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INTRODUCTION TO PART II

In the following chapters we present the theory of bifurcations of dynamical

systems with simple dynamics. It is difficult to over-emphasize the role of bi-

furcation theory in nonlinear dynamics the reason is quite simple: the methods

of the theory of bifurcations comprise a working tool kit for the study of dy-

namical models. Besides, bifurcation theory provides a universal language to

communicate and exchange ideas for researchers from different scientific fields,

and to understand each other in interdisciplinary discussions.

Bifurcation theory studies the changes in the phase space as we vary the pa-

rameters of the system. In essence, this is the authentic notion of bifurcation

theory proposed originally by Henry Poincaré when he studied Hamiltonian

systems with one degree of freedom. We must, however, note that this in-

tuitively evident definition is not always sufficient at the contemporary stage

of the development of the theory. One needs, in fact, to have an appropriate

mathematical foundation to define the notions of the structure of the phase

space and the changes in the structure.

The first attempt at creating such formalization had been made by An-

dronov and Pontryagin in 1937: they introduced the notion of a rough system.

For a system to be rough, it means that any sufficiently close system is to be

topologically equivalent to the given one. Moreover, the conjugating homeo-

morphism must be close to identity. In other words, the two systems must

have matching phase portraits and corresponding trajectories can differ only

slightly.

In the same paper, Andronov and Pontryagin had presented the necessary

and sufficient conditions of roughness for systems on the plane. Consequently,

v



vi Introduction to Part II

many problems of nonlinear dynamics that can be modeled by two-dimensional

dynamical systems has since attained a necessary mathematical foundation.

The main statements of the Andronov and Pontryagin theory are presented

in the first section of Chap. 7, which opens Part II of this book. We also give

the definition of structural stability (due to Peixoto) there. The difference

between the notion of structural stability and that of roughness is that, the

conjugating diffeomorphism defining the structural stability is not assumed to

be close to identity in the former case. This is rather convenient from a purely

mathematical point of view as it follows immediately from the definition that

structurally stable systems form an open set. Even though numerous known

proofs had only concentrated on structural stability, roughness itself follows

from the same proofs as a by-product. Hence, the difference of these two

notions does not seem to be that essential. Note, nonetheless, that the notion

of structural stability has become much more widely known outside of Russia,

especially in the West. In this book we will frequently utilize this term as

well. In spite of that, we believe that the notion of roughness is, in principle,

more reasonable as it gives the natural image of small changes of real processes

caused by small variations of parameters.

The multi-dimensional extension of two-dimensional rough systems is the

Morse–Smale systems discussed in Sec. 7.4. The list of limit sets of such a

system includes equilibrium states and periodic orbits only; furthermore, such

systems may only have a finite number of them. Morse–Smale systems do

not admit homoclinic trajectories. Homoclinic loops to equilibrium states may

not exist here because they are non-rough — the intersection of the stable

and unstable invariant manifolds of an equilibrium state along a homoclinic

loop cannot be transverse. Rough Poincaré homoclinic orbits (homoclinics

to periodic orbits) may not exist either because they imply the existence of

infinitely many periodic orbits. The Morse–Smale systems have properties

similar to two-dimensional ones, and it was presumed (before and in the early

sixties) that they are dense in the space of all smooth dynamical systems. The

discovery of dynamical chaos destroyed this idealistic picture.

The fundamental question of “what distinguishes systems with simple dy-

namics from systems with chaotic dynamics?” can only be answered if we can

correspond certain types of trajectories to physically observable processes. We

began the classification with the study of quasiperiodic trajectories (Chap. 4 in

the first part of this book). Even though these trajectories are non-rough, they

were shown to model adequately such phenomena as beats and modulations.
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Quasiperiodic trajectories are a special case of Poisson-stable trajectories.

The latter plays one of the leading roles in the theory of dynamical systems

as they form a large class of center motions in the sense of Birkhoff (Sec. 7.2).

Birkhoff had partitioned the Poisson-stable trajectories into a number of sub-

classes. This classification is schematically presented in Sec. 7.3. Having chosen

this scheme as his base, as early as in the thirties, Andronov had undertaken

an attempt to collect and correlate all known types of dynamical motions with

those observable from physical experiments. Since his arguments were based

on the notion of stability in the sense of Lyapunov for an individual trajectory,

Andronov had soon come to the conclusion that all possible Lyapunov-stable

trajectories are exhausted by equilibrium states, periodic orbits and almost-

periodic trajectories (these are quasiperiodic and limit-quasiperiodic motions

in the finite-dimensional case).

Thus, it appeared naturally to assume that every interesting dynamical

regime possesses a discrete frequency spectrum. In this connection, it is

curious to note that Landau and Hopf had proposed quasiperiodic motions

with a sufficiently large number of independent frequencies as the mathema-

tical image of hydrodynamical turbulence (the number of the frequencies was

supposed to increase to infinity as some structural parameter, such as the

Reynolds number, increases).

All other Poisson-stable trajectories are unstable in the sense of Lyapunov.

How can such trajectories be of any use in dynamics? The answer was found

nearly 30 years later. For the first time, the significance of a stable limit set

consisting of individually unstable trajectories for explaining the complex and

chaotic behavior of nonlinear dynamical processes was recognized by Lorenz

in 1963 [87].

In the rough case an analysis of the structure of such a limit set (called

a quasiminimal set, which is defined as the closure of an unclosed Poisson-

stable trajectory) may be performed using Pugh’s closing lemma. The main

conclusion that follows from this analysis (see Sec. 7.3) is that periodic orbits

are dense in a rough quasiminimal set. In particular, we will see that the

number of periodic orbits is infinite. Systems possessing such limit sets are

called systems with complex dynamics.

A more vivid characteristics of systems with complex behaviors is the

presence of a Poincaré homoclinic trajectory, i.e. a trajectory which is

biasymptotic to a saddle periodic orbit as t→ ±∞. The existence of a homo-

clinic orbit which lies at the transverse intersection of the stable and unstable
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invariant manifolds of the saddle periodic orbit implies the existence of in-

finitely many other saddle periodic orbits in the phase space (Sec. 7.5).

However, rough systems (both types — with simple and complex dynamics)

with dimension (of the phase space) greater than two are not dense in the space

of dynamical systems. In fact, it turns out that a key role must have been given

to non-rough attracting limit sets with unstable behaviors in their trajectories.

An example of such a set is the Lorenz attractor which occurs in a variety

of models. The wild spiral attractor [153] is another fascinating example.1

The similarity between both strange attractors is that none contains stable

periodic orbits. The difference between them is that all Poincaré homoclinic

orbits in the Lorenz attractor are rough, whereas the featuring property of the

wild attractor is the coexistence of rough and non-rough Poincaré homoclinic

orbits due to homoclinic tangencies. The similarity is that both attractors

are “concentrated” on a rough equilibria state which is a saddle in the case

of the Lorenz attractor, and a saddle-focus in the case of the wild attractor.

Among other features of models with such strange attractors, we may single

out the existence of regions in the parameter space where the parameter values

corresponding to homoclinic loops to the equilibrium state are dense.

A complete understanding of such complex phenomena is impossible

without a thorough knowledge of basic bifurcations, both local and global.

General aspects of this theory are reviewed in Chap. 8. We begin the analysis

with the simplest non-rough systems in the two-dimensional case, following

the pioneering works by Andronov and Leontovich. They carried out a

systematic classification of all principal bifurcations of limit cycles on the plane

of which there are four sub-types: namely, the birth of a limit cycle from:

(1) a simple weak focus;

(2) a simple semistable limit cycle;

(3) a separatrix loop to a simple saddle-node; and

(4) a separatrix loop to a saddle at which the divergence of the vector field

is non-zero.

The Andronov–Leontovich classification employs an additional notion of

the so-called degree of non-roughness. A further development of the theory

1The spiral-like shape of this attractor follows from the shape of homoclinic loops to a
saddle-focus (2, 1) which appear to form its skeleton. Its wildness is due to the simultaneous
existence of saddle periodic orbits of different topological type and both rough and non-rough
Poincaré homoclinic orbits.
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had taken yet another direction, namely by selecting bifurcation sets of

codimension one for primary bifurcations, and of arbitrary (though finite)

codimension in the general case. Moreover, even though all two-dimensional

flows on a connected component of a bifurcation surface of a given finite

codimension are all topologically equivalent (Leontovich–Mayer theorem), this

is no longer true in the multi-dimensional case.

This result is due to Palis, who had found that two-dimensional diffeomor-

phisms with a heteroclinic orbit at whose points an unstable manifold of one

saddle fixed point has a quadratic tangency with a stable manifold of another

saddle fixed point can be topologically conjugated locally only if the values

of some continuous invariants coincide. These continuous invariants are called

moduli. Some other non-rough examples where moduli of topological conju-

gacy arise are presented in Sec. 8.3.

Surprisingly, even non-rough systems of codimension one may have in-

finitely many moduli. Of course, since the models of nonlinear dynamics are

explicitly defined dynamical systems with a finite set of parameters, this cre-

ates a new obstacle which the classical bifurcation theory has not run into.

Although the case of homoclinic loops of codimension one does not introduce

any principal problem, nevertheless codimensions two and higher are much less

trivial as, for example, in the case of a homoclinic or heteroclinic cycle includ-

ing a saddle-focus where the structure of the bifurcation diagrams is directly

determined by the specific values of the corresponding moduli.

Therefore, Andronov’s approach (Sec. 8.4) for studying dynamical mod-

els has to be corrected in cases where a complete bifurcation analysis may

not be possible without moduli. We note, however, that if some fine delicate

phenomena may be ignored, or if the problem is restricted to the analysis of

non-wandering orbits like equilibrium states, periodic and quasiperiodic mo-

tions, a study of the main bifurcations in systems with simple dynamics still

remains realistic within the framework of finite-parameter families under cer-

tain reasonable requirements (Sec. 8.4).

We note parenthetically that the situation becomes drastically different

for the systems with complex dynamics. In the majority of cases (at least

in those cases where homoclinic tangencies appear) the introduction of the

moduli is inexorable because they serve as the essential parameters governing

the bifurcations (see [63]).

Although the theory of the typical bifurcations of limit cycles in

two-dimensional systems was created by Andronov and Leontovich in the
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thirties,2 a systematic development of the bifurcation theory of periodic orbits

and equilibrium states in multi-dimensional systems was initiated only after

their results became available to the scientific community (the work of Hopf in

1942 was, perhaps, the only exception).

A straightforward generalization of two-dimensional bifurcations was deve-

loped soon after. So were some natural modifications such as, for instance, the

bifurcation of a two-dimensional invariant torus from a periodic orbit. Also it

became evident that the bifurcation of a homoclinic loop in high-dimensional

space does not always lead to the birth of only a periodic orbit. A question

which remained open for a long time was: could there be other codimension-

one bifurcations of periodic orbits? Only one new bifurcation has so far been

discovered recently in connection with the so-called “blue-sky catastrophe” as

found in [152]. All these high-dimensional bifurcations are presented in detail

in Part II of this book.

In Chaps. 9 and 10 we consider structurally unstable equilibrium states and

periodic orbits. The bifurcations of these limit sets are studied in Chap. 11.

These three chapters belong to a theory of local bifurcations. The results

with local bifurcations are well presented in the literature and this theory

continues to develop rapidly. We therefore restrict ourselves here to a detailed

study of the basic cases. First of all, for a bifurcating equilibrium state whose

characteristic exponents do not lie on the imaginary axis, we assume that they

lie strictly to the left of it. On the imaginary axis we assume that there is

either a single zero exponent,3 or a complex-conjugate pair of pure imaginary

ones. Analogous assumptions are made in the case of periodic motions: the

multipliers which do not lie on the unit circle must lie inside it, and those on

the unit circle consist of a single multiplier equal to +1, or −1, or a complex-

conjugate pair e±iϕ, 0 < ϕ < π. The corresponding bifurcations in these cases

are sufficiently simple, so wherever it is possible we do not impose restrictions

on the nonlinear terms.

The reason for our assumption on the spectrum of characteristic exponents

is quite obvious: we focus special attention on the problem of the loss of

stability of equilibrium states and periodic motions and on the bifurcations

accompanying the loss of stability. It is clear that these problems are a primary

subject of nonlinear dynamics.

2This was reported in the preface of the first edition of the book “The Theory of Oscil-
lations” by Andronov, Vitt and Khaikin (which was printed without the name of Vitt in
1937).

3The case of a double-zero characteristic exponent is partly considered in Sec. 13.2.
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Of course, the cases of higher degeneracies in the linear part are also very

interesting; for example, an equilibrium state with three characteristic expo-

nents 0, ±iω, or with two pairs of purely imaginary exponents ±iω1, ±iω2,

etc. In such cases of codimension two it is typical that the associated (trun-

cated) normal form reduces to a two-dimensional system with a finite number

of parameters. A systematic study of these normal forms is presented in [21,

40, 64, 82].

One must bear in mind, however, that a truncated normal form does not

always guarantee a complete reconstruction of the dynamics of the original

system. For instance, when the truncated normal forms possess additional

symmetries, these symmetries are, in principle, broken if the omitted higher-

order terms are taken back into account, and this can even lead to an onset

of chaos in some regions of the parameter space. These regions are extremely

narrow near a bifurcation point of codimension two but their size may expand

rapidly as we move away from the bifurcation point over a finite distance.

The significance of higher degeneracies (starting from codimension three)

in the linear part is that the effective normal forms become three-dimensional,

and may, as a result, exhibit complex dynamics, the so-called instant chaos,

even in the normal form itself. Such examples include the normal forms for a

bifurcation of an equilibrium state with a triplet of zero characteristic expo-

nents, and a complete or incomplete Jordan block, in which there may be a

spiral strange attractor [18], or a Lorenz attractor [129], respectively (the latter

case requires an additional symmetry). Since we will focus our considerations

only on simple dynamics, we do not include these topics in this book.

The key methods in our presentation of local bifurcations are based on the

center manifold theorem and on the invariant foliation technique (see Sec. 5.1.

of Part I). The assumption that there are no characteristic exponents to the

right of the imaginary axis (or no multipliers outside the unit circle) allows us

to conduct a smooth reduction of the system to a very convenient “standard

form.” We use this reduction throughout this book both in the study of local

bifurcations on the stability boundaries themselves and in the study of global

bifurcations on the route over the stability boundaries (Chap. 12).4 These

4In the general case where there are both stable and unstable characteristic exponents, or
stable and unstable multipliers in the spectrum, the local bifurcation problem does not cause
any special difficulties, thanks to the reduction onto the center manifold. Consequently, the
pictures from Chaps. 9–11 will need only some slight modifications where unstable directions
replace stable ones, or be added to existing directions in the space. However, the reader must
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global bifurcations are related to the fact that in contrast to an equilibrium

state which always persists on any boundary of its stability region, a periodic

orbit may not exist on the stability boundary. In particular, a periodic orbit

may disappear via one of the following scenarios:

(1) it shrinks to an equilibrium state;

(2) a saddle-node equilibrium state appears suddenly on it;

(3) it adheres into a homoclinic loop to a saddle equilibrium state; and

(4) it undergoes a blue-sky catastrophe, when its period and length both

become infinite when it approaches a stability boundary. In contrast to

homoclinic bifurcations, no equilibrium state is involved in a blue-sky

catastrophe.

In Chap. 12 we will study the global bifurcations of the disappearance of

saddle-node equilibrium states and periodic orbits. First, we present a multi-

dimensional analogue of a theorem by Andronov and Leontovich on the birth

of a stable limit cycle from the separatrix loop of a saddle-node on the plane.

Compared with the original proof in [130], our proof is drastically simplified

due to the use of the invariant foliation technique. We also consider the case

when a homoclinic loop to the saddle-node equilibrium enters the edge of the

node region (non-transverse case).

The bifurcation of a separatrix loop of a saddle-node was discovered by

Andronov and Vitt [14] in their study of the transition phenomena from syn-

chronization to beating modulations in radio-engineering. Specifically, they

had studied the periodically forced van der Pol equation

ẍ− µ(1− x2)ẋ+ ω2

0
x = µA sinωt ,

where µ ¿ 1 and ω0 − ω ∼ µ. In the associated averaged equation, they

showed the existence of the saddle-node bifurcation which explained the sim-

ple transition from a stable equilibrium state to a periodic motion. However,

the question of the correspondence between the limit sets of the averaged

equation and those of the original one was not solved then. Andronov and

Vitt returned to this problem in their succeeding paper [15] where, using the

method of a small parameter by Poincaré, they proved the correspondence be-

tween the rough equilibrium state of an averaged system and a periodic orbit

be aware that since a reduction to the standard form is not always smooth in this general case,
it cannot be applied in a straightforward way to the analysis of certain global bifurcations
(such as the disappearance of saddle-saddle equilibria or saddle-saddle periodic orbits).
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of the original system. Later on, Krylov and Bogolyubov [81] proved the corre-

spondence between the rough periodic orbit in the averaged equations and the

two-dimensional invariant torus in the original system. Thus, a rigorous ex-

planation of the transition from synchronization to modulations in the original

system requires a study of the bifurcation of the possible birth of an invariant

torus at the disappearance of a saddle-node periodic orbit.

The general setting of the problem of global bifurcations on the disappear-

ance of a saddle-node periodic orbit is as follows. Assume that there exists a

saddle-node periodic orbit and that all trajectories which tend to this periodic

orbit as t → −∞ also tend to it as t → +∞ along some center manifold. In

other words, assume that the unstable manifold W u of the saddle-node re-

turns to the saddle-node orbit from the side of the node region. In this case,

either:

(1) Wu is a two-dimensional invariant manifold such as a torus, or a Klein

bottle, or

(2) Wu is not a manifold.

If the system has a global cross-section (which always exists when we treat a

periodically forced autonomous system), the unstable manifold W u will only

be a torus. The intersection of W u with the cross-section is a closed curve

which is invariant under the Poincaré map. Consequently, the following two

cases are possible:

(1) the curve is smooth, and

(2) the curve is non-smooth.

If the curve is smooth when the saddle-node disappears, a closed attracting

invariant curve remains on the cross-section. This result is due to Afraimovich

and Shilnikov [3]. If the invariant curve is non-smooth, the situation becomes

essentially more complicated, because the disappearance of the saddle-node

may now lead the original system out of the Morse–Smale class, i.e. the sys-

tem may exhibit complex structures. Afraimovich and Shilnikov discovered

if the so-called “big lobe” or “small lobe” conditions are satisfied, then there

exists a sequence of parameter intervals corresponding to the occurrence of

complex dynamics. This result was subsequently improved by Newhouse,

Palis and Takens [97] who proved that there exists a sequence of parameter

values corresponding to a transverse homoclinic orbit (and, hence, there

always exists a sequence of intervals corresponding to complex dynamics),
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without using the big lobe condition but restricted to one-parameter families

of a special kind. An analogous result for this bifurcation for general one-

parameter families is also obtained in [151] where it is shown that if the big

lobe condition is satisfied, then chaos exists for all (small) parameter values

just after a saddle-node’s disappearance. On the contrary, if this condition

is not satisfied, then intervals of complex dynamics and those exhibiting only

simple dynamics (a continuous invariant curve exists) must alternate on the

parameter axis.

Note that the effect of alternating zones of simple and complex behavior

was discovered for the first time by van der Pol [154] in his experiments on the

periodic forcing of a lamp generator (this effect occurs when one tunes a radio,

and a characteristic noise is heard while moving from one station to another).

The first theoretical explanation was given by Cartwright and Littlewood [36]

for the van der Pol equation.

We will present in Sec. 12.2 a summary of results for the case where the

unstable manifold W u of the saddle-node is homeomorphic to a torus along

with the proof of a theorem on the persistence of the invariant torus in the

smooth case. There, we will also develop a general theory for an effective

reduction of the problem to a study of some family of endomorphisms (smooth

non-invertible maps) of a circle.

When a system does not have a global cross-section, the unstable manifold

Wu of the saddle-node may also be a Klein bottle (if the system is defined in

Rn with n ≥ 4). If the Klein bottle is smooth at the bifurcation point, it will

persist after the disappearance of the saddle-node. For topological reasons, a

pair of periodic orbits will always exist on the Klein bottle such that the length

of both orbits will increase to infinity while approaching the event of the sud-

den appearance of the original saddle-node. Generically, these periodic orbits

will change stability infinitely many times via a forward and backward period-

doubling bifurcations. If the Klein bottle is non-smooth at the bifurcation

point, then the big lobe or the small lobe conditions should be applied. The

former guarantees complex dynamics for all small values of the parameter be-

yond the demise of saddle-node. In contrast, the small lobe condition can only

guarantee the existence of a sequence of intervals of parameter values where

complex dynamics occurs. Note that unlike the case where W u is homeomor-

phic to a torus, in the case of a non-smooth Klein bottle the dynamics may be

simple for all small parameter values when the small lobe condition is not satis-

fied (the case of a “very small lobe”). These results are presented in Sec. 12.3.
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A totally different situation becomes possible in the case where the sys-

tem does not have a global cross-section, and when W u is not a manifold.

In this case (Sec. 12.4), the disappearance of the saddle-node periodic orbit

may, under some additional conditions, give birth to another (unique and sta-

ble) periodic orbit. When this periodic orbit approaches the stability bound-

ary, both its length and period increases to infinity. This phenomenon is

called a blue-sky catastrophe. Since no physical model is presently known

for which this bifurcation occurs, we illustrate it by a number of natural

examples.

Note that in the n-dimensional case, where n ≥ 4, other topological

configurations of W u may be realized. Such saddle-node bifurcations will

definitely lead the system out of the class of systems with simple dynam-

ics. For example, it is shown in [139, 152] that a hyperbolic attractor of the

Smale–Williams type may appear just after the disappearance of a saddle-node

periodic orbit.5

Another typical codimension-one bifurcation (left untouched in this book)

within the class of Morse–Smale systems includes the so-called saddle-saddle

bifurcations, where a non-rough saddle equilibrium state with one zero char-

acteristic exponent (the others lie in both left and right half-planes) coalesces

with another saddle having a different topological type. If, in addition, the

stable and unstable manifolds of the saddle-saddle point intersect each other

transversely along some homoclinic orbits, then as the bifurcating point dis-

appears, saddle periodic orbits are born from the homoclinic loops. If there

is only one homoclinic loop, then only one periodic orbit is born from it, and

respectively, this bifurcation does not lead the system out of the Morse–Smale

class. However, if there are more than one homoclinic loops, a hyperbolic limit

set with infinitely many saddle periodic orbits will appear after the saddle-

saddle vanishes [135].

A similar effect occurs when a saddle-saddle periodic orbit (with one

multiplier equal to 1 and the rest of the multipliers both inside and outside

of the unit circle) disappears. If the stable and unstable manifolds of the

saddle-saddle periodic orbits intersect across two (at least) smooth tori, then

the disappearance of such a periodic orbit is followed by the birth of a limit

set in which an infinite set of smooth saddle invariant tori is dense [6].

5A more general case is also considered in [139] concerning the disappearance of a saddle-
node torus and followed by the appearance of Anosov attractors and multi-dimensional
solenoids.
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In Chap. 13 we will consider the bifurcations of a homoclinic loop to a

saddle equilibrium state. We start with the two-dimensional case. First of

all, we investigate the question of the stability of the separatrix loop6 in the

generic case (non-zero saddle value), as well as in the case of a zero sad-

dle value. Next, we elaborate on the cases of arbitrarily finite codimensions

where the so-called Dulac sequence is constructed, which allows one to deter-

mine the stability of the loop via the sign of the first non-zero term in this

sequence.

In the case of a non-zero saddle value, we present the classical result by

Andronov and Leontovich on the birth of a unique limit cycle at the bifurcation

of the separatrix loop. Our proof differs from the original proof in [9] where

Andronov and Leontovich essentially used the topology of the plane. However,

following Andronov and Leontovich we present our proof under a minimal

smoothness requirement (C1).

The case of zero saddle value was considered by E. A. Leontovich in 1951.

Her main result is presented in Sec. 13.3, rephrased in somewhat different

terms: in the case of codimension n (i.e. when exactly the first (n−1) terms in

the Dulac sequence are zero) not more than n limit cycles can bifurcate from

a separatrix loop on the plane; moreover, this estimate is sharp.

In the same section we give the bifurcation diagrams for the codimension

two case with a first zero saddle value and a non-zero first separatrix value

(the second term of the Dulac sequence) at the bifurcation point. Leontovich’s

method is based on the construction of a Poincaré map, which allows one to

consider homoclinic loops on non-orientable two-dimensional surfaces as well,

where a small-neighborhood of the separatrix loop may be a Möbius band.

Here, we discuss the bifurcation diagrams for both cases.

The bifurcations of periodic orbits from a homoclinic loop of a multi-

dimensional saddle equilibrium state are considered in Sec. 13.4. First, the

conditions for the birth of a stable periodic orbit are found. These condi-

tions stipulate that the unstable manifold of the equilibrium state must be

one-dimensional and the saddle value must be negative. In fact, the precise

theorem (Theorem 13.6) is a direct generalization of the Andronov–Leontovich

theorem to the multi-dimensional case. We emphasize again that in compari-

son with the original proof due to Shilnikov [130], our proof here requires only

the C
1-smoothness of the vector field.

6Only one-sided stability is naturally considered.
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We consider next the homoclinic bifurcation of the saddle whose unsta-

ble manifold is still one-dimensional, but the saddle value is now assumed to

be positive. Unlike the case of the negative saddle value, here we need some

additional non-degeneracy conditions to be imposed on the system. These

conditions, in fact, imply the existence of a stable two-dimensional invariant

C
1-manifold in the system, which is either a cylinder or a Möbius band, de-

pending on the sign of the so-called separatrix value. Hence, our problem is

reduced, essentially, to the two-dimensional case considered in Sec. 13.2. Since

this problem is a particular case of a more general problem (the case of the

multi-dimensional unstable manifold) considered in Sec. 13.5, we focus more

on the geometry underlying the result. Such an approach is relevant to the

study of the Lorenz attractors, as well as some other homoclinic bifurcations

of higher codimensions.

We end this section with a consideration of the homoclinic loop to a saddle-

focus whose unstable manifold is one-dimensional. It is shown that when the

saddle value is positive, infinitely many saddle periodic orbits coexist near such

a homoclinic loop of the saddle-focus (Theorem 13.8).

The existence of complex dynamics near a homoclinic loop to a saddle-focus

was discovered by L. Shilnikov for the three-dimensional case in [131]. Sub-

sequently, the four-dimensional case7 was considered in [132]; and the general

case in [136].

In Sec. 13.5 we consider the bifurcation of the homoclinic loop of a

saddle without any restrictions on the dimensions of its stable and unstable

manifolds. We prove a theorem which gives the conditions for the birth of a

single periodic orbit from the loop [134], and also formulate (without proof)

a theorem on complex dynamics in a neighborhood of a homoclinic loop to

a saddle-focus. Here, we show how the non-local center manifold theorem

(Chap. 6 of Part I) can be used for simple saddles to reduce our analysis to

known results (Theorem 13.6).

In the case of the saddle-focus, the result of [136] in its full generality cannot

be obtained by a reduction to any invariant manifold. However, generically

(i.e. under some simple non-degeneracy conditions) the problem can be reduced

to a three- or four-dimensional invariant manifold [120, 150].

Section 13.6 discusses three main cases of codimension-two bifurcations of

a homoclinic loop to a saddle. These cases were selected by Shilnikov in [138]

7Here, the saddle-focus has two pairs of complex-conjugate characteristic exponents and
the divergence of the vector field is non-vanishing at the saddle-focus.
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for explaining the immediate onset of the Lorenz attractor from a homoclinic

butterfly. Later, these bifurcations attracted much interest (see references in

Sec. 13.6). Here we consider a multi-dimensional case of a homoclinic loop to

a saddle with zero saddle value and those cases of the so-called “orbit-flip”

and “inclination-flip” bifurcations which do not lead to complex dynamics.

Although the corresponding bifurcation diagrams are widely known (see [126,

77, 129] for the inclination-flip case, [119] for the orbit-flip case, and [99, 38,

77, 65] for the case of zero saddle-value), an explicit and complete proof is

published here, probably for the first time.

In Sec. 13.7 we describe two other cases of codimension two, namely the

bifurcations of a homoclinic-8 and a heteroclinic cycle with two saddles. Both

cases are considered within the Morse–Smale class (we require the saddle-

value to be negative in the case of the homoclinic-8; in the case of the hete-

roclinic cycle, either the saddle values must be negative or the conditions which

guarantee the existence of a two-dimensional invariant manifold must be

satisfied). The results surveyed in this section are extracted from [148, 151,

50, 149] for the homoclinic-8, and [121, 122, 123, 124, 125] for the hetero-

clinic cycles. Some other results on heteroclinic connections with a different

topology [34, 35] are also presented. The structure of bifurcation diagrams

in the case where two saddle-foci are involved is much more complicated in

contrast to the case of the connection between two saddles (even though the

dynamics remains simple in both cases). According to [158], the fine structure

of the bifurcation diagrams for the saddle-focus case is sensitive to arbitrarily

small changes of the continuous topological invariants (moduli) discussed in

Sec. 8.3.

The last chapter focuses on the general problems of the transition over

the stability boundaries of equilibrium states and periodic orbits. These ques-

tions have an immediate significance for the subject of nonlinear dynamics,

specially in cases where changes in the parameters of a working device may push

it out of its stability region, or when the control parameters are deliberately

chosen as close to the stability boundary as possible in order to achieve maximal

performance. For stationary regimes, the corresponding problems were

addressed by Bautin in his monograph first published in 1949. He classi-

fied stability boundaries as either safe or dangerous. When a safe boundary is

crossed, the representative phase point does not leave a small neighborhood of

the bifurcating equilibrium state or periodic orbit, although the latter becomes

unstable. In the case of a dangerous boundary, the phase point blows out from
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a small neighborhood of the bifurcating trajectory. Evidently, a local analysis

becomes inadequate in the case of dangerous boundaries: one must investigate

here how the unstable sets behave at the critical moment. For instance, if a

stable limit cycle adheres to a homoclinic loop of a saddle, it becomes crucial

to know where the other separatrix goes to since its ω-limit set will be the

new dynamical regime of the system. In other cases, it turns out, however,

that there may be more than one stable limit set included in the boundary of

the unstable set at the critical parameter value (if this bifurcation is within

the Morse–Smale class, these limit sets are stable equilibria or periodic orbits).

Another option embraces the so-called dynamically indefinite stability bound-

ary where a random choice of the new regime occurs as a natural dynamical

phenomenon — the dynamical uncertainty.

The number of papers and monographs on the theory of bifurcations is very

large and increasing rapidly. Some of the questions considered in this book are,

to a certain extent, reflected in other books as well (see especially the books

marked by an asterisk in the list of references). We stress, however, that in

many works, while studying global bifurcations, the assumption of smooth lin-

earization of the equations near equilibrium states and periodic orbits is very

often made only for the sake of maximal convenience. The linearization as-

sumption requires the absence of resonances, which in turn imposes an infinite

set of unnecessary additional conditions on the system (or, the number of such

assumptions, first finite, may grow very fast as the dimension of the system

grows). Therefore, any approach based on linearization will cast some doubts

on the full applicability of the theoretical results to dynamical models.8 The

methods presented in this book are free from these problems. This is achieved

by the use of techniques developed by our research group in Nizhny Novgorod.

It is applied in Chaps. 12 and 13 to non-local bifurcations. We stress that

we need only a very small degree of smoothness. This, perhaps, makes our

analysis more complicated, but it guarantees and enhances the validity and

the adequacy of our global bifurcation results. The methods presented in this

book are applicable also for systems with complex dynamics, in particular, for

systems with homoclinic tangencies [58, 59, 62], see also [100, 101].

8It happens rather often that some results which sound fine mathematically, being for-
mulated for “typical” or “generic” families of dynamical systems, when applied to a specific
problem require the verification of their stipulated conditions. It is unfair, however, to force
a researcher to consume time and computational resources only to check on conditions which
are, in fact, unnecessary.
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Chapter 7

STRUCTURALLY STABLE SYSTEMS

The qualitative theory of dynamical systems was initiated in the 19th century

by problems from celestial mechanics. The equations from celestial mechanics,

as we know, are Hamiltonian, a rather special form from a general point of

view. In essence, there was no particular need for a qualitative theory of

non-conservative systems at that time. Nevertheless, Poincaré had created a

significant part of a general theory of dynamical systems on the plane along

with its key result — the theory of limit cycles, and so had Lyapunov —

a general theory of stability. These mathematical theories were both applied

later, in 1920–1930 in connection with the invention of the radio and the further

intensive development of radio-engineering.

The dynamical regime in radio-engineering is self-oscillations. Any real

device, such as a neon bold or a vacuum tube, possesses a certain set of ad-

justable parameters. In practice, the parameter values corresponding to a

self-oscillatory regime of the same device, or of a series of similar ones, can-

not be exactly identical. Therefore, if a device exhibits repeatedly a similar

oscillation, this means that small parameter deviations within some tolerance

margins do not change the qualitative character of the process. Naturally, any

realistic mathematical model of the system must also exhibit this property of

real physical systems.

In the case where the physical system can be adequately modeled by a dy-

namical system on the plane, precise mathematical meaning can be given to

this feature of physical “robustness”, and this was done by Andronov. First

of all, he applied the Poincaré theory of limit cycles and the Lyapunov the-

ory of stability for studying modeling equations that allowed him and Vitt

to explain many real phenomena in radio-engineering. Then, he linked the

393
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notion of a stable Poincaré limit cycle with the observable periodic oscillations

which he called “self-oscillations”. Moreover, Andronov introduced the notion

of a “rough” cycle as the mathematical image of robust self-oscillation, i.e. a

cycle which persists under small smooth perturbations of the system.

However, over some parameter range, the governing parameters can cause

fundamental changes in the oscillatory regimes. For a dynamical system this

causes qualitative modifications of the phase portrait. In his perspective review

on “Mathematical problems of the theory of self-oscillations” [8], Andronov

had emphasized that the comprehensive study of bifurcations of the oscillatory

regimes requires the expansion of the notion of roughness from a stand-alone

trajectory (as a limit cycle, or an equilibrium state) onto the system as a whole.

This problem was solved by Pontryagin and himself. Below, we sketch their

theory of systèmes grossièrs, “rough” systems on a plane.

7.1. Rough systems on a plane.
Andronov Pontryagin theorem

Consider a set of two-dimensional systems on the plane defined by the equation

ẋ = X(x) , (7.1.1)

where X(x1, x2) is a C
r-smooth (r ≥ 1) function defined in a closed bounded

region G ⊂ R
2.

Let us introduce the following norm in this set

‖X‖C1 = sup
x∈G

(

‖X‖+

∥
∥
∥
∥

∂X

∂x

∥
∥
∥
∥

)

. (7.1.2)

Endowed with this norm, the set of systems becomes a Banach space which

we denote by B or BG, thereby stressing the choice of the domain G.

We can also introduce a δ-neighborhood of the system X as the set of all

systems X̃ satisfying the condition

‖X̃ −X‖C1 < δ .

Definition 7.1. A dynamical system X is said to be rough in the region G if

given ε > 0 there exists δ > 0 such that:

(1) all systems X̃ in a δ-neighborhood of X are topologically equivalent to

X; and moreover
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(2) the homeomorphism, which establishes this topological equivalence, is ε-

close to the identity, i.e. the distance between two corresponding points

is less than ε.

Like it was done in the original definition of roughness, it is natural to

impose some assumptions regarding the boundary ∂G of the region G: namely,

that ∂G must be a smooth closed curve without contact with the vector field1

(i.e. not tangent to it). Notice that in the case of dynamical systems on compact

smooth surfaces, the domain G is just taken to coincide with the whole surface,

so no conditions on the boundary appear.

Theorem 7.1. (Andronov Pontryagin) A system X is rough in the region

G, if and only if,

(1) no equilibrium state has a characteristic exponent on the imaginary

axis;

(2) no periodic orbit has a characteristic multiplier on the unit circle; and

(3) no separatrix starts from one saddle and ends at another (or at the

same) saddle.

The last condition may be reformulated as the absence of homoclinic and

heteroclinic trajectories.

It follows from the above theorem that a rough system on the plane may

possess only rough equilibrium states (nodes, foci and saddles) and rough limit

cycles. As for separatrices of saddles, they either tend asymptotically to a node,

a focus, or a limit cycle in forward or backward time, or leave the region G

after a finite interval of time.

Obviously, this picture is preserved under small smooth perturbations.

Therefore, the rough systems form an open subset of BG.

Moreover, it follows from simple arguments based on the rotation of a vector

field to be presented below that, if X is a non-rough system, then given any

δ > 0 there exists a rough system X̃ which is δ-close to X. In other words, the

rough systems form a dense set in BG.

1This condition may be weakened so that a finite number of points of a quadratic contact
with the vector field can be allowed on ∂G. In such a case, the fourth condition that neither
periodic orbits nor separatrices pass through these contact points should be added to the
Andronov–Pontryagin Theorem.
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It follows immediately from the Andronov–Pontryagin theorem that a rough

system may possess only a finite number of equilibrium states and periodic

orbits in G.

Equilibrium states, periodic orbits and separatrices of saddles are special

trajectories. Together they determine a scheme — a complete topological

invariant (see Chap. 1 for details). One may easily conclude that all systems

δ-close to a given rough system have the same scheme.

The necessity of conditions (1) and (2) of the Andronov–Pontryagin theo-

rem is obvious. Indeed, if a system is rough in G, it must remain rough in any

sub-region of G. Hence, by choosing a small neighborhood that contains an

equilibrium state, one concludes that the system corresponding to this equilib-

rium state must be rough too. An analogous observation also holds for rough

limit cycles.

Let us now explain why there are no separatrices which connect saddles in

rough systems.

Let us rewrite the system X in the form

ẋ = P (x, y) ,

ẏ = Q(x, y) .
(7.1.3)

Consider a special perturbed system X̃µ

ẋ = P (x, y) + µQ(x, y) ,

ẏ = Q(x, y)− µP (x, y) ,
(7.1.4)

where µ is a parameter. Observe that the equilibrium states of the system

(7.1.4) do not move when µ varies. At any other point, the angle ψ between

the phase velocity vectors of X̃µ and X is given by:

tanψ =

Q− µP

P + µQ
−
Q

P

1 +
Q− µP

P + µQ
·
Q

P

= −µ , (7.1.5)

i.e. the angle ψ is constant.

Due to this feature, the family Xµ is called a rotation of the vector field X

through a constant angle. This angle is positive if µ > 0 or negative if µ < 0,

respectively. Hence, if at µ = 0, a separatrix of one saddle is connected to
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(a) (b) (c)

Fig 7.1.1. (a) A non-transverse heteroclinic connection between two saddles in R2 at µ = 0

is split in two ways: (b) µ < 0 and (c) µ > 0.

another saddle [See Fig. 7.1.1(a)], then for an arbitrarily small non-zero µ, this

connection will be split in either way shown in Figs. 7.1.1(b) and 7.1.1(c).

Similarly, if there were a separatrix loop to a saddle at µ = 0, it would be

split for some non-zero µ, as shown in Fig. 7.1.2. We see that an arbitrarily

small smooth perturbation of the vector field will modify the phase portrait of

a system with a homoclinic loop or a heteroclinic connection; this obviously

means that such a system is non-rough.

The proof of sufficiency of the conditions of the Andronov–Pontryagin theo-

rem relies heavily on the Poincaré–Bendixson theory which gives a classification

of every possible type of trajectories in two-dimensional systems on the plane

(see Sec. 1.3). We refer the reader to the books [11, 12] for further details.

The Poincaré–Bendixson theory is also applicable for systems on a cylinder,

as well as on a two-dimensional sphere. As for other compact surfaces like tori,

pretzels (spheres with a handle) etc., there may exist vector fields that possess,

besides equilibria and limit cycles, unclosed Poisson-stable trajectories as well.

Of special interest in nonlinear dynamics are the flows on a two-dimensional

torus. We consider the systems on a torus which have no equilibrium states
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(a) (b) (c)

Fig 7.1.2. (a) A homoclinic loop to a saddle is structurally unstable. A separatrix behavior

(b) prior and (c) after the loop.

and which can be reduced to an orientable diffeomorphisms of the circle in the

form

θ̄ = θ + f0(θ) ≡ f(θ) mod 2π .

By introducing the metrics

dist (f1, f2)C1 = max
θ

(‖f1(θ)− f2(θ)‖+ ‖f
′

1
(θ)− f ′

2
(θ)‖)

the set of these diffeomorphisms comprises a metric space where (in view of

Mayer’s theorem from Chap. 4) rough diffeomorphisms are dense.

Rough systems are also dense in the space of systems on two-dimensional

orientable compact surfaces for which the necessary and sufficient conditions of

roughness are analogous to those in the Andronov–Pontryagin theorem. The

theory of such systems was developed by Peixoto [107]. The key element in

this theory proves the absence of unclosed Poisson-stable trajectories in rough

systems (they may be eliminated by a rotation of the vector field).

It must be noted here that Peixoto employs a different definition of rough-

ness. In the case of systems on a plane, it is to be redefined in the following

way:

Definition 7.2. A system X is said to be structurally stable in region G if

there exists δ > 0 such that if ‖X − X̃‖C1 < δ, then X and X̃ are topologically

equivalent.

Compared to the definition of rough systems, the above definition has an

advantage: it follows immediately that structurally stable systems form in
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an open set. The analogous claim for rough systems follows only from the

Andronov–Pontryagin theorem. In fact, Peixoto showed that the necessary

and sufficient conditions of roughness in the sense of Definition 7.1 coincide

with the necessary and sufficient conditions in the sense of Definition 7.2 for

two-dimensional systems.

The notion of roughness/structural stability can be extended to the high-

dimensional case without any problem. However, some other problems do arise

here when we need to find out explicitly the necessary and sufficient conditions

for roughness. We have remarked that Andronov and Pontryagin, as well as

Peixoto, had used the classification of proper two-dimensional systems in an

essential way. So, we must stop here to get acquainted with some basic notions

and facts from the general theory of dynamical systems.

7.2. The set of center motions

Back to radio-engineering in the 1920’ and the 1930’s, we may presume that

there still remained problems which would have required modeling in terms

of dynamical systems of order higher than two. We may wonder what kind

of oscillatory motions other than periodic ones might have been observed in

complex physical systems and which mathematical image could be adequately

associated to them. To settle this question, one must have a comprehensive

classification of all possible trajectories. Its first stage begins with the selection

of wandering and non-wandering points. The definition of points of both sorts

was given in Chap. 1 for systems on compact sets. We will consider below the

system

ẋ = X(x) ,

where X ∈ C
1 in a bounded and closed region G ⊂ R

n whose boundary

consists of smooth (n−1)-dimensional surfaces without contact with the vector

field, which is oriented inwards, i.e. entering G. Hence, for any point x0 ∈ G

a positive semi-trajectory x(t, x0) is defined from any starting point x0 at

t = 0.

