
develop efficient mathematical and computational
tools for plausible and phenomenological models of
CPG networks. Pairing experimental studies and
modeling studies has proven to be key to unlocking
insights into operational and dynamical principles
of CPGs [Gillner & Wallen, 1985; Kopell & Ermen-
trout, 2004; Matsuoka, 1987; Kopell, 1988; Canavier
et al., 1994; Skinner et al., 1994; Dror et al., 1999;
Prinz et al., 2003a]. Although various circuits and
models of specific CPGs have been developed, it
still remains unclear what makes the CPG dynam-
ics so robust and flexible [Best et al., 2005; Belykh &
Shilnikov, 2008; Sherwood et al., 2011; Koch et al.,
2011; Calabrese et al., 2011; Marder, 2012]. It is also
unclear what mechanisms a multifunctional motor
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system can use to generate polyrhythmic outcomes
to govern several behaviors [Kristan, 2008; Brig-
gman & Kristan, 2008]. Our goal is to gain insight
into the fundamental and universal rules governing
pattern formation in complex networks of neurons.
To achieve this goal, we should identify the rules
underlying the emergence of cooperative rhythms
in simple CPG networks.

Recently, a great deal of computational stud-
ies have been focused on a range of 3-cell motifs of
bursting neurons coupled by chemical (inhibitory
and excitatory) and electrical synapses to disclose
the role of coupling in generating sets of coexisting
rhythmic outcomes, see [Shilnikov et al., 2008; Woj-
cik et al., 2011; Schwabedal et al., 2014; Schwabe-
dal et al., 2015; Collens et al., 2015] and references
therein. These network structures reflect the known
physiological details of various CPG networks in
real animals. Next, we would like to explore the
dynamics and stability of some identified CPG cir-
cuits constituted by 4-cells [Sherwood et al., 2011;
Jalil et al., 2013]. Examples of such subnetworks
can be found in the cerebral crustacean stomatogas-
tric ganglion (STG) [Selverston, 1985; Prinz et al.,
2003b; Prinz et al., 2004; Marder, 2012], as well as
in the swim CPGs of the sea slugs — Melibe leon-
ina [depicted during swimming in Fig. 1(a)] and
Dendronotus iris [Newcomb et al., 2012; Sakurai
et al., 2011; Sakurai & Katz, 2011]. Our greater goal
is to create dynamical foundations for the onset,
morphogenesis and structural robustness of rhyth-
mic activity patterns produced by swim CPGs in
these animals. A pilot mathematical model of the
Melibe swim CPG will be discussed in this paper.
The circuitry shown in Fig. 2(a) depicts only some

(a) (b)

Fig. 1. (a) Melibe leonina lateral swim style. (b) Network bursting in swim interneurons (Si) of the Melibe swim CPG halts
when Si3R is hyperpolarized, thus its counterpart Si3L begins tonic spiking; the photographs and in-vitro recording provided
courtesy of A. Sakurai [Sakurai et al., 2014].

core elements identified in the biological CPG; its
detailed diagram can be found in [Sakurai et al.,
2014].

Being inspired by experimental studies of volt-
age activity recorded from the swim CPGs of the sea
slugs Melibe leonina and Dendronotus iris, we would
like to develop an assembly line for CPG construc-
tors made of coupled biophysically plausible mod-
els. Our first simplifying assumption is that CPGs
are made of universal building blocks — half cen-
ter oscillations (HCOs) [Hill et al., 2003]. Loosely
speaking, a HCO is treated as a pair of interneu-
rons interacting with each other through recipro-
cally inhibitory synapses and exhibiting anti-phase
bursting. The interneurons of a HCO can be endoge-
nous bursters, tonic spiking or quiescent ones, which
exhibit alternating bursting only when they inhibit
each other. Theoretical studies [Wang & Rinzel,
1985] have indicated that formation of an anti-phase
bursting rhythm is always based on slow subsys-
tem dynamics. There are three basic mechanisms to
generate alternating bursting in the HCO: release,
escape, and post-inhibitory rebound (PIR). The
first mechanism is typical for endogenously burst-
ing neurons [Jalil et al., 2010, 2012]. The other
two mechanisms underlie network bursting in HCOs
comprised of neurons, which are hyperpolarized qui-
escent in isolation [Perkel & Mulloney, 1974; Skin-
ner et al., 1994; Angstadt et al., 2005; Kopell &
Ermentrout, 2002]. Our second assumption is that
the swim CPG interneurons are intrinsic tonic spik-
ers that become network bursters only when exter-
nally driven or coupled by inhibitory synapses,
as recent experimental studies suggest [Sakurai
et al., 2014]. The third assumption is that network
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(a) (b)