Definition 7.3. A point x0 is said to be wandering if it has a neighborhood U

such that for some T > 0 and for all t ≥ T

U ∩ x(t, U) = ∅ .
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Here, as before,

x(t, U) =
⋃

ξ∈U

x(t, ξ) .

It follows from the above definition that each point ξ ∈ U is wandering too.

Therefore, the set of all wandering points is open. Besides, it is easy to see

that if x0 is a wandering point, then the point x(t, x0) is also wandering for

any t. Hence, one may call x(t|t≥0; x0), a positive wandering semi-trajectory.

Moreover, if x(t, x0) ∈ G for all t < 0, i.e. if a negative semi-trajectory passing

through the point x0 lies entirely in G, then x(t, x0)t<0 will also consist of

wandering points. Hence a whole trajectory x(t, x0) may be called wandering.

For obvious reasons, a wandering (semi-) trajectory is unlikely to be associated

with the type of motion we have been looking for.

Therefore we shall focus on non-wandering points. Even from the name,

one may anticipate a certain “recurrence”.

Definition 7.4. A point x0 is called non-wandering if for any neighborhood

U of x and for any T > 0 there exists t̄ ≥ T such that

U ∩ x(t̄, U) 6= ∅ .

In this case, given an arbitrary sequence Tn →∞, one can find a sequence

t̄n → ∞, such that U returns to itself infinitely many times. One may easily

see that if a point x0 is non-wandering, then x(t, x0) ∈ G for all t ∈ (−∞,+∞),

and any point on the trajectory is non-wandering too.

Since the set of wandering points is open, its complement, which is the set

of non-wandering points, is closed. We will denote it by M1. Let us show

that it is not empty under our assumptions. First of all, notice that the set

of ω-limit points of any semi-trajectory is non-empty. This follows from the

compactness of G.

Statement 7.1. Any ω-limit point of any trajectory x(t, x0) is non-

wandering.

Proof. Let x(t, x0) be a semi-trajectory and y be its limit point. Let U be an

arbitrary neighborhood of y. Choose an arbitrarily large t̄. Since y is an ω-limit

point, one may find two arbitrarily large t1 and t2 such that y1 = x(t1, x0) ∈ U

and y2 = x(t2, x0) ∈ U . We may assume that t2 − t1 > t̄. It follows then that

x(t2 − t1, U) ∩ U 6= ∅ (this intersection contains the point y2). Therefore, y is

a non-wandering point indeed.
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The reverse statement is not true. In general, there may exist non-

wandering points which are not ω-limit points or α-limit points of any

trajectory.

Equilibrium states and periodic orbits are non-wandering trajectories. In

the former case, any neighborhood of an equilibrium state will contain it for-

ever; in the case of a periodic orbit, any of its points returns infinitely many

times to an initial neighborhood simply because of periodicity.

The central sub-class of non-wandering points are points which are stable

in the sense of Poisson. The main feature of a Poisson-stable point is not

only the recurrence of its neighborhood but the recurrence of the trajectory

itself. The definition of Poisson-stable points below is different in some ways

but equivalent to the definition given in Chap. 1.

Definition 7.5. A point x0 is said to be positively stable in the sense of

Poisson (P+-stable) if there exists a sequence tn, where tn → +∞ as n→ +∞,

such that

lim
n→+∞

x(tn, x0) = x0 .

In other words, the point x0 is an ω-limit point of its positive semi-

trajectory.

The definition of a negative Poisson stable (P−-stable) point is analogous

to the above except that tn → −∞ here. In the case where the point x0 is

both P+-stable and P−-stable, it is said to be stable in the sense of Poisson.

One can see that if x0 is P+ (P−)-stable, its trajectory is P+ (P−)-stable

too. Hence, we may generalize the notion of the Poisson stability over semi-

trajectories and whole trajectories.

It is important to distinguish the P+, P− and P -stable trajectories from

each other. Indeed, consider the example from Sec. 1.2 of a system on a two-

dimensional torus which possesses an equilibrium state with a P+-trajectory

which is α-limiting to the equilibrium state and a P−-trajectory which is ω-

limiting to it; all other trajectories on the torus are Poisson-stable, and cover

it densely.

Let us return to the setM1 of non-wandering points. We have established

that it is non-empty, closed and invariant (consists of whole trajectories). The

setM1 may be regarded as the phase space of a dynamical system, and there-

fore one may repeat the procedure and construct the set M2 consisting of

non-wandering points inM1. Clearly, M2 ⊆ M1. Just likeM1, the setM2
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is also a compact invariant set. IfM2 =M1, thenM1 is said to be the cen-

ter or the set of center motions. This is exactly the situation we have when

considering structurally stable two-dimensional systems.

In the general case, we have

M1 ⊃M2 ⊃ · · · ⊃ Mk ⊃ · · · .

If Mk =Mk+1 beginning with some k, then Mk is also called a center, and

k is called the ordinal number of center motions.

IfMk 6=Mk+1 for any k, then we may introduce the set

Mω =
∞⋂

k=1

Mk .

which is the intersection of closed invariant sets. Therefore, the set Mω is

closed and invariant as well. Indeed, if x0 ∈ Mω, then x0 ∈ Mk for any k.

AllMk are invariant, and therefore x(t, x0) ∈Mk for all t and any k, whence

x(t, x0) ∈Mω.

We can repeat the above procedure to obtain a transfinite sequence of

closed sets

M1 ⊃ · · · ⊃ Mk ⊃ · · · ⊃ Mω ⊃ · · · ⊃ Mα ⊃ · · · .

It is known (from Cantor’s theorem for finite-dimensional sets) that one can

find a countable α such thatMα =Mα+1 = · · · , i.e. the process terminates.

In such a case,Mα is a center where α is the ordinal number. If α is finite, it

is called a transfinite ordinal number of the first class; if α ≥ ω it is called a

transfinite ordinal number of the second class.

It seems bizarre, but dynamical systems with a transfinite ordinal number

α of the second class do exist. Mayer [93] had proved that for any given

transfinite α of the second class, there exists a system whose ordinal number

of center motions exceeds this transfinite number.

For rough systems on a plane, the Andronov–Pontryagin theorem gives

α = 1. The case where α = 2 takes place in systems which has a loop of

separatrix Γ to a saddle O, the loop is the limit trajectory for nearby orbits

(see Fig. 7.2.1) and is non-wandering. Here,M1 = Γ∪O. On the second step

of the above procedure, one obtainsM2 = O, i.e. the center of the region G is

minimized to the equilibrium state.
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Fig. 7.2.1. The homoclinic loop to saddle is an ω-limit for a trajectory from the interior

region.

Why is the center so remarkable? First, this is the set about which all

trajectories of the system linger much longer than elsewhere, most of the time.

Second, this center is characterized by Birkhoff’s theorem.

Theorem 7.2. (Birkhoff) The Poisson-stable trajectories are dense every-

where in the set of center motions.

This theorem resembles the known theorem by Poincaré on recurrence of

the regions for the case of conservative systems, i.e. for volume preserving flows

and diffeomorphisms provided the volume of the phase space is finite. Strictly

speaking, that was the goal which Birkhoff wished to achieve while creating

the theory of center motions; namely, to single out the set of trajectories from

a dissipative system, on which the system would behave like a conservative

one. For example, on a periodic orbit, the equation of motion in the normal

coordinates is given by θ̇ = 1. This flow preserves the length of the arc. An

analogous situation occurs on a stable invariant torus covered densely by a

quasiperiodic trajectory. For example, this is the motion described by the

equations:

θ̇ = ω1 , ϕ̇ = ω2 ,

where ω1 is not commensurable to ω2.

Finally, we remark that the reader may find deeper insights to the above

issues in the book “Dynamical Systems” by Birkhoff [31] and in the book

“Qualitative Theory of Differential Equations” by Nemytskii and Stepanov

[98].
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7.3. General classification of center motions

We have already noticed that the theory of structurally stable systems of second

order on a plane is based essentially on the theory of Poincaré–Bendixson, and

on the classification of all possible kinds of motions. Below is the diagram

suggested by Andronov which describes the general classification of motions

due to Birkhoff.

All motions

?

?

Center
?

Non-center

?

? ?

Poisson stable Poisson unstable

?

? ?

Recurrent Non-trivial

?

? ?

Almost periodic Not almost periodic

?

? ?

Quasiperiodic Non-quasiperiodic
(limit-quasiperiodic)

?

? ?

Periodic Aperiodic
(properly quasiperiodic)

?

? ?

Equilibrium states Properly periodic

In the preceding sections, we have discussed the set of center motions.

In essence, we have found that it is the closure of the set of Poisson-stable

trajectories. It does not exclude the case where the latter ones may simply be

periodic orbits. But if there is a single Poisson-stable unclosed trajectory, then

by virtue of Birkhoff’s theorem in Sec. 1.2, there is a continuum of Poisson-

stable trajectories. As for the rest of the trajectories in the center, it is known

that the set of points which are not Poisson-stable is the union of not more
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than a countable number of sets that are closed and nowhere dense in the

center. This means that the majority of trajectories in the set of center motions

consists of the Poisson-stable trajectories.

The Poisson-stable trajectories may be sub-divided into two kinds depend-

ing on whether the sequence {τk(ε)} of Poincaré return times of a P -trajectory

to its ε-neighborhood is bounded or not. Birkhoff named the trajectories of

the first kind recurrent trajectories. Such a trajectory is remarkable because

regardless of the choice of the initial point, given ε > 0 the whole trajectory

lies in an ε-neighborhood of the segment of the trajectory corresponding to a

time interval L(ε). Obviously, equilibrium states and periodic orbits are the

closed recurrent trajectories.

Let us recall next the notion of a minimal set.

Definition 7.6. A setM is called minimal if it is non-empty, closed, invariant

and contains no other subsets of the same properties.

We remark that under the above assumptions on the system and on the

region G, the minimal set always exists. It is curious that to prove their

existence Birkhoff also applied the transfinite procedure.

The relationship between a minimal set and a recurrent trajectory is con-

stituted by the following theorems.

Theorem 7.3. (Birkhoff) Any trajectory of a minimal set is recurrent.

Theorem 7.4. (Birkhoff) The closure of a recurrent trajectory is a minimal

set.

It follows from these theorems that the trajectories of a minimal set (other

than an equilibrium state or a periodic orbit) form a totality of “twins”.

The closure of an unclosed Poisson-stable trajectory whose return times

are unbounded for some ε > 0 is called a quasiminimal set. A quasiminimal

set contains, besides Poisson-stable trajectories which are dense everywhere in

it, some other invariant and closed subsets. These may be equilibrium states,

periodic orbits, non-resonant invariant tori, other minimal sets, homoclinic and

heteroclinic orbits, etc., among which a P -trajectory is wandering. This gives

a clue to why the recurrent times of the non-trivial unclosed P -trajectory are

unbounded. Furthermore, this also points out that Poisson-stable trajectories

of a quasiminimal set, due to their unpredictable behavior in time, are of
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major interest in non-transient oscillating processes having an empirical chaotic

character.

In the case of recurrent trajectories, there are certain statistics in Poincaré

return times which are “weaker” than that characterizing genuine Poisson-

stable trajectories. Nevertheless, there is a particular sub-class of recurrent

trajectories which is interesting in nonlinear dynamics. This is the class of

the so-called almost-periodic motions. The remarkable feature which reveals

the origin of these trajectories is that each component of an almost-periodic

motion is an almost-periodic function (whose analytical properties are well

studied, see for example [49, 66, 84]).

An almost periodic function is uniquely defined “in average” by a trigono-

metric Fourier series

f(t) ≈

+∞∑

n=−∞

ane
iλnt ,

where λn are real numbers. If all λn are linear combinations (with integer

coefficients) of a finite number of rationally independent elements from a basis

of frequencies ω1, . . . , ωm (see Chap. 4), then we have a particular case of

almost-periodic functions, namely quasiperiodic functions. It is correct to write

a quasiperiodic function in the form

f(t) = ϕ(ω1t, . . . , ωmt) ,

where ϕ is periodic in all its arguments, with the same period. If a k-

dimensional system of differential equations

ẋ = X(x) (7.3.1)

has a quasiperiodic solution

x(t) ≡ ϕ(ω1t, . . . , ωmt) ,

then it admits also a solution

x = ϕ(ω1t+ C1, . . . , ωmt+ Cm) ,

where C1, . . . , Cm are arbitrary constants. This means that the associated

minimal set (the closure of x(t)) is an m-dimensional invariant torus. An-

dronov and Vitt [15] had established that its dimension must meet the following

condition

m ≤ k − 1 .
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If a finite-dimensional system has an almost-periodic solution, that is not

quasi-periodic, then the coefficients λn are linear compositions of a finite num-

ber of basis frequencies ω1, . . . , ωm with rational factors. Such solutions are

called limit-quasiperiodic. For this case Pontryagin [112] had proven that the

dimension m of the minimal set must satisfy the following inequality

m ≤ k − 2 .

In particular, for a system of third order we have m = 1, i.e. its limit-

quasiperiodic solutions have the form

f(t) =

+∞∑

n=−∞

ane
irnωt

with some rational rn, so that a finite segment of the Fourier series

f(t) =
N∑

n=−N

ane
irnωt

of f(t) is some periodic function with a period tending to infinity as

N →∞.

The structure of the minimal set of a limit-quasiperiodic trajectory is a

fractal. In other words, it is characterized locally as a direct product of an

m-dimensional disk and a zero-dimensional Cantor set K. Obviously, in the

limit-periodic case, it has the form of a direct product of an interval and K.

In order to visualize the structure of the minimal set of a limit-periodic

trajectory in R
3, it is instructive to construct an object called the Wietorius-

van Danzig solenoid.

The first stage in this geometrical construction is as follows. Consider a

solid-torus Π1 ∈ R
3, where Π1 = D

2× S
1, D

2 is a two-dimensional disk and S
1

is a circle. Let us embed a similar solid-torus Π2 into Π1 so that it intersects

every disk {ϕ = constant} in Π1, where ϕ ∈ S
1 is an angular variable, in

two disjoint disks so that Π2 makes two revolutions along S1 without self-

intersections as illustrated in Fig. 7.3.1. It is also assumed that Π2 is about

twice as long as that of Π1, and four times thinner. At the second stage, we

embed a torus Π3 into Π2 in the same way as above, so that there are now four

intersections of Π3 with each disk {ϕ = constant}, two inside each previous

pair of intersections.
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Fig. 7.3.1. The second stage in constructing the Wietorius–Van Danzig solenoid.

Repeating this procedure, we obtain a sequence of solid-tori Πn such that

Πn+1 ⊂ Πn. The resulting solenoid is defined by the set

Σ =
∞⋂

n=1

Πn .

This set is closed, and Σ ∩ {ϕ = constant} is a Cantor set. Wietorius and van

Danzig showed that a flow may be defined on Σ so that Σ becomes a minimal

set of almost-periodic motions. It is apparent that they have used the notion

of almost-periodicity from a qualitative point of view.

Definition 7.7. A motion x(t) is said to be almost-periodic if for any ε > 0

there exists a value L(ε) and a countable sequence of numbers {τk(ε)} satisfying

|τk+1 − τk| < L(ε), such that

dist(x(t), x(t+ τk)) < ε , −∞ < t < +∞ . (7.3.2)

A periodic orbit, which is the special purest case of an almost-periodic

motion, admits, besides its least period τ , also any multiple kτ of τ as periods,

where k is an integer. The collection {τk} plays almost the same role for an

almost-periodic trajectory as the periods for a periodic orbit; this is why the

numbers τk(ε) are called almost-periods.

The closure of an almost-periodic trajectory contains only almost-periodic

trajectories. Moreover, the value L(ε) and the almost-periods remain the same.
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The above observation poses a basic question: what feature distinguishes

almost-periodic trajectories from recurrent ones? To answer this question, we

must introduce one more definition.

Definition 7.8. A trajectory possesses the S-property if, given ε > 0, there

exists δ > 0 such that, for any t1 and t2,

dist(x(t1, x0), x(t2, x0)) < δ ,

implies

dist(x(t+ t1, x0), x(t+ t2, x0)) < ε ,

for 0 ≤ t < +∞.

In essence, the above condition is a hidden property of uniform stability in

the Lyapunov sense.

Theorem 7.5. (Franklin, Markov) If a recurrent trajectory possesses the

S-property, then it is almost-periodic.

One of the conclusions from this theorem is that an authentic recurrent

trajectory must be unstable. A few exotic examples of dynamical systems on

some compact manifolds, called nil-manifolds, are known where all trajectories

are recurrent. Moreover, these trajectories are unstable. However, their insta-

bility is not exponential but only polynomial. In contrast to an almost-periodic

trajectory whose frequency spectrum is discrete, the spectrum of a recurrent

trajectory has in addition a continuous component. For further details see [23].

7.4. Remarks on roughness of high-order dynamical
systems

Many oscillatory regimes must be modeled by high-order dynamical systems.

As in the low-dimensional case, the equilibrium states and periodic orbits of

such systems correspond to stationary regimes and periodic oscillations, in

particular, self-oscillations. In Chap. 4, we touched upon questions related to

the description of self-modulation and multi-frequency regimes by means of

quasiperiodic motions on invariant tori. But the large variety of possible kinds

of oscillating phenomena in high-order dynamical systems is not exhausted by

the above motions alone. What mathematical image corresponds to such more



410 Chapter 7. Structurally Stable Systems

complex oscillatory behavior? Can the latter be explained via the language of

dynamical systems? In order to answer these questions, we need to reveal the

role of unclosed Poisson-stable trajectories. Meanwhile, one must bear in mind

that any mathematical idealization of an observable process must be stable in

time and robust against small smooth perturbations of the dynamical system.

In this context, the following question raised by Andronov and Vitt is

remarkable: Which P -trajectory is stable in the sense of Lyapunov? Its answer

is settled by the following theorem.

Theorem 7.6. (Markov) If a Poisson-stable trajectory is uniformly stable

in the sense of Lyapunov, then it is almost-periodic.

The proof of this theorem is presented in [98]. In essence, it is based on the

S-property only and therefore requires the additional property of uniformity

of stability.2

This result shows that an individual trajectory cannot give an adequate

image of chaotic oscillations. Looking ahead we note that all unclosed Poisson-

stable trajectories in structurally stable systems are, in fact, unstable, or more

precisely, of the saddle type.

If a P -trajectory is unstable in the sense of Lyapunov, this should imply

that each trajectory from its quasiminimal set is also unstable. Nevertheless,

this set can be attractive as a whole, and in this case it may be a mathematical

image of the complex oscillatory process that we have been seeking. However,

a clear understanding of the necessity of having such attractors in nonlinear

dynamics came years later, only in the seventies.

Let us explore the properties of the geometrical objects of our consideration

from the point-of-view of their persistence under small smooth perturbations.

Again, this is well understood in the case of equilibrium states and periodic

orbits. But what about the case when a structurally stable system has an

unclosed P -trajectory? What features does such a system possess?

We have already mentioned that a P -trajectory ϕ(t, x0) is a self-limit, i.e. it

approaches its initial point x0 arbitrarily close. It appears intuitively clear that

by the appropriate choice of a sufficiently small perturbation the perturbed

system will have a periodic orbit going exactly through the point x0. As it

2In the case of a uniform stability in the sense of Lyapunov, the sizes of both small
neighborhoods included in the definition do not depend on a choice of an initial point,
i.e. they are the same for each point on a trajectory, see Malkin [91].
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often happens in mathematics, a simply formulated statement may require a

rather non-trivial proof. This hypothesis was proven by Pugh in 1968. This

result follows from the following theorem called the closing lemma [113].

Theorem 7.7. (Closing lemma, Pugh) Let x0 be a non-wandering point

of a smooth flow. Then, arbitrarily close in C
1-topology, there exists a smooth

flow which has a periodic orbit passing through the point x0.
3

Since each point on a P -trajectory is non-wandering, this result is also

valid for points stable in the sense of Poisson. The closing lemma implies the

following meaningful corollary: a rough system with a P -trajectory possesses

infinitely many periodic orbits.

Indeed, since the original system is rough, it is topologically equivalent to

any sufficiently close system. By Theorem 7.7, this means that the original

system has a periodic orbit that goes through a point x1 near enough to x0

(it should also be noted that the smaller the perturbation, the longer the

period of the periodic orbit will be). By the same arguments, the system must

have another periodic orbit which passes through an even closer point x2, and

so on.

So, one can see that the original system with a Poisson-stable unclosed

trajectory will possess infinitely many periodic orbits ϕ(t, xk), where ϕ(0, xk) =

xk(k = 1, 2, . . .) with periods τk, such that xk → x0 and τk → +∞ as k → +∞.

Note that in this proof, we use essentially the roughness (versus structural

stability) of the system, i.e. we assume that the homeomorphism establishing

the topological equivalence of sufficiently closed systems is close to identity.

However, without this assumption the claim is still true, though the proof

becomes more involved.

To characterize the structurally stable systems with P -trajectories, the fol-

lowing result is very useful.

Theorem 7.8. (Pugh) Arbitrarily close (in C
1-sense) to any smooth flow,

there exists a flow for which the periodic orbits are dense everywhere in the

non-wandering set.4

Therefore, if a structurally stable system has an attractive quasiminimal

set — a strange attractor, then periodic orbits will be dense in it.

3The validity of the Cr-version of this theorem with r ≥ 2 remains unknown up-to-date.
4Strictly speaking — in the non-wandering set minus the equilibrium states.
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As for attractive minimal sets, it follows from Pugh’s theorem that they are

structurally unstable. Although the minimal sets composed of recurrent and

limit-quasiperiodic orbits are by far not key players in the nonlinear dynamics,

quasiperiodic motions have always been of major interest because they model

many oscillating phenomena having a discrete spectrum.

Resuming our consideration, we may make a preliminary conclusion:

typical dynamical systems are divided into two basic classes depending on

whether the system has a finite number of periodic orbits in a bounded sub-

region of its phase space or the number of periodic orbits is infinite. In the

first case such systems are usually called systems with simple dynamics. The

second class is composed of systems with complex dynamics. The notion of

roughness or structural stability is easily applied to the systems with simple

dynamics. The situation for systems with complex dynamics is more uncertain.

The point is that structurally unstable (non-rough) systems with complex

dynamics may form open regions in the space of dynamical systems. More-

over, it must be emphasized that structurally stable (rough) strange attractors

have never been observed so far in any model in nonlinear dynamics, remaining

purely geometrical or algebraic constructions. Therefore, it seems that typical

systems with strange attractors fall exactly into the regions of structural insta-

bility. These structurally unstable strange attractors enjoyed a great success in

our exploration of dynamical chaos. For such attractors, the strict requirement

of roughness obviously makes no sense; only some typical features must persist

under small perturbations.

Usually, a reasonable high-order model must exhibit both types of dynamics

— simple and complex. Of course, the first step in the analysis of such models

is the study of the structure of the partitioning of the phase space into trajec-

tories in those parameter regions which correspond to simple dynamics. In the

next section, we will be focusing on a rather broad class of structurally sta-

ble systems with simple dynamics which are called the Morse–Smale systems.

Systems with complex dynamics require special care, and will be the subject

of a further monograph.

7.5. Morse Smale systems

Morse–Smale systems are introduced axiomatically. Consider a dynamical

system

ẋ = X(x) , (7.5.1)

where X(x) ∈ C
r (r ≥ 1) in R

n.
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Let G be some closed, bounded region in the phase space of (7.5.1). Denote

by Ω the set of non-wandering trajectories of system (7.5.1) in G. We will

assume that ∂G ∩ Ω = ∅, where ∂G denotes the boundary of G.

Definition 7.9. System (7.5.1) in region G is called a Morse–Smale system

if it satisfies the following two axioms:

Axiom 1. The non-wandering set Ω consists of a finite number of orbits.

Axiom 2. All periodic orbits and equilibrium states in G are structurally

stable and any intersection of their stable and unstable invariant manifolds is

transverse.

In fact, it can be shown that periodic orbits and equilibrium states are the

only non-wandering trajectories of Morse–Smale systems. Axiom 1 excludes

the existence of unclosed self-limit (P -stable) trajectories in view of Birkhoff’s

Theorem 7.2. The existence of homoclinic orbits is prohibited by Theorems 7.9

and 7.11 below. Next, it is not hard to extract from Theorem 7.12 that an ω-

limit (α-limit) set of any trajectory of a Morse–Smale system is an equilibrium

state or a periodic orbit.

Recall that an equilibrium state O(x = x0) is structurally stable if none of

its characteristic exponents, i.e. the roots of the characteristic equation

det

∣
∣
∣
∣

∂X(x0)

∂x
− λI

∣
∣
∣
∣
= 0 , (7.5.2)

lies on the imaginary axis.

A topological type (m, p) is assigned to each equilibrium state, where m is

the number of the characteristic exponents in the open left half-plane and p is

that in the open right half-plane. Therefore, m + p = n. If m = n (m = 0),

the equilibrium state is stable (completely unstable). An equilibrium state is

of saddle type when m 6= {0, n}.

The set of all points in the phase space whose trajectories converge to x0 as

t→ +∞ (−∞) is called the stable (unstable) manifold of the equilibrium state

and denoted by W s
O and Wu

O, respectively. If O has the type (m, p), then W s
O

is an m-dimensional C
r-manifold, and W u

O is a p-dimensional C
r-manifold. In

the case where m = n, the attraction basin of O is W s
O.

It is also known that W s
O is diffeomorphic to R

m, and that W u
O is diffeo-

morphic to R
p. In a suitable coordinate frame, the system near the saddle
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equilibrium state is written in the form

ξ̇ = A−ξ + f(ξ, η) ,

η̇ = A+η + g(ξ, η) ,

where A− is an m×m-matrix whose spectrum lies to the left of the imaginary

axis, A+ is a p × p-matrix whose spectrum lies to the right of the imaginary

axis, the functions f and g vanish at the equilibrium state O along with first

derivatives. In this coordinate frame, the equation of W s
loc

(O) is

η = ϕ(ξ) ,

and that of W u
loc

(O) is

ξ = ψ(η) ,

where ϕ and ψ are C
r-smooth functions such that ϕ(0) = 0, ϕ′(0) = 0 and

ψ(0) = 0, ψ′(0) = 0.

Let us suppose next that system (7.5.1) has a periodic trajectory L: x =

ϑ(t), of period τ . The periodic orbit L is structurally stable if none of its

(n− 1) multipliers lies on the unit circle. Recall that the multipliers of L are

the eigenvalues of the (n−1)×(n−1) matrix A of the linearized Poincaré map

at the fixed point which is the point of intersection of L with the cross-section.

The orbit L is stable (completely unstable) if all of its multipliers lie inside

(outside of) the unit circle. Here, the stability of the periodic orbit may be

understood in the sense of Lyapunov as well as in the sense of exponential

orbital stability. In the case where some multipliers lie inside and the others

lie outside of the unit circle, the periodic orbit is of saddle type.

The set of all points of the phase space whose trajectories converge to L as

t → +∞ (−∞) is called the stable (unstable) manifold of the periodic orbit.

They are denoted by W s
L and Wu

L , respectively. In the case where m = n, the

attraction basin of L is W s
L. In the saddle case, W s

L is (m + 1)-dimensional

if m is the number of multipliers inside the unit circle, and W u
L is (p + 1)-

dimensional where p is the number of multipliers outside of the unit circle,

p = n−m− 1. In the three-dimensional case, W s
L and Wu

L are homeomorphic

either to two-dimensional cylinders if the multipliers are positive, or to the

Möbius bands if the multipliers are negative, as illustrated in Fig. 7.5.1. In

the general case, they are either multi-dimensional cylinders diffeomorphic to

R
m × S

1, or multi-dimensional Möbius manifolds.
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Fig 7.5.1. Saddle periodic orbit in R3 are distinguished by the topology of the stable and

unstable invariant manifolds which may be homeomorphic to: a cylinder (left); or a Möbius

band (right).

The stable invariant manifolds of equilibrium states and periodic orbits may

have common points with the unstable manifolds. Clearly, if a point x0 is such

a common point of two invariant manifolds, then the trajectory x = ϕ(t, x0)

belongs to both manifolds entirely. In the simplest case, O = W s
O ∩ Wu

O,

i.e. the stable and unstable manifolds of an equilibrium state intersect at only

trajectory, which is the equilibrium state itself.

Analogously, for a periodic orbit L we may have L = W s
L∩W

u
L . But this is

the trivial situation and we are not going to give it our attention. Of interest

is the case where x0 neither is an equilibrium state nor lies on a periodic orbit.

Below we will consider equilibrium states and periodic orbits as similar objects

which will be denoted as Q.

Let Q1 and Q2 be such that W s
Q1

and Wu
Q2

have a common point x0. The

trajectory of such point x0 is called heteroclinic if Q1 and Q2 are different5

and it is called homoclinic if Q1 = Q2.

5Consider an example

ẋ = −µ + x

2
,

ẏ = −y ,

ż = z ,

which for µ > 0 has two saddle equilibrium states O1(−
√

µ, 0, 0) and O2(+
√

µ, 0, 0) of
topological types (2,1) and (1,2), respectively. The invariant manifolds W

s
O1

and W

u
O2

intersect transversely along a heteroclinic curve (−√µ < x <

√
µ, y = 0, z = 0), as depicted

in Fig. 7.5.2.
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Fig 7.5.2. A structurally stable heteroclinic connection between two saddles in R3.

Denote the tangent to W s
Q1

at x0 by Tx0
W s

Q1
and the tangent to W u

Q2
at

x0 by Tx0
Wu

Q2
.

Definition 7.10. We will say that Tx0
W s

Q1
and Tx0

Wu
Q2

intersect transversely

if

dimTx0
W s

Q1
+ dimTx0

Wu
Q2
− n = dim(Tx0

W s
Q1
∩ Tx0

Wu
Q2

) . (7.5.3)

It is well-known, that if two surfaces intersect transversely at some point,

then any two C
1-close surfaces must intersect transversely at a nearby point.

On the contrary, a non-transverse intersection can be removed (or made trans-

verse) by a small perturbation.

By Axiom 2, the transversality condition (7.5.3) holds at all intersections of

the stable and unstable invariant manifolds of equilibrium states and periodic

orbits in system (7.5.1).

We remark that although the definition of transversality is stated at a point

x0, the transversality condition (7.5.3) has nothing to do with the choice of

the point x0, because the corresponding tangents at x0 and at any other point

on the trajectory going through x0 are mapped onto each other by a non-

degenerate linear transformation (the linearization of the time-shift map along

the trajectory of x0).

Since an orbit of the intersection point x0 lies entirely in both invariant

manifolds, it follows that both Tx0
W s

Q1
and Tx0

Wu
Q2

contain the phase velocity

vector at x0, so

dim(Tx0
W s

Q1
∩ Tx0

Wu
Q2

) ≥ 1 .
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Thus, the transversality condition (7.5.3) implies that in a Morse–Smale flow,

only those intersections of invariant manifolds are possible for which

dimW s
Q1

+ dimW u
Q2
≥ n+ 1 . (7.5.4)

In particular, we arrive at the following simple result:

Theorem 7.9. Morse–Smale systems have no homoclinic trajectory to an

equilibrium state.

Proof. For an equilibrium state dimW s
O + dimW u

O = n which contradicts

(7.5.4).

The notion of a Morse–Smale diffeomorphism is introduced in an analogous

way. Consider a diffeomorphism

x̄ = X(x) , (7.5.5)

whereX(x) ∈ C
r (r ≥ 1) in some bounded, closed sub-regionG ⊂ R

n. Suppose

that its non-wandering set has no intersections with the boundary ∂G.

Definition 7.11. Diffeomorphism (7.5.5) in region G is called a Morse–Smale

diffeomorphism if

(1) its non-wandering set is finite (and consists of structurally stable peri-

odic points alone); and

(2) transversality condition (7.5.3) for intersections of the stable and un-

stable manifolds of each periodic point is satisfied.

Recall that a fixed point O(x = x0) is called structurally stable if none of its

characteristic multipliers, i.e. the roots of the characteristic equation (7.5.2),

lies on the unit circle. A topological type (m, p) is assigned to it, where m

is the number of roots inside the unit circle and p is that outside of the unit

circle. If m = n (m = 0), the fixed point is stable (completely unstable). The

fixed point is of saddle type when m 6= {0, n}. The set of all points whose

trajectories converge to x0 when iterated positively (negatively) is called the

stable (unstable) manifold of the fixed point and denoted by W s
O (Wu

O). In

the case where m = n, the attraction basin of O is W s
O. If the fixed point is a

saddle, the manifolds W s
O and Wu

O are C
r-smooth embeddings of R

m and R
p

in R
n, respectively.
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In the saddle case, the diffeomorphism can be represented locally in the

form

ξ̄ = A−ξ + f(ξ, η) ,

η̄ = A+η + g(ξ, η) ,

where the eigenvalues of A− lie inside the unit circle, and the eigenvalues of

A+ lie outside of the unit circle; the functions f and g vanish at O along with

their first derivatives. Then, the equation of W s
loc

(O) is

η = ϕ(ξ) ,

and that of W u
loc

(O) is

ξ = ψ(η) ,

where ϕ and ψ are C
r-smooth functions such that ϕ(0) = 0, ϕ′(0) = 0 and

ψ(0) = 0, ψ′(0) = 0.

Let x0 be a periodic point of period q for the diffeomorphism (7.5.5). This

means that it is a fixed point of the qth power of the diffeomorphism:

x0 = X [q](x0) ≡ X(X · · · (X
︸ ︷︷ ︸

q times

(x0))) .

It seems natural to relate the point x0 and its cycle C = (x0, x1, . . . , xq−1),

where xk = X(xk−1), k = 1, . . . , q − 1, x0 = X(xq−1). The point x0 is

structurally stable if the roots ρ1, . . . , ρn of the equation

det

∣
∣
∣
∣

∂X(xq−1)

∂x

∂X(xq−2)

∂x
· · ·

∂X(x0)

∂x
− ρI

∣
∣
∣
∣
= 0

do not lie on the unit circle. Note that the characteristic roots of any point of

the cycle C coincide with those of the point x0. The stable (unstable) invariant

manifold W s
xk

(Wu
xk
) of the point xk is the set of points which tend to xk under

positive iterations of the diffeomorphism X [q]. Obviously, X(W s
xk
) = W s

xk+1

and X(W u
xk
) = Wu

xk+1
. Thus, the stable manifold of the cycle C is

⋃q−1

i=0
W s

xi

and the unstable manifold is
⋃q−1

i=0
Wu

xi
.

Both, the continuous and discrete, Morse–Smale systems on compact

smooth manifolds were singled out by Smale in his article “Morse inequali-

ties for a dynamical system” [142]. The title itself reveals that the work deals
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with the estimation of the number of equilibrium states and periodic orbits by

means of the topological invariants of manifolds. Later, Palis and Smale [106,

102] proved the following theorem.

Theorem 7.10. (Palis and Smale) Morse–Smale systems are structurally

stable.

This theorem was proven for systems whose phase space is a compact,

smooth manifold. It holds for our case as well, if suppose that the boundary

∂G is a smooth (n−1)-sphere without contact, through which a trajectory goes

inwards of G in the continuous case, or that X(G) ⊂ G\∂G in the discrete case.

7.6. Some properties of Morse Smale systems

Comparing the Andronov–Pontryagin theorem with the definition of Morse–

Smale systems, one can see that the last ones are quite similar to rough systems

on the plane and are, in essence, their high-dimensional generalization. Like

the Andronov–Pontryagin theorem, the Palis–Smale Theorem 7.10 yields suf-

ficient conditions for roughness. Axiom 2 in Definition 7.9 may be viewed as a

natural necessary condition. In contrast, Axiom 1 has nothing to do with the

problem of structural stability but it restricts rather severely the class of sys-

tems under consideration, and suppresses many hidden opportunities which

saddle equilibria, and periodic orbits can exhibit in dimensions higher than

two.

For example, the following theorem shows that a Morse–Smale system can-

not have a homoclinic trajectory to a saddle periodic orbit.

Theorem 7.11. Let L be a saddle periodic orbit, and let Γ be its homoclinic

trajectory along which W s
L and Wu

L intersect transversely. Then, any small

neighborhood of L ∪ Γ contains infinitely many saddle periodic orbits.

Proof. Take a small cross-section S to L and consider the local Poincaré

map T0 : S → S. The point O = S ∩ L is the saddle fixed point of T0. Let

us introduce the coordinates (x, y) on S near O such that the local unstable

manifold of O is x = 0 and the local stable manifold is y = 0 (thus, x ∈

R
m, y ∈ R

p where dimW s = m, dimW u = p). Let M−(0, y−) ∈ Wu
loc

and

M+(x+, 0) ∈W s
loc

be two points of intersection of the homoclinic orbit Γ with

S. The flow near the piece of Γ between M− and M+ defines a map T1 from
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a small neighborhood Π− of M− onto a small neighborhood Π+ of M+ on S.

This map can be written in the form

x̄0
− x+ = ax1 + b(y1

− y−) + · · · ,

ȳ0 = cx1 + d(y1
− y−) + · · · , (7.6.1)

where the ellipsis stand for nonlinear terms; (x0, y0) refer to a small neighbor-

hood of M+ and (x1, y1) refer to a small neighborhood of M−. Observe that

the image T1W
u
loc

is tangent at M+ to the p-dimensional plane defined by the

parametric equation

x0
− x+ = bu , y0 = du ,

where u ∈ R
p. By assumption, this hyperplane must be transverse to y = 0

which means that

|d| 6= 0 . (7.6.2)

It was shown in Sec. 3.7 that for any sufficiently large k there are points

in Π+ whose kth iteration by the local map T0 lies in Π−. The set of such

points is “a horizontal strip” σ0

k. As k →∞, the horizontal strips accumulate at

W s
loc
∩Π+. The map T k

0
contracts the strip in the x-direction and stretches it in

the y-direction, so that the images T k
0
σ0

k (“the vertical strips” σ1

k) accumulate

at Wu
loc
∩ Π−. It is geometrically evident (see Fig. 7.5.3) that due to the

transversality of T1W
u
loc

to W s
loc

, the image T1T
k
0
σ0

k intersects σ0

k “properly”

for any sufficiently large k, so that the map T1T
k
0
|σ0

k
is a saddle map in the

sense of Sec. 3.15. By Theorem 3.28, a saddle map has a saddle fixed point.

Since both maps T1 and T0 are defined by the orbits of the flow, the fixed point

of T1T
k
0
corresponds to a periodic orbit of the system (it intersects S exactly k

times, the first time in Π+ and the last time in Π−). Taking different k we will

obtain different periodic orbits. Thus, to prove the theorem we must confirm

by computation that the maps T1T
k
0
are of the saddle type for all sufficiently

large k.

By Lemmas 3.3 and 3.4, there exist functions ξk, ηk which uniformly tend

to zero along with their derivatives as k →∞, such that a point M 0(x0, y0) is

mapped into a point M1(x1, y1) by T k
0
if, and only if,

x1 = ξk(x
0, y1) ,

y0 = ηk(x
0, y1) .

(7.6.3)
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Fig. 7.5.3. The Poincaré map near a transverse homoclinic orbit.

Note that due to (7.6.2), the second equation in (7.6.1) can be solved for y1,

with a sufficiently small x1 and ȳ0:

y1
− y− = d−1ȳ0

− d−1cx1 + · · · ,

where the dots stand for small nonlinear terms. Comparing this with the first

equation of (7.6.3) we obtain, for sufficiently large k,

y1 = y− + Fk(ȳ
0, x0) , (7.6.4)

where Fk is a smooth function such that Fk(0, 0) = 0, and the derivative of Fk

with respect to x0 tends uniformly to zero as k →∞ (we use that ∂ξk

∂(x,y)
→ 0

as k →∞).

Now, for all sufficiently large k the map T1T
k
0
can be written as

x̄ = x+ +Gk(ȳ, x) ,

y = ηk(x, y
− + Fk(ȳ, x)) ,

(7.6.5)
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where we suppress the upper index 0; here G denotes a smooth function such

that Gk(0, 0) = 0, and the derivative of Gk with respect to x tends uniformly to

zero as k →∞. This is a cross-form of the map T1T
k
0
in the sense of Sec. 3.15

(the spaces D1 and D2 in Definition 3.6 are small convex neighborhoods of

x+ in the x-space and zero in the y-space, respectively). Since the derivatives

of ηk with respect to all variables, and the derivative of Gk with respect to

x tend uniformly to zero as k → ∞, it is easy to see that the map T1T
k
0

fits

Definition 3.7 of the saddle map for all sufficiently large k,6 so Theorem 3.28

on the fixed point is applicable here. This completes the proof.

The above proof can be easily translated into the language of diffeomor-

phisms with a fixed point having a transverse homoclinic trajectory. It also

covers the case of a periodic point with a homoclinic trajectory. In the last case

one should consider the qth iteration of the original diffeomorphism, where q

is the period.

In essence, the above proof is a close repetition of that suggested by

L. Shilnikov [131]. It allows one to liberate from the axiom stipulating the

absence of homoclinic trajectories in Morse–Smale systems originally postu-

lated by Smale.

Note that a transverse homoclinic orbit is, obviously, preserved under small

smooth perturbations of the system. Therefore, Theorem 7.11 implies that

when a transverse homoclinic exists, any close system is away from the Morse–

Smale class. This gives us a robust and simple indicator for detecting the

complex dynamics. By now, the presence of transverse homoclinics is regarded

as a universal criterion of chaos.

As before, we will regard equilibrium states and periodic orbits as equal

objects and denote them by Q for uniformity.

6The condition to check is

‖P ′

x‖◦ < 1 , ‖Q′

y‖◦ < 1 ,

‖P ′

y‖◦‖Q′

x‖◦ < (1− ‖P ′

x‖◦)(1− ‖Q′

y‖◦) ,

where (P, Q) are the right-hand sides of the cross-map:

x̄ = P (x, ȳ) , y = Q(x, ȳ) .

Essentially, this means that the cross-map is contracting in a suitable norm, so the map itself
is strongly expanding in the y-direction and strongly contracting in the x-direction.
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Let us introduce the following notation: we writeQi ≤ Qj ifW
s
Qi
∩Wu

Qj
6= ∅,

in particular Qi ≤ Qi. If (W s
Qi
\ Qi) ∩ (Wu

Qj
\ Qj) 6= ∅ then we will write

Qi < Qj . We will say that Qk1
, . . . , Qkl

form a chain if

Qk1
< · · · < Qkl

. (7.6.6)

If the first and the last members of the chain are equal (Qk1
= Qkl

), then the

chain (7.6.6) is called a cycle.

It may be proved that the relation “≤” defines a partial order on the set

of non-wandering orbits of a Morse–Smale system. An important result is:

Theorem 7.12. There are no cycles in Morse–Smale systems.

First of all, observe that there cannot exist cycles like Q0 < Q0 because

homoclinic trajectories are not admissible in Morse–Smale systems. Also, it fol-

lows from the transversality condition [see (7.5.4)] that a cycle cannot contain

equilibrium states; neither can it include periodic orbits of different topological

types.

Thus, only one hypothesis remains; namely when the cycle

L0 < L1 < · · · < Lk < L0

is composed of periodic orbits of the same topological type. Consider the chain

Lk−1 < Lk < L0

and let W s
Lk−1

intersect W u
Lk

at a point x0. By virtue of the λ-lemma (see

Sec. 3.7), we may claim that since W s
Lk

intersects W u
L0

transversely, in any

small neighborhood U of the point x0, there is a countable set of smooth pieces

of Wu
L0

converging to W u
Lk
∩ U . Since W s

Lk−1
intersects W u

Lk
transversely, it

follows that W s
Lk−1

intersects these pieces of W u
L0
. Therefore

Lk−1 < L0 .

Continuing inductively, we obtain

L0 < L1 < L0 ,
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and hence

L0 < L0 ,

i.e. L0 has a homoclinic trajectory. This contradicts Theorem 7.11.

The fact that there are a finite number of non-wandering trajectories in

Morse–Smale systems implies that any chain has a finite length which does not

exceed the total number of non-wandering trajectories. Moreover, a maximal

chain can end only at a stable equilibrium state or a periodic orbit.

It follows from the above arguments that one may introduce an oriented

graph for each Morse–Smale system. Its vertices are equilibrium states and

periodic orbits, with the topological type assigned. The edges of the graph

are oriented in a decreasing way in accordance with the order <. Namely, the

vertex Qi is connected with the vertex Qj by an edge if and only if Qi > Qj

and there is no Qk such that Qi > Qk > Qj . Such a graded graph is called a

phase diagram. The phase diagram for a Morse–Smale diffeomorphism can be

introduced in an analogous way. The vertices are fixed points and cycles, with

their local characteristics specified.

It is clear that the phase diagram is an invariant of topological equivalence

of Morse–Smale systems.

However, it is not a complete invariant, generally speaking. For example,

it contains no information on the number of orbits of intersection of stable and

unstable manifold of saddle trajectories.

Among all heteroclinic trajectories one may select some special ones which

play a central role.

Definition 7.12. A heteroclinic trajectory Γ is said to be special if there ex-

ists a neighborhood U of its closure Γ̄ which contains no other heteroclinic

trajectories but Γ.

It is obvious that all heteroclinic trajectories of three-dimensional Morse–

Smale flows are that special. This is also true for two-dimensional diffeomor-

phisms.

The principal feature of Morse–Smale systems which distinguishes them

from Andronov–Pontryagin systems is that the former may have infinitely

many special heteroclinic trajectories. As an example, let us consider a two-

dimensional diffeomorphism with three fixed points of the saddle type denoted

by O1, O and O2. Suppose that W s
O1
∩ Wu

O 6= ∅ and W s
O ∩ W

u
O2
6= ∅, the
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Fig. 7.6.1. Hierarchic intersections of the manifolds of fixed points at the heteroclinic points

M1 and M2.

Fig. 7.6.2. A neighborhood of the point M1: the successive images of W

u
02

accumulate to
W

u
0

Fig. 7.6.1.
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corresponding scheme is depicted in Fig. 7.6.1. Here, M1 ∈ W s
O1
∩Wu

O and

M2 ∈W
s
O ∩W

u
O2

, i.e. they are heteroclinic points.

Let us now apply the λ-lemma (see Sec. 3.7). Choose a small neighborhood

U of the point M1. It follows that the intersection U ∩W
u
O2

consists of a count-

able set of curves lk (k = 1, . . . ,∞) accumulating smoothly to W u
O, as shown

in Fig. 7.6.2. As W s
O1

and Wu
O intersect each other transversely, then W s

O1

intersects each lk at the points Mk starting from some number k0. The points

Mk are heteroclinic too and correspond to different heteroclinic trajectories

which have O1 and O2 as an α-limit and an ω-limit points, respectively.

An analogous picture takes place in the case of three-dimensional flows

possessing the chain Q1 < Q < Q2 where Q denotes a saddle periodic orbit,

and Q1 and Q2 stand for either saddle equilibrium states or periodic orbits.

Heteroclinic trajectories are no longer all special in higher-dimensional

case. A heteroclinic trajectory Γ ⊂ W s
Q1
∩ Wu

Q2
is special only if the di-

mension of the forming intersection is equal to 1. We will assign to Γ a type

(dimW s
Q1
,dimWu

Q2
). It is clear that if dimW s

Q1
= m+1, then the type of the

special trajectory Γ is (m + 1, n −m), where n is the dimension of the phase

space.

Let us consider a Morse–Smale flow having two non-wandering motions Q1

and Q2. Let dim W s
Q1

= m + 1 and dim W u
Q2

= n −m. Suppose next that

W s
Q1
∩Wu

Q2
6= ∅, i.e. Q1 ≤ Q2.

Theorem 7.13. (Afraimovich and Shilnikov [2]) The intersectionW s
Q1
∩

Wu
Q2

possesses infinitely many heteroclinic trajectories if, and only if the closure

W s
Q1
∩Wu

Q2
contains a periodic orbit L of type (m+ 1, n−m), other than Q1

and Q2.

It follows from the proof of this theorem that W u
L must intersect W s

Q1

transversely and W s
L must intersect W u

Q2
transversely. Observe also that all

trajectories in W s
Q1
∩Wu

Q2
are special.

An analogous statement holds for Morse–Smale diffeomorphisms.

Let us denote by Nm+1 the set of all special trajectories of type (m + 1,

n−m) and their limiting non-wandering motions. In the general case, Nm+1

consists of a finite number of connected components N
(1)

m+1
, . . . , N

(k)

m+1
. It was

also shown in [2] that the set of all trajectories N
(l)

m+1
, where 1 ≤ l ≤ k, is in a

one-to-one correspondence with the set of all trajectories of some symbolic sys-

tem with a finite number of states. Generally speaking, symbolic dynamics was
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historically created in connection with the description of systems with complex

dynamics. Nevertheless, it has turned out that it can be effectively applied to

Morse–Smale systems possessing a countable number of special heteroclinic

trajectories as well.



Chapter 8

BIFURCATIONS OF

DYNAMICAL SYSTEMS

The bifurcation of a dynamical system is understood as a qualitative change

of the partitioning of the phase space by trajectories, i.e. as a modification of

the qualitative properties of the phase portrait as parameters of the system

vary. The notion of “bifurcation” was introduced by Poincaré while studying

the equilibrium structures of rotating fluids which change from an ellipsoidal

shape of equilibria to a nearby pear shape. Meanwhile Poincaré was inves-

tigating the principal bifurcations of equilibrium states of conservative, one

degree-of-freedom systems described by a Lagrangian equation. He noticed

that variations in parameters may cause the appearance of a multiple equi-

librium state, followed by a subsequent decomposition into two equilibria: a

center and a saddle. Hence, the word “bifurcation” means precisely a branch-

ing in this case.

The modern theory of bifurcations of dynamical system is directly linked

to the notion of non-roughness, or structural instability of a system. The

main motivation is that the analysis of a system will be rather incomplete if

we restrict our consideration to only the regions of structural stability of the

system. Indeed, by changing parameters we can move from one structurally

stable system to another, a qualitatively different system, upon crossing some

boundaries in the parameter space that correspond to non-rough systems.

In the two-dimensional case, rough systems compose an open and dense

set in the space of all systems on a plane. The non-rough systems fill the

boundaries between different regions of structural stability in this space. This

nice structure allows for a mathematical description for transformations of

429
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various oscillatory regimes by bifurcation theory of two-dimensional systems.

Even though the space of higher-dimensional systems is not so well organized,

the bifurcation theory of multi-dimensional systems still provides an adequate

mathematical explanation to such typical phenomena of nonlinear dynamics

as transitions between stationary regimes and self-oscillations, synchronization

and its loss, various routes to dynamical chaos, etc.

In this book, we concentrate on an in-depth study of equilibrium points

and periodic motions because they are the fundamental “bricks” of nonlinear

dynamics. For a complete coverage of two-dimensional systems, the reader

is referred to the two-volume book by Andronov et al. [11, 12]. There, the

classification of key bifurcations of periodic orbits by Andronov and Leontovich

is based on their theory of two-dimensional systems of a first-degree of non-

roughness.

8.1. Systems of first degree of non-roughness

We have already identified the following key elements of any structurally stable

dynamical system on the plane which completely determines its entire topo-

logical invariant — a scheme. They include special trajectories:

• structurally stable equilibrium states;

• structurally stable periodic orbits; and

• separatrices of saddles.

Any modification of the phase portrait of a system may occur when the

system becomes structurally unstable. By the Andronov–Pontryagin theorem,

such a system must necessarily possess either:

• an equilibrium state that has one or a pair of characteristic exponents

on the imaginary axis; or

• a periodic orbit with a unit multiplier; or

• a separatrix connecting two saddle points; or

• a separatrix loop to a saddle.

We remark that an equilibrium state, or a periodic orbit, may be arbi-

trarily degenerate. It is therefore logical to begin our study with the simplest

structurally unstable systems which Andronov and Leontovich called systems

of first degree of non-roughness.
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Let X and X̃ be some Cr-smooth (r ≥ 3) systems in a bounded region G

on a plane. Introduce a distance between X and X̃ as the C
r-metrics.

Definition 8.1. The system X is called a system of first-degree of non-

roughness if it is not structurally stable and if for any ε > 0 there is δ > 0

such that any structurally unstable system from a δ-neighborhood of X is ε-

equivalent1 to it.

In essence, systems of first degree of non-roughness are structurally stable

in the set of structurally unstable systems.

The analysis undertaken by Andronov and Leontovich suggests that the

first-degree non-rough systems must have one of the following non-rough tra-

jectories.

(1) An equilibrium state O(0, 0) with one zero characteristic exponent and

with a non-zero Taylor-series coefficient l2, called a Lyapunov value or coeffi-

cient. The Lyapunov value can be easily calculated from the associated normal

form equation

ẋ = P (x, y) ,
(8.1.1)

ẏ = λy +Q(x, y) ,

where λ 6= 0, and P and Q vanish at O(0, 0) along with their first derivatives.

In this case, l2 is the coefficient of x2 in the Taylor expansion of P (x, y). The

equilibrium state under consideration is called a (simple) saddle-node. Notice

that all simple saddle-nodes are locally equivalent to the saddle-node of the

system
ẋ = l2x

2 ,

ẏ = λy ,
(8.1.2)

where l2 > 0. The behavior of trajectories of the system near O(0, 0) is easily

described. Let, for example, λ < 0. Then there is a curve — a strongly

stable manifold W ss which separates the node region W s from the saddle

region, as shown in Fig. 8.1.1. The strongly stable manifold consists of O and

two trajectories entering O as t → +∞. The trajectories in W s converge to

O. In the saddle region, there is a single trajectory entering the saddle-node

at t = −∞. This trajectory is called a separatrix. The other trajectories

bypass O.

1i.e. topologically equivalent, and the conjugating homeomorphism is ε-close to identity.
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Fig. 8.1.1. A saddle-node corresponding to the case λ < 0, l2 > 0.

If λ > 0, then there is a strongly unstable manifold W uu which divides the

neighborhood of O into a node region W u where all trajectories diverge from

O, and a saddle region where there is a single stable separatrix entering O as

t→ +∞ and the other trajectories bypass O.

(2) An equilibrium state which has a pair of purely imaginary eigenvalues

λ1,2 = ±iω and a Lyapunov (or focal) value L1 6= 0. Near the bifurcating

equilibrium state the system can be represented in the form

ẋ = −ωy + (L1x− Ω1y)(x
2 + y2) + · · · ,

ẏ = ωx+ (Ω1x+ L1y)(x
2 + y2) + · · · .

(8.1.3)

A reduction to this form is possible because in this case all quadratic and cubic

terms, other than derived, are non-resonant; the simplest resonant relations

here are the two resonances of third degree

λ1 = 2λ1 + λ2 ,

λ2 = λ1 + 2λ2

(see Secs. 2.9 and 9.3).

Such equilibrium state is called a weak focus. It is stable if L1 < 0 and

unstable if L1 > 0.

(3) A periodic orbit with a real multiplier equal to +1. The associated

Poincaré map can be represented in the form

ū = u+ l2u
2 + · · · .
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If the Lyapunov value l2 6= 0 here, then the associated double fixed point

corresponds to a double (semi-stable) limit cycle of the original system.

(4) A heteroclinic trajectory Γ connecting two saddles [see Fig. 7.1.1(a)].

(5) A biasymptotic trajectory Γ to a saddle. The simplest case is when

the saddle is non-resonant, i.e. when its characteristic exponents satisfy the

condition

λ1 + λ2 6= 0 .

In addition, the following conditions must be satisfied by first-degree non-

rough systems:

(A) there are no other trajectories of the above types;

(B) there exists no separatrix of a saddle-node going to or from a saddle,

as shown in Fig. 8.1.2;

(C) there exists no separatrix of a saddle-node which belongs to its strongly

stable manifold, as shown in Fig. 8.1.3;

(D) if there is a semi-stable (double) limit cycle, the system may not have

simultaneously an unstable separatrix of a saddle which tends to the

cycle as t→ +∞ and a stable separatrix of a saddle which tends to the

cycle as t→ −∞, as shown in Fig. 8.1.4; and

(E) there exists no separatrix which tends to a homoclinic loop of a saddle

(in forward or backward time), as depicted in Fig. 8.1.5.

Altogether the above requirements comprise the list of necessary and suffi-

cient conditions which a system with first-degree of non-roughness must satisfy.

Structurally stable systems can be identified in the Banach space BG of

dynamical systems on a plane using conditions involving only inequalities

(see Andronov–Pontryagin theorem). However, systems of first-degree of

Fig. 8.1.2. A structurally unstable heteroclinic connection between a saddle-node O1 and a

saddle O2.
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Fig. 8.1.3. A nontransverse homoclinic loop Γ to a saddle-node. The separatrix enters the

equilibrium state along its strongly stable manifold.

Fig. 8.1.4. The semi-stable periodic orbit L is the ω-limit of the separatrix of the outer

saddle O1, and the α-limit of the separatrix of the inner saddle O2.

Fig. 8.1.5. The separatrix loop of the saddle O1 is the ω-limit of the separatrix of another

saddle O2 in the interior region enclosed by the loop emanating from and terminating at O1.
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non-roughness are identified not only by conditions involving inequalities, but

also by one additional condition involving equality constrains. In particular,

the five conditions of structural instability in the above list assume, schemati-

cally, the following form:

(1) λ1 = 0, λ2 6= 0, l2 6= 0;

(2) Reλ1,2 = 0, ω 6= 0, L1 6= 0;

(3) ρ = 1, l2 6= 0;

(4) Γ1 = Γ2, where Γ1 and Γ2 denote, respectively, an incoming and an

outgoing separatrix of two connected saddles; and

(5) Γ1 = Γ2, λ1 + λ2 6= 0, where Γ1 and Γ2 denote an incoming and an

outgoing separatrix of one saddle.

The above equality-type conditions can be interpreted as conditions for the

vanishing of some functionals defined in a neighborhood of the structurally

unstable system. The inequality-type conditions guarantee, in particular, that

the zero level of the functional determines a smooth, infinite-dimensional sur-

face B1 in the Banach space, which divides the neighborhood of the system

under consideration into two regions, which we can denote as D+ and D−.

To avoid saying that this surface has a dimension equal to ∞− 1, we simply

say that it is of codimension-one. The particular feature of a system of non-

roughness of the first-degree is that the regions D+ and D− consist of rough

systems. All systems in either region have an identical scheme hence they are

topologically equivalent by the Leontovich–Mayer theorem.

Therefore, to study the transition fromD− toD+, it is sufficient to examine

a one-parameter family of systems Xµ such that Xµ<0 ∈ D
−, Xµ=0 ∈ B

1 and

Xµ>0 ∈ D+. Furthermore, since all qualitative changes in the phase portrait

must occur in a small neighborhood of some non-rough special trajectory, we

can restrict our consideration to the given neighborhood.

Among all bifurcations occurred in systems with first-degree of non-

roughness, the bifurcations of limit cycles are of special interest. Andronov

and Leontovich have shown that there are four kinds of such bifurcations;

namely,

• bifurcation of a limit cycle into (from) a weak focus;

• bifurcation of a double (or semistable) cycle;

• bifurcation of a limit cycle from a separatrix loop to a saddle; and

• bifurcation of a limit cycle from (into) a separatrix loop to a saddle-node.
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In the last sections of this book we will discuss in detail these bifurcations

whose comprehensive analysis by many researches had taken nearly twenty

years; it was initiated by Andronov in the thirties and finished, after a series

of exhaustive publications, in the fifties.

To conclude this section, let us elaborate further on the restrictions (D) and

(E). In case (D) the surface corresponding to the double cycle is of codimension-

one, and therefore, it divides a neighborhood of the non-rough system X0

into two regions D− and D+. Assume that in D− the double limit cycle is

decomposed into two limit cycles, and that it disappears in D+. The situation

in D− is simple — all systems there are structurally stable and, moreover, of

the same type. As forD+ the situation is less trivial: if (D) is violated, then it is

obvious that besides structurally stable systems in D+ there are structurally

unstable ones whose non-roughness is due to the existence of a heteroclinic

trajectory between two saddles, as shown in Fig. 8.1.6(a). Moreover, this

picture takes place in any neighborhood of X0. In other words, in the region

D+, there exists a countable number of the associated bifurcation surfaces of

codimension-one which accumulate to B1. In such cases the surface B1 is said

to be unattainable from one side.

An analogous situation occurs when the system has a separatrix loop to a

non-resonant saddle (i.e. its saddle value σ = λ1 +λ2 6= 0) which is the ω-limit

of a separatrix of another saddle O1 (see condition (E) and Fig. 8.1.5). In this

case, the bifurcation surface is also unattainable from one side, where close non-

rough systems may have a heteroclinic connection, as shown in Fig. 8.1.6(b).

The cases where a bifurcation surface of codimension-one is unattainable

from either or both sides are typical for multi-dimensional dynamical systems.

(a) (b)

Fig. 8.1.6. (a) A structurally unstable saddle connection after the disappearance of a saddle-
node cycle in Fig. 8.1.4; (b) Phase plane after the splitting of the homoclinic loop in Fig. 8.1.5.
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This is the reason why the classification of principal bifurcations in multi-

dimensional systems is not stated in terms of the degree of non-roughness, but

it rather focuses on bifurcation sets of codimension-one.

8.2. Remarks on bifurcations of multi-dimensional
systems

The exploration of bifurcations of systems of higher dimensions, which was

launched at the end of the fifties and the beginning of the sixties consists

of early attempts to generalize known planar bifurcations results to higher

dimensions. The absence of necessary and sufficient conditions for structural

stability of high-dimensional systems had played an important (not last) role at

that time. But further development of the theory of high-dimensional systems

had eventually proven that structurally stable systems are not dense in the

space of dynamical systems. First, an example of an open set of structurally

unstable systems was given where the structural instability was “concentrated”

in heteroclinic trajectories, i.e. on a set of wandering points (Smale), and later

the analogous examples with structurally unstable non-wandering orbits had

appeared. All proposed examples of “non-removable structural instability”

were systems with complex dynamics. In this book we, however, focus on

systems with simple dynamics, and in particular, on Morse–Smale systems

and bifurcations which occur in such systems.

The violation of structural stability in Morse–Smale systems is caused by

the bifurcations of equilibrium states, or periodic orbits, by the appearance

of homoclinic trajectories and heteroclinic cycles, and by the breakdown of

transversality condition for heteroclinic connections. However, we remark that

some of these situations may lead us out from the Morse–Smale class; moreover,

some of them, under rather simple assumptions, may inevitably cause complex

dynamics, thereby indicating that the system is already away from the set of

Morse–Smale systems.

The simplest example of such a situation is a homoclinic loop to a saddle-

focus in the three-dimensional system

ẋ = ρx− ωy + f(x, y) ,

ẏ = ωx+ ρy + g(x, y) ,

ż = λz + h(x, y) ,
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Fig. 8.2.1. A homoclinic loop Γ to a saddle-focus O.

where ρ < 0, ω 6= 0, λ > 0, and f , g, h are smooth functions vanishing at

the origin along with their first derivatives. The origin here is a saddle-focus

point which is endowed with a homoclinic trajectory Γ, as shown in Fig. 8.2.1.

Shilnikov [131, 135] had proved that if the saddle value is positive, i.e.

σ = ρ+ λ > 0 ,

then any neighborhood of O∪Γ contains infinitely many saddle periodic orbits

and transverse homoclinic trajectories. On the contrary, if ρ+λ < 0, then the

structure of the trajectories lying entirely inside a neighborhood of O ∪ Γ is

trivial, namely, besides O and Γ there are no other invariant sets.

Consider next a Banach space B of dynamical systems X of the Morse–

Smale class in a compact region G. Let ∂B denote the boundary of B. Any

system X0 ∈ ∂B is structurally unstable. We will assume then that a system

X0 ∈ ∂B is a boundary system of the Morse–Smale class, if in any of its neigh-

borhoods there are systems with infinitely many periodic orbits (basically, this

means the presence of transverse homoclinic trajectories). The other systems

on ∂B correspond to internal bifurcations within the Morse–Smale class.

The boundary system X0 itself may have a finite number of rough equilibria

and periodic orbits, or infinitely many of them. For the latter case an example

is given by a period-doubling cascade.

For the former type of boundary system, we consider an example of a

homoclinic tangency. Let a C
2-smooth family of diffeomorphisms T (µ) have, at
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Fig. 8.2.2. A nontransverse homoclinic orbit to a saddle fixed point.

µ = 0, a fixed point O with multipliers 0 < λ < 1 and γ > 1 such that λγ < 1.

It follows that O remains a saddle point for all small µ 6= 0. Denote by W s
O(µ)

and by W u
O(µ) its stable and unstable manifolds, respectively. Suppose that

W s
O(µ)∩W

u
O(µ)\O = ∅ when µ < 0, that at µ = 0 the invariant manifolds have

a tangency along a homoclinic trajectory Γ. Moreover, assume that the contact

is quadratic and that it is the tangency from below, as depicted in Fig. 8.2.2.

Finally assume that W u
O(µ) and W s

O(µ) intersect each other transversely for

µ > 0. Thus, the diffeomorphism T (µ) in the region µ > 0 possesses a trans-

verse homoclinic trajectory and, consequently, all nearby trajectories exhibit

complex dynamics (see Theorem 7.11). If T (µ) at µ < 0 were a Morse–Smale

diffeomorphism, then T (0) would have the same non-wandering trajectories,

as well as one structurally unstable orbit of the homoclinic tangency. The last

statement is due to Gavrilov and Shilnikov [54, 55] who have shown that at

µ = 0, any small neighborhood of Γ ∪ O has no other orbits lying entirely

within it but Γ and O.2

Another example is a family of two-dimensional C
2-smooth diffeomor-

phisms whose non-wandering set does not change until the boundary of Morse–

Smale diffeomorphisms is reached. The situation is illustrated in Fig. 8.2.3.

The two fixed points O1 and O2 have positive multipliers, and W u
O2

contacts

W s
O1

along a heteroclinic trajectory, and so do W u
O1

and W s
O2

. This example

2Note that the condition of tangency from below (as in Fig. 8.2.2) is important here:
in the case where W

u touches W

s from above the system has inevitably some transverse
homoclinics at µ = 0 [54, 55].
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Fig. 8.2.3. A structurally unstable heteroclinic cycle including two saddle fixed points.

is not as simple as the last one because of the presence of two heteroclinic

trajectories both of which are wandering.

The primary scope of this book will focus on the analysis of the internal

bifurcations within the class of systems with simple dynamics, such as Morse–

Smale systems. Furthermore, we will restrict our study mostly to bifurcations

of codimension-one. The reason for this restriction is that some bifurcations of

higher codimension turn out to be boundary bifurcations in many cases, such

as when the normal forms for the equilibrium states are three-dimensional.

Nevertheless, we will examine some codimension-two cases which are concerned

with equilibrium states and the loss of stability of periodic orbits. Meanwhile,

let us start our next section with a discussion of some questions related to

structurally unstable heteroclinic connections.

8.3. Structurally unstable homoclinic and heteroclinic
orbits. Moduli of topological equivalence

All non-rough two-dimensional systems in a small neighborhood of a sys-

tem with first-order of non-roughness are now known to form a surface of

codimension-one. Moreover, due to Leontovich and Mayer, we know that

all of them are identical in the sense that they have an identical topological
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Fig. 8.3.1. A nontransverse heteroclinic trajectory between two saddle fixed points.

invariant — a scheme. In particular, all close systems having a homoclinic

loop to a saddle are equivalent to each other; the same holds for close systems

with a heteroclinic trajectory which connects two saddles.

However, a similar classification of two-dimensional diffeomorphisms, or

of three-dimensional flows, is not that trivial. Let us illustrate this with an

example. Consider a diffeomorphism T which has two saddle fixed points O1

and O2 with the characteristic roots |λi| < 1 and |γi| > 1 at Oi (i = 1, 2).

Suppose that W u
O1

and W s
O2

have a quadratic tangency along a heteroclinic

orbit as shown in Fig. 8.3.1. The quadratic tangency condition implies that

all similar diffeomorphisms form a surface B1 of codimension-one in the space

of all diffeomorphisms with a C
2-norm.

For the diffeomorphism T we introduce the value

θ =
ln |λ1|

ln |γ2|
(8.3.1)

and analogously define

θ̃ =
ln |λ̃1|

ln |γ̃2|
(8.3.2)

for a close diffeomorphism T̃ ∈ B1, where λ̃1(2) and γ̃1(2) are the characteristic

roots at the saddle Õ1(2) of T , which is near the saddle O1(2).

Then, we have the following theorem.
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Theorem 8.1. If the diffeomorphisms T and T̃ are topologically conjugate,

then θ = θ̃.

We remark that θ = θ̃ is only a necessary condition. It follows from this

theorem that B1 near T is divided into a continuum of topologically different

classes of diffeomorphisms. This fact was discovered by Palis [103]; see its

proof in [97].

The invariant θ is called a modulus of topological equivalence or simply a

modulus. Because of the fundamental importance of a notion of the modulus

let us pause to give its definition.

Definition 8.2. A system X (continuous or discrete) is said to have a modu-

lus if, in some subspace B∗ of the space of dynamical systems, where X ∈ B∗,

a continuous, locally non-constant functional h is defined such that if X and

X̃ are topologically equivalent, then h(X) = h(X̃).

The condition that the functional is locally non-constant means that in the

region of its definition there are no open sets in a neighborhood of X where

it might take a constant value. From this point-of-view, the Poincaré rotation

number for typical diffeomorphisms of a cycle is not a modulus.

The value θ is also a modulus of topological equivalence in the case of

a three-dimensional flow which has two saddle periodic orbits such that an

unstable manifold of one periodic orbit has a quadratic tangency with a stable

manifold of another orbit along a heteroclinic trajectory.

There are some other occurrences of moduli in structurally unstable three-

dimensional systems of codimension-one with simple dynamics. For example,

consider a three-dimensional system with a saddle-focus O and a saddle peri-

odic orbit L. Let λ1,2 = ρ ± iω, and λ3 be the characteristic roots at O such

that ρ < 0, ω > 0, λ3 > 0, i.e. assume the saddle-focus has type (2,1); let

|ν| < 1 and |γ| > 1 be the multipliers of the orbit L. Let one of the two sepa-

ratrices Γ of O tend to L as t→ +∞, i.e. Γ ∈W s
L, as shown in Fig. 8.3.2. This

condition gives the simplest structural instability. All nearby systems with

similar trajectory behavior form a surface B1 of codimension-one. Belogui [28]

had found that the value

θ̃1 =
ρ

ω

1

ln γ
(8.3.3)

is a modulus in such systems.
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Fig. 8.3.2. A structurally unstable heteroclinic trajectory connecting a saddle-focus and a

saddle periodic orbit with positive multipliers, i.e. both manifolds of the saddle cycle are

homeomorphic to a cylinder.

Another example is the system shown in Fig. 8.2.1 containing a homoclinic

loop Γ to a saddle-focus. If the saddle index

ν = −
ρ

λ3

< 1 ,

then a neighborhood of the loop contains an infinite set of saddle periodic

orbits. However, if ν > 1, the dynamics in a neighborhood of Γ is trivial.

Moreover, Shilnikov [130] had shown that when ν > 1, no more than one

periodic orbit can bifurcate from the homoclinic loop. Thus, it may be classified

as an internal bifurcation within the Morse–Smale systems (at least when a

small neighborhood of the loop Γ is considered). In this connection Afraimovich

and Ilyashenko [21] had noticed that ν is a modulus in this case.

Structurally unstable heteroclinic connections in systems of higher-

dimension may require new moduli besides known ones. Moreover, even struc-

turally unstable diffeomorphisms with simple dynamics may require infinitely

many moduli for their description. The conditions under which they have

either a finite or an infinite number of moduli are presented in [43].

There is no doubt that some subtle aspects of the behavior of homoclinic

and heteroclinic trajectories might not be important for nonlinear dynamics

since they reflect only fine nuances of the transient process. On the other hand,

when we deal with non-wandering trajectories, such as near a homoclinic loop

to a saddle-focus with ν < 1, the associated Ω-moduli (i.e. the topological

invariants on the non-wandering set) will be of primary importance because

they may be employed as parameters governing the bifurcations; see [62, 63].
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8.4. Bifurcations in finite-parameter families of
systems. Andronov’s setup

The mathematical objects of nonlinear dynamics are models — explicitly de-

fined dynamical systems depending on a finite number of parameters. The

primary quality of a model is that it must properly, at least qualitatively, de-

scribe the nature of the associated physical phenomenon. The primary goal

in the study of a model is to give a rigorous mathematical explanation. In

this connection let us recall the following remark made by Lyapunov: “. . . it

is not permitted to use dubious arguments as soon we have started to solve a

specific problem from mechanics or physics, it does not matter, whatever is set

up correctly from the point-of-view of mathematics. As soon as the system is

defined it becomes a problem of pure analysis and must be treated as such.”3

As far as dynamical models are concerned the main requirements for their

analysis have been formulated by Andronov. This is why we will call them

Andronov’s setup of the problem. Its principal idea is:

• Partition the phase space into regions of structural stability and identify

the bifurcation set.

• Divide this bifurcation set into connected components each of which cor-

responds to a topologically equivalent structure of trajectories.

It is natural that such a setting of the problem was based on the already known

facts and results from the qualitative theory of two-dimensional systems and

the theory of bifurcations.

Consider some finite-parameter family of smooth systems Xε, where ε =

(ε1, . . . , εp) assumes its values from some region V ∈ R
p. If Xε0

is non-rough,

then ε0 is said to be a bifurcation parameter value. The set of all such values

in V is called a bifurcation set. It is obvious that once we know the bifurcation

set, we can identify all regions of structural stability in the parameter space.

Hence, the first step in the study of a model is identifying its bifurcation set.

This emphasizes a special role of the theory of bifurcations among all tools of

nonlinear dynamics.

3Lyapunov had uttered these words in connection with Poincaré’s investigation where
he had applied some non-rigorous methods to a problem on the stability of the equilibrium
shapes of rotating fluids, and which had led him to a wrong conclusion in favor of pear
shapes. A more rigorous analysis conducted by Lyapunov had revealed that the pear shape
is unstable. Lyapunov’s proof was later confirmed by Cartan.
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The study of a bifurcation means to describe the change in the phase por-

trait of a non-rough system in transition to an arbitrarily close system (with

respect to some C
r-metric; the choice of r depends on the character of non-

roughness, and hence must be specified in each concrete case).

In principle, to solve a bifurcation problem we need to consider all systems

close to Xε0
. This means that we must consider the Banach space of all small

perturbations.4 On the other hand, when it is possible to reduce the analysis

to some appropriate finite-parameter family of systems, the study is simplified

significantly.

This idea was proposed by Andronov and Leontovich in their first work [9]

which deals with primary bifurcations of limit cycles on the plane.5 Further

developments of the theory of bifurcations, internal to the Morse–Smale class,

has also confirmed the sufficiency of using finite-parameter families for a rather

large number of problems.

An explicit mathematical formulation to the finite-parameter approach to

the local bifurcations was given by Arnold [19], based on the notion of versal

families. Roughly speaking, versality is a kind of structural stability of the

family in the space of families of dynamical systems. Different versions of such

stability are discussed in detail in [97].

The main idea of this approach is the following: to a non-rough system Xε0

some codimension k can be assigned. In the case of a finite degeneracy, the

codimension k is identified with k equality-like conditions and a finite number

of conditions of inequality type. Hence, Xε0
is considered as a point on some

Banach submanifold Bk of codimension k in the space of dynamical systems.

In other words, we have k smooth functionals defined in a neighborhood of

Xε0
whose zero levels intersect at Bk. In general, the inequality-like conditions

secure the smoothness of Bk. In the case of codimension one Sotomayor [144,

145] had proved the smoothness of these functionals, and the smoothness of

4Note that in many special cases attention is restricted to the study of the smaller spaces
of systems, e.g. systems with some specified symmetries, Hamiltonian systems, etc. In view
of that, the notion of structural stability in, say, Hamiltonian systems with one-degree-
of-freedom becomes completely meaningful. So, for example, equilibrium states such as
centers and saddles of such systems, become structurally stable. Moreover, if there are no
heteroclinic cycles containing different saddles, we can naturally distinguish such systems as
rough in the set of all systems of the given class.

5Nevertheless, in their later works (see also the books [11, 12]) when investigating similar
bifurcations they use the Banach space of all small perturbations. Note that the Banach
space approach to the bifurcations becomes, in essence, necessary in the case of systems with
complex dynamics, due to the persistence of homoclinic tangencies (see [60, 61, 62]).
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manifold B1 in situations where

(1) an equilibrium state becomes structurally unstable;

(2) a periodic orbit loses its structural stability; and

(3) there is a non-transverse intersection of stable and unstable manifolds

of saddle equilibrium states and periodic orbits.

Note that all systems from Bk are non-rough. Moreover, in the general case it

is not necessary that they are topologically equivalent to each other. Suppose,

however, they are. Next, let us foliate a small neighborhood U of the point

Xε0
∈ Bk into k-parameter families X̃ε, where X̃ε0

∈ Bk ∩ U and X̃ε is trans-

verse to Bk at X̃ε0
. If there is a homeomorphism (or, a diffeomorphism, what

is better) between the parameters of any two of these families such that the

corresponding systems are topologically equivalent, then obviously the study

of the bifurcations of the system Xε0
is reduced to the investigation of any

k-parameter family X̃ε passing through Xε0
and transverse to Bk.6 Since U is

small, ε assumes its values from a small neighborhood of ε0 in the parameter

space. In such a case, the Andronov’s problem can be easily set up.

In essence, this is the case for two-dimensional systems, as well as for a

number of high-dimensional systems when, for example, they can be reduced

to two-dimensional ones by a center manifold theorem (local or global, see

Chaps. 5 and 6).

The situation becomes completely different when moduli of topological

equivalence are required to describe systems in Bk, like in the case of hete-

roclinic tangencies (which correspond to bifurcation sets of codimension one).

Although the foliation of a neighborhood U by k-parameter families is still

possible, different families will not be topologically equivalent. Thus, from a

formal mathematical point-of-view the moduli must be included among the

governing parameters and the necessary number of parameters increases up

to the codimension of the problem plus the number of moduli. If there is

infinitely many independent moduli, then, formally, a reduction to a finite-

parameter family is not correct. However, the question of applicability of the

finite-parameter approach to these situations remains.

As an example, let us consider the codimension-one bifurcation of three-

dimensional systems with a homoclinic loop to a saddle-focus with the negative

6Of course, one may consider here families depending on more than k parameters, as well;
the only requirement is that the family must be in general position with respect to Bk, for
more details see Sec. 11.1.
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saddle value (i.e. ν > 1, see the previous section). As explained in the last

section, this bifurcation does not bring a system out of the class of systems

with trivial dynamics. On the other hand, ν is a modulus in this case. In spite

of this fact which means that different systems on the associated bifurcation

surface are not topologically equivalent, the bifurcation under consideration

can very well be treated in a one-parameter family (see Sec. 13.4) unless we

are interested in the behavior of trajectories for which the homoclinic loop is

an ω-limit set.

A more complicated example is given by codimension-two problems as those

shown in Fig. 8.4.1, which include one or two saddle-foci. The saddle values

are assumed to be negative at all equilibrium states. The parameters which

govern the bifurcations are introduced in the following way: let µ1(2) be a

deviation of Γ12(Γ21) from W s
O1

(Wu
O2

) in the case of two saddle-foci, or let it

be a deviation of Γ1(Γ2) from W s
0
. As established in [151, 125] not more than

one or two periodic orbits can be born in the first and, respectively, second

(a)

Fig. 8.4.1. (a) A heteroclinic connection between a saddle O2 and saddle-focus O1; (b)
a heteroclinic connection between two saddle-foci O1,2; (c) a homoclinic figure-eight to a

saddle-focus.
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(b)

(c)

Fig. 8.4.1. (Continued)
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bifurcation. Moreover, in the second case, a non-trivial attractor (a stable

quasiminimal set composed of the saddle-focus O and two P+ trajectories

having O as their α-limit set, as well as a continuum of other non-closed

Poisson-stable trajectories) may appear. Even though the structure of the

non-wandering sets here is completely understood, the bifurcation diagrams in

the (µ1, µ2)-parameter plane look rather non-trivial (as depicted in Fig. 8.4.2),

especially for the set of bifurcation values corresponding to secondary hete-

roclinic and homoclinic trajectories. Presumably, changing the values of the

moduli ν at (µ1 = 0, µ2 = 0) may change the structure of mutual intersections

of different bifurcational curves at small (µ1, µ2). On the other hand, if we

ignore the too subtle fine details, the two-parameter approach is sufficient for

a comprehensive understanding of these bifurcations.

An analogous situation also appears in a classical problem on the birth of

an invariant torus from a periodic orbit: minor details of the structure of the

Fig. 8.4.2. A bifurcation diagram corresponding to the case shown in Fig. 8.4.1(a). See

Sec. 13.7 for details.



450 Chapter 8. Bifurcations of Dynamical Systems

bifurcational set may become extremely sensitive to small perturbation of the

family.

We see that in many basic cases the Andronov’s problem cannot be solved

if it is taken in its full rigor, so in these cases one must determine reasonable

bounds to the analysis of the bifurcation set.

In this book we adopt the finite-parameter approach to the bifurcations

from the very beginning; the formal scheme is described in Sec. 11.1.

In general, when dealing with a p-parameter family of systems we assume

the following natural restrictions:

(1) the structurally stable systems fill out whole regions in the parameter

space;

(2) the main bifurcations in the family are of codimensions not greater

than p; and

(3) bifurcations of codimension k, such that k ≤ p, must admit the con-

struction of a reasonable k-parameter unfolding.



Chapter 9

THE BEHAVIOR OF DYNAMICAL

SYSTEMS ON STABILITY BOUNDARIES

OF EQUILIBRIUM STATES

In this chapter we study non-rough or structurally unstable equilibrium states

on the stability boundaries, i.e. those which have at least one characteristic

exponent on the imaginary axis in the complex plane. As for the rest of the

characteristic exponents we will assume that they lie in the open left-half-plane.

The basis of stability theory for systems with structurally unstable equilib-

rium states was developed by Lyapunov. His works and numerous subsequent

studies on various aspects of stability in critical cases, as well as of bifurcation

phenomena accompanying the loss of stability of equilibrium states had be-

came the foundation on which the principal notions in the theory of nonlinear

oscillations had spawned in the twenties and thirties.

The critical equilibrium states have been the subject of a large number of

studies. Here, we shall consider only the two most common and simple cases,

where the characteristic equation

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

(1) has one zero root on the imaginary axis; or

(2) has a pair of complex-conjugate roots on the imaginary axis.

The first case is determined by the condition

an = 0 , ∆k > 0 , k = 1, . . . , n− 1 ,

where ∆k is the Routh–Hurwitz determinant (see Sec. 2.1).

451
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The second critical case corresponds to

∆n−1 = 0 , an > 0 , ∆k > 0 , k = 1, . . . , n− 2 .

Recall that an = (−1)n detA, where A is the matrix of the linearized

system at the equilibrium state. Therefore, the condition for crossing the

stability boundary in the first case is given by

detA = 0 .

In view of this condition, the equilibrium states associated with the first crit-

ical case are also called degenerate. Since the implicit function theorem may

no longer be applied here, the persistence of such an equilibrium state in a

neighboring system is not necessarily guaranteed. Thus, a transition through

the stability boundary in the first critical case may result in the disappearance

of the equilibrium state.

On the contrary, in the second critical case, the equilibrium state is pre-

served in all nearby systems and can only lose its stability.

The basic tools for studying critical cases include the method of reduction

to the center manifold and the method of normal forms. The latter allows

us to calculate the Lyapunov values that determine the stability of a critical

equilibrium state.

9.1. The reduction theorems. The Lyapunov
functions

A system of differential equations near a critical equilibrium state can be writ-

ten in the form
ẏ = Ay + f(x, y) ,

ẋ = Bx+ g(x, y) ,
(9.1.1)

where x = (x1, . . . , xm) and y = (y1, . . . , yn), m 6= 0; the functions f, g ∈

C
r(r ≥ 1) vanish at the origin along with their first derivatives. The char-

acteristic equation det(B − λI) = 0 has m roots λ1, . . . , λm with Re λi =

0 (i = 1, . . . ,m), and the characteristic equation det(A − γI) = 0 has n roots

γ1, . . . , γn with Re γj < 0, (j = 1, . . . , n).

As shown in Chap. 5, the above critical equilibrium state lies in an invariant

C
r-smooth center manifold WC defined by an equation of the form y = Φ(x),

where Φ(x) vanishes at the origin along with its first derivative.
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Transversely to the center manifold, another invariant manifold passes

through the point O(0, 0). It is called strongly stable and, as usual, we de-

note it by W ss. Its equation is given by x = Ψ(y), where Ψ(y) vanishes at

the origin along with its first derivative. If the original system is analytic, the

manifold W ss is analytic as well. A similar statement for the center manifold

is not true in general: even if the system is analytic, the center manifold WC

may be neither analytic nor even C
∞.