Fig. 2. (a) A core circuitry of the biological Melibe swim CPG with inhibitory (•), excitatory (!) and electrical (\/\/)
synapses [Sakurai et al., 2014]. (b) In-vitro voltage activity recordings from identified swim interneurons, Si2L and Si3L/R,
of the Melibe swim CPG with the characteristic 3/4-phase lag between HCO2 and HCO3; intracellular recording provided
courtesy of A. Sakurai [Sakurai et al., 2014].

Fig. 3. Parabolic distribution of spike frequency within bursts produced by networked interneurons in the Melibe swim CPG.
Recording provided courtesy of A. Sakurai and time series analysis by A. Kelley.

bursting in the Melibe swim CPG is parabolic, i.e.
the spike frequency within a burst increases at
the middle, and decreases at the ends, as one can
observe from Fig. 3. This observation indicates the
type of neuronal models to be employed to describe
network cores. Our model of choice for parabolic
bursting is the Plant model [Plant & Kim, 1975,
1976; Plant, 1981]. The Plant model has been devel-
oped to accurately describe the voltage dynamics
of the R15 neuron in a mollusk Aplysia Califor-
nica, which has turned out to be an endogenous
burster [Levitan & Levitan, 1988]. Most dynamical

properties of the R15 neuron have been modeled
and studied in detail [Canavier et al., 1991; Bertran,
1993; Butera et al., 1995; Butera, 1998; Sieling &
Butera, 2011; Ji et al., 2013].

2. Methods: The Plant Model
of Parabolic Bursting

The conductance based Plant model [Plant, 1981]
for the R15 neuron [Sieling & Butera, 2011] located
in the abdominal ganglion of a slug Aplysia Cal-
ifornica is given by the following set of ordinary
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differential equations derived within the framework
of the Hodgkin–Huxley formalism to describe the
dynamics of the fast inward sodium [Na], outward
potassium [K], slow TTX-resistant calcium [Ca]
and an outward calcium sensitive potassium [KCa]
currents:

CmV̇ = −INa − ICa − IKCa

− Ileak − Iext − Isyn. (1)

The last three currents are the generic ohmic
leak Ileak, external constant Iext and synaptic Isyn

currents flowing from a presynaptic neuron. The
full details of the representation of the currents
employed in the model are given in the Appendix.

There are two bifurcation parameters in the
individual model. The first one is the constant
external current, Iext, which is set as Iext = 0.
Following [Shilnikov, 2012], the other bifurcation
parameter, ∆, is introduced in the slowest equation:

Ċa = ρ(Kcx(VCa − V + ∆) − Ca) (2)

describing the concentration of the intracellular
calcium in the Plant model. By construction, ∆
is a deviation from a mean value of the reversal

potential VCa = 140mV evaluated experimentally
for the calcium current in the R15 cells. As such,
this makes ∆ a bifurcation parameter. Secondly
its variations are not supposed to alter the topol-
ogy of the slow motion manifolds in the 5D phase
space, which are called tonic spiking and quiescent
in the mathematical neuroscience context, as they
are made of, respectively, round periodic orbits and
equilibrium states [of the slow subsystem] of the
model (Fig. 5).