The strongly stable manifold W ss is one of the leaves of a C
r−1-smooth

foliation which is transverse to the center manifold. As we have shown in

Chap. 5 the following reduction theorem holds:

In a neighborhood of the point O there exists a C
r−1-smooth change of

variables which straightens both the invariant foliation and the center manifold

so that the system in the new variables assumes the following standard form

ẋ = Bx+G(x) , (9.1.2)

ẏ = [A+ F (x, y)]y , (9.1.3)

where G(x) ≡ g(x,Φ(x)) ∈ C
r, F (x, y) ∈ C

r−1 and F (0, 0) = 0.

In the new variables the equation of the center manifold WC becomes

y = 0, and the equation of the strongly stable manifold W ss becomes x = 0.

The leaves of the strong stable foliation are the surfaces x = const.

The main feature of this theorem is that it reduces significantly the di-

mension of the problem; namely, instead of studying the original (n + m)-

dimensional system (9.1.1) we need only to explore the properties of the m-

dimensional system (9.1.2), whose dimension does not depend on n, but is

equal to the number of critical characteristic exponents. The dynamics in the

critical (center) x−variable is locally determined by system (9.1.2) and depends

in no way on the y-coordinate.

The dynamics in the y-variable is rather simple: if ‖x‖ is small, the function

F in (9.1.3) is also small near the origin. Therefore, the following estimate is

valid in an appropriately chosen basis in the y-space:

d

dt
‖y(t)‖ ≤ −γ‖y(t)‖ ,

where 0 < γ < max |Re γi| (i = 1, . . . , n) (see Theorem 2.4). Hence

‖y(t)‖ < Ce−γt , (9.1.4)

i.e. any trajectory tends exponentially to the center manifold WC .
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All characteristic exponents of the restriction

ẏ = Ay + f(Ψ(y), y) (9.1.5)

of the system (9.1.1) on the strongly stable manifold W ss lie to the left of the

imaginary axis. Therefore, the trajectory behavior of the system on W ss is

the same as that near a rough stable equilibrium state with the linearization

matrix A (see Chap. 2).

It follows from the estimate (9.1.4) that the stability of the equilibrium state

of the original system (9.1.1) is equivalent to the stability of the equilibrium

state with respect to the associated system reduced to the center manifold.

First, let us recall some definitions. An equilibrium state O is said to be

Lyapunov stable if for any ε > 0, there exists δ > 0 such that any trajec-

tory which starts from a δ-neighborhood of O never leaves its ε-neighborhood.

Otherwise, the equilibrium is said to be unstable.

An equilibrium state O is asymptotically stable if any trajectory starting

sufficiently close to O tends to it as t→ +∞.

Now, let the equilibrium state x = 0 of the reduced system (9.1.2) be stable

in the sense of Lyapunov. By definition, this means that for the system (9.1.2

and 9.1.3) in the standard form, the x-coordinate remains small in the norm

for all positive times, for any trajectory which starts sufficiently close to O,

provided y remains small. At the same time, the smallness of x implies the

inequality (9.1.4) for the y-coordinate, i.e. y(t) converges exponentially to zero.

Thus, we have the following theorem.

Theorem 9.1. If the equilibrium state is Lyapunov stable in the center mani-

fold WC , then the equilibrium state of the original system (9.1.1) is Lyapunov

stable as well. Moreover, if the equilibrium state is asymptotically stable in

the center manifold, then the equilibrium state of the original system is also

asymptotically stable.

If the equilibrium state is unstable in the center manifold WC , then the

equilibrium state of the original system is unstable.1

Our investigation of the stability of a critical equilibrium state will make

use of Lyapunov functions.

1The last statement concerning instability is obvious and requires no proof.
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Definition 9.1. A continuous function V (x) defined in a neighborhood D of

O and smooth in D\O, is called a Lyapunov function for system (9.1.2) if it

satisfies the following conditions

(1) V (0) = 0 ; (9.1.6)

(2) V (x) > 0 if x 6= 0 ; (9.1.7)

(3)
dV (x)

dt
= 〈V ′(x), Bx+G(x)〉 ≤ 0 at x 6= 0 , (9.1.8)

where 〈·, ·〉 denotes the scalar product.

The use of Lyapunov functions to guarantee stability is based upon the

following result.

Theorem 9.2. If there exists a function V (x) satisfying conditions (9.1.6)–

(9.1.8), then the equilibrium state O is Lyapunov stable. Furthermore, if the

inequality (9.1.8) is strict for all x 6= 0, then all trajectories in D tend to the

point O as t→ +∞, i.e. the equilibrium state O is asymptotically stable.

To prove Lyapunov stability let us surround the point O by a sphere Sm−1

ε

of radius ε. Let Vε > 0 be the minimum of the function V (x) on the surface of

the sphere (it is strictly positive because all points of the sphere lie at a finite

distance from the origin). Since V is continuous and V (0) = 0, it follows that

for any point x0 chosen sufficiently close to O the value of the function V (x)

is strictly less than Vε.

Note that (9.1.8) implies that the Lyapunov function cannot increase along

a trajectory of system (9.1.2). Hence, for any trajectory x(t) starting close

enough to the point O the inequality V (x(t)) < Vε holds. This means that

such a trajectory cannot intersect the sphere Sm−1

ε , and therefore, it must

remain within an ε-neighborhood of the equilibrium state O for all t ≥ 0.

To prove asymptotic stability, let us choose an ε-neighborhood Uε of the

equilibrium state and show that any trajectory from D must enter Uε af-

ter a sufficiently large time and must remain inside there forever. Indeed, if

inequality (9.1.8) is strict for all x 6= 0, then the minimum

min
x∈D\Uε

〈V ′(x), Bx+G(x)〉 = −Cε

is strictly less than zero. If we assume that at time t a representative point on

the trajectory x(t) is outside of Uε, then by virtue of (9.1.8) we have

d

dt
V (x(t)) ≤ −Cε



456 Chapter 9. The Behavior of Dynamical Systems on . . .

(inside Uε we have at least d
dt
V (x(t)) ≤ 0). Hence, for any t

V (x(t)) ≤ V (x(0))− Cε T (t) , (9.1.9)

where T denotes the time during which the trajectory has been outside Uε. It

follows from (9.1.7) and (9.1.9) that this time is finite for any t:

T (t) ≤ V (x0)/Cε ≡ Tε(x0) .

Hence, for all t > Tε the trajectory remains inside the ε-neighborhood of the

point O. Since ε may be chosen arbitrarily small, it follows that the trajectory

must tend to O as t→ +∞.

Remark. The Lyapunov function is a universal tool of stability theory.

Typically, a proof concerning stability consists of either constructing a Lya-

punov function, or proving its existence. Moreover, its applicability is not

limited to critical equilibria; for example, in our analysis of studying the struc-

turally stable equilibria (Theorem 2.4), we have implicitly shown that the norm

of a vector in a Jordan basis is a Lyapunov function.

The Lyapunov function has a simple geometrical meaning, especially in

the case of asymptotic stability. Here, the level surfaces V (x) = constant

are surfaces without contact for system (9.1.1); i.e. the vector field on these

surfaces is oriented toward the origin, as shown in Fig. 9.1.1 (to verify this note

that the gradient vector V ′(x) of the function V (x) is orthogonal to the surface

V = constant at the point x and that the strict inequality (9.1.8) means that

the angle between the velocity vector ẋ and the gradient of the function V (x)

is acute). Therefore, all trajectories must flow inside any surface V = constant

and converge to the equilibrium state O.

From the practical point of view, stability in the sense of Lyapunov is less

important than asymptotic stability. In particular, it follows from simple con-

tinuity arguments that if a critical equilibrium state is asymptotically stable,

then the trajectories of any nearby system will also converge to a small neigh-

borhood of the origin where they will stay forever. The behavior of trajectories

in this small neighborhood may be rather nontrivial. Nevertheless, any devia-

tions from zero of trajectories of a nearby system must remain small because

the equilibrium state is asymptotically stable at the critical parameter value.
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Fig. 9.1.1. Geometrical interpretation of a Lyapunov function. The surface V (x) = constant

has no contact with a vector field, i.e. the tangent at any point of the surface is transverse

to the vector field so that every trajectory goes inwards the sphere.

The above statement is not valid for an equilibrium state which is stable

only in the Lyapunov sense. For example, for the linear system

ẋ1 = µx1 − ωx2 ,

ẋ2 = ωx1 + µx2 ,

the equilibrium state O(0, 0) is a center at µ = 0. It is Lyapunov stable but

not asymptotically stable (here, any trajectory is a circumference surrounding

the origin). For any µ > 0 arbitrarily small, the equilibrium state becomes an

unstable focus and all trajectories leave the origin for infinity as t→ +∞.

The instability of an equilibrium state at a critical parameter value also im-

plies a practically important general conclusion about the trajectory behavior

in all nearby systems. Namely, if we fix an arbitrarily small ε0-neighborhood

of such an equilibrium state, then for any system which is sufficiently close to

the original system with the unstable equilibrium state there are initial con-

ditions not further from zero than ε0 such that the corresponding trajectory
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will diverge from the origin over a finite distance. Thus, if a critical equilib-

rium state O of the original system is unstable, then the basin of attraction

(provided it does exist) of the corresponding equilibrium state of any neigh-

boring system has to be very small.

To prove that an equilibrium state is unstable one can use some analogies

of Lyapunov functions. For example, if there exists a function V (x) satisfying

conditions (9.1.6) and (9.1.7) but

〈V ′(x), Bx+G(x)〉 > 0 , at x 6= 0 , (9.1.10)

then the corresponding equilibrium state is unstable. Here, the function V (x)

is a Lyapunov function for a system obtained from (9.1.2) by a time inversion.

Therefore, by virtue of Theorem 9.1 all trajectories tend to O as t → −∞;

i.e. such an equilibrium state is repelling, or completely unstable.

However, it is possible to have an unstable equilibrium state O such that

some trajectories converge to O as t→ +∞. The simplest example is a rough

saddle. To prove instability of a saddle in critical cases one can use Chetaev’s

function where conditions (9.1.6), (9.1.7) and (9.1.10) hold only within some

sector adjoining the point O. For details we refer the reader to the book by

Khazin and Shnol [75].

9.2. The first critical case

For the case where only one characteristic exponent lies on the imaginary axis,

i.e. when m = 1, and λ1 = 0 in (9.1.1), the system in the standard form is

given by
ẋ = g(x) ,

ẏ = [A+ F (x, y)] y ,
(9.2.1)

where x is a scalar, and the function g(x) vanishes at the origin along with its

first derivative. In this case, the center manifold WC is one-dimensional and

defined by the equation y = 0. The system in WC is

ẋ = g(x) . (9.2.2)

Let us investigate the behavior of trajectories of this equation near the

equilibrium state. Since g(0) = g′(0) = 0,

g(x) = l2x
2 + l3x

3 + · · · , (9.2.3)
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where the coefficients l2, . . . , lk of the Taylor expansion of the function g(x) at

O are called the Lyapunov values.

Let k be the number of the first non-zero Lyapunov value; i.e. l2 = · · · =

lk−1 = 0 and lk 6= 0. Then, Eq. (9.2.2) can be written as

ẋ = lkx
k(1 + o(1)) . (9.2.4)

Observe that if k is even, then the equilibrium state is unstable. The

behavior of the trajectories in a neighborhood of the point O for positive and

negative values of lk is shown in Figs. 9.2.1(a) and (b), respectively. The

second case reduces to the other one by change x→ −x. There are only three

trajectories here: one is the point O, the second is the trajectory coming out

from O towards lkx > 0, and the third is the trajectory entering O from the

side lkx < 0.

If k is odd (k = 2p+ 1), the equation assumes the following form

ẋ = l2p+1x
2p+1(1 + o(1)) . (9.2.5)

Here, if l2p+1 < 0, then d
dt
|x| = l2p+1|x|

2p+1(1 + o(1)) < 0 for x 6= 0. Hence,

the equilibrium state O is stable in this case, as shown in Fig. 9.2.1(c). On the

contrary, if l2p+1 > 0, the equilibrium is unstable, as shown in Fig. 9.2.1(d).

Let us return to the original system (9.2.1) and give a complete descrip-

tion of the trajectories near the point O. The dynamics in the y-variables is

(a) (b)

(c) (d)

Fig 9.2.1. A saddle-node with different Lyapunov values. See comments in the text.
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quite simple — it is dominated by the exponential convergence to zero [see

inequality (9.1.4)]. The dynamics in the x-coordinate is described above.

Hence, we have:

(1) If the first non-zero Lyapunov value has an even index number, such an

equilibrium state is called a saddle-node; moreover, it is called a simple

saddle-node if l2 6= 0. Here, the strong stable manifoldW ss partitions a

neighborhood of O into two subregions: a node subregion and a saddle

one. In the node subregion all trajectories tend to O along the leading

direction y = 0. In the saddle subregion all trajectories pass nearby O,

except for one trajectory which tends to O as t→ −∞ (Fig. 9.2.2).

In the three-dimensional case all orbits in W ss tend to O expo-

nentially as t → +∞: if the largest (nearest to the imaginary axis)

eigenvalue γ1 of the matrix A is real, then the point O is a stable node

in W ss [see Fig. 9.2.3(a)]; otherwise, if γ1 is complex, then O is a stable

focus in W ss [see Fig. 9.2.3(b)].

(2) If the first non-zero Lyapunov value is negative and has an odd index

number, i.e. lk < 0, k = 2p+1, then the equilibrium state is stable. All

trajectories tend to O as t→ +∞. Moreover, the trajectories which do

lie on the strong stable manifoldW ss converge to O alongWC as shown

Fig. 9.2.2. A saddle-node in a plane.
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(a)

(b)

Fig. 9.2.3. Two R

3-examples of topologically identical saddle-nodes with l2p 6= 0;

in its restriction to W

ss the point O is a stable node (a) or is a stable focus (b).

in Fig. 9.2.4(a). In contrast to the case of a structurally stable node,

the convergence here is not exponential.2

(3) If the first non-zero Lyapunov value has an odd index number and is

positive, i.e. lk > 0, k = 2p + 1, then the equilibrium state O has the

topological type of a saddle (n−1, 1) (see Sec. 2.5). Here, the unstable

2By integrating (9.2.5) we have x ∼ C‖t‖−1/2p.
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(a)

(b)

Fig. 9.2.4. A degenerate equilibrium state with l2p+1 6= 0. The center manifold is

continued here in both directions. Such a bifurcation called a pitchfork, is typical for

systems where due to symmetry the first non-zero Lyapunov value at a degenerate
equilibrium state is always of an odd order.

manifold of the bifurcating point coincides with WC , as illustrated in

Fig. 9.2.4(b).

Note that in order to calculate the first non-zero Lyapunov value there is

no need to reduce the system to the center manifold. If the original system

has the form

ẋ = g(x, y) ,

ẏ = Ay + f(x, y) ,
(9.2.6)
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such that f ′(0, 0) = 0 and g′(0, 0) = 0, the standard routine is as follows. First,

write down the system of equations

Ay + f(x, y) = 0 . (9.2.7)

As detA 6= 0 and f(0, 0) = 0, f ′y(0, 0) = 0, this system can be solved implicitly

for y:

y = ϕ(x) . (9.2.8)

The Taylor series of the function ϕ(x) can be found by the method of inde-

terminate coefficients. Next, one can calculate g(x, ϕ(x)). The first non-zero

coefficient in the expansion

g(x, ϕ(x)) = lkx
k + · · · , (9.2.9)

is the desired first non-zero Lyapunov value.

For the system of second order

ẋ = a20x
2 + a11xy + a02y

2 + · · · = g(x, y),

ẏ = −λy+ b20x
2 + b11xy + b02y

2 + · · · = −λy + f(x, y),

where λ > 0, the first Lyapunov value is simply equal to a20.

If the linear part is in the general form (with a b 6= 0)

ẋ = ax+ by + g(x, y) ,

ẏ = cx+ dy + f(x, y) ,

where ad− bc = 0, a+ d < 0, and the functions f and g start with quadratic

terms (as in the previous system), then the formula for calculating l2 is more

complicated:

l2 = a20 · bd− a11ad+ a02ac− b20b
2 + b11ab− b02a

2

Let us show that formula (9.2.9) does give us the Lyapunov value. Indeed,

by definition, the Lyapunov value is the first non-zero coefficient of the

expansion

g(x,Φ(x)) = lkx
k + · · · , (9.2.10)
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where y = Φ(x) is the equation of the center manifold. The condition of

invariance of WC for the system (9.2.6) is given by

AΦ(x) + f(x,Φ(x)) = Φ′(x)g(x,Φ(x)) . (9.2.11)

By comparing (9.2.7), (9.2.8) and (9.2.11) we find that

ϕ(x)− Φ(x) ∼ Φ′(x)g(x,Φ(x)) ,

i.e. the difference between ϕ(x) and Φ(x) [and hence the difference between

g(x,Φ(x)) and g(x, ϕ(x))] is of a higher order of smallness with respect to

g(x,Φ(x)). Therefore, the first non-zero terms of the Taylor expansion (9.2.10)

and (9.2.9) of the functions g(x,Φ(x)) and g(x, ϕ(x)) coincide indeed.

It follows from formula (9.2.9) that if the right-hand side of the system

(9.2.6) is analytic, and if all Lyapunov values vanish, then g(x, ϕ(x)) ≡ 0.

Hence, since y = ϕ(x) is the solution of the system (9.2.7), it follows that the

curve y = ϕ(x) is filled out by the equilibrium states of the system (9.2.6).

Thus, it is an invariant manifold of this system. Since it is tangent to y = 0

at O, it is the center manifold by definition. It follows that for the case under

consideration, the system has an analytic center manifoldWC : y = ϕ(x) which

consists of equilibrium states as illustrated in Fig. 9.2.5.

Fig. 9.2.5. A degenerate center manifold composed of equilibrium states.
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This is not the case when the system is only smooth but not analytic. For

example, a C
∞-smooth system with the flat right-hand side

ẋ =

{

e−1/x2

, x 6= 0 ,

0 , x = 0 ,

ẏ = −y ,

has a unique (unstable) equilibrium state all of whose Lyapunov values are

zero. Another flat system

ẋ =

{

sin(1/x) e−1/x2

, x 6= 0 ,

0, x = 0 ,

ẏ = −y ,

has a countable number of isolated equilibrium states accumulating to the

origin.

An equilibrium state whose phase portrait cannot be determined by the

coefficients of the Taylor expansion (this means that l2 = · · · = lr = 0 for

C
r-smooth systems, or that all li vanish for C

∞-smooth systems) is called

completely degenerate, or infinitely degenerate in the C
∞ case.

9.3. The second critical case

Let the equilibrium state at the origin have a pair of purely imaginary eigen-

values λ1,2 = ±i ω. In this case the restriction of the system on the center

manifold WC is written in the following form

ẋ1 = −ωx2 + g1(x1, x2) ,

ẋ2 = ωx1 + g2(x1, x2) ,
(9.3.1)

where the functions g1,2 vanish at the origin along with their first derivatives.

Let us begin with calculating the normal form for the system (9.3.1).

Obviously, there are infinitely many resonant relations of the kind

λ1 = (q + 1)λ1 + qλ2 ,

λ2 = qλ1 + (q + 1)λ2 ,
(9.3.2)
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where q = 1, 2, . . . . This means that smooth changes of variables cannot,

generally speaking, get rid of the monomials Aqx1(x
2

1
+x2

2
)q and Bqx2(x

2

1
+x2

2
)q

(see Sec. 2.9). Below we show how to nullify the remaining terms up to any

finite order.

Lemma 9.1. For any integer Q ≥ 1 there exists a polynomial change of vari-

ables which transforms the system (9.3.1) to

u̇ = −ωv +

Q
∑

q=1

(Lqu− Ωqv)(u
2 + v2)q + o(r2Q+1) ,

v̇ = ωu+

Q
∑

q=1

(Lqv +Ωqu)(u
2 + v2)q + o(r2Q+1) ,

(9.3.3)

(where r =
√
u2 + v2) or, in polar coordinates,

ṙ = L1r
3 + · · ·+ LQr

2Q+1 + o(r2Q+1) ,

θ̇ = ω +Ω1r
2 + · · ·+ΩQr

2Q + o(r2Q) .
(9.3.4)

Proof. Let us make the following change of variables

z = x1 + i x2 , z∗ = x1 − i x2

and rewrite the system in the complex form

ż = i ωz +
∑

2≤p+q≤2Q+1

Cpqz
pz∗ q + o(|z|2Q+1) ,

ż∗ = −i ωz∗ +
∑

2≤p+q≤2Q+1

C∗pqz
∗pzq + o(|z|2Q+1) ,

(9.3.5)

where ∗ denotes complex conjugation. This form is more convenient because

the matrix of the linear part is diagonal. Moreover, we may neglect the second

equation because it follows from the first one.

Let us next make the transformation of variables

z = w +
∑

p,q

αpqw
pw∗ q , 2 ≤ p+ q ≤ 2Q+ 1 , (9.3.6)
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where αpq are indeterminate coefficients. The equation in the new variables is

given by

ẇ = i ω w +
∑

2≤p+q≤2Q+1

C ′pqw
pw∗ q + o(|w|2Q+1) . (9.3.7)

Let us try to nullify as many coefficients C ′pq as possible. By substituting

(9.3.6) into (9.3.5) and replacing ẇ and ẇ∗ with their expressions accordingly

to (9.3.7), we obtain

{

1 +
∑

p,q

αpq pw
p−1w∗q

}

·

[

i ωw +
∑

p,q

C ′pq w
pw∗q

]

+
∑

p,q

αpq q w
pw∗q−1

[

−i ωw∗ +
∑

p,q

C ′∗pq w
∗pwq

]

= i ω

[

w +
∑

p,q

αpq w
pw∗q

]

+
∑

p,q

Cpq(w + · · · )p(w∗ + · · · )q

+ o(|w|2Q+1) .

By the coefficients of wp w∗q for p+ q = 2, we obtain

i ωαpqp w
pw∗q + C ′pq w

pw∗q − iω αpq q w
pw∗q = i ω αpqw

pw∗q + Cpq w
pw∗q

and, consequently

C ′pq = Cpq − i ω αpq[p− q − 1] . (9.3.8)

It is clear that if

p 6= q + 1 , (9.3.9)

then letting

αpq =
Cpq

i ω(p− 1− q)
(9.3.10)

we have C ′pq = 0. For p+ q = 2 the condition (9.3.9) is always fulfilled. Hence,

if the coefficients αpq in (9.3.6) are given by (9.3.10), there will be no quadratic

terms in the system (9.3.7) when written in the new variables.

By equating the coefficients of wp w∗q for p+ q = 3, we obtain

C ′pq = Cpq − i ω αpq[p− q − 1] + · · · (9.3.11)
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where the ellipsis denote the terms depending only on those αpq for which

p + q = 2 (we have already found them via (9.3.10)). In this case, for p and

q satisfying the condition (9.3.9) we can also find αpq such that in the new

variables the coefficients C ′pq become zero:

αpq =
Cpq + · · ·

i ω(p− 1− q)
,

where the ellipsis has the meaning as above.

The only one “immortal” monomial is the first resonant term (C21+· · ·)w
2w∗

(p = 2, q = 1). Since C ′
21

is independent of α21, we can let α21 = 0 in

(9.3.6).

For higher values of (p + q), the expression (9.3.11) remains valid, with

the understanding that the dots denote the terms depending only on those

αp′q′ for which p′ + q′ < p + q. Thus, continuing in the same way as above,

we can find explicitly the appropriate change of variables that eliminates all

monomials with even (p+q), and all non-resonant monomials with odd (p+q).

Eventually, only the resonant monomials of type (Cq+1,q+· · · )w
q+1w∗q survive.

Obviously, the procedure can be extended up to any value (p+ q).

Finally, Eq. (9.3.7) takes the form

ẇ = i ωw + C ′
21
w2w∗ + · · ·+ C ′Q+1,Qw

Q+1w∗Q + o(w2Q+1) . (9.3.12)

Substituting w = u+i v yields the desired system (9.3.3) where Lq = Re C ′q+1,q

and Ωq = Im C ′q+1,q.

The system (9.3.5) or (9.3.4) is the normal form for the second critical

case. The coefficients Lq are called the Lyapunov values. Observe from the

above procedure that in order to calculate LQ one needs to know the Taylor

expansion of the Eq. (9.3.1) up to order p+ q = 2Q+ 1.

Let L1 = · · · = Lk−1 = 0, Lk 6= 0. In this case the normal form is given by

ṙ = Lk r
2k+1(1 + ϕ(r, θ)) ,

θ̇ = ω(1 + ψ(r, θ)) ,

where ϕ and ψ tend to zero as r → 0. Having changed the time via

dt→ (1 + ϕ(r, θ))−1dt
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we obtain a new system
ṙ = Lk r

2k+1 ,

θ̇ = ω(1 + · · · ) ,
(9.3.13)

which is called the orbital normal form.

If Lk < 0, then the trajectory spirals to O as t → +∞, as shown in

Fig. 9.3.1. The equilibrium state in this case is called a stable complex or weak

focus. We remark that in contrast to a rough stable focus, here the convergence

of the trajectories to O is not exponential. Indeed, it follows from examining

system (9.3.13) that

r ∼ t−1/2k , (9.3.14)

θ ∼ ω t . (9.3.15)

Here, any trajectory is of the form r ∼ θ−1/2k. It is not a logarithmic spiral;

in particular, its length tends to infinity as r → 0.

If Lk > 0, the origin is an unstable equilibrium state because trajectories

starting close to it spiral away as time increases. For the two-dimensional

system (9.3.1) the point O is called an unstable complex (weak) focus.

Returning to the original high-order system [see (9.1.1)–(9.1.3)], we observe

that if the first non-zero Lyapunov value is negative, then the trajectories

Fig. 9.3.1. A stable (Lk < 0) weak focus R2. When Lk > 0, a trajectory leaves a neighbor-
hood of the origin along a counter clock-wise spiral.
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behave qualitatively in the same way as those near a rough stable focus as

illustrated in Fig. 9.3.2(a).

If the first non-zero Lyapunov value is positive and if all non-critical char-

acteristic exponents (γ1, . . . , γn) lie to the left of the imaginary axis in the

complex plane, then the equilibrium state is a complex saddle-focus, as shown

in Fig. 9.3.2(b). Its stable manifold is W ss, and the unstable manifold coin-

cides with the center manifold WC . The trajectories lying neither in W ss nor

WC pass nearby the equilibrium state.

The formula for the first Lyapunov value expressed in terms of the coeffi-

cients of the system (9.3.1) was first derived by Bautin [24]. If we write down

the system as

ẋ = ax+ by + P2(x, y) + P3(x, y) + · · · ,

ẏ = cx+ dy +Q2(x, y) +Q3(x, y) + · · · ,

where ad− bc > 0, a+ d = 0, and

P2(x, y) = a20x
2 + a11xy + a02y

2 ,

Q2(x, y) = b20x
2 + b11xy + b02y

2 ,

P3(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3 ,

Q3(x, y) = b30x
3 + b21x

2y + b12xy
2 + b03y

3 ,

then the formula is given by

L1 = −
π

4bω3
{[ac(a2

11
+ a11b02 + a02b11) + ab(b2

11
+ a20b11 + a11b20)]

+ c2(a11a02 + 2a02b02)− 2ac(b2
02
− a20a02)− 2ab(a2

20
− b20b02)

− b2(2a20b20 + b11b20) + (bc− 2a2)(b11b02 − a11a20)]

− (a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − b21b)]} ,

where ω2 = ad− bc.

To calculate L1 in the high-dimensional case one must first derive a system

on the center manifold with an accuracy up to terms of third order, and then
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(a)

(b)

Fig. 9.3.2. Two opposite situations in R3 are depicted. When Lk < 0 the equilibrium state

yet preserves its stability on the stability boundary (a); when Lk > 0 the stable equilibrium

state becomes an unstable focus on W

C , and, in a global view, a saddle-focus whose stable
manifold W

s is W

ss (b).
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calculate L1 using the above formula. In cases where L1 vanishes, the calcula-

tion of the second Lyapunov value L2 requires the reconstruction of the center

manifold with an accuracy up to the next subsequent terms of odd order, i.e. of

fifth order, etc.

We note that by rescaling the r-variable in (9.3.13), the value Lk can be

made equal to one in absolute value. Meanwhile, it is obvious that the sign

(as well as the number) of the first non-zero Lyapunov value is not altered by

non-singular changes of variables and time. The sign determines whether the

given equilibrium state is stable or not, whereas the number determines the

speed of convergence of the trajectories to zero [see (9.3.14)].

For the case of all zero Lyapunov values the trajectory behavior can be

described only in the analytic case.

Theorem 9.3. If all Lyapunov values are equal to zero, then the associated

analytic system has an analytic invariant (center) manifold which is filled with

closed trajectories around the origin, as shown in Fig. 9.3.3. On the center

manifold the system has a holomorphic integral of the type

U =
x2

1

2
+
ω2x2

2

2
+ V (x1, x2) ,

where the function V starts with cubic terms.

Recall that an equilibrium state where all trajectories in its neighborhood

are closed, is called a center. A center is stable in the sense of Lyapunov but

it is not asymptotically stable. An example of a system with a center comes

from a rather broad class of systems given by

ẋ1 = − ωx2 ,

ẋ2 = ωx1 + f(x1) ,
(9.3.16)

where f(0) = f ′(0) = 0. It is easy to see that the system (9.3.16) possesses a

first integral (energy integral)

U =
x2

1

2
+
ω2x2

2

2
+

x1∫

0

f(ξ)dξ .
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Fig. 9.3.3. When all Lyapunov values vanish in an analytical system, the equilibrium state

is a center on W

C . In R3, its extended neighborhood is foliated by invariant cylinders.

In the C
∞ case, the origin is not necessarily a center if all Lyapunov values

vanish. For example, in the system

ṙ =

{

e−1/r2

, r 6= 0 ,

0, r = 0 ,

θ̇ = ω ,

the equilibrium state is asymptotically stable. In contrast, in the system

ṙ =

{

e−1/r2

sin(1/r), r 6= 0 ,

0, r = 0 ,

θ̇ = ω ,

a small neighborhood of the origin contains infinitely many limit cycles.



Chapter 10

THE BEHAVIOR OF DYNAMICAL

SYSTEMS ON STABILITY BOUNDARIES

OF PERIODIC TRAJECTORIES

10.1. The reduction of the Poincaré map.
Lyapunov functions

Unlike the case of equilibrium states, the stability boundaries of periodic
trajectories may be of two different types:

(1) The periodic trajectory exists on the stability boundary. Among its
multipliers, there is at least one on the unit circle.

(2) The periodic trajectory disappears on the stability boundary.

In this chapter, we will focus on the stability boundaries of the first type1.
Since the periodic trajectory persists in this case at the critical moment, we
can construct a small cross-section and our problem reduces to the study of a
Poincaré map. In some suitable coordinates on the cross-section, the Poincaré
map can be written in the form

x̄ = Bx + G(x, y) ,

ȳ = Ay + f(x, y) ,
(10.1.1)

1The boundaries of the second type correspond to the merging of a periodic orbit into an
equilibrium state (Sec. 11.5) or to a homoclinic loop, or a blue-sky catastrophe (Chaps. 12
and 13).

475
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where x = (x1, . . . , xm), m 6= 0, y = (y1, . . . , yn), f and g belong to the class
Cr, r ≥ 1, and vanish at the origin along with their first derivatives. The
characteristic equation of the matrix B

det(B − ρI) = 0

has m roots ρ1, . . . , ρm whose absolute values are all equal to 1. The roots
ρm+1, . . . , ρn+m of the characteristic equation

det(A− ρI) = 0

of the matrix A lie strictly inside the unit circle.
In this chapter, we restrict our consideration to the following three principal

cases:

(1) Only one multiplier lies on the unit circle and is equal to one
(m = 1, ρ1 = 1)

(2) Only one multiplier lies on the unit circle and is equal to minus one
(m = 1, ρ1 = −1)

(3) A pair of multipliers (complex-conjugate) lies on the unit circle
(m = 2, ρ1,2 = e±i ω, 0 < ω < π).

If the characteristic equation

∆(ρ) = ρm+n + b1ρ
m+n−1 + · · ·+ bm+n = 0

associated with the matrix
(

B 0
0 A

)
is given, then the first and the second crit-

ical cases are selected by the conditions ∆(1) = 0 and ∆(−1) = 0, respectively,
or

1 + b1 + · · ·+ bm+n = 0

and
(−1)m+n + b1(−1)m+n−1 + · · ·+ bm+n = 0 .

In addition one must ensure that the other roots of the characteristic equation
lie inside the unit circle.

To derive the condition which corresponds to the third case, let us make a
change of variables ρ = (1 + λ)/(1− λ). The values of ρ inside the unit circle
correspond to the values of λ in the open left-half plane. Those of ρ that lie
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on the unit circle correspond to λ on the imaginary axis. Therefore, we have
the third critical case when the polynomial

∆
(

1 + λ

1− λ

)
(1− λ)m+n ≡ a0λ

m+n + a1λ
m+n−1 + · · ·+ am+n (10.1.2)

has exactly two purely imaginary roots, and the rest lies to the left of the
imaginary axis. The associated conditions for the coefficients ai are given in
Chap. 9 (when a0 = 1). In general, the conditions are

∆n−1 = 0 , a0an > 0 , ak
0 ∆k > 0 , k = 1, . . . , n− 2 ,

where ∆k are the Routh–Hurwitz determinants of the polynomial (10.1.2).
For three-dimensional systems (i.e. for two-dimensional Poincaré maps) the

characteristic equation is
ρ2 + b1ρ + b2 = 0

and the stability boundaries are determined as follows:

• 1st critical case (ρ = 1)

b1 + b2 = −1 , |b2| < 1 ; (10.1.3)

• 2nd critical case (ρ = −1)

b1 = b2 + 1 , |b2| < 1 ; (10.1.4)

• 3rd critical case (ρ = e±i ω)

b2 = 1 , |b1| < 2 . (10.1.5)

To derive the last condition let us substitute ρ = ei ω into the characteristic
equation and obtain

e2i ω + b1e
i ω + b2 = 0 ,

or {
cos 2ω + b1 cosω + b2 = 0

sin 2ω + b1 sin ω = 0 .

We find that b1 = −2 cos ω, b2 = − cos 2ω + 2 cos2 ω, and (10.1.5) follows.
If a system is represented by differential equations in R3, then the product

of the multipliers of the periodic trajectory must be positive, i.e. b2 > 0. It
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Fig. 10.1.1. The stability region of the two-dimensional diffeomorphism.

follows from (10.1.3)–(10.1.5) that in the (b1, b2)-plane the stability region of a
periodic trajectory of a three-dimensional system has the form of a trapezoid, in
contrast to the stability region of a fixed point of an arbitrary two-dimensional
map, which has the form of a triangle, as shown in Fig. 10.1.1. The cases of
multiple multipliers ρ1 = ρ2 = 1 and ρ1 = ρ2 = −1 correspond to the two
apices A and B of the triangle, respectively, and the case ρ1 = 1, ρ2 = −1
corresponds to the apex C.

As shown in Chap. 5, the critical fixed point O(0, 0) lies in an invariant
Cr-smooth center manifold WC defined by the equation y = Φ(x), where Φ
vanishes at the origin along with its first derivative. Moreover, the following
reduction theorem holds:

In a neighborhood of the fixed point O there exists a change of variables
of class Cr−1 such that the Poincaré map in the new variables assumes the
standard form

x̄ = Bx + g(x) , (10.1.6)

ȳ = [A + F (x, y)] y , (10.1.7)

where g(x) ≡ G(x,Φ(x)) ∈ Cr, F (x, y) ∈ Cr−1, F (0, 0) = 0.

In the new variables the center manifold WC is defined by y = 0, and the
strong stable manifold W ss is defined by x = 0.
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The reduction theorem allows us to study the dynamics of the critical
variables x independently of the y-variables near the fixed point. As for the
y-subspace, the dynamics is relatively simple: since the x-variable is small in
the norm, the function F in (10.1.3) is also small, and hence the following
estimate holds

‖ȳ‖ ≤ ρ‖y‖ ,

where 1 > ρ > max |ρj | (j = m + 1, . . . ,m + n). This means that every
trajectory converges exponentially to the center manifold.

Thus, the stability of the fixed point of the original map (10.1.1) is equiva-
lent to the stability of the fixed point of the map (10.1.6) in the center manifold,
which we state formally as follows

Theorem 10.1. If the fixed point O is Lyapunov stable in the center manifold
WC , then it is also stable for the original map (10.1.1). If the fixed point is
asymptotically stable in the center manifold, then the fixed point of the original
system is also asymptotically stable. If the fixed point is unstable in the center
manifold WC , then it is unstable for the original map.

The basic tool for studying stability of critical fixed points is the Lyapunov
functions.

Definition 10.1. A continuous function V (x) defined in some neighborhood
D of O, is called the Lyapunov function for system (10.1.6) if it satisfies the
following conditions

(1) V (0) = 0 ; (10.1.8)

(2) V (x) > 0 , if x 6= 0 ; (10.1.9)

(3) V (x̄) ≤ V (x) , for x 6= 0 . (10.1.10)

Theorem 10.2. If there exists a function V (x) satisfying conditions (10.1.8)–
(10.1.10), then the fixed point is Lyapunov stable. Furthermore, if the inequality
(10.1.10) holds strictly for all x 6= 0, then all positive semi-trajectories in D

tend to O, i.e. the point O is asymptotically stable.

We omit the proof because it is identical to the proof of Theorem 9.2 on the
stability of equilibrium states.
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10.2. The first critical case

In the case where the only one multiplier (+1) lies on the unit circle, the
Poincaré map has the form

x̄ = x + g(x) ,

ȳ = [A + F (x, y)] y ,
(10.2.1)

where x is a scalar, and

g(0) = g′(0) = 0 , F (0, 0) = 0 .

The center manifold WC is one-dimensional, so the map in WC can be written
in the form

x̄ = x + g(x) = x + l2x
2 + l3x

3 + · · · . (10.2.2)

The coefficients l2, . . . , lk of the Taylor expansion of the function g(x) at O are
called the Lyapunov values.

Let us investigate the behavior of trajectories of this map. Let k be the
number of the first non-zero Lyapunov value: l2 = · · · = lk−1 = 0, lk 6= 0.
Then, the map (10.2.2) assumes the form

x̄ = x + lkxk(1 + o(1)) . (10.2.3)

If k is even, k = 2p, then the fixed point O is unstable. The behavior of the
trajectories near O is described by the Lamerey diagram in Fig. 10.2.1(a). If
lk > 0, then the positive semi-trajectory {xj}j=∞

j=0 of a point x0 to the left of O

tends to O as j → +∞. For any point x0 to the right of O there exists J > 0
such that xJ gets out of a neighborhood of O. If lk < 0 (this case reduces
to the previous one by mapping x → −x), then the trajectories starting with
positive x tend to O as j → +∞, but from the side of negative x the point O

is unstable, see Fig. 10.2.1(b).
If k is odd, k = 2p + 1, then the map has the form

x̄ = x + l2p+1x
2p+1(1 + o(1)) . (10.2.4)

If l2p+1 < 0, then |x̄| = |x|(1−|l2p+1|x2p(1+o(1))) < |x| at x 6= 0. This means
that |x| is a Lyapunov function, so the fixed point O is asymptotically stable,
as shown in Fig. 10.2.2(a). On the contrary, if l2p+1 > 0, then |x̄| > |x|, and
O is unstable, as shown in Fig. 10.2.2(b).



10.2. The first critical case 481

(a)

(b)

Fig. 10.2.1. The Lamerey diagrams in the cases where l2p > 0 (a) and l2p < 0 (b).
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(a)

(b)

Fig. 10.2.2. The fixed point at the origin is stable when l2p+1 < 0 (a) and repelling when
l2p+1 > 0 (b).



10.2. The first critical case 483

Fig. 10.2.3. An iterated saddle-node of a two-dimensional map.

The trajectory behavior of the original map (10.2.1) is as follows.

Case 1. l2 = · · · = l2p−1 = 0, l2p 6= 0.

The strong stable manifold W ss : x = 0 subdivides a neighborhood of O into
the node region and the saddle region. In the node region all trajectories tend
to O along the leading direction y = 0 [because the y-coordinate decreases
exponentially while the x-coordinate decreases slower than any geometrical
progression: |x̄| > (1− ε)|x| by virtue of (10.2.3)]. In the saddle region all tra-
jectories, except for those on the ray WC

+ : {y = 0, x ≥ 0}, leave a neighbor-
hood of O over a finite number of iterations (see Fig. 10.2.3). The trajectories
in WC

+ tend to O as j → −∞. Thus, WC
+ is the local unstable manifold of O.2

Like a corresponding critical equilibrium state in the case of differential equa-
tions, the fixed point O under consideration is called a saddle-node: simple if
p = 1 (i.e. l2 6= 0), and complex (or degenerate) if l2 = 0.

We can now describe the behavior of trajectories in a small neighborhood
of the periodic trajectory L to which the fixed point O of the Poincaré map
corresponds. In the two-dimensional case the behavior of trajectories is shown
in Fig. 10.2.4, and a higher-dimensional case in Fig. 10.2.5. The invariant
strongly stable manifold W ss

L (the union of the trajectories which start from
the points of W ss

O on the cross-section) partitions a neighborhood of L into a
node and a saddle region. In the node region all trajectories wind towards L

2Note that this is a manifold with the boundary (which is O).



484 Chap. 10. The Behavior of Dynamical Systems on . . .

(a)

(b)

Fig. 10.2.4. Saddle-node periodic orbits in R2: (a) the cycle L is stable in the interior region
and unstable in the exterior region. When l2p < 0, it is attractive for the point inside it,
and repelling for outer trajectories (b).

as t → +∞ so that L is orbitally stable in this region. In the saddle region
every trajectory leaves the neighborhood of L over a finite time, except for
trajectories in the local unstable manifold Wu

loc(L) which tend to L as t → −∞.
Such a periodic trajectory is also called a saddle-node. The terms semi-stable
or p-multiple (double when l2 = 0) limit cycle are more typical for the planar
case.
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Fig. 10.2.5. A saddle-node periodic orbit in R3. Its strongly stable invariant manifold
separates two domains, a node one where the periodic orbit is stable, and a saddle domain.
The unstable manifold W u

L of the orbit is homeomorphic to a semi-cylinder. We will need
this picture many times.

Case 2. l2 = · · · = l2p = 0, l2p+1 < 0.

Here the fixed point is asymptotically stable. All trajectories apart belonging
to the non-leading manifold W ss: x = 0 enter O along the leading direction
y = 0, as shown in Fig. 10.2.6(a). The behavior of trajectories in a neighbor-
hood of the limit cycle corresponding to the critical fixed point is shown in
Fig. 10.2.7(a). The high-dimensional picture looks like a rough stable periodic
trajectory but there is no exponential convergence of trajectories to L in the
critical case.

Case 3. l2 = · · · = l2p = 0, l2p+1 > 0.

Such a critical fixed point is called a complex (degenerate) saddle. Its stable
manifold is W c : y = 0, and the unstable manifold Wu is given by x = 0,
as shown in Fig. 10.2.6(b). Here, in the critical case, the trajectories be-
have qualitatively identical to those nearby the rough unstable cycle shown in
Fig. 10.2.7(b).

If all Lyapunov values vanish and the map is analytic, then the center
manifold is analytic too and it consists of fixed points (Fig. 10.2.8). Observe
that if the map has the form

x̄ = x + g(x, y) ,

ȳ = Ay + f(x, y) ,
(10.2.5)

then the first non-zero Lyapunov value is the first non-zero coefficient of
the Taylor expansion of g(x, φ(x)), where y = φ(x) is the solution of the
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(a)

(b)

Fig. 10.2.6. Geometrically, there is no difference between a critical node l2p < 0 (a) and a
rough stable node. However, a quantitative comparison can be made with respect to the
rate of convergence of nearby trajectories to the origin. A similar observation also applies
to a rough saddle fixed point and a critical saddle with l2p+1 > 0 (b).
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(a)

(b)

Fig. 10.2.7. In case (a) the bifurcating limit cycle is stable if l2p+1 < 0 and is repelling if
l2p+1 > 0 (b).

equation
Ay + f(x, y) = 0 . (10.2.6)

Hence if all Lyapunov values vanish, then it follows from the analyticity of f

that
f(x, φ(x)) ≡ 0 . (10.2.7)

From (10.2.5)–(10.2.7) we can conclude that the analytic curve y = φ(x) con-
sists entirely of fixed points and, therefore, is an invariant (center) manifold.
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Fig. 10.2.8. The center manifold W C filled out by fixed points.

A leaf of the stable invariant foliation passes through every fixed point
M ∈ WC (see Chap. 5). It is obvious that each leaf is the stable manifold
W ss

M of the point M ; the trajectories in the leaf converge exponentially to M

as j → +∞.
In the non-analytic case, it is hard to make any general statement con-

cerning the dynamics of the map when all Lyapunov values are zero (the fixed
point is then said to be completely degenerate, or infinitely degenerate).3 For
example, for the map

x̄ = x +

{
x e−1/x2

, x 6= 0 ,

0 , x = 0 ,

ȳ = y/2 ,

3More precisely, a fixed point of a Cr-smooth map is completely degenerate if l2 = · · · =
lr = 0 and a fixed point of a C∞-map is called infinitely degenerate if the whole set of li
vanishes.
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the origin is a saddle, whereas for the map

x̄ = x +

{
sin(1/x) e−1/x2

, x 6= 0 ,

0 , x = 0 ,

ȳ = y/2 ,

it is stable but not asymptotically.
Finally, we emphasize that infinitely degenerate fixed points are quite com-

mon. In fact, (see Gonchenko et al. [62] for a survey) in the space of smooth
dynamical systems of dimension three or higher there are regions, called New-
house regions, where systems with infinitely degenerate periodic trajectories
are dense everywhere. Note that these regions exist near any system with a
single non-degenerate (quadratic) homoclinic tangency, which in turn is a cha-
racteristic phenomenon for almost any known model with a complex (chaotic)
behaviour. Summarizing, we may conclude that nearly any dynamical model
with complex behavior possesses regions in the parameter space where an ar-
bitrarily small perturbation of the system may produce infinitely degenerate
periodic orbits (may be of very large periods).

10.3. The second critical case

In this case the Poincaré map in the standard form is given by

x̄ = −x + g(x) ,

ȳ = [A + f(x, y)] y ,
(10.3.1)

where x is a scalar variable, all eigenvalues of A are strictly inside the unit
circle, and the functions f and g are such that

g(0) = g′(0) = 0 , f(0, 0) = 0 .

Let us consider the map TC on the center manifold WC :

x̄ = −x + a2x
2 + a3x

3 + · · · . (10.3.2)

The multiplier ρ is equal to −1. Therefore, the resonant relations are

ρ = ρ2p+1 .
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Since the even powers of x are not resonant, it follows that the corresponding
terms up to any finite order can be eliminated by a finite number of smooth
changes of variables (see Sec. 3.13). As a result the map is led to the normal
form

ξ̄ = −ξ(1 + l1ξ
2 + · · ·+ lpξ

2p + · · · ) , (10.3.3)

where the coefficients lj are the Lyapunov values. The first coefficient is given
by the formula

l1 = a2
2 + a3 .

The dynamics of trajectories of the map TC depends on the first non-zero
Lyapunov value. If lk 6= 0 and all previous lj = 0 for j < k, then the map
assumes the form

ξ̄ = −ξ(1 + lkξ2k + · · · ) . (10.3.4)

It follows that if lk < 0, then the fixed point O at the origin is asymptotically
stable (because |ξ̄| < |ξ| for ξ 6= 0, i.e. |ξ| is a Lyapunov function). If lk > 0,
the point O is unstable. Figures 10.3.1(a) and (b) show the associated Lamerey
diagrams for negative and positive values of lk, respectively.

Observe that the second iteration of the map (10.3.4)

¯̄ξ = ξ + 2lkξ2k+1 + · · · (10.3.5)

has the same form as the map considered in the previous section (Cases 2
and 3).

As for the original map (10.3.1) the fixed point O is asymptotically stable
when lk < 0 and is a saddle when lk > 0. In the latter case the stable and
unstable manifolds of O are the manifolds W ss and WC , respectively. In terms
of the Poincaré map of the system of differential equations, the corresponding
periodic trajectory L is stable when lk < 0, or a saddle when lk > 0. Note
that in the saddle case the two-dimensional unstable manifold WC(L) is, in a
neighborhood of the periodic trajectory, a Möbius band.

If all Lyapunov values are equal to zero and the system is analytic, then
the center manifold is also analytic, and all points on it, except O, are periodic
of period two. This means that for the system of differential equations there
exists a non-orientable center manifold which is a Möbius band with the cycle
L as its median and which is filled in by the periodic orbits of periods close to
the double period of L (see Fig. 10.3.2).
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(a)

(b)

Fig. 10.3.1. Lamerey spirals: The origin stable when lk < 0 (a) and unstable when lk > 0 (b).
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Fig. 10.3.2. The center manifold of the primary periodic orbit L of an analytic system is a
Möbius strip filled densely by periodic orbits of double period when all Lyapunov coefficients
vanish.

If the map is of class C2r+1, where 1 ≤ r ≤ ∞, and if all Lyapunov
values l1, . . . , lr vanish, the fixed point O is completely degenerate or infinitely
degenerate when r = ∞.

We will now present an algorithm for calculating the first non-zero
Lyapunov value for maps which are not reduced to the standard form. First
we write the map in the form

x̄ = −x + g(x, y) ,

ȳ = Ay + f(x, y) ,
(10.3.6)

where
f(0, 0) = 0 , f ′(0, 0) = 0 , g(0, 0) = 0 , g′(0, 0) = 0

and then consider its second iteration
=
x = x + g̃(x, y) ,

=
y = A2y + f̃(x, y) ,

where

g̃(x, y) ≡ −g(x, y) + g(−x + g(x, y), Ay + f(x, y)) ,

f̃(x, y) ≡ Af(x, y) + f(−x + g(x, y), Ay + f(x, y)) .

Let us represent y from the implicit equation

A2y + f̃(x, y) = 0
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as y = ψ̃(x). Then, the desired Lyapunov value is equal to one-half of the first
coefficient of the Taylor expansion of the function g̃(x, ψ̃(x)):

g̃(x, ψ̃(x)) = 2lp x2p+1 + · · · .

10.4. The third critical case. Weak resonances

Let us suppose that two multipliers of the periodic orbit are complex-conjugate
and lie on the unit circle. In this case the Poincaré map assumes the form

x̄1 = x1 cosω − x2 sin ω + g1(x1, x2) ,

x̄2 = x1 sin ω + x2 cosω + g2(x1, x2) , (10.4.1)

ȳ = (A + f(x1, x2, y))y ,

where 0 < ω < π, and all eigenvalues of A lie inside the unit circle. The center
manifold here is two-dimensional and the map on it is defined by the first two
equations in (10.4.1):

x̄1 = x1 cos ω − x2 sinω + g1(x1, x2) ,

x̄2 = x1 sin ω + x2 cosω + g2(x1, x2) ,
(10.4.2)

where g1,2 vanish at the origin along with their first derivatives.
The multipliers of the fixed point at the origin are (ρ1 = eiω, ρ2 = e−iω).

Like in the case of the equilibrium state with a pair of purely imaginary char-
acteristic exponents (see Sec. 9.3), there exist resonances of the kind:

ρ1 = ρp+1
1 ρp

2 (ρ2 ≡ ρ∗1 = ρp+1
2 ρp

1) . (10.4.3)

Therefore, one can expect that the following terms will appear in the right-
hand side of the normal form:

(Lpx1 − Ωpx2) (x2
1 + x2

2)
p ,

(Lpx2 + Ωpx1) (x2
1 + x2

2)
p .

(10.4.4)

We will call the resonant relations (10.4.4) trivial. If, an addition, ω is com-
mensurable to 2π, i.e.

ω =
2πM

N
,
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where M and N are positive integers without common divisors, then there
are other non-trivial resonant relations. To find them, let us write a resonant
relation with unknown p and q:

ρ1 = ρp
1ρ

q
2 ,

or
eiω(p−q−1) = 1 . (10.4.5)

Taking the logarithm of both sides of (10.4.5), we obtain

iω(p− q − 1) = 2πil

where l is an integer. Substituting ω = 2πM/N , we obtain

M(p− q − 1) = Nl . (10.4.6)

For each integer l, the equality (10.4.6) is satisfied if and only if

p = q + Ns + 1 , (10.4.7)

where s ∈ Z. We will assume that s ≥ 0 in (10.4.7). Otherwise, for negative s

rewrite (10.4.7) in the form

q = p + Ns− 1 , (10.4.8)

where s is now positive. Notice, that plugging s = 0 in (10.4.7) gives p = q +1
which corresponds to the trivial resonance.

Thus, in the case where ω is commensurable to 2π, the normal form, along
with terms of the form (10.4.4), possesses other terms determined by relations
(10.4.7) and (10.4.8) for s > 0.

To construct the normal form, let us follow in the same way as given in
Sec. 9.3, and introduce complex variables so that the linear part becomes
diagonal. Let

z = x1 + ix2 ,

and recast (10.4.2) as follow:

z̄ = eiωz +
∑
p,q

Cpqz
pz∗q . (10.4.9)
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Let us next apply the transformation

z = w +
∑
s,t

αstw
sw∗t (10.4.10)

such that the map in the new variables

w̄ = eiω

(
w +

∑
p,q

C ′pqw
pw∗q

)
(10.4.11)

has as many zero coefficients C ′pq as possible.
By substituting (10.4.10) into (10.4.9) and collecting the coefficients of

similar terms wpw∗q, we obtain the following relations linking Cpq with C ′pq:

C ′pq + αpq[eiω(p−q−1) − 1] = e−iωCpq (10.4.12)

for p + q = 2 and

C ′pq + αpq[eiω(p−q−1) − 1] = e−iωCpq + Spq(αst) (10.4.13)

for p + q > 2. Here, Spq(αst) is some polynomial which depends only on αst

with indices s and t such that s + t < p + q. Hence, we can compute the
coefficients αpq, starting with p + q = 2. Furthermore, if

eiω(p−q−1) 6= 1 ,

then the corresponding coefficient C ′pq can be nullified if we let

apq =
e−iωCpq + Spq

eiω(p−q−1) − 1
.

When p = q + 1, or if any one of the relations (10.4.7)–(10.4.8) holds, then

eiω(p−q−1) = 1

and hence C ′pq cannot, in general, be nullified. In this case, we let αpq = 0,
and then the resonant coefficient C ′pq is connected to Cpq via

C ′pq = e−iωCpq + Spq(αst) ,

where Spq is the polynomial from (10.4.13).
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It is convenient to carry out some further calculations with regard to
whether ω is commensurable to 2π or not. The non-resonant case where
ω/2π is irrational is pretty simple because only trivial resonances occur there.
Therefore, a polynomial transformation brings the map to the form

w̄ = eiωw(1 + C ′21|w|2 + · · ·+ C ′p+1,p|w|2p) + o(|w|2p+1) , (10.4.14)

for arbitrarily given integer p (not exceeding (r− 1)/2, where r is the smooth-
ness of the map). In polar coordinates, w = R eiϕ the map (10.4.14) assumes
the form

R̄ = R + L1R
3 + · · ·+ LpR

2p+1 + o(R2p+1) ,

ϕ̄ = ϕ + ω + Ω1R + · · ·+ ΩpR
2p + o(R2p) ,

(10.4.15)

where the values of Lk and Ωk are expressed in terms of C ′j,j+1 with j ≤ k.
For example,

L1 = α1 , Ω1 = β1 ,

L2 = α2 + β2
1/2 , Ω2 = β2 − β1α1/2 ,

(10.4.16)

where C ′k+1,k ≡ αk + iβk.
The values Lk are called the Lyapunov values.

Theorem 10.3. Let Lk be the first non-zero Lyapunov value (Lk 6= 0, Li = 0,

for i < k). Then, the fixed point O is asymptotically stable when Lk < 0 and
unstable when Lk > 0.

Proof. From (10.4.15) we have

R̄ = R(1 + LkR2k + o(R2k)) . (10.4.17)

It follows that if Lk < 0, then R̄ < R; i.e. V (R, ϕ) ≡ R is a Lyapunov function,
and therefore the fixed point is asymptotically stable. In the case Lk > 0 we
have

R = R̄(1− LkR̄2k + o(R̄2k)) ,

whence R̄ > R. Thus, R is a Lyapunov function for the inverse map and the
instability of the fixed point follows. End of the proof.

Remark. It follows from the formulae (10.4.16) that in the general case
the stability of the fixed point is determined by the value ReC ′21 ≡ L1.
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If ReC ′21 < 0, then the fixed point is stable. Otherwise, when ReC ′21 > 0,
the fixed point is unstable.

One can compute that C ′21 is given by the following formula:

C ′21 = C20C11
2eiw − 1
1− eiw

e−2iw − 2
|C02|2

1− e3iw
− |C11|2

1− eiw
+ C21e

−iw ,

where Cpq are coefficients from (10.4.9). Thus, the first Lyapunov value is
given by

L1 = Re(C20C11)
cos 3w − 3 cos 2w + 2 cos w

2(1− cos w)

+ Im(C20C11)
sin 3w − 3 sin 2w + 2 sin w

2(1− cosw)

− |C02|2 − 1
2
|C11|2 + Re C21 · cos w + Im C21 · sin w .

The fixed point O under consideration is called either a complex (or weak)
stable focus or a complex (weak) unstable focus depending on the sign of the
Lyapunov value.

If Lk < 0, then for the original multi-dimensional map (10.4.1), the fixed
point is also a stable focus. Moreover, its leading manifold coincides with the
center manifold WC . This means that all positive semi-trajectories, excluding
those in the non-leading manifold W ss, tend to O along spirals which are
tangent to WC at O. The periodic orbit corresponding to the fixed point O

is asymptotically stable as well. The nearby trajectories tend to the periodic
orbit by winding around it, as shown in Fig. 10.4.1.

In the case where the Lyapunov value Lk is positive, the fixed point of the
original map is a weak saddle-focus. Its stable and unstable manifolds are W ss

and WC , respectively, as shown in Fig. 10.4.2.

In the resonant case, when ω = 2πM/N , there are two groups of non-trivial
resonant relations (10.4.7) and (10.4.8), as well as the trivial resonances. For
the corresponding values p and q, the coefficient of αpq in formulas (10.4.12)
and (10.4.13) vanishes and the monomial wpw∗q survives under the normal-
izing transformation (10.4.10). Hence, the map (10.4.2) is transformed into
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Fig. 10.4.1. A trajectory tends to the periodic orbit winding around it.

Fig. 10.4.2. An iterated saddle-focus.

the following normal form

w̄ = e2πiM/N

(
w +

∑

p≥1

C ′p+1,pw
p+1w∗ p +

∑

p≥0,s≥1

C ′p,p+Ns−1w
pw∗ p+Ns−1

+
∑

q≥0,s≥1

C ′q+Ns+1,qw
q+Ns+1w∗ q

)
+ o(|w|2P+1)

= e2πiM/N

(
w

(
1 +

∑

p≥1

C ′p+1,p|w|2p

)
+

∑

s≥1

w∗Ns−1
∑

p≥1

C ′p,p+Ns−1|w|2p

+
∑

s≥1

wNs+1
∑

q≥1

C ′q+Ns+1,q|w|2q

)
+ o(|w|2P+1) , (10.4.18)
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where the summation is taken over all indices so that the degrees of the mono-
mials do not exceed (2P +1) for some positive integer P , which can be chosen
arbitrarily large but not exceeding (r− 1)/2, where r is the smoothness of the
system.

It follows from formula (10.4.18) that depending on the value N , one of the
following three cases takes place:

(1) N = 3 : w̄ = e2πi/3(w + C ′02w
∗ 2) + o(|w|2) ;

(2) N = 4 : w̄ = eπi/2(w + C ′21|w|2w + C ′03w
∗ 3) + o(|w|3) ; and

(3) N ≥ 5 : w̄ = e2πiM/N (w + C ′21|w|2w) + o(|w|3) .

We see that for strongly resonant values ω = 2π/3 and ω = π/2 the normal
forms differ in main order from the normal forms for other ω’s. We will
consider strong resonances in the next section, but let us pause first to discuss
the weak resonances: ω = 2πM/N , N ≥ 5.

For the given case the map (10.4.18) can written in the form

w̄ = e2πiM/N

(
w

(
1 +

∑

p≥1

C ′p+1,p|w|2p

)
+ C ′0,N−1w

∗N−1

)
+ o(|w|N−1) ,

(10.4.19)

where the summation is taken over all p such that 2p + 1 < N − 1. In polar
coordinates

R̄ = R + L1R
3 + · · ·+ LP R2P+1 + o(RN−2) ,

ϕ̄ = ϕ + ω + Ω1R
2 + · · ·+ ΩP R2P + o(RN−3) ,

(10.4.20)

where P is the largest integer less than (N/2− 1).
Formula (10.4.20) is similar to the formula (10.4.14) for the non-resonant

case and the only difference is that in the case of a weak resonance only a finite
number of the Lyapunov values L1, . . . , LP is defined (for example, only L1 is
defined when N = 5). If at least one of these Lyapunov values is non-zero, then
Theorem 10.3 holds; i.e. depending on the sign of the first non-zero Lyapunov
value the fixed point is either a stable complex focus or an unstable complex
focus (a complex saddle-focus in the multi-dimensional case).
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10.5. Strong resonances

Recall that the strong resonances correspond to the values of the frequency
ω = 2π/3 and ω = π/2. In the former case the normal form of the map is

w̄ = e2πi/3(w + C ′02w
∗ 2) + o(|w|2) . (10.5.1)

We will consider only the case where C ′02 6= 0. Let C = |C ′02| and eiα = C ′02/C.
Then, the transformation w → weiα/3C−1 reduces the map to

w̄ = e2πi/3(w + w∗ 2) + o(|w|2) . (10.5.2)

Definition 10.2. An m-fan is a set homeomorphic to the union of m rays
emanating from one point (the apex of the fan).

Definition 10.3. A fixed point in the plane whose stable manifold W s and
unstable manifold Wu are the m-fans with the apex at the fixed point such that
between any two neighboring rays of W s there is one ray of Wu, and vice versa,

is called a saddle with 2m separatrices.

Theorem 10.4. The fixed point O of map (10.5.2) is unstable and is a saddle
with six separatrices as shown in Fig. 10.5.1.

Fig. 10.5.1. A saddle with six separatrices.
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Proof. It is more convenient to consider not the map (10.5.2) itself but its
third iteration. We have

¯̄w = e2πi/3(w̄ + w̄∗ 2 + · · · ) = e4πi/3(w + 2w∗ 2 + · · · ) ,

≡
w = w + 3|w∗|2 + · · · ,

(10.5.3)

where the ellipses denote terms of third order and higher.
Let us consider a differential equation

ẇ = w∗ 2 (10.5.4)

for which the shift map along the trajectories over the time t = 3 has the form
(10.5.3). To show this, let us rewrite (10.5.4) as

wt = w0 +
∫ t

0

w∗ 2
s ds . (10.5.5)

This formula allows us to find a solution of (10.5.4) as the limit of the successive
approximations w

(n)
t :

w
(n+1)
t = w0 +

∫ t

0

(w(n)∗
s )2ds . (10.5.6)

For the first approximation we have

w
(1)
t = w0 + tw∗ 2

0 .

For the second one we have

w
(2)
t = w0 + tw∗ 2

0 + t2w∗0w2
0 + t3w4

0/3 .

It is not hard to see that all approximations coincide up to the terms of second
order inclusively, and have the form

w
(n)
t = w0 + tw∗ 2

0 + o(|w|2) .

Hence, the solution of Eq. (10.5.4) has the same form.4 It follows that the shift
map along the trajectories of system (10.5.4) over the time t = 3 does have
the form (10.5.3).

4Generally speaking, one must prove that the successive approximations converge; it can
be easily checked: if the time interval t is finite and if |w0| is sufficiently small, we can apply
the Banach principle of contraction mappings.
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System (10.5.3) can be integrated. To do this let us introduce the polar
coordinates w = R eiϕ. Then we get

d

dt
Reiϕ = R2e−2iϕ ,

Ṙ + iRϕ̇ = R2e−3iϕ

or

Ṙ = R2 cos 3ϕ ,

ϕ̇ = −R sin 3ϕ .

After the change of time Rdt → dt the system reduces to the form

Ṙ = R cos 3ϕ ,

ϕ̇ = − sin 3ϕ .
(10.5.7)

Observe that the function
H = R3 sin 3ϕ

is the first integral of (10.5.7). The level lines of the function H, which are the
integral curves of system (10.5.7), are found trivially. The level H = 0, which
contains the equilibrium state, is given by the equation sin 3ϕ = 0 and is a
6-fan defined by the rays

ϕ = πn/3 , (n = 0, . . . , 5) .

The equation of motion on the rays with even n is

Ṙ = R ,

and therefore R increases unboundedly along these rays as t → +∞. The
equation of motion on the rays with odd n is

Ṙ = −R,

i.e. R tends to zero as t → −∞. Thus, the rays

ϕ = 2πn/3
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Fig. 10.5.2. A resonant fixed point with six separatrices. The angle between each pair is
equal to π/3.

are the unstable separatrices of the equilibrium state, and the rays

ϕ = π(2n + 1)/3

are the stable ones (n = 0, 1, 2). The rest of the trajectories have the form of
hyperbolas whose asymptotes as t → +∞ and t → −∞ are the unstable and
stable separatrices respectively, as shown in Fig. 10.5.2.

It is obvious that for the shift map along the trajectories of system (10.5.4)
the fixed point also has the same six separatrices; i.e. Theorem 10.4 holds for
the given particular case. In order to consider a general case recall that, as in
Sec. 3.14, for an arbitrary map near a fixed point some iteration of the map
can be approximated up to terms of arbitrarily high order by a shift map along
the trajectories of some autonomous system of differential equations.5 Such a
system for the map (10.5.3) has the form

ẇ = w∗ 2 + g(w, w∗) , (10.5.8)

where g = o(|w|2). To find the function g one may write the Taylor expansion
with indeterminate coefficients for the right-hand side of (10.5.8) and then by

5One may take an arbitrary non-autonomous time-periodic system such that the map
under consideration is a Poincaré map for this system. After that the normalizing procedure
described in Sec. 3.14 is applied.
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using the method of successive approximations find the Taylor expansion for
the time shift map in terms of the Taylor coefficients of g. Comparing the
similar terms in the above shift map and in the original map (10.5.3), we get
a system of equations from which the desired number of Taylor coefficients of
g can be found. The solvability of this system of equations is guaranteed by
Theorem 3.23.

The exact representation of the map (10.5.3) is given by the shift map of a
non-autonomous system of the form

ẇ = w∗ 2 + g(w,w∗) + g̃(w,w∗, t), (10.5.9)

where g̃ is a periodic function with respect to t with period T = 3; moreover
the terms depending on t can be made arbitrarily small (of order o(|w|r) where
r is the smoothness of the system).

In polar coordinates the system can be written as

Ṙ = R2 cos 3ϕ + g1(R,ϕ) + g̃1(R,ϕ, t) ,

ϕ̇ = −R sin 3ϕ + g2(R, ϕ) + g̃2(R, ϕ, t) ,
(10.5.10)

where g1 = O(R3), g2 = O(R2) and

g̃1 = o(Rr) , g̃2 = o(Rr−1) . (10.5.11)

Omitting the non-autonomous terms, we obtain

Ṙ = R2 cos 3ϕ + g1(R, ϕ) ,

ϕ̇ = −R sin 3ϕ + g2(R, ϕ) .
(10.5.12)

After introducing a new time variable

dτ = R dt (10.5.13)

this system assumes the following form, whose main terms coincide with
(10.5.7):

Ṙ = R cos 3ϕ + O(R2) ,

ϕ̇ = − sin 3ϕ + O(R) .
(10.5.14)
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For the moment, let us not identify the points corresponding to R = 0 when the
values of ϕ are different. Thus, the phase space of system (10.5.14) becomes a
semi-cylinder. On the invariant circle R = 0 there are six equilibrium states

(R = 0, ϕ = ϕn ≡ πn/3) n = 0, . . . , 5 (10.5.15)

determined from the equation sin 3ϕ = 0. The equilibrium states with even
n are stable on the circle, and those with odd n are unstable. If we choose
a small ε > 0, then the positive semi-trajectory of any trajectory (other than
ϕ = 2πn/3) from the interval ϕ ∈ (π(2n − 1)/3, π(2n + 1)/3) enters the ε-
neighborhood of the point 2πn/3 in a finite time; the negative semi-trajectory
enters the ε-neighborhood of one of the points π(2n − 1)/3 or π(2n + 1)/3.
Due to the continuous dependence on initial data, the trajectories of system
(10.5.14) starting with sufficiently small R behave in the same way.

Let us prove that the same holds true for the trajectories of the non-
autonomous system (10.5.10). First, let us consider more carefully the rescaling
of time given by (10.5.13). The meaning of this formula is that the old time
t, which parametrizes the trajectories of (10.5.12), is a function of (R,ϕ) and
of the new time τ , which parametrizes the trajectories of (10.5.14), and it is
defined by

t(τ,R, ϕ) =
∫ τ

0

ds

R∗(s− τ ; R, ϕ)
, (10.5.16)

where R∗(s; R, ϕ) is the trajectory of system (10.5.14) starting with the point
(R, ϕ) at s = 0.

Since Ṙ is of order R in (10.5.14), it follows that for finite τ the ratio R∗/R

is bounded away from zero and infinity for arbitrarily small R. One can also
see that ∂R∗

∂ϕ is of order R. Thus, formula (10.5.16) implies that

∂t

∂τ
= O

(
1
R

)
,

∂t

∂ϕ
= O

(
1
R

)
,

∂t

∂R
= O

(
1

R2

)
(10.5.17)

for bounded τ .
Moreover, it is easy to show that

∂t

∂τ
=

1
R∗(−τ ; R, ϕ)

. (10.5.18)

Since this derivative does not vanish, it follows that the formula (10.5.16)
defines also τ as a function of t and (R, ϕ). Consequently, the formula (10.5.13)
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can be recast into the form

∂τ

∂t
+

∂τ

∂R
Ṙ +

∂τ

∂ϕ
ϕ̇ = R , (10.5.19)

where Ṙ = O(R2) and ϕ̇ = O(R) are given by (10.5.12).
Let us now consider the system (10.5.10) and make the same change of time

as in the autonomous system (10.5.12). Namely, let the new time τ be defined
by (10.5.16) where R∗ is the solution of (10.5.14). The resulting system can
be written in the form

Ṙ =
(

R cos 3ϕ +
1
R

g1(R, ϕ) +
1
R

g̃1(R, ϕ, t(τ,R, ϕ))
)

χ(τ,R, ϕ) ,

ϕ̇ =
(
− sin 3ϕ +

1
R

g2(R, ϕ) +
1
R

g̃2(R, ϕ, t(τ,R, ϕ))
)

χ(τ,R, ϕ) ,

(10.5.20)

where

χ = R/
dτ

dt
≡ R

∂τ

∂t
+

∂τ

∂R
Ṙ +

∂τ

∂ϕ
ϕ̇

with Ṙ and ϕ̇ defined by (10.5.10). These Ṙ and ϕ̇ differ from those in
(10.5.19) by the terms g̃1 and g̃2 of order o(Rr) and o(Rr−1), respectively.
Therefore,

χ =
1

1− 1

R
∂t

∂τ

(
∂t

∂R
g̃1 +

∂t

∂ϕ
g̃2

) = 1 + o(Rr−2) (10.5.21)

for bounded τ (see (10.5.17) and (10.5.18)).
So, we have that the non-autonomous system (10.5.20) is well-defined at

R = 0 where it assumes the form

ϕ̇ = − sin 3ϕ ,

exactly as in the autonomous system (10.5.14). Thus, the non-autonomous
system (10.5.20) has the same equilibria at R = 0 and, moreover, all tra-
jectories starting with a small R enter a small neighborhood of one of these
equilibria at a finite time.
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Therefore, to study the system (10.5.20) at small R it remains to consider
the behavior of trajectories in a small neighborhood of the equilibrium states.

The linear part of system (10.5.20) at the equilibrium state (R = 0, ϕ =
πn/3) is equal to the linear part of system (10.5.14):

Ṙ = R(−1)n ,

ϕ̇ = 9(−1)n+1ϕ + knR

for some kn. The characteristic exponents are (−1)n and 9(−1)n+1. It follows
that for the autonomous system (10.5.14) all equilibrium states are saddles.
The equilibrium states with even n have an unstable separatrix given by ϕ =
πn/3+Rkn/10+O(R2), and the stable separatrices are the arches π(n−1)/3 <

ϕ < πn/3 and πn/3 < ϕ < π(n + 1)/3 on the circle R = 0. The equilibrium
states with odd n have a stable separatrix of the form ϕ = πn/3− Rkn/10 +
O(R2), whereas the arches π(n−1)/3 < ϕ < πn/3 and πn/3 < ϕ < π(n+1)/3
are the unstable separatrices.

We can now construct the phase portrait of system (10.5.14) on a semi-
cylinder, as shown in Fig. 10.5.3. Then, by gluing the circle R = 0 into one
point, the resulting equilibrium state w = 0 of (10.5.8) is a saddle with six
separatrices as shown in Fig. 10.5.3(a).

To prove the theorem, we must get the same result for the non-autonomous
system (10.5.9). Namely, we must prove the existence (and uniqueness) of
stable and unstable separatrices for the equilibria (R = 0, ϕ = πn/3) of system
(10.5.20). Due to the symmetry of the problem, it suffices to consider only one
equilibrium, say, with n = 1.

By the results of Secs. 5.2 and 5.3, to prove the existence and uniqueness
of the stable separatrix of the saddle equilibrium state of the non-autonomous
system it is sufficient to check that in a small neighborhood of the equilibrium,
for all positive times, the non-linearities remain small along with all derivatives.
Thus, we must check that the functions g̃1,2(R,ϕ, t(R, ϕ, τ))/R and (χ− 1) in
the right-hand side of (10.5.20) are small along with all derivatives, provided
that for some small δ

0 ≤ R ≤ δ , |ϕ− π/3| ≤ δ . (10.5.22)
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(a)

(b)

Fig. 10.5.3. A cross-section of a cylinder (a) and the behavior of trajectories on the semi-
cylinder (b).

In fact, it follows immediately from (10.5.20) that in a small neighborhood of
the equilibrium state,

R(τ) ≤ e−(1−ε)τR(0)

for some sufficiently small ε > 0. Therefore, it is enough to check the smallness
of the non-linearities only in that part of the neighborhood of the equilibrium
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state where
e(1−ε)τ ≤ 1

R
, τ > 0 . (10.5.23)

Indeed, if the non-linearities are small here, then outside the set defined by
(10.5.22) and (10.5.23) the system can be modified such that it becomes
globally dichotomic for all (R, ϕ, τ) (see details in Sec. 5.2). Results of Sec. 5.3
imply the existence and uniqueness of the invariant stable manifold for the
modified system. Any positive semi-trajectory in this manifold satisfies
(10.5.23) a priori ; therefore, the obtained invariant manifold lies in the re-
gion where the system is not modified. Hence, the intersection of the manifold
with a small neighborhood (10.5.22) of the equilibrium state is the sought local
invariant manifold of the original system.

Since the functions g̃1,2 are of order at least o(Rr−2) (see (10.5.11)), as
well as their derivatives with respect to time, it is sufficient to prove that the
derivatives of the function t(τ, R, ϕ) in (10.5.20) and (10.5.21) grow not faster
than some negative powers of R: when the smoothness r is large enough this
would give us the desired smallness of the non-linearities in the right-hand
side of (10.5.20). Now note that the spectrum of the linearization of system
(10.5.14) at the equilibrium state is bounded from below by λ = −1. Thus, at
s − τ ≤ 0, we have the following estimates for the solution R∗ of the system
(10.5.14):

Re(1−ε)(τ−s) ≤ R∗(s− τ ; R, ϕ) ≤ Re(1+ε)(τ−s)

and
∂kR∗

∂(R,ϕ)k
= O(e(k+ε)(τ−s))

for a small ε > 0. Substituting this estimates into the formula (10.5.16)
which defines t(τ, R, ϕ), and using (10.5.18) and (10.5.23) we obtain finally the
estimate

∂kt

∂(τ,R, ϕ)k
= O

(
1

Rk+1+σ

)

with some σ > 0 which tends to zero as ε → 0. As explained above, this esti-
mate is good enough to establish the existence and uniqueness of a local stable
invariant manifold for the equilibrium state of the non-autonomous system
(10.5.20).

Thus, we have established the existence and uniqueness of the invariant
manifolds — the surfaces in the space (ϕ,R, τ) of the form

ϕ = πn/3 + fn(R, τ)
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which are formed entirely by the solutions (ϕ(τ), R(τ)) of system (10.5.20) (see
Fig. 10.5.3(b)). For odd n these are the stable manifolds: on each the value of
R tends to zero as τ grows. For even n these are the unstable manifolds.

Since the solutions of system (10.5.20) are the solutions of system (10.5.10)
up to a change of the time variable, we have proven the existence and unique-
ness of the invariant stable and unstable manifolds of the stationary states
(R = 0, ϕ = πn/3) of system (10.5.10). By construction, the manifolds are
the set of trajectories of the system (10.5.10) which emerge at t = 0 from the
uniquely defined curves Ln given by

ϕ = πn/3 + fn(R, 0) . (10.5.24)

Since the right-hand side of system (10.5.10) is periodic with respect to t, the
set of the trajectories which start at t = 0 from the points on the image L̄n

of the curve Ln (when mapping along the trajectories of the system over the
period) also comprise an invariant manifold. By virtue of uniqueness, this
must be the same invariant manifold, and hence L̄n = Ln. But the map over
the period of the system (10.5.10) is the map (10.5.3). So, we have established
the existence of the six invariant manifolds L0, . . . ,L5 (three stable and three
unstable) of the fixed point w = 0 of the given map, from which the statement
of the theorem follows.

Remark. In the multi-dimensional case where besides the central coordinates
there are also the stable ones, the unstable set consists of three curves, whereas
the stable set is a bunch consisting of three semi-planes intersecting along the
non-leading manifold W ss, as shown in Fig. 10.5.4, for the three-dimensional
example.

Let us now elaborate on the resonance ω = π/2. The map in its normal
form is given by

w̄ = eπi/2(w + C ′21|w|2w + C ′03w
∗ 3) + o(|w|3) . (10.5.25)

We will assume that C ′03 6= 0. Then, after the transformation w → eαi/4C1/4,
where C ′03 = Ceiα, the map recasts into the form

w̄ = eπi/2(w + (L + iΩ)|w|2w + w∗ 3) + o(|w|3) , (10.5.26)

where L + iΩ ≡ C ′21
√

C.
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Fig. 10.5.4. Topology of the stable and unstable manifold of a resonant π/3 fixed point in
R3.

Theorem 10.5. In the case L < 0 and L2 + Ω2 > 1 the fixed point is asymp-
totically stable. In the case L > 0 and L2 + Ω2 > 1 the fixed point is unstable;
when L2 + Ω2 < 1 it is a saddle with eight separatrices.

We will prove the theorem only for the case where the fourth iteration of
the map (10.5.26)

w̄(4) = w + 4[(L + iΩ)|w|2w + w∗ 3] + o(|w|3) (10.5.27)

coincides with the time shift map of some autonomous system (the general
case may be treated in basically the same way as in the previous theorem).

Let us write the autonomous system in the form

ẇ = B1|w|2w + B2w
∗ 3 + O(|w|4) (10.5.28)

with yet indeterminate B1 and B2. Rewrite (10.5.28) in the form

wt = w0 +
∫ t

0

(B1|ws|2ws + B2w
∗ 3
s + O(|ws|4))ds

and construct its solution by the method of successive approximations. On the
first step we have

wt = w0 + (B1|w0|2w0 + B2w
∗ 3
0 )t + O(|w0|4) .
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It is easy to see that all approximations have the same form and, therefore,
the solution of Eq. (10.5.28) has the same form. If we let t = 4, it would follow
that the map (10.5.27) coincides, up to the terms of third order, with the shift
map along the trajectories of any system in the form

ẇ = (L + iΩ)|w|2w + w∗ 3 + g(w, w∗) , (10.5.29)

where g begins with terms of fourth order. As mentioned above, we assume
that the map (10.5.27) coincides exactly with the time t = 4 shift map along
the trajectories of system (10.5.29) for some g. By introducing the polar coor-
dinates w = Reiϕ we obtain

Ṙ = R3(L + cos 4ϕ) + O(R4) ,

ϕ̇ = R2(Ω− sin 4ϕ) + O(R3) ,

or after the transformation of time R2dt → dt:

Ṙ = R(L + cos 4ϕ) + O(R2) ,

ϕ̇ = Ω− sin 4ϕ + O(R) .
(10.5.30)

Without loss of generality, we can assume that Ω ≥ 0 because the transfor-
mation ϕ → −ϕ does not alter the form of the system but Ω changes its
sign.

At L = 0 the shortened system (10.5.30)

Ṙ = R cos 4ϕ ,

ϕ̇ = Ω− sin 4ϕ

possesses a first integral

H = R4(Ω− sin 4ϕ) .

Observe that when L < 0 and Ω > 1 the function H is a Lyapunov function for
the original system (10.5.30) for sufficiently small R. Indeed, since Ω > 1, it is
obvious that H > 0 for R > 0. Let us check that Ḣ < 0, i.e. H ′

RṘ + H ′
ϕϕ̇ < 0.

The latter inequality can be recast in the form

4R4(Ω− sin 4ϕ)(L + cos 4ϕ)− 4R4(Ω− sin 4ϕ) cos 4ϕ + O(R5) < 0
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or
4R4(Ω− sin 4ϕ)L + O(R5) < 0

which is obviously fulfilled for all R sufficiently small if L < 0 and
Ω > 1.

The existence of a Lyapunov function implies the asymptotic stability,
i.e. in this case the theorem holds. One can construct a Lyapunov function
for an enlarged parameter region: Ω2 + L2 > 1, L < 0. To do this let us
consider the function V = R4(β − sin 4ϕ) and show that it is a Lyapunov
function for a suitable choice of β. Indeed, one needs V > 0 at R > 0,
i.e.

β > 1 , (10.5.31)

and V̇ < 0, i.e. V ′
RṘ + V ′

ϕϕ̇ < 0. The latter inequality can be recast in the
form

4R4(β − sin 4ϕ)(L + cos 4ϕ)− 4R4(Ω− sin 4ϕ) cos 4ϕ + O(R5) < 0 .

To satisfy this inequality for R small enough it is sufficient to have

(β − sin 4ϕ)(L + cos 4ϕ)− (Ω− sin 4ϕ) cos 4ϕ < 0

for all ϕ, or
βL− L sin 4ϕ + (β − Ω) cos 4ϕ < 0 .

It is equivalent (since βL < 0) to

L2 + (β − Ω)2 < β2L2 . (10.5.32)

One can easily check that the value β satisfying (10.5.31) and (10.5.32)
always exists for L2 + Ω2 > 1: when Ω > 1 one can let β = Ω; when |L| ≥ 1
any sufficiently large number can be taken as β; in any other case one can let
β = Ω/(1− L2).

If L > 0, then the function V is a Lyapunov function for the system ob-
tained from (10.5.30) by inversion of time. Thus, the equilibrium state of
system (10.5.29) and hence the fixed point of the map (10.5.27) is completely
unstable here.

Let us consider finally the case where L2 +Ω2 < 1. As we have done for the
resonance 2π/3, let us assume that the system is defined on a semi-cylinder.
Then, it will possess eight equilibrium states

(R = 0, ϕ = ϕn) , (n = 0, . . . , 7) ,
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where ϕn is found from the equation

Ω− sin 4ϕ = 0 . (10.5.33)

The linear part of the system at the equilibrium state has the form

Ṙ = R(L + cos 4ϕn) ,

ϕ̇ = −(4 cos 4ϕn)ϕ + knR .

The determinant of the linearization matrix is equal to

∆ = −4 cos 4ϕn(L + cos 4ϕn) .

It follows from (10.5.33) that | cos 4ϕn| = (1 − Ω2)1/2, and therefore,
| cos 4ϕn| > |L|. Hence, both values cos 4ϕn and (L + cos 4ϕn) have the
same sign, and the determinant ∆ is negative. Thus, we have found that
all equilibrium states are saddles as in the case 2π/3. The phase portrait
of system (10.5.30) on a semi-cylinder is shown in Fig. 10.5.5. If we iden-
tify all points with R = 0, the result is going to be a saddle with eight
separatrices as shown in Fig. 10.5.6.

Fig. 10.5.5. Cross-section of a semi-cylinder.
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Fig. 10.5.6. Each iteration maps the stable (unstable) manifold through a π/2 angle.

10.6. Passage through strong resonance on stability
boundary

We have seen in the previous sections that the qualitative behavior of a strongly
resonant critical fixed point differs essentially from that of a non-resonant or a
weakly resonant one. It is therefore natural to ask the question: what happens
at a strongly resonant point as the frequency varies? In particular, in the case
of the resonance ω = 2π/3 the fixed point is a saddle with six separatrices
in general, but when an arbitrarily small detuning is introduced the point
becomes a weak focus (stable or unstable, depending on the sign of the first
Lyapunov value). The question we seek to answer is how does the dynamics
evolve before and after the critical moment?