At ∆ = 0, the neuron is an endogenous burster,
see Fig. 4. According to [Rinzel & Lee, 1987], this
type of bursting is termed parabolic. The reason for
this term is that the spike frequency within bursts
is maximized in the middle of bursts and mini-
mized at the beginning and the end [see Fig. 4(c)].
The parabolic structure of a burst is due to the
calcium-activated potassium current. Its magnitude
is determined by the intracellular calcium con-
centration. As the intracellular calcium concentra-
tion increases, the calcium-dependent potassium
current gets activated, which causes an increase
of the inward potassium current. As the mem-
brane potential increases over a threshold value,
the intracellular calcium concentration decreases, as

(a) (b)

(c)

Fig. 4. (a) Endogenous bursting in the Plant model as alternations of tonic spiking activity and quiescent periods. (b) Single
burst featuring a characteristic spike frequency increase in the middle of each burst. (c) Parabolic shape of the frequency
distribution of spikes within a burst is a feature of this kind of bursting. The parameters are ρ = 0.00015 ms−1, Kc =
0.00425 ms−1 and τx = 9400 ms.
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Fig. 5. Bursting (green) orbit recursively switching between two slow-motion critical manifolds: tonic spiking, Mlc, with a
characteristic fold and originating through a subcritical Andronov–Hopf (AH) bifurcation from a depolarized equilibrium state,
and quiescent, Meq (orange curve), projected onto the (h, V ) and slow Ca variables of the Plant model; a plane represents the
synaptic threshold, Θsyn = 0mV.

well as the inward potassium current [see Eq. (A.17)
in the Appendix]. The parabolic distribution of
spikes within bursts is shown in Fig. 4. The instant
frequency value is calculated by the reciprocal of
each inter-spike interval. Panels (b) and (c) of Fig. 4
clearly disclose the parabolic inter-spike structure of
bursts.

It was shown in [Rinzel & Lee, 1987] that
the mechanism underlying a transition between
quiescent and tonic spiking of bursting in the
Plant model is due to a homoclinic bifurcation of
a saddle-node equilibrium state [Shilnikov, 1963;
Afraimovich et al., 2014]. This bifurcation occurs
in the fast 3D (V, h, n)-subspace of the model and
is modulated by the 2D slow dynamics in the
(Ca, x)-variables, which are determined by slow
oscillations of the intracellular calcium concentra-
tion [Plant & Kim, 1975, 1976]. The unfolding of
this codimension-one bifurcation includes an onset
of a stable equilibrium, which is associated with
a hyperpolarized phase of bursting, and on the
other end, an emergent stable periodic orbit that
is associated with tonic spiking phase of bursting.

The period of this stable orbit decreases, as it
moves further away from the saddle-node equilib-
rium mediated by decreasing calcium concentration.
The period of the tonic spiking orbit grows with no
upper bound as it approaches the homoclinic loop
of the saddle-node [Shilnikov et al., 1998, 2001].

Variations of ∆ change the duty cycle of burst-
ing, which is a ratio of the active tonic spiking phase
of bursting to its period. Decreasing ∆ reduces the
inactive, quiescent phase of bursting, i.e. increases
its duty cycle. Zero duty cycle is associated with
the homoclinic saddle-node bifurcation that makes
the neuron hyperpolarized quiescent. This corre-
sponds to an emergence of stable equilibrium state
for all dynamical variables of the model (1). In other
words, decreasing ∆ makes the active phase longer,
so that below a threshold ∆ = −32mV the neu-
ron switches to tonic spiking activity. Tonic spiking
activity is associated with the emergence of a stable
periodic orbit in the fast (V, h, n)-subspace, while
the (Ca, x)-variables of the slow subspace converge
to a stable equilibrium state. As such, bursting
occurs in the Plant and similar models due to
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relaxation of periodic oscillations in the 2D (Ca, x)-
subspace, which slowly modulates fast tonic spiking
oscillations in the (V, h, n) variables. The relaxation
limit cycles emerge from one and collapse into the
other equilibrium state in the (Ca, x)-plane through
Andronov–Hopf bifurcations, which can be sub- or
supercritical. At the transitions between bursting
and tonic spiking, and bursting and hyperpolarized
quiescence, the neuron can produce chaotic dynam-
ics, which are basically due to the membrane poten-
tial oscillatory perturbations of plain canards at the
folds of the relaxation cycle.

3. Endogenous and Network
Bursting. Inhibitory and
Excitatory Drives

A half-center oscillator is a network of two neu-
rons coupled by reciprocally inhibitory synapses
that robustly produces bursting in alternation, or
anti-phase bursting. Such a network can be multi-
stable, i.e. produce other bursting rhythms as well,
such as synchronous bursting [Jalil et al., 2010] and
rhythmic outcomes with slightly shifted phase lags
between the endogenously bursting neurons [Jalil
et al., 2012].

In this study, the synaptic current Isyn is mod-
eled through the fast threshold modulation (FTM)
approach [Kopell & Somers, 1993]. The synapses are
assumed to be fast and nondelayed, which is true for
the swim CPG in both sea slugs under considera-
tion. The synaptic current is given by

Isyn = gsyn(Vpost − Esyn)
1

1 + e−k(Vpre−Θsyn)
, (3)

where gsyn is the maximal conductance of the cur-
rent, which is used as a bifurcation parameter of the
networked model; Vpost(t) and Vpre(t) are the volt-
ages on the post-synaptic (driven) and pre-synaptic
(driving) neurons; Esyn is the synaptic reversal
potential. To make Isyn excitatory, we set Esyn =
40mV, while in the inhibitory case we set Esyn =
−80mV. In Eq. (3), the second term is a Boltz-
mann coupling function that quickly, (k = 100),
turns the synaptic current on and off as soon the
voltage, Vpre, of the (driving) pre-synaptic cell(s)
rises above and falls below the synaptic threshold,
here Θsyn = 0mV (Fig. 5).

To model the constant synaptic drive onto
the post-synaptic neuron, we assume that Vpre >
Θsyn. This allows us to calibrate the state of the
post-synaptic neuron, and to determine the drive
threshold that separates the qualitatively distinct

(a)

(b)

Fig. 6. Responses of the bursting neuron (∆ = 0mV) on the synaptic drive Isyn = gsyn(V − Vrev). (a) Excitatory synaptic
drive with gsyn = 0.002 nS and Vrev = 40mV applied at t = 80 sec switches the neuron from bursting to tonic spiking activity.
(b) The inhibitory drive with gsyn = 0.005 nS and Vsyn = −80mV halts bursting and makes the neuron hyperpolarized
quiescent.
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Fig. 7. Tonic spiking neuron 1 at ∆ = −34mV near the bifurcation transition between tonic spiking and bursting is forced
to become a network burster with an application of an inhibitory drive with ginh

syn = 0.001 nS, from the pre-synaptic neuron 2
at t = 60 sec. Halting the inhibitory drive restores tonic spiking activity in the targeted neuron (not shown).

states of the individual and networked neurons.
This statement is illustrated in Fig. 6 by simulat-
ing responses of the endogenous parabolic burster
to network perturbation. Figure 6(a) shows, with a
properly adjusted excitatory drive, that the endoge-
nous burster switches into tonic spiking activity. On
the other hand, bursting in the networked neuron
can be halted when it receives a sufficient inhibitory
drive from the pre-synaptic neuron of the network
[Fig. 6(b)]. Eliminating either drive makes the post-
synaptic neuron return to its natural state, i.e.
these experiments de-facto prove that the neuron
is monostable for the given parameter values.

A HCO, in the canonical Brown definition
[Graham-Brown, 1911], is a pair of neurons bursting
in anti-phase when they are networked by inhibitory
synapses. In isolation, such neurons are not endoge-
nous bursters but tonic spikers instead, or remain
quiescent [Marder & Calabrese, 1996]. There are
multiple mechanisms underlying such anti-phase
bursting, or, more accurately, anti-phase oscilla-
tions in HCOs and CPGs made of relaxation oscilla-
tors [Kopell & Ermentrout, 2002; Daun et al., 2009].
The list includes the well studied mechanisms of
post-inhibitory rebound and escape for quiescent
neurons [Perkel & Mulloney, 1974; Wang & Rinzel,
1985; Skinner et al., 1994; Destexhe et al., 1994;
Matveev et al., 2007], as well as less-known mecha-
nisms of HCOs constituted by intrinsically spiking
neurons. Such networks utilizing the Plant models
are discussed below.