On the stability boundary the map near the fixed point can be written in
the following form for ω close to 2π/3

w̄ = ei(2π/3+ε)(w + w∗ 2 + C ′21|w|2w + · · · ) , (10.6.1)
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where the parameter ε measures the deviation from the resonance; the coef-
ficients on the right-hand side of the map, in particular C ′21, are assumed to
depend continuously on ε. Let us denote the map (10.6.1) as Tε.

Theorem 10.6. Let ReC ′21 < 1. Then for any small ε 6= 0 the point O(w = 0)
is stable. Moreover, the map Tε possesses a saddle periodic trajectory
(O1, O2, O3) of period three which lies apart from the point O over a distance
O(ε). One of the two unstable separatrices of each point Oi tends to O, the
other unstable separatrix leaves a neighborhood of the origin. The stable sepa-
ratrices of the periodic trajectory form a boundary of the basin of attraction of
the point O (see Fig. 10.6.1).

Hence as the parameter approaches a strong resonance, the saddle cycle
shrinks continuously to the point O from the outside of a neighborhood of
the origin. At the precise moment of resonance it collapses into O so that
the latter becomes unstable. Upon passing through the resonance the cycle
distances anew from the point O and as ε is further changed the cycle leaves the
(small) neighborhood of O. The case where ReC ′21 > 0 is identical but applied
to the inverse map T−1

ε ; in this case the point O is completely unstable for
ε 6= 0.

We skip the proof of Theorem 10.6 because it is part of a more general
problem in the study of bifurcations of strongly resonant critical points (see
Arnold [20] and Guckenheimer and Holmes [64]) which is beyond the scope
of our book. Instead we restrict ourselves here by considering a modeling
example.

Consider the third iteration of map (10.6.1)

≡
w= e3εiw + (1 + e3εi + e−3εi)w∗ 2 + (3C ′21e

3εi + 4 + 2e−3εi)|w|2w + · · · ,

(10.6.2)

where the ellipsis denotes the terms of fourth and higher orders with respect
to |w|. It can be shown that the map (10.6.2) coincides with the shift map
over time t = 3 of some differential equation of the form

ẇ = iεw + (1 + α1(ε))w∗ 2 + (C ′21 − 1 + α2(ε))|w|2w + f(w, w∗, t) , (10.6.3)

where α1(ε) and α2(ε) are some functions tending to zero as ε → 0, and the
function f begins with terms of fourth order of smallness (see the previous
section for more details).
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(a) (b)

(c)

Fig. 10.6.1. Modifications of the phase portrait as ε changes. The fixed point is stable for
positive and negative values of ε. The direction of rotation near the origin is changed as the
sign of ε is changed.
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For definiteness, assume ε > 0 (when ε < 0 the arguments are analogous).
Let us make the transformation w → εweiarg(1+α1(ε))/3/|1+α1(ε)| and t → t/ε.
Then, Eq. (10.6.3) can be recast as follow

ẇ = iw + w∗ 2 + ε(C ′21(0)− 1)|w|2w + o(ε) (10.6.4)

(recall that C ′21 is also a function of ε whereas C ′21(0) is just a constant).
Truncate the terms of order o(ε) and consider the shortened equation

ẇ = iw + w∗ 2 + ε(C ′21(0)− 1)|w|2w . (10.6.5)

In the polar coordinates w = R eiϕ, it is written in the form

Ṙ = R2 cos 3ϕ + εLR3 ,

ϕ̇ = 1−R sin 3ϕ + εΩR2 .
(10.6.6)

In the Cartesian coordinates w = x + iy, (10.6.6) assumes the form

ẋ = −y + x2 − y2 + ε(Lx− Ωy)(x2 + y2) ,

ẏ = x− 2xy + ε(Ωx + Ly)(x2 + y2) ,
(10.6.7)

where C ′21(0) − 1 = L + iΩ (recall that for the case under consideration, we
have ReC ′21 < 1, i.e. L < 0).

At ε = 0 the system, besides the point O at the origin, has three equi-
librium states O1(0,−1), O2(

√
3/2, 1/2) and O3(−

√
3/2, 1/2). Observe that

the straight lines y = 1/2, y =
√

3x − 1, and y = −√3x − 1 passing through
the points O2O3, O1O2 and O1O3, respectively, are invariant with respect
to the system (10.6.7) at ε = 0. Moreover, the function

H = (y − 1/2)(y −
√

3x + 1)(y +
√

3x + 1) ,

or in polar coordinates

H = 3R2/2−R3 sin 3ϕ− 1/2

is a first integral of the system at ε = 0. The level set H = 0 is shown in
Fig. 10.6.2. So, the point O is a center, and O1, O2, O3 are saddles. The
separatrices of the saddles are invariant straight lines. Moreover, the unstable
separatrix of the point O1 coincides with the stable separatrix of the point
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Fig. 10.6.2. The fixed point is a center at ε = 0. The saddle fixed points form a heteroclinic
cycle.

O2, and so on, as depicted in the figure. Thus, all together they comprise the
separatrix connection.

When ε 6= 0 the function (H + 1/2) is a Lyapunov function for the equilib-
rium state at the origin:

Ḣ ≡ H ′
RṘ + H ′

ϕϕ̇ = 3εLR4(1 + O(R)) < 0 ,

so the origin is asymptotically stable. The equilibrium states O1, O2, O3 remain
as saddles for all small ε. Three variants are a priori possible for the behavior of
their separatrices: (1) the separatrix connection is preserved; (2) it splits with
the unstable branch diverging outwards (see Fig. 10.6.3(a)); or (3) it splits with
the unstable branch converging inwards (Fig. 10.6.3(b)). Let us show that the
third possibility does occur. Indeed, it is seen from (10.6.7) that the divergence
of the right-hand side of the system is negative for ε 6= 0 (div ≡ ∂ẋ

∂x + ∂ẏ
∂y =

3εL(x2 + y2)). Hence, the area of any region on the plane must decrease after
each shift in positive time along the trajectories of the system. On the other
hand, one observes from Figs. 10.6.2 and 10.6.3(a) that if the connection is
preserved, or it has been split outwards, then we can find a region whose area
is not decreasing after a small positive time shift (St ≥ S0, see the figures).
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(a)

(b)

Fig. 10.6.3. Two ways of how a heteroclinic connection may be broken down. See the
discussion in the text.
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Therefore, the separatrix connection must split and converge inward for all
small ε.

It is obvious that as t → +∞, the unstable separatrices which converge
inwards may in principle tend to either the point O as shown in Fig. 10.6.1, or
to some periodic trajectory surrounding the origin, as shown Fig. 10.6.4. In the
latter case, however, the area bounded by this trajectory would not decrease
when shifted along the trajectories of the system thereby contradicting the
negativeness of the divergence. This means that the separatrices must tend to
the origin.

The saddle equilibrium states are the saddle fixed points of the shift map,
and respectively, their separatrices are the invariant manifolds. Returning to
the original (non-rescaled) variables we find that the fixed points must lie apart
from the origin at some distance of order ε. If the third iteration (10.6.2) of the
map (10.6.1) were the shift map of the reduced system (10.6.5), then the above
theorem would follow from our arguments because the fixed points O1, O2, O3

of the third iterations correspond to the cycle of period three of the original
map.

However, in general, the map (10.6.2) may not be regarded for all ε as the
shift map along the trajectories of an autonomous system. Therefore, to prove
that the situation depicted in Fig. 10.6.1 does occur one needs to check (we

Fig. 10.6.4. A geometrical explanation of the absence of a periodic orbit surrounding the
origin; since the area of the time shift map is contracting as time increases, the existence of
a limit cycle surrounding the origin is not possible.
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are not going to) that the whole invariant manifolds of the saddle fixed points
of the shift map of the non-autonomous system (10.6.4) lie entirely sufficiently
close to the separatrices of the truncated system (10.6.5).

In the case of the second strong resonance ω = π/2 the situation is even
more subtle. Let us consider the family of maps Tε defined by

w̄ = ei(π/2+ε)(w + w∗ 3 + C ′21(ε)|w|2w) + o(|w|3) (10.6.8)

which passes through the resonance at ε = 0. Let C ′21(0) = L + iΩ.

Theorem 10.7. Let L < 0. Then,

(1) if L < −1, then for all small ε the fixed point O(w = 0) is asymptotically
stable and attracts all trajectories from some small neighborhood which does
not depend on ε;
(2) if L2 + Ω2 < 1, then for any small ε 6= 0, the point O is asymptotically
stable. Besides, the map Tε possesses a saddle cycle (O1, O2, O3, O4) of period
four at a distance of order O(

√
|ε|) from the point O. One of the two unstable

separatrices of each Oi tends to O, the other leaves a neighborhood of the origin.

The stable separatrices of the saddle cycle form a boundary of the basin of
attraction of the point O (see Fig. 10.6.5); and
(3) If 0 > L > −1 and L2 + Ω2 > 1, then for all small ε the point O is asymp-
totically stable, and at εΩ ≥ 0 it attracts all trajectories from a small neigh-
borhood whose size does not depend on ε. When εΩ < 0 the two trajectories of
period four bifurcate from the point O : the first is a saddle composed of points
(O1, O2, O3, O4), and the second cycle is stable and consists of (O′1, O

′
2, O

′
3, O

′
4)

as shown in Fig. 10.6.6. One of the unstable separatrices of the point Oi tends
to O; the other tends to O′i. The stable separatrices of Oi separate the attraction
basins of the point O from that of the cycle (O′1, O

′
2, O

′
3, O

′
4).

We replace the proof of this theorem by considering only the dynamics of
the reduced system of equations. The fourth iteration of the map (10.6.8) has
the form

w̄(4) = e4iε(w + 4C ′21(ε)|w|2w) + w∗ 3(e4iε + e−4iε)(1 + e−4iε) + o(|w|3) ,

This map coincides with the shift map over time t = 4 of some non-autonomous
system of the form

ẇ = iεw + (1 + α1(ε))w∗ 3 + (L + iΩ + α2(ε))|w|2w + g(w,w∗, t) ,
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(a) (b)

(c)

Fig. 10.6.5. Modifications of the phase portrait as ε changes (here L2 + Ω2 < 1).
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where g = o(|w|3). Upon renormalizing w by
√
|ε| and the time t by |ε|, and

taking the limit ε → 0, we obtain the reduced system

ẇ = iδw + (L + iΩ)|w|2w + w∗ 3 , (10.6.9)

where δ = ±1 = sign ε.
In Cartesian coordinates this equation is written in the form

ẋ = −δy + (Lx− Ωy)(x2 + y2) + x3 − 3xy2 ,

ẏ = δx + (Lx + Ωy)(x2 + y2)− 3x2y + y3 .
(10.6.10)

In polar coordinates, the corresponding system is given by

Ṙ = R3(L + cos 4ϕ) ,

ϕ̇ = δ + R2(Ω− sin 4ϕ) .
(10.6.11)

It follows immediately from (10.6.11) that Ṙ < 0 when L < −1. Therefore, all
trajectories of system (10.6.11) tend to the origin, which confirms the statement
of the above theorem.

In order to study the system corresponding to the case 0 > L > −1, we
note that the divergence of the right-hand side is negative and is equal to
4L(x2 + y2) < 0 (see (10.6.10)). It follows (by repeating the corresponding
arguments for system (10.6.5)) that the system (10.6.10) has neither closed
trajectories nor separatrix connections. As for the equilibrium states, they can
be easily found in polar coordinates (see (10.6.11)).

When L2+Ω2 > 1, the system has only one equilibrium state (at the origin)
if Ωδ > 0. This equilibrium state is stable and attracts all trajectories of the
system. To show this it is sufficient to check that the function

V = R4(β − sin 4ϕ) + 2δR2 (10.6.12)

is a Lyapunov function for Ω > 0 and δ = 1, where β is a value defined from
the relations (10.5.25)–(10.5.26) while constructing the Lyapunov function in
the previous section; the case where Ω < 0, δ = −1 is reduced to the given one
by a change of variable ϕ → −ϕ. When Ωδ < 0 the system has, besides the
zero equilibrium state, eight additional equilibrium states; namely four saddles
O1, O2, O3, O4 and four stable equilibria O′

1, O
′
2, O

′
3, O

′
4. The coordinates of the

latter are found from the relations

cos 4ϕ = −L , sin 4ϕ = −δ
√

1− L2 , R2 =
1

|Ω| − √1− L2
,
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and those of the saddles from

cos 4ϕ = −L , sin 4ϕ = δ
√

1− L2 , R2 =
1

|Ω|+√
1− L2

.

Point O is stable; the function (2R2 − δR4 sin 3ϕ) is a Lyapunov function
for small R. Clearly, the stable separatrices of the saddle points tend to infinity
as t → −∞. Otherwise, they had to tend to a completely unstable periodic
trajectory or a completely unstable equilibrium state but there is none. An-
other possibility is that a stable separatrices of one saddle might coincide with
the unstable one of the other saddle thereby forming a separatrix cycle as that
shown in Fig. 10.6.2, but with four saddles; however this hypothesis contra-
dicts to the negative divergence condition. The unstable separatrices cannot
tend to infinity as t → +∞. To prove this, check that when R is large, V̇ < 0
for the function V in (10.6.12). Therefore, all trajectories of the system, as t

increases, must get inside some closed curve V = C with C sufficiently large,
where they remain forever. The same behavior applies to the separatrices of
the saddle. Thus, the only option for the unstable separatrices of the point Oi

is that one tends to O and the other to O′i as shown in Fig. 10.6.6.

Fig. 10.6.6. The phase portrait at εΩ < 0 in the case −1 < L < 0, L2 + Ω2 > 1. Four pairs
of fixed points appear simultaneously through the saddle-node bifurcation.
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Fig. 10.6.7. This picture illustrates how the separatrices of a saddle point organize the global
phase portrait.

At L2 + Ω2 < 1, the system has five equilibrium states: one stable trivial
at the origin, and four others O1, O2, O3, O4 which are saddle points for δ = 1
and δ = −1. The coordinates of the equilibrium states are found from the
relations:

cos 4ϕ = −L , sin 4ϕ = δ
√

1− L2 , R2 =
1√

1− L2 − δΩ
.

As in the previous case, the stable separatrices of the saddle points diverge to
infinity as t → −∞. To show that the unstable separatrices of the points Oi

behave as they are depicted in Fig. 10.6.7: one tends to infinity as t → +∞
while the second tends to the origin, we must show that all together they do
not go to infinity simultaneously. To do this let us consider system (10.6.11)
for large R. Introduce a new variable z = R−2 and make the transformation
of time dt → zdt. We obtain:

ż = −2z(L + cos 4ϕ) ,

ϕ̇ = δz + Ω− sin 4ϕ .
(10.6.13)

The value z = 0 corresponds to R = +∞. System (10.6.13) has at
z = 0 eight equilibrium states determined from the relation Ω = sin 4ϕ: four
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equilibria are stable and the others are completely unstable. The stable sep-
aratrices of the saddles Oi emerge from the completely unstable equilibria at
t = −∞, two separatrices from each (because there are eight separatrices to
four unstable equilibrium states). It is seen now from Fig. 10.6.7 that only four
unstable separatrices enter the stable equilibrium states at infinity as t → +∞;
the remaining ones must stay inside a finite part of the plane and, therefore,
must tend to the point O.

10.7. Additional remarks on resonances

We have seen in Sec. 10.4 that in the case of weak resonance ω = 2πM/N ,
N ≥ 5, the stability of the critical fixed point is, in general, determined by
the sign of the first non-zero Lyapunov value. The same situation applies
to the critical case of an equilibrium state with a purely imaginary pair of
characteristic exponents. However, there is an essential distinction, namely,
for a resonant fixed point only a finite number which does not exceed (N−3)/2
of the Lyapunov values is defined. The question of the structure of a small
neighborhood of the fixed point in the case where all Lyapunov values vanish
is difficult, so we do not study it here. Instead, we consider two examples.

The first example is analogous to strong resonances. This is the map

w̄ = e2πiM/Nw + (w∗)N−1 . (10.7.1)

One can see that the Nth iterate of map (10.7.1) coincides up to terms of order
N with the shift map over time t = N along the trajectories of the system

ẇ = (w∗)N−1 . (10.7.2)

In polar coordinates this system assumes the form

Ṙ = RN−1 cos Nϕ ,

ϕ̇ = −RN−2 sin Nϕ .

The function
H = RN sin Nϕ

is a first integral of the system. A trivial reconstruction of the level curves
of the function H reveals that the equilibrium state at the origin is a saddle
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with 2N separatrices. The same holds for the fixed point of the original map
(10.7.1) as well.

In fact, resonant fixed points are not restricted to only saddles and stable
(completely unstable) points. An example of the other structure is given by
the map

w̄ = e2πM/Nw + wN+1 , (10.7.3)

whose Nth iterate, up to terms of order (N + 1), is the shift map along the
trajectories of the system

ẇ = wN+1 , (10.7.4)

or in the polar coordinates,

Ṙ = RN+1 cosNϕ ,

ϕ̇ = RN sin Nϕ .

The latter has a first integral

H =
sin Nϕ

RN
.

The integral curves are given by the formula

R = C(sinNϕ)1/N .

We can now construct the phase portrait (see Fig. 10.7.1 for N = 3): there are
2N invariant rays playing the role of separatrices (stable and unstable) which

Fig. 10.7.1. A fixed point when n = 2. The sectors between the separatrices are called
elliptic.
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partition the phase-plane into 2N sectors (so-called elliptic sectors): inside
each sector any trajectory is biasymptotic to the equilibrium state, i.e. it tends
to O as t → ±∞. One can verify that a neighborhood of the fixed point of the
original map (10.7.3) has a similar structure.



Chapter 11

LOCAL BIFURCATIONS ON THE ROUTE

OVER STABILITY BOUNDARIES

The study of critical cases gives rise to a number of questions: why does an
equilibrium state, or a periodic orbit, preserves its stability on the bound-
ary in some cases and not in others? What happens beyond the stability
boundary?

The answers to these questions are settled by the theory of bifurcations.
In this chapter, we consider only local bifurcations, i.e. those which occur
near critical equilibrium states, and near fixed points of a Poincaré map. We
restrict our study to the simplest but key bifurcations which have an immediate
connection to the critical cases are discussed in the two last chapters.

The tool kit used for studying bifurcational problems consists of three
pieces: the theorem on center manifold, the reduction theorem, and the method
of normal forms.

Any study of bifurcations must include choosing appropriate independent
parameters that control the bifurcation. In choosing parameters, ideas from the
theory of singularities of smooth mappings are applied, based on the notion of
transversality. In simple cases, the choice of the governing parameters usually
agrees with common sense. For more complicated bifurcations, an appropriate
choice of parameters is a non-trivial problem.

11.1. Bifurcation surface and transverse families

A system of differential equations is usually thought of as a mathematical
model of a real dynamical system governed by some set of parameters.

531
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Obviously, any statement concerning a real system derived from an analy-
sis of its theoretical idealization, i.e. from its model, must not be too sensible
to small uncontrolled variations of the parameters. Hence, it is a standard re-
quirement that one must consider not only a stand-alone system but must also
understand what happens with all neighboring systems. This works well for
rough (structurally stable) equilibrium states and periodic orbits: in this case
the qualitative structure is not modified by small perturbations of the right-
hand side of the system. In contrast, for systems on the stability boundary,
the analysis of close systems may become a real problem.

Consider a family of systems of differential equations

ẋ = X(x, ε) ,

where x ∈ Rn, and ε = (ε1, . . . , εp) is a set of parameters. Suppose that for
some ε = ε0 the system has a critical equilibrium state, or a critical periodic
orbit, i.e. it lies on the boundary M of the stability region. In general, M is
a smooth (p− 1)-dimensional surface in a neighborhood of the point ε0 and is
defined by an equation of the form

Φ(ε) = 0 , (11.1.1)

where

Φ′ =
(

∂Φ
∂ε1

,
∂Φ
∂ε2

, . . . ,
∂Φ
∂εp

)
6= 0 . (11.1.2)

Since the derivative of Φ with respect to at least one of the parameters does
not vanish, we may assume without loss of generality that

∂Φ
∂εp

6= 0 . (11.1.3)

It is clear that this condition is not violated by small perturbations of the
right-hand side. Moreover, if it is not satisfied, it can be achieved by a small
transformation of the family X(x, ε) under consideration. When the inequality
(11.1.2) holds we say that the family X(x, ε) is in general position with respect
to M.

If we let
µ = Φ(ε1, . . . , εp) , (11.1.4)

then the surface M is simply defined by

µ = 0 .
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Fig. 11.1.1. Choice of governing parameter in a family transverse to the bifurcation surface
M.

Furthermore, any point near ε0 in the parameter space can be uniquely iden-
tified via the coordinates ε1, . . . , εp−1 and µ because ∂Φ/∂εp 6= 0 and εp is,
therefore, uniquely determined from (11.1.4). If we resolve (11.1.1) for εp,
i.e. represent M in the form

εp = ϕ(ε1, . . . , εp−1) ,

then we may define
µ ≡ εp − ϕ(ε1, . . . , εp−1) ,

and hence
εp = µ + ϕ(ε1, . . . , εp−1) .

The scalar µ is said to be a governing parameter. It measures the distance
from a point in the parameter space to the surface M, whereas ε1, . . . , εp−1

give the projection of the point onto the surface M, as shown in Fig. 11.1.1.
In the following discussion, we will consider one-parameter families recast

in the form
ẋ = X(x, ε1(µ), . . . , εp(µ)) ,

where εi(µ)’s are smooth functions, and Φ(ε(µ)) ≡ µ.1 Such a family is a
transverse one in the sense that the curve

ε1 = ε1(µ), . . . , εp = εp(µ)

1To satisfy this equality one may choose ε1(µ), . . . , εp−1(µ) arbitrarily but find εp(µ)
from (11.1.4).
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intersects transversely (without contact) the surface M. Since such a transverse
curve can be defined through any point sufficiently close to ε0, it is obvious
that in order to study all systems close to ẋ = X(x, ε0) it suffices to analyze
the transverse families only. According to the Andronov’s setup (Sec. 8.4), this
consists of finding the intervals of µ where the trajectories behave in a qual-
itatively similar way, as well as of detecting what happens at the bifurcation
values of µ which correspond to the boundaries of these intervals.

An ideal case (and this is possible sometimes) would be one where all close
transverse families are qualitatively equal (such families were called versal due
to Arnold [20]). Having studied bifurcations in one transverse family, we would
have a complete description for all neighboring ones.

For cases having an extra degeneracy (for example an equilibrium state
with zero characteristic exponent and zero first Lyapunov value) the
boundary of the stability region may lose smoothness at the point ε0. There
may also exist situations where the boundary is smooth but bifurcations in
different nearby one-parameter families are different (i.e. there does not exist
a versal one-parameter family, for example, such as the case of an equilib-
rium state with a pair of purely imaginary exponents and zero first Lyapunov
value). In such cases the procedure is as follows. Consider a surface M′ of
a smaller dimension (less than (p − 1)) which passes through the point ε0

and is a part of the stability boundary, selected by some additional conditions;
in the above examples the condition is that the first Lyapunov value be zero. If
(k − 1) additional conditions are imposed, then the surface M′ will be
(p− k)-dimensional and it is defined by a system of the form





Φ1(ε) = 0 ,

...
...
...

Φk(ε) = 0 .

(11.1.5)

Let the matrix of derivatives


∂Φ1

∂ε1
· · · ∂Φ1

∂εp

...
. . .

...
∂Φk

∂ε1
· · · ∂Φk

∂εp



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Fig. 11.1.2. The bifurcation surface M′ of codimension two is a curve in a three-parameter
family.

have rank k, i.e. have a maximal rank;2 where we have assumed that p ≥ k.
In this case, k-parameters can be expressed in terms of the others; namely,

εp = ϕ1(ε1, . . . , εp−k), . . . , εp−k+1 = ϕ1(ε1, . . . , εp−k) .

Let us introduce the governing parameters (see Fig. 11.1.2 for k = 2)




µ1 ≡ εp − ϕ1(ε1, . . . , εp−k) ,

...
...

...

µk ≡ εp−k+1 − ϕ1(ε1, . . . , εp−k) .

(11.1.6)

If (11.1.5) is not solved for (εp−k+1, . . . , εp), we can still define




µ1 ≡ Φ1(ε1, . . . , εp) ,

...
...

...

µk ≡ Φk(ε1, . . . , εp) .

(11.1.7)

2We will then say that the family is in general position with respect to M′.
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Let us now consider a k-parameter family of vector fields, transverse to M′,
represented in the following form

ẋ = X(x, ε1(µ), . . . , εp(µ)) ,

where µ = (µ1, . . . , µk), and εi(µ) are some smooth functions satisfying (11.1.6)
or (11.1.7).

Such a situation will henceforth be referred to as a a bifurcation of codimen-
sion k, and the surface M′ is called a bifurcation surface of codimension k (the
codimension is equal to the number of the governing parameters).

The procedure for studying a k-parameter family is similar to that for the
one-parameter case: firstly, divide the space of the parameters µ into the re-
gions of topologically equivalent behavior of trajectories, and study the system
in each of these regions. Secondly, describe the boundaries of these regions (the
bifurcation set), and finally study what happens at the bifurcation parameter
values. We will see below that in the simplest cases (e.g. an equilibrium state
with one zero or a pair of imaginary characteristic exponents, or a periodic or-
bit with one multiplier equal to 1 or to −1) one can almost always, except for
extreme degeneracies, choose a correct bifurcation surface of a suitable codi-
mension and analyze completely the transverse families. Moreover, all of these
families turn out to be versal.

It should be noted that constructing the versal families is realistic only in
these simple cases, and in a few special cases. For example, a finite-parameter
versal family cannot be constructed for the bifurcation of a periodic orbit
with one pair of complex multipliers e±iω. Nevertheless, this problem does
admit a rather reasonable description within the framework of one- and two-
parameter families. In the above example, the birth of an invariant torus can
be completely explained and understood in a one-parameter setting, whereas
the study of the bifurcations of resonant periodic orbits would require at least
two-parameters. Hence, the same bifurcation phenomenon may be treated as
a bifurcation of codimension one, or codimension two, depending on which
details of dynamics we are focusing on. This indefiniteness is quite typical for
the bifurcation theory of dynamical systems.

Moreover, in more complex cases the problem of presenting a complete
description, or of proving that a family under consideration is versal, is not
even set up. However, the general approach remains the same: a bifurcating
system is considered as a point on some smooth bifurcation surface of a finite
codimension. Then, a transverse family is constructed and the qualitative
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results obtained from studying this concrete transverse family must be proven
to hold for all neighboring families as well.

11.2. Bifurcation of an equilibrium state with one
zero exponent

Let us consider a family of differential equations of class Cr(r ≥ 2) with respect
to both variables and parameters which has an equilibrium state at the origin
with one zero characteristic exponent; the other characteristic exponents are
assumed to have negative real parts. Near the origin the system can be then
written in the form

ẋ = g(x, y, ε) ,
(11.2.1)

ẏ = Ay + f(x, y, ε) ,

where x ∈ R1, y ∈ Rn, the eigenvalues of the matrix A lie to the left of the
imaginary axis, f and g are Cr-smooth functions such that both f and g vanish
at x = 0, y = 0, and ε = 0, along with their first derivatives with respect to x

and y.
By virtue of the reduction Theorem 5.5, there exist Cr−1-coordinates in

which the family (11.2.1) reduces to the form

ẋ = G(x, ε) ,
(11.2.2)

ẏ = [A + F (x, y, ε)]y ,

where F is a Cr−1 function and G is a Cr function such that

F (0, 0, 0) = 0 ,

G(0, 0) = 0 , (11.2.3)

G′x(0, 0) = 0 .

It follows from (11.2.2) that to investigate the bifurcations of the original
system it is sufficient to consider the restriction of the system to the center
manifold

ẋ = G(x, ε) . (11.2.4)
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It follows from (11.2.3) that the function G at ε = 0 has the form

G(x, 0) = l2x
2 + o(x2) . (11.2.5)

Consider first the case where the first Lyapunov value l2 is non-zero. Following
the scheme outlined in the preceding section, we first derive the equation of
the boundary M of the stability region near ε = 0. Next we will find the
conditions under which M is a smooth surface of codimension one. Finally, we
will select the governing parameter and investigate the transverse families.

The set M for small ε is defined by the condition that the system (11.2.4)
has an equilibrium state with one zero characteristic exponent. When ε 6= 0
the equilibrium state is not, in general, at the origin. The condition defining
M is simply that there exists x∗ such that

G(x∗, ε) = 0 , (11.2.6)

G′x(x∗, ε) = 0 . (11.2.7)

Recall that l2 ≡ G′′xx(0, 0)/2 6= 0, and therefore by virtue of the implicit
function theorem, x∗ can be uniquely found from (11.2.7) for all small ε. Hence,
we can recast (11.2.6) in the form

G(x∗(ε), ε) = 0 . (11.2.8)

Denote Φ(ε) = G(x∗(ε), ε). Since G′x is a Cr−1 function, it follows that x∗(ε) ∈
Cr−1, and hence Φ(ε) ∈ Cr−1. The equation Φ(ε) = 0 determines, for small ε,
a Cr−1-smooth surface of codimension one provided that

Φ′ε ≡
(

∂Φ
∂ε1

,
∂Φ
∂ε2

, . . . ,
∂Φ
∂εp

)
6= 0 ,

or
d

dε
G(x∗(ε), ε)ε=0 6= 0 .

The latter inequality may be rewritten as

G′x
dx

dε

∗
+ G′ε 6= 0

or, since G′x(0, 0) = 0, as
G′ε(0, 0) 6= 0 . (11.2.9)
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We will therefore assume that (11.2.9) is satisfied,3 i.e. the family is in general
position. Now, let us introduce a governing parameter

µ ≡ G(x∗(ε), ε) , (11.2.10)

and consider an arbitrary one-parameter family of the form

ẋ = G(x, ε(µ)) , (11.2.11)

which is transverse to M (here, ε(µ) is some Cr−1-smooth function satisfying
(11.2.10)).

Let us move the origin to the point x∗(ε(µ)), i.e. make a change of variable
x = x∗ + ξ. Then (11.2.11) recasts in the form

ξ̇ = G(x∗+ ξ; ε(µ)) = G(x∗, ε(µ))+G′x(x∗, ε(µ))ξ +G′′xx(x∗, ε(µ))ξ2/2+ o(ξ2) .

From (11.2.7) and (11.2.10) we obtain

ξ̇ = µ + l2ξ
2 + G̃(ξ, µ) , (11.2.12)

where G̃ is Cr with respect to ξ and Cr−1 with respect to µ, and

G̃(0, µ) = 0 , G̃′ξ(0, µ) = 0 , G̃′′ξξ(0, 0) = 0 .

The value l2 is equal to G′′xx(x∗(ε(0)), ε(0))/2. It does not depend on µ but on
the choice of the transverse family (11.2.11). Since the dependence is contin-
uous, the values of l2 are close and have the same sign for all close transverse
families. Note that the case l2 < 0 is reduced to l2 > 0 by the transformation
ξ → −ξ and µ → −µ. Therefore, we will assume that l2 > 0, but also present
the corresponding figures for both cases.

Equation (11.2.12) is easily investigated. Observe that ξ = 0 is a point of
minimum of the right-hand side, and correspondingly µ is a minimal value.
Hence, for µ > 0, the value ξ̇ is positive for all small ξ, and therefore all trajec-
tories must leave a neighborhood of the origin after a finite time. When µ < 0
the right-hand side vanishes at two points: O2(ξ−(µ) < 0) and O1(ξ+(µ) > 0).
The value ξ̇ is negative inside the interval (ξ−(µ), ξ+(µ)) and is positive outside

3The function G is identically equal to g(x, ϕ(x, ε), ε), where y = ϕ(x, ε) is the equation
of the center manifold of system (11.2.1). Since g′

(x,y)
(0, 0, 0) = 0, condition (11.2.9) is

equivalent to g′ε(0, 0, 0) 6= 0.
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(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.2.1. A one-dimensional portrait of Eq. (11.2.11) when G′′xx = l2 > 0 as a function of
the control parameter µ.

(a) `2 > 0 (b) `2 < 0

Fig 11.2.2. Dependence of the coordinates of the equilibrium state on µ in the cases l2 > 0
(a) and l2 < 0 (b). The crosses and circles label the unstable and the stable branches,
respectively.

of it; so the point O2(ξ−(µ)) is a stable equilibrium state, whereas the point
O1(ξ+(µ)) is an unstable equilibrium state, as shown in Fig. 11.2.1(a). The
corresponding scenario for the case l2 < 0 is shown in Fig. 11.2.3.

As µ increases the equilibrium states move closer towards each other, and
coalesce at µ = 0. The graph showing the dependence of the coordinate of
the equilibrium states on µ is shown in Fig. 11.2.2. The following asymptotic
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(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.2.3. Same as Fig. 11.2.1 but with l2 < 0.

expression for the equilibrium states can be derived:

ξ± ∼ ±
√
|µ|/l2 . (11.2.13)

To prove this let us rescale the ξ-coordinate and the time variable in (11.2.12)
by

√
|µ|: ξ → ξ

√
|µ| and t → t/

√
|µ|. Then, (11.2.12) takes the form

d
√
|µ|ξ

dt/
√
|µ| = µ + l2(

√
|µ|ξ)2 + G̃(

√
|µ|ξ, µ)

or
ξ̇ = −1 + l2ξ

2 + G̃(
√
|µ|ξ, µ)/|µ| . (11.2.14)

Since G̃ = o(ξ2) and G̃′ξ = o(ξ), it follows that G̃(
√
|µ|ξ, µ)/|µ| tends to zero

as µ → 0, along with its derivative with respect to ξ. Hence, by virtue of
the implicit function theorem, we find that the right-hand side of (11.2.14)
vanishes at two points

ξ± = ±1/
√

l2 + · · · ,

which gives (11.2.13) upon a return to the original coordinates.
When l2 < 0, the changes in the phase portrait as µ varies are given in

Fig. 11.2.3, and the dependence of the coordinates of the fixed points on µ is
shown in Fig. 11.2.2(b).

The phase portraits for systems of dimension two and higher are illustrated
in Figs. 11.2.4–11.2.7, respectively. Here, when l2µ < 0, there are two rough
equilibrium states: a stable node and a saddle that approach each other as l2µ
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(a) µ < 0

(b) µ = 0 (c) µ > 0

Fig. 11.2.4. Planar bifurcation of a saddle-node equilibrium state with `2 > 0.

increases. At µ = 0 they merge thereby forming a saddle-node which disap-
pears as l2µ becomes positive; all trajectories move away from a neighborhood
of the origin.

Consider next the case l2 = 0. Let k be the index number of the first
non-zero Lyapunov value, i.e. at ε = 0, the function G(x, ε) in (11.2.4) has the
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(a) µ < 0

(b) µ = 0 (c) µ > 0

Fig. 11.2.5. Bifurcation of a saddle-node equilibrium state in R3. Variant I.



544 Chapter 11. Local Bifurcations on the Route Over . . .

(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.2.6. Bifurcation of a saddle-node equilibrium state in R3. Variant II.

form
G(x, 0) = lkxk + o(xk)

(the order of smoothness of the system is assumed to be not less than k). Let
us show that if the number p of parameters ε is equal to or greater than (k−1),
then the set of points in the parameter space that correspond to the existence
of a non-rough equilibrium state with one zero characteristic exponent, and
with zero values of l2, . . . , lk−1 comprises, generically, a smooth surface M′ of
codimension (k−1) such that any family transverse to M′ may be represented
in the following form

ẋ = µ1 + · · ·+ µk−1x
k−2 + lkxk + o(xk) . (11.2.15)

Indeed, the condition under which the system has an equilibrium state x∗ with
one zero exponent and zero Lyapunov values l2, . . . , lk−1 is given by

G(x∗, ε) = G′x(x∗, ε) = G′′xx(x∗, ε) = · · · = G(k−1)(x∗, ε) = 0 . (11.2.16)
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(a) µ < 0 (b) µ = 0

(c) µ > 0

Fig 11.2.7. The case l2 < 0 reduces to that in Fig. 11.2.4 by the transformation
(µ → −µ, x → −x).

Since
∂kG(0, 0)

∂xk
≡ lkk! 6= 0 ,

the value x∗ is uniquely found from the equation

G(k−1)(x∗, ε) = 0 (11.2.17)
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for small ε. Let x = x∗(ε) be a solution of (11.2.17); it is clear that x∗ is a
Cr−k+1-smooth function. By substituting x∗(ε) into the remaining equations
in (11.2.16), we obtain the equation of the following surface M′:

G(x∗(ε), ε) = 0, G′x(x∗(ε), ε) = 0, . . . , G(k−2)(x∗(ε), ε) = 0 .

This surface is smooth if the system is in general position, i.e. if the rank of
the matrix




∂G(x∗(ε), ε)
∂ε1

· · · ∂G(x∗(ε), ε)
∂εp

...
. . .

...

∂G(k−2)(x∗(ε), ε)
∂ε1

· · · ∂G(k−2)(x∗(ε), ε)
∂εp




ε=0

(11.2.18)

is equal to (k−1) (see preceding section; it follows immediately that the number
p of parameters should not be less than (k − 1)). Since

∂Gj(x∗(ε), ε)
∂εi

≡
(

∂j+1G

∂xj+1

∂x∗

∂εi
+

∂j+1G

∂xj∂εi

)

x=x∗(ε)

and

∂jG(0, 0)
∂xj

= 0 if 1 ≤ j ≤ k − 1 ,

it is sufficient for the matrix




∂G

∂ε1
· · · ∂G

∂εp

...
. . .

...

∂k−1G

∂ε1∂xk−2
· · · ∂k−1G

∂εp∂xk−2




(x=0,ε=0)
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to have maximal rank. We will assume that this condition is satisfied. Hence,
we can introduce k − 1 governing parameters µ1, . . . , µk−1:

µ1 = G(x∗(ε), ε) ,
µ2 = G′x(x∗(ε), ε) ,

...
...

...
µi = G(i−1)(x∗(ε), ε)/(i− 1)! ,
...

...
...

µk−1 = G(k−2)(x∗(ε), ε)/(k − 2)! ,

(11.2.19)

such that a (k − 1)-parameter family, transverse to M′, can be written as

ẋ = G(x, ε(µ)) , (11.2.20)

where ε(µ) is some function of class Cr−k+1 which satisfies (11.2.19). Such ε(µ)
exists in view of maximality of the rank of the matrix (11.2.18): some (k − 1)
of the εi can be uniquely determined from (11.2.19) in terms of µ1, . . . , µk−1,
and of the other ε’s.

If the origin is shifted to the point x∗ (i.e. if we let x = ξ + x∗), then
Eq. (11.2.20) recasts into the form

ξ̇ = G(x∗ + ξ, ε(µ))

= G(x∗, ε(µ)) + G′x(x∗, ε(µ))ξ + · · ·+ G(k)(x∗, ε(µ))ξk/k! + o(ξk) .

Using (11.2.17) and (11.2.19), we obtain

ξ̇ = µ1 + · · ·+ µk−1ξ
k−2 + lkξk + G̃(ξ, µ) . (11.2.21)

The function G̃ is Cr-smooth with respect to ξ and Cr−k+1-smooth with respect
to µ; its derivatives up to order (k−1) with respect ξ are Cr−k+1-smooth with
respect to µ as well. Moreover,

G̃(0, µ) = G̃′ξ(0, µ) = · · · = G̃(k−1)(0, µ) = 0 ,

G̃(k)(0, 0) = 0 .
(11.2.22)

Finally, changing ξ back to x, we obtain (11.2.15).
We will only consider in detail bifurcations of small codimensions (k = 3, 4).

When l3 6= 0, the family (11.2.21) takes the form

ẋ = µ1 + µ2x + l3x
3 + G̃(x, µ) . (11.2.23)
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Recall that at µ1 = µ2 = 0, the point O(x = 0) is stable if l3 < 0 or unstable
if l3 > 0 (see Sec. 9.2). Notice also that the case l3 > 0 is reduced to the case
l3 < 0 by a change of variables: t → −t, µ1 → −µ1 and µ2 → −µ2.

It is easy to see that for small µ, Eq. (11.2.23) may have no more than
three equilibrium states near the origin. Indeed, if the right-hand side has, for
example, four roots (including multiplicity), then its first derivative must have
at least three roots, its second derivative must have two roots, and its third
derivative must have at least one root. But the third derivative is equal to
(6l3 + o(1)) and hence cannot vanish near the origin.

It is obvious that the parameter values for which there are only two equi-
librium states are bifurcation points because one of the roots of the right-hand
side must then be a multiple root (see Figs. 11.2.8(c) and (d) for l3 < 0 and
Figs. 11.2.9(c) and (d) for l3 > 0). This root corresponds to a semi-stable equi-
librium state that either disappears, or is split into two equilibria, following an
arbitrarily small variation in the parameters.

Fig 11.2.8. The case l2 = 0, l3 < 0.
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Fig. 11.2.9. The case l2 = 0, l3 > 0.

The point x is a double root if

µ1 + µ2x + l3x
3 + G̃(x, µ) = 0 ,

(11.2.24)
µ2 + 3l3x

2 + G̃′x(x, µ) = 0 .

To solve the system (11.2.24), let us rescale x by
√
|µ2| and let M = µ1/

(µ2

√
|µ2|). In the new variables the system (11.2.24) becomes

M + x± l3x
3 + G̃(x

√
|µ2|, µ)/(µ2

√
|µ2|) = 0 ,

(11.2.25)
±1 + 3l3x

2 + G̃′x(x
√
|µ2|, µ)|µ2| = 0 ,

where ± stands for the sign of µ2. Since G̃ = o(x3), it follows that the terms
with G̃ and G̃′ in (11.2.25) become infinitesimally small as µ1 → 0 and µ2 → 0.
It is seen from the second equation of (11.2.25) that the sign of µ2 must be
opposite to that of l3. In the limit µ1 = µ2 = 0, the system (11.2.25) reduces
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to the form

M + x− |l3|x3 = 0 ,

−1 + 3|l3|x2 = 0 .

Solving the above system for x, we obtain

x = ±1/
√

3|l3| , M = −2
3
x .

It then follows from the implicit function theorem that for small µ2

M = ±2/(3
√

3|l3|) + · · ·
in (11.2.25). Reverting back to non-rescaled variables, we obtain the following
equation of the bifurcation curve (Fig. 11.2.10):

µ1 = ±2µ2

√
|µ2/l3|/3

√
3 + · · · , µ2l3 < 0 . (11.2.26)

We will denote this curve by L− when l3 < 0 (see Fig. 11.2.10(a)), and by L+

when l3 > 0 (see Fig. 11.2.10(b)). The point (µ1 = 0, µ2 = 0) breaks these
curves into two branches which we denote as L±1 and L±2 . Both the branches
touch each other and the µ2-axis at the origin.