To construct such a HCO with relatively weak
inhibitory coupling, the Plant model must be first
set into the tonic spiking mode. This is done by set-
ting the bifurcation parameter, ∆ = −34mV, see
Fig. 7. Next, we consider a unidirectional network
where the tonic spiking neuron 1 starts receiving,

an inhibitory drive of gsyn = 0.001 nS from the post-
synaptic neuron 2 at t = 60 sec. The inhibitory drive
is sufficient to shift the post-inhibitory neuron over
the bifurcation transition back into bursting activ-
ity. The minimal inhibitory drive must be increased
proportionally to make the targeted neuron a net-
work burster whenever it stays further away from
the bifurcation transition between tonic spiking and
bursting in isolation.

4. Forming a Half-Center Oscillator

In this section, we discuss the dynamics of half-
center oscillators made of two tonically spiking
Plant neurons reciprocally coupled by inhibitory
synapses. As before, we describe such synapses
within the framework of the fast threshold mod-
ulation (FTM) paradigm using Eq. (3) to match
the shape and magnitude of inhibitory postsynap-
tic potentials (IPSPs) in the post-synaptic neu-
rons. IPSPs are the indicators of the type and the
strength of synapses in the network.

We perform simulations in a fashion that is
analogous to the dynamic clamp technique used
in neurophysiological experiments. The approach
involves the dynamic block, restoration and mod-
ulation of synaptic connections during simula-
tion. These modeling perturbations should closely
resemble the experimental techniques of drug-
induced synaptic blockade, modulation, wash-out,
etc. Restoring the chemical synapses during a sim-
ulation makes the HCO regain network bursting
activity with specific phase characteristics. Depend-
ing on the coupling strength as well as the way the
tonically spiking neurons are clamped, the network
bursting may change phase-locked states, i.e. be
potentially multistable. Experimental observations
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Fig. 8. Anti-phase network bursting produced by a HCO of two Plant neurons as soon as the inhibition is turned on. Blocking
the inhibition restores tonic spiking activity in both neurons, and vice versa. Here, the network parameters are ginh

syn = 0.008 nS

and Esyn = −80mV, and the parameters of the individual neurons are the following: ∆ = −60 mV, ρ = 0.0003 ms−1,

Kc = 0.0085 ms−1, τx = 235 ms and x∞(V ) = 1/(1 + e−0.15(V +50)).

also suggest specific constraints on the range of cou-
pling strengths of the reciprocal inhibition, such
that the networks stably and generically achieve the
desired phase-locking.

Figure 8 demonstrates the stages of anti-phase
bursting formation in the HCO. The uncoupled
neurons are initiated in tonic spiking mode. After
turning on the reciprocally inhibitory synapses
gsyn = 0.008 nS, the HCO quickly transitions to
the regime of robust anti-phase bursting. Turning
off the synapses restores the native tonic spiking
activity in both neurons. Turning on the reciprocal
synapses makes the HCO regain the network burst-
ing. Note that the length of transients from tonic
spiking to network bursting depends on the strength
of the synaptic coupling for the fixed parame-
ters of the individual Plant neurons. By compar-
ing the magnitude of IPSPs in the voltage traces

represented in Figs. 8 and 9, one can conclude that
the coupling in the latter case is weaker. This is
why, the onset of network bursting in the HCO is
less pronounced.

Our modeling studies agree well with experi-
mental recordings from the identified interneurons
in the Melibe swim CPG which suggests that the
observed bursting is due to synergetic interactions
of interneurons of the network [Sakurai et al., 2014].
One can see from Fig. 1(b) that network bursting
in the biological HCO formed by two Si3 interneu-
rons of the Melibe swim CPG is seized as soon as
the right one, Si3R, receives a negative current pulse
that makes it hyperpolarized quiescent, while its left
bursting counterpart, Si3L, turns into tonic spiking
activity instead. Moreover, one can deduce from the
wiring diagram of the CPG depicted in Fig. 2(a)
and the analysis of voltage traces represented in

Fig. 9. Onset of emergent network anti-phase bursting in the HCO with reciprocally inhibitory (Esyn = −80mV) synapses

at ginh
syn = 0.0073 nS.
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Fig. 10. Turning on the excitatory autapses at gexc
aut = 0.016 nS in the HCO with ginh

syn = 0.0073 nS halts pronounced network
bursting.

Fig. 1(b) that the interneuron Si2L becomes a tonic-
spiker as soon as the pre-synaptic interneuron Si3R
stops inhibiting it (compare with Fig. 8). This fur-
ther supports the assertion that the swim CPG is
made of intrinsically tonic spiking interneurons.

To test the robustness of network anti-phase
bursting to perturbation and to calibrate the nec-
essary influx of reciprocal inhibition generated by
the Plant neurons, we consider a HCO with exci-
tatory autapses. The objective here is to determine
an equivalent amount of excitatory drive to be pro-
jected onto the post-inhibitory network burster to
cancel out the inhibitory drive and shift it back to
the initial tonic-spiking mode.

An autapse is a synapse of a neuron onto itself,
where the axon of the neuron ends on its own den-
drite. After their discovery [Van der Loos & Glaser,
1972], autapses have been observed in a range of
nervous systems. The autapses are arguably to be
responsible for tuning of neural networks. This par-
ticular configuration of the HCO depicted in Fig. 10
is formally motivated by the swim CPG circuitry,
see Fig. 2(a). One can see from it that the interneu-
rons of the bottom HCO receive excitatory drives
from the top interneurons forming the top HCO.
We would like to find the threshold over which the
neurons no longer form a stably bursting HCO. This
would allow us to calibrate and quantify the rela-
tive strengths of the mixed synaptic connections in
the swim CPG models.

In this HCO configuration, each neuron inhibits
its counterpart and self-excites through the autapse.
Both autapses are introduced to the model using
the FTM approach with Eaut = 40mV. In this
experiment, the conductance values for inhibitory
synapses are set at ginh

syn = 0.0073 nS. This is

sufficient for the HCO to generate robust anti-
phase bursting as seen in Fig. 9. Next, we add
the autapses along with inhibition and gradually
increase gexc

aut. We found that increasing gexc
aut propor-

tionally increases the delay. At gexc
aut = 0.016 nS, the

network stops exhibiting anti-phase bursting. We
note that unlike a permanent excitatory drive from
pre-synaptic neurons, an introduction of the exci-
tatory autapse, acting only when the self-driving
neuron is above the synaptic threshold, is effectively
perturbation equivalent for the calibration purpose.

5. Assembly Line of a Melibe
Swim CPG

In this final section, we put together a pilot model
of the Melibe swim CPG according to a circuitry
based on identified interneurons and synapses; its
wiring diagram is sketched in Fig. 2(a). This net-
work model is made of the two HCOs constituted by
tonic spiking Plant neurons. We would like to find
out whether this sample CPG model can already
produce phase lags similar to those between burst-
ing interneurons in the biological CPG. For the sake
of simplicity, we do not include Si4R/L interneurons
in the model and we also omit electrical synapses. It
is known from experimental studies [Sakurai et al.,
2014] that blocking chemical, inhibitory and exci-
tatory synapses between the interneurons may be
sufficient to break down the motor pattern by the
network. Figure 2(b) points out that the interneu-
rons of either HCO burst in anti-phase and there is
the characteristic 3/4-phase lag between the burst
initiation in the neurons Si2L and Si3L, as well as
between Si2R and Si3L. This phase lag is repeatedly
observed in both adult and juvenile animals.
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Fig. 11. Assembly line of the Melibe swim CPG model out of four intrinsically tonic spiking Plant neurons. First, the
reciprocal inhibition between Si3R and Si3L is turned on, followed by turning on the reciprocal inhibition between Si2R
and Si2L, and next simultaneous turning on unidirectional cross-lateral inhibition from Si3R(L) projected onto Si2L(R), and
bilateral excitation originating from Si2R(L) down onto Si3R(L). After a short transient, the CPG model exhibits the desired
3/4-phase shift lag between Si2L and Si3L. Compare with voltage traces of the biological CPG in Fig. 2(b).