Due to this particular shape of the bifurcation set, this bifurcation is called
a cusp. The curve L± divides a neighborhood of the origin into two parts: D3

(a) `3 < 0 (b) `3 > 0

Fig. 11.2.10. Bifurcation unfolding in the cases l3 < 0 (a) and l3 > 0 (b).
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is the region inside the wedge (it contains the positive µ2-semi-axis when l3 < 0
or the negative one when l3 > 0), and D1 is the region outside. We can easily
verify that at each point on the curve L±, the two-parameter family (11.2.23)
satisfies the genericity condition (11.2.9).

It is easy to show that if l3 < 0, then:

(1) inside the wedge D3, the Eq. (11.2.17) has three equilibrium states: two
stable (O1 and O3) and one unstable (O2), as shown in Fig. 11.2.8(a);

(2) outside the wedge, in the region D1, the Eq. (11.2.17) has only one
stable equilibrium state, as shown in Fig. 11.2.8(b);

(3) for µ ∈ L−1 the Eq. (11.2.17) has one stable equilibrium state O1 and
one semi-stable equilibrium state O2,3 — the result of the merging
of O3 with O2, with a negative first Lyapunov value, as shown in
Fig. 11.2.8(d); and

(4) for µ ∈ L−2 the Eq. (11.2.17) has one stable equilibrium state O3 and
a saddle-node O12 with a negative first Lyapunov value, as shown in
Fig. 11.2.8(c).

If l3 > 0, then:

(1) in the region D3, the Eq. (11.2.17) has three equilibrium states — two
unstable (O1 and O3) and one stable (O2), as shown in Fig. 11.2.9(a);

(2) outside the wedge, in D1, the Eq. (11.2.17) has only one unstable equi-
librium state, as shown in Fig. 11.2.9(b);

(3) when µ ∈ L+
1 the Eq. (11.2.17) has one unstable equilibrium state

O1 and one semi-stable equilibrium state O2,3, with a positive first
Lyapunov value, as shown in Fig. 11.2.9(c); and

(4) when µ ∈ L+
2 the Eq. (11.2.17) has one unstable equilibrium state O3

and a semi-stable equilibrium state O1,2 as shown in Fig. 11.2.9(d).

The bifurcations in the two-dimensional case are illustrated by Figs. 11.2.11
and 11.2.12 for the cases l3 < 0, and l3 > 0, respectively.

In the case l3 > 0, the central equilibrium state is stable for µ ∈ D3. For
l3 < 0, the character of the stability region becomes less trivial: namely, it
becomes poly-sheeted (see Fig. 11.2.13). It should be noted that the stability
boundary is not smooth at the origin.

Suppose next that l2 = l3 = 0 and l4 6= 0. Then, the transverse family
assumes the form

ẋ = µ1 + µ2x + µ3x
2 + l4x

4 + o(x4) . (11.2.27)
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(a) µ ε D3

(b) µ ε D1

(c) µ ε L−2

Fig. 11.2.11. Phase portraits corresponding to the bifurcation diagram in Fig. 11.2.10(a).
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(d) µ ε L−1

Fig. 11.2.11. (Continued)

(a) µ ε D3

(b) µ ε D1

Fig. 11.2.12. Phase portraits for the bifurcation diagram in Fig. 11.2.10(b).
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(c) µ ε L+
1

(d) µ ε L+
2

Fig. 11.2.12 (Continued)

The parameter space here is partitioned into three regions: D0, D2 and D4,
joined at the origin. When µ ∈ D4, the Eq. (11.2.27) has four rough equilibrium
states, two of which are stable and two are unstable; for µ ∈ D2, the equation
has two rough equilibria, one stable and the other unstable; for µ ∈ D0, there
is no equilibrium states at all.

The bifurcation surface separating these regions is called a swallowtail (see
the corresponding picture in Fig. 11.2.14 for l4 > 0). It has a self-intersection
line

µ3 = −2l4
√

µ1/l4 + o(
√
|µ1|) , µ2 = o(|µ1|3/4)
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Fig. 11.2.13. Topology of the bifurcation set in the extended phase space.

Fig. 11.2.14. The bifurcation surface known as “a swallowtail.” See comments in the text.



556 Chapter 11. Local Bifurcations on the Route Over . . .

that corresponds to the existence of a pair of semi-stable equilibrium states in
Eq. (11.2.27), and two cusp edges

µ1 = −µ2
3/12l4 + o(µ2

3) , µ2 = ±
√
−8µ3

3/27l4 + o(|µ3|3/2)

that correspond to the existence of a triple equilibrium state whose third Lya-
punov value is positive if µ2 > 0 and negative if µ2 < 0. The parameter values
other than those on the line of self-intersection and on the cusp edges on the
bifurcation surface correspond to one semi-stable equilibrium state.

The case l2 = · · · = lk−1 = 0, lk 6= 0 may be analyzed in a similar way for
any k. It reduces simply to an analysis of the roots of the equation

0 = µ1 + · · ·+ µk−1x
k−2 + lkxk + G̃(x, µ) . (11.2.28)

Strictly speaking, the latter problem has to do with the theory of singularities,
and we will not consider it in detail. Since the k-th derivative of the right-hand
side of (11.2.28) does not vanish when x is small, the number of roots of this
equation cannot exceed k (including multiplicity), i.e. the original equilibrium
state may not bifurcate into more than k equilibrium states.

The bifurcation set in the space (µ1, . . . , µk−1) corresponds to equilibrium
states of various degrees of degeneracy. The self-intersections of the bifurca-
tion surface correspond to the presence of two or fewer structurally unstable
equilibrium states. To find the bifurcation surfaces it is useful to make a
renormalization of the coordinates and the parameters. In particular, let

δ =
k−1∑

i=1

µ
1/(k+1−i)
i , Mi = µi/δk+1−i .

Then, after the transformation x → δx, Eq. (11.2.28) is recast in the form

0 =
k−1∑

i=1

Mix
i−1 + lkxk + · · · , (11.2.29)

where the ellipsis denote the terms that tend to zero as δ → 0; x and M1, . . . ,

Mk−1 are no longer small, and
∑k−1

i=1 M
1/(k+1−i)
i = 1.

It can be shown that the analysis of Eq. (11.2.29) is equivalent to analyzing
the truncated equation

0 =
k−1∑

i=1

Mix
i−1 + lkxk (11.2.30)
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(after reverting to the non-rescaled variables this means that the structure of
the bifurcation set as well as the phase portraits of Eq. (11.2.25) are the same
as those associated with the polynomial family ẋ = µ1+· · ·+µk−1x

k−2+lkxk).
Let (M∗

1 , . . . ,M∗
k−1) be a bifurcation point of (11.2.30), i.e. it corresponds

to the existence of one or more multiple roots. At this point the family (11.2.30)
is in general position with respect to the given bifurcation. By applying the
implicit function theorem one may easily verify that for the Eq. (11.2.29), the
curve {Mi(δ) = M∗

i + · · · }i=1,...,k−1 corresponding to the same bifurcation is
defined if δ is sufficiently small. Thus, the bifurcation set is composed of curves
which have an asymptotic representation

µi ∼ M∗
i δk+1−i . (11.2.31)

We can probe even deeper; namely, it turns out that for any bifurcation of
codimension s at least one of the values M∗

i is non-zero at i ≥ s + 1. This
implies that the part of the bifurcation set which corresponds to a bifurcation
of codimension s is composed of surfaces (joined at µ = 0) of the form

µj = ψj(µs+1, . . . , µk−1) (j = 1, . . . , s) , (11.2.32)

where ψj satisfies the relations

|ψj |1/(k+1−j) ≤ C
k−1∑

i=s+1

|µi|1/(k+1−s) (11.2.33)

(here, C is a common constant independent of s and j). So, for example, the
swallowtail lies entirely inside the “cone”

|µ1| ≤ C(|µ2|4/3 + |µ3|2) ,

and the cusp edges and the line of self-intersection on it (they are the curves
of codimension two) satisfy the inequalities

|µ1| ≤ C|µ3|2 , |µ2| ≤ C|µ3|3/2 .

To resume we note that it may often happen in practice that the equation
on the center manifold is such that the governing parameters do not come in the
generic way. For example, if a system is invariant with respect to the symmetry
x → −x, then the equation of the center manifold admits the same symmetry.



558 Chapter 11. Local Bifurcations on the Route Over . . .

Consequently, the right-hand side of the system on the center manifold will
contain no terms with even power of x. The associated transverse family can
then be represented in the form

ẋ = µx + l3x
3 + o(x3) .

If l3 6= 0, one-parameter µ is sufficient. The coordinate dependence on µ for
the case l3 < 0 is illustrated in Fig. 12.2.15. When µ becomes positive the
trivial equilibrium state loses its stability and gives birth to two new stable
ones. Such a bifurcation is called a pitchfork.

The other mechanism frequently encountered in applications is when it is
known a priori that the equilibrium state does not disappear in the bifurcation.
If it resides at the origin, then the transverse family has the form

ẋ = µx + l2x
2 + o(x2) .

If l2 6= 0, the bifurcation develops in the following manner (see Fig. 11.2.16):
as µ → −0, an unstable equilibrium state approaches the stable one at the
origin; when µ goes through zero the trivial equilibrium state becomes unsta-
ble whereas the non-trivial one becomes stable, i.e. the so-called exchange of
stability takes place. Such bifurcation is called transcritical.

Fig. 11.2.15. The coordinates of the equilibrium state versus the parameter µ at pitchfork
bifurcation (typical for symmetric systems).
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Fig. 11.2.16. Coordinates of equilibrium states at transcritical bifurcations. None of the
equilibrium states disappears; they exchange their stability.

11.3. Bifurcations of periodic orbits with
multiplier +1

Consider a family of Cr-maps (r ≥ 2) which has a fixed point with one mul-
tiplier equal to +1 at zero-parameter value; the rest of the multipliers are
assumed to be inside the unit circle. The map near the fixed point in this case
is written in the form

x̄ = x + g(x, y, ε) ,

ȳ = Ay + f(x, y, ε) ,
(11.3.1)

where x ∈ R1, y ∈ Rn, the eigenvalues of the matrix A lie inside the unit circle,
f and g are Cr-smooth functions such that f and g vanish at x = 0, y = 0,
ε = 0 along with their first derivatives with respect to x and y.

We repeat one more time that by virtue of the reduction theorem there
exist some Cr−1-coordinates in terms of which the family (11.3.1) is reduced
to the form

x̄ = x + G(x, ε) ,

ȳ = [A + F (x, y, ε)]y ,
(11.3.2)
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where G is a Cr-function and F is a Cr−1-function such that

F (0, 0, 0) = 0 ,

G(0, 0) = 0 , (11.3.3)

G′x(0, 0) = 0 .

Since the dynamics in the y-variables is trivial — they converge exponentially
to the origin, it suffices for us to consider only bifurcations in the restriction
of the system (11.3.2) to the center manifold:

x̄ = x + G(x, ε) . (11.3.4)

By (11.3.3), the function G at ε = 0 is at least of second order of smallness
with respect to x. If k is the index number of the first non-zero Lyapunov
value, then the function G at ε = 0 has the form

G(x, 0) = lkxk + o(xk) , (11.3.5)

where lk 6= 0. In the most typical case k is equal to 2, and hence G(x, 0) =
l2x

2 + o(x2).
Since G′x(x, ε) is small when both x and ε are small, the right-hand side

of (11.3.4) is a monotonically increasing function of x. The fixed points of
the map (11.3.4) are found from the condition G(x, ε) = 0; their stability is
determined by the sign of the derivative G′x(x, ε): if this derivative is positive
at a fixed point, the latter is unstable; if the derivative is negative, the fixed
point is stable. In other words, we have a complete analogy with the family of
differential equations

ẋ = G(x, ε) ,

i.e. a fixed point with a unit multiplier bifurcates in the same way as an equi-
librium state with a zero characteristic exponent.

So, we can now simply apply the results of the previous section. Thus, if
the family (11.3.4) is in a general position (i.e. the rank of the matrix (11.2.18)
is maximal; if l2 6= 0, this condition reduces to the inequality (11.2.9)), then
the set of parameter values which corresponds to the existence of a fixed point
with a unit multiplier and zero Lyapunov values l2, . . . , lk−1, forms a Cr−(k−1)-
smooth surface M′ of codimension (k − 1) that passes through ε = 0. The
families of maps transverse to M′ can be recast into the form

x̄ = x + G(x, µ) = x + µ1 + µ2x + · · ·+ µk−1x
k−2 + lkxk + o(xk) (11.3.6)
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(to arrive at this form, one must translate the origin to the point x∗ where
the derivative G(k−1) vanishes; since the kth derivative of G with respect to
x does not vanish, the point x∗ is uniquely determined and depends smoothly
(Cr−(k−1)) on the parameters).

We have already emphasized in the preceding section that the study of
zeros of the function G is equivalent to those of the polynomial

µ1 + µ2x + · · ·+ µk−1x
k−2 + lkxk .

We will not discuss further the general case but will henceforth consider only
bifurcations of low codimensions.

1. l2 6= 0. The transverse family of one-dimensional maps in this case
assumes the form

x̄ = x + µ + l2x
2 + o(x2) . (11.3.7)

The Lamerey diagrams for the cases l2 > 0 and l2 < 0 are illustrated in
Figs. 11.3.1 and 11.3.2, respectively. When l2µ < 0 there are two fixed points
x± =

√
−µ/l2 +o(

√
µ); at µ = 0, there is only one structurally unstable point;

when l2µ > 0 there is no fixed point at all, and all trajectories escape from a
neighborhood of the origin after a finite number of iterations (of order

√
µ/l2).

(a) µ < 0

Fig. 11.3.1. Lamerey staircase for the case l2 > 0.
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(b) µ = 0

(c) µ > 0

Fig. 11.3.1. (Continued)
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(a) µ < 0

(b) µ = 0

Fig. 11.3.2. Lamerey staircase for the case l2 < 0.
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(c) µ > 0

Fig. 11.3.2. (Continued)

(a) µ < 0

Fig. 11.3.3. Bifurcations of a saddle-node fixed point for the case l2 > 0. Observe that
iterations of the points near the ghost of the saddle-node (in (C)) become more dense (the
expansion rate in horizontal direction is hardly larger than 1).
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(b) µ = 0 (c) µ > 0

Fig. 11.3.3. (Continued)

The dependence of the coordinates of the fixed points on µ is given in
Fig. 11.2.2.

For dimensions higher than one, the phase portraits for the initial map
(11.3.1) for different µ are shown in Figs. 11.3.3 and 11.3.4.

When the map (11.3.1) is a Poincaré map near a periodic orbit of some
system of ODE’s, the fixed point under consideration corresponds to a saddle-
node periodic orbit (at µ = 0). The phase portraits for this case are shown in
Figs. 11.3.5–11.3.7.

(a) µ < 0 (b) µ = 0

Fig. 11.3.4. Bifurcations of a saddle-node fixed point for the case l2 < 0.
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(c) µ > 0

Fig. 11.3.4. (Continued)

(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.3.5. Bifurcations of a saddle-node limit cycle in a plane for the case l2 > 0. A
semi-stable cycle (b) is attractive in the exterior domain, but repelling in the interior region.

2. l2 = 0, l3 6= 0. The transverse family in this case assumes the form

x̄ = x + µ1 + µ2x + l3x
3 + o(x3) . (11.3.8)

The bifurcations are illustrated in Figs. 11.3.8 (l3 < 0) and 11.3.9 (l3 > 0).
The bifurcation curves L± corresponding to a fixed-point of the saddle-node
type [i.e. a multiple root of the equation G(x, µ) = 0] are defined by the
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(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.3.6. Bifurcations of a saddle-node limit cycle in a plane for the case l2 < 0. This is
the same as in Fig. 11.3.5 up to a change in µ → −µ. The feature of the forward route is
the appearance of a saddle-node cycle from condensation of trajectories.

(a)

Fig. 11.3.7. Scenario of a saddle-node bifurcation of periodic orbits in R3. The stable periodic
orbit and the saddle periodic orbit in (a) coalesce at µ = 0 in (b) into a saddle-node periodic
orbit, and then vanishes in (c). The unstable manifold of the saddle-node orbit in (c) is
homeomorphic to a semi-cylinder. A trajectory following the path in (b) slows down along
a transverse direction near the “virtual” saddle-node periodic orbit (i.e., the ghost of the
saddle-node orbit in (b)) so that its local segment is similar to a compressed spring.
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(b)

(c)

Fig. 11.3.7. (Continued)

Fig. 11.3.8. Bifurcation diagram for l2 = 0 and l3 > 0.
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Fig. 11.3.9. Bifurcation diagram for l2 = 0 and l3 < 0.

(a) µ ε D1

Fig. 11.3.10. Bifurcations of the fixed points corresponding to the diagram in Fig. 11.3.8.
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(b) µ ε L−1

(c) µ ε D3

Fig. 11.3.10. (Continued)
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(d) µ ε D3

(e) µ ε L−2

Fig. 11.3.10. (Continued)
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(f) µ ε D1

Fig. 11.3.10. (Continued)

(a) µ ε D1

Fig. 11.3.11. Bifurcations of the fixed points corresponding to the unfolding in Fig. 11.3.9.
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(b) µ ε L+
1

(c) µ ε D3

Fig. 11.3.11. (Continued)
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(d) µ ε D3

(e) µ ε L+
2

Fig. 11.3.11. (Continued)
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(f) µ ε D1

Fig. 11.3.11. (Continued)

(a) µ ε D3

Fig. 11.3.12. Bifurcations of the fixed points in a plane for the case l2 = 0 and l3 < 0.
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(b) µ ε D1

(c) µ ε L−2

(d) µ ε L−1

Fig. 11.3.12. (Continued)
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(a) µ ε D3

(b) µ ε D1

(c) µ ε L+
1

Fig. 11.3.13. Bifurcations of the fixed point in a plane for the case l2 = 0 and l3 > 0.
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(d) µ ε L+
2

Fig. 11.3.13. (Continued)

equation

27µ2
1 +

4µ3
2

l3
+ o(µ3

2) = 0 .

In the region D3, the map (11.3.8) has three rough fixed points: two stable and
one unstable if l3 < 0, or two unstable and one stable if l3 > 0. In the region
D1, there is a single rough fixed point: stable if l3 < 0, or unstable otherwise.
Figures 11.3.10 and 11.3.11 present the Lamerey diagrams for the transitions
over L1 and L2 for l3 of both signs. Figures 11.3.12 and 11.3.13 present the
respective two-dimensional cases.

11.4. Bifurcations of periodic orbits with
multiplier −−1

Consider next a family of maps of class Cr(r ≥ 3) which has a fixed point with
one multiplier equal to (−1) at zero-parameter values. Since the rest of the
multipliers are supposed to be inside the unit circle, the map near the fixed
point assumes the form

x̄ = −x + G(x, y, ε) ,
(11.4.1)

ȳ = (A + F (x, y, ε))y ,
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where x ∈ R1, y ∈ Rn, the eigenvalues of the matrix A lie inside the unit circle,
G is a Cr-function and F is a Cr−1-function such that

F (0, 0, 0) = 0 ,

G(0, 0) = 0 , (11.4.2)

G′x(0, 0) = 0 .

Let us consider the map on the center manifold

x̄ = −x + G(x, ε) . (11.4.3)

Since the derivative of the right-hand side of the map (11.4.3) does not vanish
(it is equal to −1 at x = 0, ε = 0), the fixed point persists (and remains single)
for all small ε. Without loss of generality let us assume that the fixed point is
located at the origin, i.e.

G(0, ε) ≡ 0 . (11.4.4)

It was shown in Sec. 10.6 that at ε = 0, all even powers of x in the Taylor
expansion of G are non-resonant. Hence, they can be eliminated up to any
order by a polynomial transformation. Obviously, these terms remain non-
resonant for small ε 6= 0 as well, i.e. for all small ε they may also be eliminated
up to any order by polynomial transformations with coefficients depending
smoothly on ε.

Generically, the first Lyapunov value l1 differs from zero, i.e. the function
G at ε = 0 starts with the cubic terms

G(x, 0) = −l1x
3 + o(x3) .

Then, by eliminating the x2-terms for all small ε, the map may be reduced to
the form

x̄ = −x(1 + l0(ε) + l1x
2) + o(x3) , (11.4.5)

where l0 is a Cr−1-smooth function of ε, l0(0) = 0.
The boundary M of the stability region of the fixed point is determined

by the condition l0(ε) = 0 and is a Cr−1-smooth surface of codimension one
provided that the vector (∂l0/∂ε1, . . . , ∂l0/∂εp)ε=0 is non-zero. Let us choose
l0(ε) as the governing parameter µ. Then, any transverse family has the form

x̄ = −x(1 + µ + l1x
2) + G̃(x, µ) , (11.4.6)
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where G̃ = o(x3); it is a Cr-smooth function of x and a Cr−2-smooth function
of µ such that

G̃(0, µ) = G̃′x(0, µ) = G̃′′xx(0, µ) = G̃′′′xxx(0, 0) = 0 . (11.4.7)

For all x and µ sufficiently small, the map (11.4.6) has a unique fixed point.
This point (at the origin) is stable when µ < 0 and unstable when µ > 0; when
µ 6= 0, it does not undergo bifurcations. Besides this fixed point, the map
(11.4.6) may have points of period two. Therefore, to examine the bifurcations
one should consider the second iteration of the map. There may not be periodic
points of other periods more than two because the second iteration of (11.4.6)
is a monotonically increasing one-dimensional map — periodic orbits of such
maps are fixed points.

The second iterate is given by

=
x = x(1 + 2µ + µ2 + 2l1x

2)+
≈
G (x, µ) , (11.4.8)

where ≈
G (0, µ) =

≈
G
′
x
(0, µ) =

≈
G
′′
xx

(0, µ) =
≈
G
′′′

xxx
(0, 0) = 0 . (11.4.9)

The non-zero fixed points of the second iteration are found from the equation

µ(1 + µ/2) + l1x
2+

≈
G (x, µ)/2x = 0 .

This equation is analogous to the equation yielding the coordinates of the fixed
point which emerge from the saddle-node bifurcation (see (11.2.12)). So, one
may verify that the equation has no real roots when µl1 > 0, but it has two
roots of opposite signs when µl1 < 0; namely:

x±(µ) = ±
√
|µ/l1|+ o(

√
|µ|) .

As for the map (11.4.7), the pair (x+, x−) comprises an orbit of period two.
Its multiplier is found by differentiating the right-hand side of (11.4.8) and is
equal to

ρ = 1 + 2µ + 6l1x
2 + o(µ) + o(x2) = 1− 4µ + o(µ) .

Since in the region of the existence of points of period two the sign of µ is
opposite to the sign of l1, it follows that when l1 > 0, the multiplier is greater
than one and the period-two point is unstable. Respectively, when l1 < 0, the
multiplier is less than one and the point of period two is stable. Summarizing
we conclude that:
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(1) If l1 < 0, then the fixed point at the origin is stable for µ ≤ 0 and
attracts all trajectories from any small neighborhood. When µ > 0,
the fixed point becomes unstable and the stable period-two point bi-
furcates from it; see Fig. 11.4.1 illustrating the corresponding Lamerey
diagrams.

(2) If l1 > 0, then for µ < 0, there exists a stable fixed point O at the origin
as well as an unstable orbit of period two bounding the attraction basin
of O; at µ = 0, the period two orbit merges into O; the latter becomes
unstable and all trajectories, except O, leave a neighborhood of the
origin for µ ≥ 0, see Fig. 11.4.2.

Consider next the original map (11.4.1). For the sake of visualization we
restrict ourselves to the two-dimensional case. The map is written in the form

x̄ = −x(1 + µ + l1x
2) + o(x2) ,

ȳ = γ(µ)y + o(y) ,

where |γ(µ)| < 1. If we consider the Poincaré map of a three-dimensional flow,
then it is to be orientable (orientation preserving). Hence, the product of the
multipliers of a periodic orbit must be positive, i.e. γ < 0.

(a) µ < 0

Fig. 11.4.1. Transformations of the Lamerey spiral for the case l1 < 0.
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(b) µ = 0

(c) µ > 0

Fig. 11.4.1. (Continued)
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(a) µ < 0

(b) µ = 0

Fig. 11.4.2. Transformations of the Lamerey spiral for the case l1 > 0. The unstable period-
two cycle bounds the attraction basin of the origin.
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(c) µ > 0

Fig. 11.4.2. (Continued)

If l1 < 0, the point O is stable (a node (−)) for µ ≤ 0. When µ becomes
positive the point O loses it stability and transforms into a saddle (−,−); this
means that a stable orbit of period two bifurcates from the origin. The phase
portraits are shown in Fig. 11.4.3.

If l1 > 0, then for all sufficiently small negative µ, there exists a period-two
orbit (O1, O3) of saddle (+,+) type. Its invariant stable and unstable manifold
separate the attraction basin of the fixed point O2. As µ tends to zero the orbit
of period two approaches O and collapses into it at µ = 0. When µ > 0, the
point O becomes a saddle (−,−) (see Fig. 11.4.4).

The remarkable feature of this bifurcation in the case of periodic orbits
of autonomous systems of differential equations is that the center manifold
of the periodic orbit L corresponding to the fixed point O of the Poincaré
map is a Möbius band. The orbit itself is the mean line of the Möbius band,
and consequently a new orbit that bifurcates from L must wind twice around
L as shown in Fig. 11.4.5. It is quite clear that the period of the new or-
bit is nearly the double period of L. Consequently, this bifurcation is called



11.4. Bifurcations of periodic orbits with multiplier −1 585

(a) µ ≤ 0

(b) µ > 0

Fig. 11.4.3. The origin is initially a stable node (−). Each point O1 and O3 in (b) is periodic
of period two. They form a stable cycle of period two bifurcating from the origin which
becomes a saddle (−,−).
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(a) µ < 0

(b) µ ≥ 0

Fig. 11.4.4. The case l1 > 0. The stable node (−) at the origin is surrounded by a period-two
saddle cycle (+, +). When the cycle collapses at the origin, the latter becomes unstable.
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Fig. 11.4.5. Topology of the period-doubling bifurcation. The unstable manifold (dark) of
the trivial periodic orbit L is a Möbius strip, whose boundary is a stable orbit of period
two that has just bifurcated. The stable manifold of L is shown in white. (Courtesy of
B. Krauskopf).

a period-doubling bifurcation. For a non-autonomous system with period τ , the
points of period-two in the Poincaré map correspond to two periodic orbits of
double period such that one is taken into the other by the phase shift over τ .

The next bifurcation that we will now focus on occurs when the first Lya-
punov value vanishes. Here, after getting rid of terms of second and fourth
order (the smoothness r of the map is assumed to be not less than five) the
map may be reduced to the form

x̄ = −x(1 + l0(ε) + l1(ε)x2 + l2x
4) + o(x5) ,

where l0(0) = l1(0) = 0, l2 6= 0. The bifurcation surface M in this case is
defined by the equation

l0(ε) = l1(ε) = 0 ,

and assuming that the genericity condition

rank




∂l0
∂ε1

· · · ∂l0
∂εp

∂l1
∂ε1

· · · ∂l1
∂εp




ε=0

= 2 ,

holds, it is a Cr−3-smooth surface of codimension two. Therefore, the trans-
verse family depends on two-parameters:

x̄ = −x(1 + µ0 + µ1x
2 + l2x

4) + o(x5) . (11.4.10)

Here, as above, the fixed point is unique. It is stable when µ0 < 0 and unstable
when µ0 > 0. For all other small µ0 6= 0, it does not undergo bifurcations.
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To find points of period two let us consider the second iterate of the map
=
x = x(1 + µ0)2 + µ1(1 + µ0)(2 + 2µ0 + µ2

0)x
3 + 2l2x

5 + o(x5) . (11.4.11)

The fixed points, other than x = 0, of this map are sought as the roots of the
equation

2µ0 + µ2
0 + µ1(1 + µ0)(2 + 2µ0 + µ2

0)x
2 + 2l2x

4 + o(x4) = 0 . (11.4.12)

Multiple roots must satisfy the additional equation

µ1(1 + µ0)(2 + 2µ0 + µ2
0) + 4l2x

2 + o(x2) = 0 (11.4.13)

obtained by differentiating (11.4.12). Solving the system (11.4.12)–(11.4.13)
with respect to x, we find that in the (µ0, µ1)-parameter plane the curve con-
taining the multiple roots consists of half of the parabola

µ0 = µ2
1/4l2 + o(µ2

1) , µ1l2 < 0 . (11.4.14)

For the map (11.4.10), this curve corresponds to the presence of a period-two
trajectory (x+, x−) of saddle-node type. The coordinates of the saddle-node
points are found from (11.4.12) and (11.4.13): x± = ±

√
|µ1/2l2| + o(

√
|µ1|).

By decomposing the right-hand side of (11.4.11) into a Taylor series at the
point x+ we can verify that the Lyapunov value does not vanish, i.e. the point
is a simple saddle-node.

Besides the line µ0 = 0 and the line (11.4.14), the bifurcation unfolding
contains no others (see Fig. 11.4.6). These curves partition a neighborhood of
the origin into three regions D0, D1 and D2. The Lamerey diagrams corre-
sponding every region are shown in Figs. 11.4.7 (l2 < 0) and 11.4.8 (l2 > 0).
In D0, there are no trajectories of period-two, in D1, there is a one period-two
trajectory and in D2, there are two such trajectories. When moving from D2

to D0, both period-two orbits merge and disappear.
In conclusion we consider schematically the bifurcations in the general case

when a few Lyapunov values vanish simultaneously. Let k be the order number
of the first non-zero Lyapunov value at ε = 0. Then, by eliminating the even
powers of x up to the order 2k, the map may be reduced to the form

x̄ = −x

(
1 +

k−1∑

i=0

li(ε)x2i + lkx2k

)
+ o(x2k+1) , (11.4.15)
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(a) `2 < 0 (b) `2 > 0

Fig. 11.4.6. Bifurcation unfolding l2 < 0 (a) and l2 > 0 (b).

where li is a Cr−(2i+1)-smooth function of ε(i = 0, . . . , k − 1); it is supposed
that the smoothness r of the map is not less than (2k + 1) and l0(0) = · · · =
lk−1(0) = 0, lk 6= 0.

It is obvious that in the case of general position (i.e. when the rank of the
matrix 



∂l0
∂ε1

· · · ∂l0
∂εp

...
. . .

...
. . .

∂lk−1

∂ε1
· · · ∂lk−1

∂εp




ε=0

is equal to k) the bifurcation surface

M′ : l0(ε) = · · · = lk−1(ε) = 0

that passes through the point ε = 0 and corresponds to a fixed point with a
multiplier−1 and with (k−1) first zero Lyapunov values, is a Cr−(2k−1)-smooth
surface of codimension k.4

4Note that the boundary of the stability region is determined by the condition l0(ε) = 0

and is a smooth surface of codimension one provided the vector ( ∂l0
∂ε1

, . . . , ∂l0
∂εp

)ε=0 is non-zero

regardless of whether any Lyapunov values vanish or do not.
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(a)

(b)

Fig. 11.4.7. The map for the case l2 < 0 when moving counter-clock-wise in the direction
around the origin in the bifurcation diagram in Fig. 11.4.6(a). Two period-two cycles in
(c) coalesce on the border separating D2 and D0 and disappear in D0. The semi-stable
cycle of period two is shown in (d).
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(c)

(d)

Fig. 11.4.7. (Continued)
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(a)

(b)

Fig. 11.4.8. The map corresponding to the bifurcation diagram in Fig. 11.4.6 (b). The
semi-stable cycle of period two on the border between D2 and D0 is shown in (d).
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(c)

(d)

Fig. 11.4.8. (Continued)
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Let us choose the values li(ε) as the governing parameters µ0, . . . , µk−1.
Then any family transverse to M′ in this case can be represented in the
form

x̄ = −x(1 + µ0 + µ1x
2 + · · ·+ µk−1x

2(k−1) + lkx2k) + G̃(x, µ) , (11.4.16)

where G̃ = o(x2k+1) is a Cr-smooth function of x and a Cr−2k-smooth
function of µ such that G̃(0, µ) = G̃′x(0, µ) = · · · = G̃(2k)(0, µ) = 0 and
G̃(2k+1)(0, 0) = 0.

The plane µ0 = 0 corresponds to the loss of stability of the fixed point at
the origin. No other bifurcations occur with the fixed point at µ0 6= 0. To
study the trajectories of period-two we need to examine the second iteration
of the map

=
x = x

(
1 +

k−1∑

i=0

µix
2i + lkx2k

)(
1 +

k−1∑

i=0

µix̄
2i + lkx̄2k

)

= x(1 + 2µ̂0 + 2µ̂1x
2 + · · ·+ 2µ̂k−1x

2(k−1) + 2lkx2k) + o(x2k+1) ,

(11.4.17)

where each µ̂i is uniquely expressed in terms of µ0, . . . , µi:

µ̂i = µi + ϕi(µ0, . . . , µi) . (11.4.18)

We do not need the concrete form of the functions ϕi. It suffices to notice
that

ϕi = o(µj) (j = 0, . . . , i) . (11.4.19)

The non-zero fixed points of the map (11.4.17) are found as the roots of the
equation

µ̂0 + µ̂1x
2 + · · ·+ µ̂k−1x

2(k−1) + lkx2k + o(x2k) = 0 . (11.4.20)

They correspond to orbits of period two of the map (11.4.16). Moreover
each orbit is composed of one positive and one negative root. So, one may
then consider the positive roots only; i.e. if we let u = x2, then our prob-
lem is reduced to that of a bifurcation analysis of the positive roots of the
equation

µ̂0 + µ̂1u + · · ·+ µ̂k−1u
k−1 + lkuk + o(uk) = 0 . (11.4.21)



11.4. Bifurcations of periodic orbits with multiplier −1 595

Similar bifurcations of such roots have been examined in Sec. 11.2 (the dif-
ference being that the factor of uk−1 is not zero — but this can be always
achieved by a translation of the origin; besides this we did not discuss sepa-
rately the behavior of the positive roots). As in Sec. 11.2, by checking that
the k-th derivative of the left-hand side of the equation does not vanish we
can show that Eq. (11.4.21) cannot have more than k roots when x and µ are
small.

Thus, the bifurcation of a fixed point with one multiplier equal to −1,
and with (k − 1) zero Lyapunov values, cannot produce more than k orbits
of period two. Moreover, it is easy to specify the precise parameter values for
which Eq. (11.4.21) has a prescribed number of positive roots, within the range
from 0 to k. This implies that in the parameter space of the map (11.4.16),
there are regions where the family has any prescribed number (from 0 to k) of
period-two orbits.

In order to understand the structure of the bifurcation surface for period-
two orbits we must construct a surface M of multiple roots of Eq. (11.4.21),
and then select the part M+ that corresponds to positive multiple roots. The
surface M is defined by the system

µ̂0 + µ̂1u + · · ·+ µ̂k−1u
k−1 + lkuk + o(uk) = 0 ,

µ̂1 + 2µ̂2u + · · ·+ (k − 1)µ̂k−1u
k−2 + klkuk−1 + o(uk−1) = 0 .

(11.4.22)

It follows from (11.4.22) that the vanishing of the multiple root u = 0 cor-
responds to setting the values µ̂0 and µ̂1 to zero. Thus, the line defined by
µ̂0 = µ̂1 = 0 form the boundary of M+ in M. The bifurcation diagram
for orbits of period two of the map (11.4.16) coincides with M+. Corre-
spondingly, the union of the surface M+ and the plane µ0 = 0 on which the
fixed point loses its stability gives a complete bifurcation diagram for the map
(11.4.16).

Consider in more detail the question on constructing the set M+ (see
Fig. 11.4.9 for an example of a bifurcation diagram of the map (11.4.16) for
the case k = 3, lk < 0). Note that the surface M contains the line L cor-
responding to the existence of a root of multiplicity k. This line is deter-
mined from the following system of equations (they require that at some point
u the left-hand side of Eq. (11.4.21) as well as its first (k − 1) derivatives
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Fig. 11.4.9. The structure of the bifurcation set in the three-parameter family. See comments
in the text.

must vanish)

0 = µ̂0 + µ̂1u + · · ·+ µ̂k−1u
k−1 + lkuk + o(uk) ,

0 = µ̂1 + 2µ̂2u + · · ·+ (k − 1)µ̂k−1u
k−2 + klkuk−1 + o(uk−1) ,

...
...

...

0 = µ̂i +
k−1∑

j=i+1

Ci
j µ̂ju

j−i + Ci
klkuk−i + o(uk−1) ,

...
...

...

0 = µ̂k−1 + klku + o(u) ,

where Ci
j are binomial factors. By solving the system sequentially, from bottom

to top, with respect to µ̂k−1 we find that the curve L can be represented
asymptotically in the form

µ̂i ∼ (µ̂k−1)k−iαi , (11.4.23)

where αi are some non-zero coefficients. Moreover, the root of multiplicity k

is located at the point
u∗ ∼ −µ̂k−1/klk . (11.4.24)
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The point µ = 0 divides the curve L into two parts: L+ : µ̂k−1lk < 0 and
L− : µ̂k−1lk > 0. Equation (11.4.24) implies that u∗ > 0 on L+, i.e. only this
branch of L corresponds to period-two orbits of multiplicity k.

By shifting the origin to the point u = u∗, the Eq. (11.4.21) is reduced to

ν0 + ν1u + · · ·+ νk−2u
k−2 + lkuk + o(uk) = 0 ,

where νi are some functions of µ̂. Thus, it follows from Sec. 11.2 that at each
cross-section µ̂k−1 = constant, which is transverse to the line L, the surface M

has the same structure which is (up to a diffeomorphism) a surface of multiple
roots of the polynomial ν0 + ν1u + · · · + νk−2u

k−2 + uk which is restored at
the point of intersection of the cross-section and the curve L (the coordinates
of this point are found from (11.4.23)).

As explained in Sec. 11.2, this surface is composed of a number of smooth
sheets of codimension one, corresponding to double roots. The line µ̂0 = µ̂1 = 0
breaks these sheets into two components corresponding to negative and positive
double roots (only the latter part constitutes M+): the double root is positive
exactly in that part which adjoins L+ if µ̂k−1lk < 0 or which does not adjoin
L− if µ̂k−1lk > 0.

We can also derive asymptotical relations similar to (11.2.31)–(11.2.33),
i.e. the surface of multiple roots is foliated into curves represented asymptoti-
cally in the form

µ̂i ∼ M∗
i δk−i , (11.4.25)

and all bifurcation sets of codimension s consist of pieces (joined at µ = 0) of
surfaces of the form

µ̂j = ψj(µ̂s, . . . , µ̂k−1) (j = 0, . . . , s− 1) , (11.4.26)

where the ψj ’s satisfy the relation

|ψj |1/(k−j) ≤ C
k−1∑

i=s

|µ̂i|1/(k−i)| (11.4.27)

(here, C is a common constant independent of s and j).
It follows from (11.4.18) and (11.4.19) that if we revert to the original pa-

rameters µ0, . . . , µk−1, then each curve (11.4.25) will have the same asymptotic
representation with the same set of constants M∗

i . Thus, it is not necessary to
express µ̂i in terms of µi when computing the first order asymptotic relations.
We simply let µ̂i = µ.



598 Chapter 11. Local Bifurcations on the Route Over . . .

11.5. Andronov Hopf bifurcation

In this section we discuss what happens when a pair of complex-conjugate
characteristic exponents of an equilibrium state crosses over the imaginary
axis. The loss of stability here is directly connected to the birth, or vice
versa, the disappearance of a periodic orbit. This bifurcation is the simplest
mechanism for transition from a stationary regime to oscillations, and it allows
one to give a proper interpretation of numerous physical phenomena. For this
reason this bifurcation has traditionally played a special role in the theory of
bifurcations.

Consider a family of systems of differential equations which is Cr-smooth
(r ≥ 3) with respect to the variables x ∈ R2, y ∈ Rm(m ≥ 0) and parameters
ε ∈ Rp(p ≥ 1). Let the system have, at ε = 0, an equilibrium state O with
a pair of purely imaginary characteristic exponents; the rest are assumed to
lie to the left of the imaginary axis. Since the equilibrium state has no zero
eigenvalues, it persists in a small neighborhood of ε = 0. Without loss of
generality we may suppose that it resides at the origin for all small ε. Let us
assume that this is a pair of characteristic exponents closest to the imaginary
axis

λ1,2 = λ(ε)± iω(ε)

where λ(ε) and ω(ε) depend Cr−1 smoothly on ε, and

λ(0) = 0 , ω(0) > 0 .

By virtue of the reduction theorem the system near the equilibrium state
may be reduced to the form

ẋ1 = λ(ε)x1 − ω(ε)x2 + G1(x1, x2, ε) ,

ẋ2 = ω(ε)x1 + λ(ε)x2 + G2(x1, x2, ε) , (11.5.1)

ẏ = [A + F (x, y, ε)]y ,

where F is a Cr−1-function, G1,2 are Cr-functions, and

F (0, 0, 0) = 0 ,

G(0, 0, 0) = 0 , (11.5.2)

G′x(0, 0, 0) = 0 .
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We can verify, as in Sec. 9.3, that at ε = 0, the terms of the Taylor expansion
of the functions G, other than x1(x2

1 + x2
2) and x2(x2

1 + x2
2) (e.g. terms in any

even power) are non-resonant and may be eliminated by a polynomial (with
respect to x) transformation of variables.

The boundary M of the stability region of the equilibrium state is given
in the parameter space by the equation λ(ε) = 0: the equilibrium state O is
stable if λ(ε) < 0 and unstable if λ(ε) > 0. If at least one of the components
of the vector ( ∂λ

∂ε1
, . . . , ∂λ

∂εp
)ε=0 is non-zero, then for all small ε the boundary

M is a Cr−1-smooth surface of codimension one. Choose λ(ε) as the governing
parameter µ and consider a one-parameter family transverse to M. On the
center manifold y = 0, this family assumes the form

ẋ1 = µx1 − ω(µ)x2 + (L1x1 − Ω1x2)(x2
1 + x2

2) + G̃1(x1, x2, µ) ,
(11.5.3)

ẋ2 = ω(µ)x1 + µx2 + (Ω1x1 + L1x2)(x2
1 + x2

2) + G̃2(x1, x2, µ) ,

where for all small µ, all quadratic terms in x, as well as cubic terms at µ = 0
other than x1(x2

1 + x2
2) and x2(x2

1 + x2
2), have been eliminated.

This means that in (11.5.3), the functions G̃1,2 (which are Cr-smooth in x

and Cr−2-smooth in µ) satisfy

G̃(0, 0, µ) = 0 , G̃′x(0, 0, µ) = 0 ,

G̃′′xx(0, 0, µ) = 0 , G̃′′′xxx(0, 0, µ) = 0 ,

i.e. G̃ = o(R3) where R =
√

x2
1 + x2

2.