As before, we use the Plant neurons initiated in
the tonic spiking mode, relatively close to the tran-
sition to bursting. Initial conditions of the neurons
are randomized. After letting the neurons settle
down to tonic spiking activity, the network con-
nections are turned on. As Fig. 11 shows, with
the reciprocal inhibition being first turned on, the
bottom interneurons Si3L and Si3R become anti-
phase network bursters, and so do Si2R and Si2L
as soon as the reciprocal inhibition between them
is turned on, too. At this stage, the CPG model
is formed by two uncoupled HCOs. A few seconds
later, they become coupled by simultaneous turn-
ing on of the unidirectional cross-lateral inhibition
from Si3R(L) projected onto Si2L(R), and bilateral
excitation from Si2R(L) down onto Si3R(L). One
can see from this figure that all four interneurons
of the CPG model exhibit network bursting with
the desired phase lags. These are 0.5 (half period)
between the interneurons of each HCO, and 3/4 (a
fraction of the network period) between the HCOs,
or between the corresponding reference interneu-
rons Si2L and Si3L. We note that such a phase shift
was reported in a similar Melibe swim CPG con-
stituted by endogenous bursters; that model also
incorporated electrical synapses [Jalil et al., 2013].

There is great room for improvement of CPG net-
work models to include other identified interneurons
and to incorporate additional electrical synapses to
find out whether additions of new elements can sta-
bilize or desynchronize the desired bursting pattern
as it was done using the Poincaré return maps for
endogenous bursters [Wojcik et al., 2014]. Of special
interest are various problems concerning structural
stability of the network, and its robustness (Lya-
punov stability) for bursting outcomes subjected to
perturbations by pulses of the external current, as
well as reductions to return maps between burst
initiations in constituent neurons. These questions
are beyond the scopes of the given examination and
will be addressed in full detail in our forthcoming
publications soon. The question about a possible
linking of the characteristic 3/4-phase lag and the
Melibe leonina lateral swim style is the paramount
one among them.

6. Summary

We have discussed a basic procedure for building
network bursting CPGs made of intrinsically tonic
spiking neurons. As a model for such networks,
we have employed the biophysically plausible
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Plant model that was originally proposed to
describe endogenous bursting R15 cells in the
Aplysia mollusk. Such bursting was intracellularly
recorded, and identified as parabolic, from the
known interneurons in the swim CPGs of two sea
slugs: Melibe leonina and Dendronotus iris. There is
experimental evidence that bursting in these swim
CPGs is due to synergetic interactions of all con-
stituent neurons that are intrinsic tonic-spikers in
isolation. To model the Melibe swim CPG, we have
first examined dynamical and structural properties
of the Plant model and its responses to perturba-
tions. These perturbations include inhibitory and
excitatory inputs from pre-synaptic neurons in the
network. We have identified the transition boundary
beyond which the bursting Plant model becomes a
tonic-spiker and shifted it slightly over the thresh-
old using an introduced bifurcation parameter. We
have shown that the perturbed/calibrated Plant
neuron, exhibiting intrinsically tonic spiking activ-
ity, becomes a network burster when it receives
an inhibitory drive from a pre-synaptic neuron.
By combining two such neurons, we have created
a genuine half-center oscillator robustly produc-
ing anti-phase bursting dynamics. We have also
considered a HCO configuration with two excita-
tory autapses to assess the robustness of anti-phase
bursting with respect to excitatory perturbations.
Finally, we have employed all necessary compo-
nents to assemble a truncated model of the Melibe
swim CPG with the characteristic 3/4-phase lags
between the bursting onsets in the four constituent
interneurons. In future studies, we plan to examine
the dynamics of the CPG models with all synaptic
connections, including electrical, as well as incor-
porating additional identified interneurons. We will
also explore their structural stability, robustness
and potential multistability of their bursting out-
comes with various phase lags. An additional goal is
to find out whether the motor pattern with the 3/4-
phase lags will persist in networks with interneurons
represented by other mathematical models includ-
ing phenomenologically reduced ones. Potentially,
these findings shall provide a systematic basis for
comprehension of plausible biophysical mechanisms
for the origination and regulation of rhythmic pat-
terns generated by various CPGs. Our goal is to
extend and generalize the dynamical principles dis-
closed in the considered networks for other neural
systems besides locomotion, such as olfactory cellu-
lar networks.
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Appendix

The Conductance Based Plant Model

The model in this study is adopted from [Plant,
1981]. The dynamics of the membrane potential, V ,
is governed by the following equation:

CmV̇ = −INa − IK − ICa − IKCa

− Ileak − Isyn, (A.1)

where Cm = 1µF/cm2 is the membrane capaci-
tance, INa is the Na+ current, IK is the K+ current,
ICa is the Ca+2 current, IKCa is the Ca2+ activated
K+ current, Ileak is the leak current, Isyn is the
synaptic current. The fast inward sodium current
is given by

INa = gNam
3
∞(V )h(V − VNa), (A.2)

where the reversal potential VNa = 30mV and the
maximum Na+ conductance value gNa = 4nS. The
instantaneous activation variable is defined as

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, (A.3)
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where

αm(V ) = 0.1
50 − Vs

exp
(

50 − Vs

10

)
− 1

,

βm(V ) = 4 exp
(

25 − Vs

18

)
,

(A.4)

while the dynamics of inactivation variable h is
given by

ḣ =
h∞(V ) − h

τh(V )
, (A.5)

where

h∞(V ) =
αh(V )

αh(V ) + βh(V )
and

τh(V ) =
12.5

αh(V ) + βh(V )
,

(A.6)

with

αh(V ) = 0.07 exp
(

25 − Vs

20

)
and

βh(V ) =
1

exp
(

55 − Vs

10

)
+ 1

,
(A.7)

where

Vs =
127V + 8265

105
mV. (A.8)

The fast potassium current is given by the equation

IK = gKn4(V − VK), (A.9)

where the reversal potential is VK = −75mV and
the maximum K+ conductance value is gK = 0.3 nS.
The dynamics of inactivation gating variable is
described by

ṅ =
n∞(V ) − n

τn(V )
, (A.10)

where

n∞(V ) =
αh(V )

αh(V ) + βh(V )
and

τn(V ) =
12.5

αh(V ) + βh(V )
,

(A.11)

with

αn(V ) = 0.01
55 − Vs

exp
(

55 − Vs

10

)
− 1

and

βn(V ) = 0.125 exp
(

45 − Vs

80

)
.

(A.12)

The TTX-resistant calcium current is given by

ICa = gCax(V − VCa), (A.13)

where the reversal potential is VCa = 140mV and
the maximum Ca2+ conductance is gCa = 0.03 nS.
The dynamics of the slow activation variable is
described by

ẋ =
x∞(V ) − x

τx(V )
, (A.14)

where

x∞(V ) =
1

exp(−0.3(V + 40)) + 1
and

τx(V ) = 9400ms.
(A.15)

The outward Ca2+ activated K+ current is given by

IKCa = gKCa
[Ca]i

0.5 + [Ca]i
(V − VK), (A.16)

where the reversal potential is VCa = 140mV. The
dynamics of intracellular calcium concentration is
governed by

Ċa = ρ[Kcx(VCa − V ) − [Ca]i], (A.17)

where the reversal potential is VCa = 140mV, and
the constant values are ρ = 0.00015mV−1 and Kc =
0.00425mV−1. The leak current is given by

Ileak = gL(V − VL), (A.18)

where the reversal potential VL = −40mV and the
maximum conductance value gL = 0.0003 nS. The
synaptic current is defined as

Isyn =
gsyn(Vpost − Erev)
1 + e−k(Vpre−Θsyn)

(A.19)

with the synaptic reversal potential Vpost =
−80mV for inhibitory synapses and Vpost = 40mV
for excitatory synapses and the synaptic threshold
Θsyn = 0mV, and k = 100.
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