Theorem 11.1. If the first Lyapunov value L1 in (11.5.3) is negative, then
for small µ ≤ 0, the equilibrium state O is stable and all trajectories in some
neighborhood U of the origin tend to O. When µ > 0, the equilibrium state
becomes unstable and a stable periodic orbit of diameter ∼ √

µ emerges (see
Fig. 11.5.1) such that all trajectories from U, excepting O, tend to it.

If the first Lyapunov value L1 is positive, then for small µ ≥ 0, the equilib-
rium state O is unstable and any other trajectory leaves a small neighborhood
U of the origin. When µ < 0, the equilibrium state is stable. Its attraction basin
is bounded by an unstable periodic orbit of diameter ∼ √−µ which contracts
to O at µ = 0 (see Fig. 11.5.2).
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(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig 11.5.1. Soft loss of stability of a stable focus at the origin through a supercritical (L1 < 0)
Andronov–Hopf bifurcation.

(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig 11.5.2. Rigid loss of stability of a stable focus at the origin through a subcritical (L1 > 0)
Andronov–Hopf bifurcation.

Proof. Let us rewrite the system (11.5.3) in polar coordinates

Ṙ = R(µ + L1R
2) + Φ1(R,ϕ, µ) ,

(11.5.4)
ϕ̇ = ω(µ) + Ω1(µ)R2 + Φ2(R, ϕ, µ) ,

where Φ1 = o(R3), Φ2 = o(R2). The claim of the theorem is verified trivially
for the truncated system

Ṙ = R(µ + L1R
2) ,

(11.5.5)
ϕ̇ = ω(µ) + Ω1(µ)R2 .
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Fig. 11.5.3. Map of the ray R originating from the origin.

Indeed, here the behavior of trajectories is completely governed by the first
equation

Ṙ = R(µ + L1R
2) . (11.5.6)

In particular, the equilibrium states of Eq. (11.5.6) with positive R correspond
to the periodic orbits of system (11.5.5). It is easy to find the equilibrium
states of (11.5.6); namely, R = 0 and R = ±

√
−µ/L1 when µL1 < 0. The

equilibrium state R =
√
−µ/L1 is stable if L1 < 0 and unstable if L1 > 0.

For the general situation, recall that ω(µ) > 0. Hence ϕ̇ in (11.5.4) does
not vanish for small R. Thus, any trajectory other than the point O must
intersect the ray R : ϕ = 0, R > 0. After one turn in ϕ it must intersect the
ray R again and so on, until it leaves a neighborhood of the origin. Thus, it
suffices to consider the mapping of the ray R into itself along the trajectories
of the system, see Fig. 11.5.3.

To compute this mapping let us divide the first equation in (11.5.4) by the
second to obtain

dR

dϕ
=

R(µ + L1R
2) + Φ1(R, ϕ, µ)

ω(µ) + Ω1(µ)R2 + Φ2(R,ϕ, µ)
=

R(µ + L1R
2)

ω(µ)
+ o(R3) . (11.5.7)

Let us look for a solution of the Eq. (11.5.7) that starts from the point R = R0

at ϕ = 0. Expand it in the Taylor series with respect to R0

R(ϕ) = α1(ϕ)R0 + α2(ϕ)R2
0 + α3(ϕ)R3

0 + · · · (11.5.8)

(the expansion starts with the linear term because R(ϕ) ≡ 0 at R0 = 0). As
R(0) = R0, then

α1(0) = 1 , α2(0) = 0 , α3(0) = 0 . (11.5.9)
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Substituting (11.5.8) into (11.5.7) and equating similar terms we obtain

dα1/dϕ = µα1/ω(µ) ,

dα2/dϕ = µα2/ω(µ) , (11.5.10)

dα3/dϕ = (µα3 + L1α
3
1)/ω(µ) .

Integrating this system and taking into account the initial data (11.5.9), we
obtain

α1(ϕ) = eµϕ/ω(µ) ,

α2(ϕ) = 0 ,

α3(ϕ) = L1e
µϕ/ω(µ)(e2µϕ/ω(µ) − 1)/2µ

and

R(ϕ) = eµϕ/ω(µ)R0 + L1e
µϕ/ω(µ) e

2µϕ/ω(µ) − 1
2µ

R3
0 + · · · .

Letting ϕ = 2π, we obtain the expression for the mapping of the ray R into
itself: R ≡ R(0) 7→ R(2π) ≡ R̄:

R̄ = e2πµ/ω(µ)R +
2π

ω(0)
L1R

3 + o(R3) . (11.5.11)

The resulting equation

(e2πµ/ω(µ) − 1)ω(0)/2π + L1R
2 + o(R2) = 0 (11.5.12)

for non-trivial fixed points of the mapping (11.5.11) can be easily solved
(observe that it coincides, up to the leading terms, with the equation for non-
trivial equilibrium states of (11.5.6)). It follows that when L1µ ≥ 0, the
mapping (11.5.11) has a single fixed point R = 0, and, when L1µ < 0, there
appears one more point R =

√
−µ/L1+o(

√
|µ|) which bifurcates from the for-

mer fixed point (recall that the mapping is defined only for R ≥ 0, its negative
roots are not included). From (11.5.11), we obtain the following expression for
the multiplier of the non-trivial fixed point

ρ(µ) = 1− 4πµ/ω(0) + o(µ) .

Observe that the fixed point is stable if L1 < 0 and unstable otherwise. This
proves the statement of Theorem 11.1.
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Remark. Theorem 11.1 was proven by Andronov and Leontovich via con-
structing and studying the mapping without using explicitly the theory of
normal forms. Figures 11.5.1 and 11.5.2 are copied from the book “Theory of
Oscillations” by Andronov, Vitt and Khaikin where they illustrated the phe-
nomena of the soft and the rigid generation of self-oscillations (see Chap. 14).

Let us examine next the bifurcations of the system (11.5.1) in the multi-
dimensional case. If L1 < 0 (Fig. 11.5.4), then when µ ≤ 0, the equilibrium
state O is stable (rough focus when µ < 0, and a weak focus at µ = 0) and
it attracts all trajectories in a small neighborhood of the origin. When µ > 0
the point O becomes a saddle-focus with a two-dimensional unstable manifold
and an m-dimensional stable manifold. The edge of the unstable manifold is
the stable periodic orbit which now attracts all trajectories, except those in
the stable manifold of O. One multiplier of the periodic orbit was calculated
in Theorem 11.1, this is ρ0(µ) = 1 − 4πµ/ω(0) + o(µ). To find the others we

(a) µ < 0 (b) µ > 0

Fig 11.5.4. A supercritical Andronov–Hopf bifurcation in R3. The stable focus (the leading
manifold W L is two-dimensional) in (a) becomes a saddle-focus in (b). A stable periodic
orbit is the edge of the unstable manifold W u

0 .
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observe that since the periodic orbit lies in the center manifold y = 0, the
variational equation in the y-variables is (see (11.5.1)):

∂ẏ

∂y0
= (A + F (x, 0, ε))

∂y

∂y0
.

The absolute value of F is small, hence the time τ shift by this equation is
close to eAτ (where τ is the period of the limit cycle). Hence, the multipliers
corresponding to the y-variables are close to eλjτ (j = 1, . . . , m), where the λj ’s
are the eigenvalues of the matrix A. Since τ = 2π/ω(0) + · · · , we have the
following formula for the multipliers

ρj(µ) = e2πλj/ω(0)(1 + · · · ) j = 1, . . . , m .

The multiplier ρ0 closest to the unit circle is real, so for all µ sufficiently small
the periodic orbit is a node (i.e. the corresponding fixed point of the Poincaré
map is a stable node).

If L1 > 0, the phase portraits are depicted in Fig. 11.5.5. Here, when µ < 0,
there exists a stable equilibrium state O (a focus) and a saddle periodic orbit
whose m-dimensional stable manifold is the boundary of the attraction basin
of O. As µ increases, the cycle shrinks towards to O and collapses into it at
µ = 0. The equilibrium state O becomes a saddle-focus as soon as µ increases
through zero.

We have seen that bifurcations in one-parameter families transverse to the
stability boundary M may develop in completely different ways depending on
the sign of the first Lyapunov value. If the value L1 vanishes at ε = 0, at
the very least we have to consider two-parameter families. To explore such a
situation let us reduce the system on the center manifold to the normal form
up to the terms of fifth order:5

ẋ1 = λ(ε)x1 − ω(ε)x2 + (L1(ε)x1 − Ω1(ε)x2)(x2
1 + x2

2)

+ (L2x1 − Ω2x2)(x2
1 + x2

2)
2 + o(x5) ,

ẋ2 = ω(ε)x1 + λ(ε)x2 + (Ω1(ε)x1 + L1(ε)x2)(x2
1 + x2

2)

+ (Ω2x1 + L2x2)(x2
1 + x2

2)
2 + o(x5) ,

5The system is assumed to be sufficiently smooth, e.g. r ≥ 5.
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(a) µ < 0 (b) µ > 0

Fig 11.5.5. A subcritical Andronov–Hopf bifurcation. (a) An attraction basin of a stable
focus is bounded by a stable manifold of a saddle periodic orbit. (b) The periodic orbit
narrows to the stable focus at µ = 0, and the latter becomes a saddle-focus (1,2).

where L1(ε), Ω1(ε) are function of class Cr−3, L1(0) = 0. Consider the surface
M′ defined by the conditions

λ(ε) = 0 , L1(ε) = 0 .

If

rank




∂λ0

∂ε1
· · · ∂λ0

∂εp

∂L1

∂ε1
· · · ∂L1

∂εp




ε=0

= 2 ,

then M′ is a Cr−3-smooth surface of codimension two.
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Choose λ(ε) and L1(ε) as the governing parameters µ0 and µ1, and recast
the two-parameter family transverse to M′ in the form

ẋ1 = µ0x1 − ω(µ)x2 + (µ1x1 − Ω1(µ)x2)(x2
1 + x2

2)

+ (L2x1 − Ω2x2)(x2
1 + x2

2)
2 + o(x5) ,

ẋ2 = ω(µ)x1 + µ0x2 + (Ω1(µ)x1 + µ1x2)(x2
1 + x2

2)

+ (Ω2x1 + L2x2)(x2
1 + x2

2)
2 + o(x5) ,

or, in polar coordinates as

Ṙ = R(µ0 + µ1R
2 + L2R

4) + Φ1(R,ϕ, µ) ,

ϕ̇ = ω(µ) + Ω1(µ)R2 + Ω2R
4 + Φ2(R, ϕ, µ) ,

(11.5.13)

where Φ1 = o(R5) and Φ2 = o(R4).
Observe that ϕ̇ does not vanish for small R. Therefore, the dynamics near

the origin is determined by the mapping of the ray: R : ϕ = 0, R ≥ 0 into itself
along the trajectories of the system. The map is computed in the same way as
above in proving Theorem 11.1, namely by means of expanding the solutions
R(ϕ) of the system (11.5.13) into the Taylor series with respect to initial data:

R(ϕ) = α1(ϕ)R0 + α2(ϕ)R2
0 + α3(ϕ)R3

0 + α4(ϕ)R4
0 + α5(ϕ)R5

0 + · · · .

Omitting the details the final result is given by

R̄ = R +
2π

ω(µ)
R(µ̂0 + µ̂1R

2 + L2R
4) + o(R5) , (11.5.14)

where:

µ̂0 = (e2πµ0/ω(µ) − 1)
ω(µ)
2π

= µ0 + o(µ0) ,

µ̂1 =
(

µ1 − Ω1(µ)
ω(µ)

µ0

)
e2πµ0/ω(µ)(e4πµ0/ω(µ) − 1)

ω(µ)
4πµ0

= µ1 − Ω1(0)
ω(0)

µ0 + o(µ0) + o(µ1) .

Since the right-hand side of the mapping (11.5.14) is a monotonically increasing
function, the study of the mapping reduces to the study of its fixed points.
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They are sought as the roots of the equation

R(µ̂0 + µ̂1R
2 + L2R

4) + o(R5) = 0 .

Note that since the map is defined for R ≥ 0, we need only to look for
non-negative roots: R = 0 corresponds to an equilibrium state, and the
positive roots correspond to periodic orbits of the system (11.5.13). Since
we have already examined an equation of this type in the preceding section
(Eq. (11.4.12)), when analyzed the period-two orbits emerging from a period-
doubling bifurcation in the case of zero Lyapunov value, we can simply re-
formulate the main results.

No more than two limit cycles may be spawned. If L2 < 0 (see Fig. 11.5.6),
then there exists a single limit cycle for µ0 > 0; inside the sector D2 bordered
by the ray µ0 = 0, µ1 > 0 and by the curve L : µ0 = µ2

1/4|L2| + o(µ2
1) there

exist two limit cycles: one stable and the other unstable; they merge on the
curve L, forming one semi-stable cycle; in the region D0 between L and the
ray µ1 = 0, µ1 < 0, there is no periodic orbit. Analogous bifurcations in the
case L2 > 0 are shown in Fig. 11.5.7.

Now let the first (k− 1) Lyapunov values be zero at ε = 0 (the smoothness
of the system under consideration is assumed to be not less than 2k + 1).

Fig 11.5.6. Bifurcation unfolding for the case L1 = 0, L2 < 0. The curve L corresponds to
the existence of a double cycle.
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Fig 11.5.7. Bifurcation unfolding for the case L1 = 0, L2 > 0.

Then, in the case of general position the surface M′ (which corresponds to
equilibrium states with a pair of purely imaginary eigenvalues and with the
first (k − 1) zero Lyapunov values equal to zero) is a C2k−1-smooth surface of
codimension k passing through the point ε = 0 in the parameter space. All
transverse families in this case depend on k governing parameters µ0, . . . , µk−1

and may be written in polar coordinates as follows:

Ṙ = R(µ0 + · · ·+ µk−1R
2k−2 + LkR2k) + o(R2k+1) ,

ϕ̇ = ω(µ) + Ω1(µ)R2 + · · ·+ Ωk(µ)R2k + o(R2k) .
(11.5.15)

Analysis of this family can also be reduced to an examination of the map of
the ray ϕ = 0, R ≥ 0 into itself. We may show that this mapping has the
form

R̄ = R +
2π

ω(µ)
R(µ̂0 + µ̂1R

2 + · · ·+ µ̂k−1R
2k−2 + LkR2k) + o(R2k+1) ,

(11.5.16)
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where

µ̂0 = µ0 + o(µ0) ,

µ̂1 = µ1 − Ω̂1µ0 + o(µ0) + o(µ1) ,

...
...

...

µ̂i = µi − Ω̂1µi−1 − · · · − Ω̂iµ0 + o(µ0) + · · ·+ o(µi) ,

...
...

...

µ̂k−1 = µk−1 − Ω̂1µk−2 − · · · − Ω̂k−1µ0 + o(µ0) + · · ·+ o(µi) ,

and the values Ω̂i are functions of Ω1(0), . . . , Ωi(0) and ω(0):

Ω̂1 = Ω1(0)/ω(0) ,

Ω̂2 = Ω2(0)/ω(0)− Ω2
1(0)/ω2(0) ,

...
...

... .

In the previous section we have reduced the problem of period-two orbits
which were spawned from a fixed point with a multiplier −1 to a study of the
mapping (11.4.17) analogous to the mapping (11.5.16). Therefore, the bifur-
cation diagram in this case is the same as in the period-doubling bifurcation
with (k−1) zero Lyapunov values: this consists of a union of the plane µ0 = 0
on which the equilibrium state at the origin loses its stability and that half of
the surface of the multiple roots of the polynomial µ̂0 + · · ·+ µ̂k−1u

k−1 +Lkuk

which corresponds to positive u (a positive root of multiplicity s corresponds
to an s-multiple limit cycle).

Observe that the mapping (11.5.16) may have no more than k positive
fixed points (with multiplicity included) so that an equilibrium state with a
pair of purely imaginary characteristic exponents and with first (k − 1) zero
Lyapunov values can generate a maximum of k limit cycles. Moreover, a region
in the parameter space may be identified where the system has a given number,
from 0 to k, of limit cycles. They all surround the origin so that an unstable
cycle is enclosed between any two consecutive stable ones. The stability of the
outermost limit cycle is determined by the sign of the kth Lyapunov value: it
is stable if Lk < 0 and unstable otherwise.
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This theory is due to Andronov and Leontovich who had analyzed the
two-dimensional case. Somewhat later Hopf had investigated the families pos-
sessing an equilibrium state with a purely imaginary pair of characteristic
exponents from a different perspective. His result, using the contemporary
approach, may be reformulated as follows: consider a one-parameter family of
two-dimensional6 systems

ẋ1 = λ(µ)x1 − ω(µ)x2 + G1(x1, x2, µ) ,

ẋ2 = ω(µ)x1 + λ(µ)x2 + G2(x1, x2, µ) ,
(11.5.17)

where G1,2 are functions of Cr (r ≥ 1) class such that G = o(R) and G′µ = o(R),
where R =

√
x2

1 + x2
2.

Theorem 11.2. Let

λ(0) = 0 , λ′(0) 6= 0 , ω(0) 6= 0 .

Then, in the extended phase space (the direct product of the phase space and
the parameter space) near the origin there exists a uniquely defined Cr-smooth
invariant surface of the form µ = ψ(x), ψ(0) = 0, such that each its intersection
with the plane µ = constant consists of a set of closed orbits of the system
(11.5.17), lying in a neighborhood of the origin at the given µ.

Proof. Recast the system (11.5.17) in polar coordinates to obtain

Ṙ = λ(µ)R + Φ1(R, ϕ, µ) ,

ϕ̇ = ω(µ) + Φ2(R,ϕ, µ) ,

where Φ1 = o(R), ∂Φ1/∂µ = o(R), and Φ2 = o(1). The mapping of the ray
ϕ = 0, R ≥ 0 along the trajectories of the system has the form

R̄ = e2πλ(µ)/ω(µ)R + o(R) . (11.5.18)

The fixed points of this map are found as the zeros of the function

Ψ(R,µ) ≡ e2πλ(µ)/ω(µ) − 1 + o(R)/R . (11.5.19)

6Hopf had in fact considered the high-dimensional case. However, applying the center
manifold theorem, we may restrict our consideration to the two-dimensional case.



11.6. Birth of invariant torus 611

The pair (R = 0, µ = 0) satisfies this equation. Since

∂Ψ(0, 0)
∂µ

=
2πλ′(0)
ω(0)

6= 0 ,

we can apply the implicit function theorem to (11.5.19). Therefore, in the
semiplane (µ,R ≥ 0) there is a uniquely defined smooth curve of the form
µ = Ψ(R) that consists of the fixed points of the mapping (11.5.18) at each
given µ. Since periodic orbits of the system (11.5.17) correspond to fixed points
of the mapping (11.5.18), there exists a surface of the form µ = ψ(x) in the
extended space (µ, x1, x2) which is filled out with the closed trajectories of the
system. This coincides with the claim of the theorem (checking the smoothness
of the surface at x = 0 would require additional calculations which we omit
here).

Note that the above theorem by itself does not reveal much information
about the dynamics of the system (11.5.17). The only information that we can
instantly extract from the theorem is that the system has periodic orbits in a
small neighborhood of µ = 0 or at µ = 0. But the theorem says nothing about
the number of orbits for any fixed µ.

For instance, assuming the conditions of the theorem hold, it may happen
that the invariant surface is given by the equation µ = 0. This means that all
trajectories near the origin are closed, i.e. the equilibrium state at the origin
is a center, whereas the system has no small closed orbits around the origin at
µ 6= 0. Thus, the equilibrium state may only lose its stability without giving
birth to a limit cycle at the instance how it occurs, for example, in the equation
ẍ + µẋ + x + x3 = 0.

11.6. Birth of invariant torus

Consider a family of maps of class Cr(r ≥ 3) with respect to the variables
x ∈ R2, y ∈ Rm(m ≥ 0) and parameters ε ∈ Rp(p ≥ 1). Let the map have,
at ε = 0, a fixed point O with a pair of complex-conjugate multipliers whose
absolute value is equal to 1:

ρ1,2 = e±iω0

where we assume 0 < ω0 < π (the other multipliers are supposed to lie inside
the unit circle). Such a fixed point persists also for ε 6= 0. We will assume that
the fixed point resides at the origin for all ε. The pair of multipliers closest to



612 Chapter 11. Local Bifurcations on the Route Over . . .

a unit circle is
ρ1,2(ε) = ρ(ε)e±iω(ε) , (11.6.1)

where ρ(ε) and ω(ε) are Cr−1-functions of ε such that

ρ(0) = 1 , 0 < ω(0) < π .

Since we do not intend to consider the more difficult problem of strong reso-
nances, let us assume that ω(0) 6= 2π/3, π/2.

By virtue of the reduction theorem, the map near the fixed point can be
recast into the form

x̄1 = ρ(ε)(x1 cos ω(ε)− x2 sin ω(ε)) + G1(x1, x2, ε) ,

x̄2 = ρ(ε)(x1 sin ω(ε) + x2 cos ω(ε)) + G2(x1, x2, ε) , (11.6.2)

ȳ = [A + F (x, y, ε)]y ,

where F is a Cr−1-smooth function, G1,2 are of Cr class,

F (0, 0, 0) = 0 ,

G(0, 0, 0) = 0 ,

G′x(0, 0, 0) = 0 ,

where we write G for Gi to avoid clutter.
We will assume that the map at ε = 0 is reduced to the normal form up

to cubic terms (see Sec. 10.6). Moreover, we can verify that the quadratic
terms are non-resonant for all small ε, and hence, they can be eliminated by
transformations which are polynomial with respect to x and Cr−2-smooth with
respect to ε. Then, the map on the center manifold can be recast into the form

x̄1 = ρ(ε)(x1 cos ω(ε)− x2 sin ω(ε))

+ (αx1 − βx2)(x2
1 + x2

2) + G̃1(x1, x2, ε) ,

x̄2 = ρ(ε)(x1 sin ω(ε) + x2 cos ω(ε))

+ (βx1 + αx2)(x2
1 + x2

2) + G̃2(x1, x2, ε) ,

where G̃1,2 are Cr-smooth functions of x and Cr−2-smooth functions of ε such
that

G̃(0, 0, ε) = 0 , G̃′′xx(0, 0, ε) = 0 ,

G̃′x(0, 0, ε) = 0 , G̃′′′xxx(0, 0, 0) = 0 .
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Since G̃′′′xxx is small for small ε and R(R =
√

x2
1 + x2

2), it follows that

G̃′′xx = o(R) , G̃′x = o(R2) , G̃ = o(R3) . (11.6.3)

To write the map in polar coordinates we use the formulas R̄ =
√

x̄2
1 + x̄2

2

and ϕ̄ = Im ln(x̄1 + ix̄2) to obtain

R̄2 = ρ2(x2
1 + x2

2)[1 + 2(α cosω + β sin ω)(x2
1 + x2

2)/ρ

+ 2ρ−1(x1(F̃1 cos ω + F̃2 sin ω)

+ x2(F̃2 cosω − F̃1 sin ω))/(x2
1 + x2

2) + · · · ] ,
ϕ̄ = Im ln(x1 + ix2) + ω + Im ln[1 + ρ−1e−iω(α + iβ)(x2

1 + x2
2)

+ ρ−1e−iω(F̃1 + iF̃2)/(x1 + ix2)] ,

and

R̄ = ρ(ε)R + L1R
3 + Φ̃1(R,ϕ, ε) ,

(11.6.4)
ϕ̄ = ϕ + ω(ε) + Ω1R

2 + Φ̃2(R, ϕ, ε) ,

where L1 = (α cosω + β sin ω) is the first Lyapunov value, Ω1 = (β cosω −
α sin ω)/ρ, and

Φ̃1(R,ϕ, ε) = F̃1 cos(ω + ϕ) + F̃2 sin(ω + ϕ) + · · · = o(R3) ,
(11.6.5)

Φ̃2(R,ϕ, ε) = ρ−1(F̃2 cos(ω + ϕ)− F̃1 sin(ω + ϕ))/R + · · · = o(R2) ,

where the ellipses denote higher order terms.
The boundary M of the stability region of the fixed point is defined in

the parameter space by the equation ρ(ε) = 0: the fixed point O is stable if
ρ(ε) < 0, and unstable if ρ(ε) > 0. If at least one of the component of the
vector (∂ρ/∂ε1, . . . , ∂ρ/∂εp)ε=0 differs from zero, then for small ε the boundary
M is a Cr−1-smooth surface of codimension one. Choose the difference ρ(ε)−1
as the governing parameter µ. Hence, the one-parameter families transverse
to M can be represented in the form

R̄ = R + R(µ + L1R
2) + Φ̃1(R, ϕ, µ) ,

(11.6.6)
ϕ̄ = ϕ + ω(µ) + Ω1R

2 + Φ̃2(R, ϕ, µ) .
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Theorem 11.3. Let L1 < 0. Then, for all small µ ≤ 0 the fixed point O of the
map (11.6.6) is stable and attracts all trajectories inside a small neighborhood
of O.

At µ > 0, a smooth, invariant closed curve

R =

√∣∣∣∣
µ

L1

∣∣∣∣ψ(ϕ, µ) , ψµ→0 → 1 , (11.6.7)

bifurcates from O, which attracts all (except for O) neighboring trajectories (see
Fig. 11.6.1).

If the first Lyapunov value L1 > 0, then the fixed point of the map (11.6.6)
is unstable for sufficiently small µ ≥ 0. When µ < 0 the fixed point is stable;
its attraction basin is the inner domain of an unstable smooth invariant curve
of the form (11.6.7). As µ → −0, the curve collapses into the fixed point (see
Fig. 11.6.2).

Proof. Observe first that the case L1 > 0 can be reduced to L1 < 0 by using
the inverse map to (11.6.6) instead of the original one. So it suffices for us to
consider only the situation L1 < 0. The stability of the fixed point for µ ≤ 0
follows immediately from the fact that R̄ < R for µ ≤ 0, i.e. V ≡ R is a
Lyapunov function. Thus, the case left to be analyzed is µ > 0.

Consider the annulus A defined by

2
3

√
|µ/L1| ≡ R1 ≤ R ≤ R2 ≡ 3

2

√
|µ/L1| .

Observe that given a sufficiently small neighborhood of the origin, for all
µ sufficiently small, a trajectory starting outside of the annulus must enter

(a) µ < 0 (b) µ = 0 (c) µ > 0

Fig. 11.6.1. Soft generation of an invariant circle.
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(a) (b) (c)

Fig. 11.6.2. Rigid loss of stability of a stable fixed point.

it after a finite number of iterations: it follows from (11.6.6) that R̄ < R

when R > R2 and R̄ > R when 0 < R < R1. To complete the proof we
need to apply the annulus principle from Sec. 4.2 to the map (11.6.6) in the
annulus A.

In order to do this let us make a renormalization R → R
√
|µ/L1|. In the

normalized variables, the annulus is defined by the inequalities

2
3
≤ R ≤ 3

2
, (11.6.8)

and the map assumes the form

R̄ = R + µR(1−R2) + Φ1(R, ϕ, µ) ,
(11.6.9)

ϕ̄ = ϕ + ω(µ)− µΩ1R
2/L1 + Φ2(R, ϕ, µ) ,

where

Φ1 = Φ̃1(R
√
|µ/L1|, ϕ, µ)/

√
|µ/L1| ,

(11.6.10)
Φ2 = Φ̃2(R

√
|µ/L1|, ϕ, µ) .

One can see from the formulas (11.6.10), (11.6.5), and (11.6.3) that

Φ1,2 = o(µ) . (11.6.11)

If we denote, as in Sec. 4.2,

R̄ = f(R, ϕ) ,

ϕ̄ = g(R, ϕ) ,
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then the map (11.6.9) in the annulus satisfies the following relations

‖(g′ϕ)−1‖◦ = 1 + o(µ) ,

‖g′R‖◦ = O(µ) ,

‖f ′R‖◦ = 1− µ/3 + o(µ) ,

‖f ′ϕ‖◦ = o(µ) ,

where ‖ · ‖◦ ≡ sup ‖ · ‖. Observe that for sufficiently small µ the following
inequality holds

r+1

√
(‖f ′R‖◦ + ‖g′R‖◦‖f ′ϕ(g′ϕ)−1‖◦) · ‖(g′ϕ)−1‖r◦

+
√
‖(g′ϕ)−1‖◦‖g′R‖◦‖f ′ϕ(g′ϕ)−1‖◦ < 1 . (11.6.12)

It follows from the annulus principle (Theorems 4.2 and 4.5) that there exists
a smooth stable invariant curve C of the form

R = ψ(ϕ, µ)

to which all trajectories from A converge.
It follows from the proof of the annulus principle that the curve C is a limit

of a sequence of the curves obtained as iterations of an arbitrary initial curve
R = const., for example, R = 1. Observe from (11.6.9) that for any small
δ > 0, all iterations of this curve lie inside the annulus |R − 1| ≤ δ provided
that µ is small enough. Indeed, if µ is sufficiently small, then for R = 1 + δ,
we have

R̄ = 1 + δ − µδ(1 + δ)(2 + δ) + o(µ) < 1 + δ ;

and for R = 1− δ, we have

R̄ = 1− δ + µδ(1− δ)(2− δ) + o(µ) < 1− δ .

Hence, the limit curve C lies inside this annulus too. Since δ may be made
arbitrarily small as µ → 0, we obtain that ψ(ϕ, µ) → 1 as µ → 0. End of the
proof.

Remark. Since the smoothness of the invariant curve cannot, in general,
exceed the smoothness of the map itself, the function ψ in (11.6.7) is only
Cr-smooth with respect to ϕ and Cr−2-smooth with respect to µ. In fact, the
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loss of smoothness with respect to parameters is caused only by the loss of
smoothness when reducing the original map to the form (11.6.6). By a more
careful normal form reduction the Cr-smoothness with respect to parameters
can be restored. These smoothness results are concerned only with non-zero
values of µ (the annulus principle is not applicable at µ = 0 to the map
(11.6.9)). However, we can show that the right-hand side of the Eq. (11.6.7)
which defines the invariant curve is sufficiently smooth with respect to ϕ and√

µ for all L1µ ≤ 0. For example, let us check that all derivatives of ψ with
respect to ϕ tend to zero as µ → 0. Indeed, note that the invariance of the
curve C implies that if R = ψ(ϕ, µ), then R̄ = ψ(ϕ̄, µ). By differentiating this
equality and using (11.6.9) we obtain

ū =
(1 + µ(1− 3R2) + Φ′1R)u + Φ′1ϕ

1 + Φ′ϕ − (2µΩ1R/L1 − Φ′2R)u
, (11.6.13)

where u ≡ ∂ψ/∂ϕ and ū = u(ϕ̄). The right-hand side in (11.6.13) is computed
by letting R = ψ(ϕ, µ). The Eq. (11.6.13) along with the second equation
in (11.6.9) can be treated as a mapping of the cylinder R1 × S1 into itself:
(u, ϕ) 7→ (ū, ϕ̄). Taking into account that R = ψ(ϕ, µ) → 1 as µ → 0, we can
recast (11.6.13) into the form

ū = (1− 2µ)u + o(µ) . (11.6.14)

Observe that (11.6.14) maps the annulus

|u| ≤ δ

into itself, where δ may be arbitrarily small due to the smallness of µ. The
derivative u = ∂ψ/∂ϕ is sought as the invariant curve of this map. It follows
from the proof of the annulus principle that this curve is a limit of iterations
of any curve u = const. Since all iterations of the circle u = 0 lie inside the
annulus |u| ≤ δ, the limit curve must also lie inside the annulus. Thus, it
follows that ∂ψ/∂ϕ → 0 as µ → 0, i.e. ψ at µ = 0 is a smooth function of ϕ.

Differentiating (11.6.13), we find that as in (11.6.14), the second derivative
ū(2) = ∂u/∂ϕ satisfies the relation

ū(2) = (1− 2µ)u(2) + o(µ)

similar to (11.6.14). Repeating the above arguments we find that the second
derivative exists and is continuous for all µ ≥ 0. We can iterate this procedure
to obtain all derivatives with respect to ϕ.
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The above theorem is related to the map on the center manifold. Recon-
structing the behavior of trajectories of the original map (11.6.2) is relatively
simple. Here, if L1 < 0, then the fixed point is stable when µ ≤ 0. When µ > 0
it becomes a saddle-focus with an m-dimensional stable manifold (defined by
x = 0) and with a two-dimensional unstable manifold which consists of a part
of the plane y = 0 bounded by the stable invariant curve C.

If L1 > 0, then when µ ≥ 0, the fixed point is a saddle-focus of the above
type, but its unstable manifold is the whole plane y = 0. Upon entering the
region µ < 0, the fixed point becomes stable. Meanwhile a saddle invariant
curve C bifurcates from the fixed point; its unstable manifold Wu

C is (m + 1)-
dimensional and consists of the layers x = constant, restored at the points of
the invariant curve. The stable manifold W s

C separates the attraction basin
of the point O: all trajectories from the inner region tend to O, and all those
from outside of W s

C leave a neighborhood of the origin.
If the mapping (11.6.2) is the Poincaré map of an autonomous system of dif-

ferential equations, then the invariant curve corresponds to a two-dimensional
smooth invariant torus (see Fig. 11.6.3). It is stable if L1 < 0, or it is saddle
with a three-dimensional unstable manifold and an (m + 2)-dimensional sta-
ble manifold if L1 > 0. Recall from Sec. 3.4, that the motion on the torus
is determined by the Poincaré rotation number: if the rotation number ν is
irrational, then trajectories on the torus are quasiperiodic with a frequency
rate ν; otherwise, if the rotation number is rational, then there are resonant
periodic orbits on a torus.

We postpone our study of bifurcations on the torus until the next para-
graph, and consider first what happens if the first Lyapunov value L1 vanishes.

(a) (b)

Fig. 11.6.3. (a) The birth of an invariant torus: in R3 the cycle lost its skin. (b) The unstable
cycle is the dash line inside the solid torus.
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Let ω(0) in (11.6.1) be other than 2π/3, π/2, 2π/5, 4π/5 or π/3. Then, after
reduction to the normal form, and accounting up to terms of fifth order, the
map in polar coordinates is written in the form

R̄ = R + R(µ0 + µ1R
2 + L2R

4) + Φ̃1(R,ϕ, µ) ,

ϕ̄ = ϕ + ω(µ) + Ω1(µ)R2 + Ω2R
4 + Φ̃2(R,ϕ, µ) .

(11.6.15)

Here, Φ̃1 = o(R5), Φ̃2 = o(R4); L2 6= 0 is the second Lyapunov value, and the
governing parameters are µ0 = ρ(ε)− 1 and µ1 = L1(ε).

Theorem 11.4. Let L2 < 0. Then, a pair of curves L1 and L2 defined by

µ0 = −µ2
1/4|L2| ± o(µ2

1) , µ1 ≥ 0

can be identified in the parameter plane such that in the region D0 between the
curve L1 and the ray µ0 = 0, µ1 ≤ 0 (see Fig. 11.6.4) the fixed point O at the

Fig. 11.6.4. Bifurcation unfolding for L2 > 0.
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origin is stable and attracts all trajectories from some of its neighborhood; in
the region D1 : µ0 > 0, the fixed point is unstable and all trajectories tend to a
Cr-smooth invariant closed curve Cs surrounding the origin; in the region D2

between the curve L2 and the ray µ0 = 0, µ1 ≥ 0, the fixed point becomes stable
and, in addition to Cs, an unstable Cr-smooth invariant closed curve Cu is
born which separates the basins of O and Cs.

In the case L2 > 0, there exist curves L1 and L2 in the parameter plane
defined respectively by

µ0 = µ2
1/4|L2| ± o(µ2

1) , µ1 ≤ 0 ,

such that in the region D0 between the curve L1 and the ray µ0 = 0, µ1 ≥ 0
(see Fig. 11.6.5), the fixed point is unstable and repels all nearby trajectories
from a small neighborhood of the origin; in the region D1 : µ0 < 0, the fixed
point is stable but its attraction basin is bounded by an unstable Cr-smooth
invariant closed curve Cu; in the region D2 bordered by L2 and the ray µ0 = 0,

µ1 ≤ 0, the fixed point loses its stability and becomes unstable; a stable Cr-
smooth invariant curve bifurcates from it which now attracts all trajectories in
the inner region bounded by Cu.

Fig. 11.6.5. Bifurcation unfolding for L2 < 0.
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To avoid lengthy calculations we present an outline of the proof. We will
consider only the case L2 < 0 (because the case L2 > 0 is reduced to the above
one if instead of the map (11.6.15) its inverse is used). Observe, first of all,
that the statement of the theorem can be easily verified for the truncated map

R̄ = R + R(µ0 + µ1R
2 + L2R

4) ,
(11.6.16)

ϕ̄ = ϕ + ω(µ) + Ω1(µ)R2 + Ω2R
4 .

Here, the invariant curves are the circles R = constant and the problem is
reduced to that of finding the positive roots of the equation

µ0 + µ1R
2 + L2R

4 = 0 .

This equation has one positive root

R2
s = (µ1 +

√
µ2

1 + 4|L2|µ0)/2|L2|

if µ0 > 0, no positive roots if µ0 < 0 and µ1 < 2
√

L2µ0, two positive roots

R2
s = (µ1 +

√
µ2

1 + 4|L2|µ0)/2|L2| ,

R2
u = (µ1 −

√
µ2

1 + 4|L2|µ0)/2|L2|

if 0 > µ0 > −µ2
1/4|L2| and µ1 > 0.

For the map (11.6.15) both curves L1 and L2 coalesce (L1 = L2 = L) and
are defined by the equation

µ0 = −µ2
1/4|L2| , µ1 ≥ 0 .

Below the curve L, the map has no invariant curves. Above µ0 = 0, it has only
one invariant curve R = Rs, and between L and the ray µ0 = 0, µ1 ≥ 0, the
map has two invariant curves R = Rs and R = Ru. We can easily derive

∂R̄

∂R
= 1− 2R2

s

√
µ2

1 + 4|L2|µ0 < 1

at R = Rs and
∂R̄

∂R
= 1 + 2R2

u

√
µ2

1 + 4|L2|µ0 > 1
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at R = Ru; i.e. the invariant circle R = Rs is stable, and the invariant curve
R = Ru is unstable. On the curve L, the truncated map (11.6.16) has a
semi-stable invariant circle R2 = µ1/2|L2|.

As for the initial map (11.6.15) one can arrange the curves L1 and L2 in
the parameter plane in such a way (L1 goes slightly above and L2 goes slightly
below L), that for all sufficiently small µ taken outside of the sector between
these curves, the behavior of trajectories near the origin inherits the behavior
of trajectories of the truncated map (11.6.16). The curve L1 is chosen so
that the value R̄ in (11.6.15) is strictly smaller than R for a sufficiently small
µ ∈ D0 and a small R. This means that R is a Lyapunov function for the map
in neighborhood of the origin, so every trajectory converges to the stable fixed
point. In the same way as we have done in the proof of Theorem 11.6.1, we
can check for the region D1: µ0 > 0 that if we surround the circle R = Rs by a
small annulusA, then for all small µ the trajectories from a small neighborhood
of the origin will converge towards the A; then the annulus principle may be
applied to the restriction of the map on A. It follows that A contains a
smooth invariant curve which attracts all trajectories near the origin. As for
the curve L2, it can be chosen so that in the region D2, if we surround the
circles R = Rs and R = Ru with two narrow annuli which we denote by As and
Au respectively, then all trajectories from the part of the phase-plane which
lie outside of Au will move toward As. Those trajectories that start from the
inner part of the phase-plane will tend to the fixed point (see Fig. 11.6.6). Since
the annulus principle is also applied here to the restriction of the map on As,
it implies the existence of a stable invariant closed curve inside As. Analogous
reasoning concerning the inverse map proves the existence of an unstable closed
invariant curve inside Au which separates the attraction basins of the stable
invariant curve and the fixed point.

Theorem 11.4 shows essentially that outside the narrow sector bounded by
L1 and L2, the bifurcation behavior does not differ from that of equilibrium
states (see Sec. 11.5): fixed points correspond to equilibrium states, and the
invariant curves correspond to periodic orbits. However, the transition from
the region D2 to the region D0 occurs here in a more complicated way. In
the case of equilibrium states the regions D2 and D0 are separated by a line
on which a stable and an unstable periodic orbits coalesce thereby forming a
semi-stable cycle. In the case of invariant closed curves, the existence of a line
corresponding to a semi-stable invariant closed curve is possible only in very
degenerate cases (for example, when the value of R̄ does not depend on ϕ, as
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Fig. 11.6.6. At µεD2, the inner ring is unstable and the outer ring is stable.

in the truncated map (11.6.16)). In the general case invariant closed curves do
not coalesce into a semi-stable invariant closed curve but are instead destroyed.
Their breakdown may be accompanied by the appearance of a non-trivial set
containing infinitely many unstable (saddle) periodic orbits of different periods;
see more details in [37].

11.7. Bifurcations of resonant periodic orbits
accompanying the birth of invariant torus

In this section we continue our study of the bifurcation of a pair of complex-
conjugate multipliers of the periodic orbit over and beyond the unit circle

ρ1,2 = ρ(ε)e±iω(ε) , (11.7.1)

where ρ(0) = 1 and 0 < ω(0) < π. We do not consider the strong resonances,
i.e. ω(0) 6= 2π/3, π/2.

We have already established in the last section that when the first Lyapunov
value does not vanish, the passage over the stability boundary M : ρ(ε) = 0 is
accompanied by the appearance of an invariant two-dimensional torus (in the
associated Poincaré map this corresponds to the appearance of an invariant
closed curve). If we are not interested in the behavior of the trajectories on
the torus, we can restrict our consideration to the study of one-parameter
families transverse to M. In this case Theorem 11.4 in Sec. 11.6, gives a
complete description of the bifurcation structure. In order to examine the
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bifurcations on the torus itself, we need, however, to examine two-parameter
families. The first governing parameter is still µ = ρ(ε)− 1. As for the second
independent governing parameter we chose ω(ε); namely, the argument of the
multiplier (11.7.1). The Poincaré map on the center manifold when recast in
polar coordinates assumes the form

R̄ = R + R(µ + L1R
2) + Φ̃1(R, ϕ, µ, ω) ,

(11.7.2)
ϕ̄ = ϕ + ω + Ω1R

2 + Φ̃1(R, ϕ, µ, ω)

[see (11.6.4); from a formal point of view, we have derived a codimension two
family transverse to the surface M′ : ρ(ε) = 1, ω(ε) = ω(0)]. The map on the
invariant curve R =

√
µψ(ϕ, µ, ω) has the form

ϕ̄ = ϕ + ω + Ω1µψ2(ϕ, µ, ω) + Φ̃2(
√

µψ(ϕ, µ, ω), ϕ, µ, ω) . (11.7.3)

It follows from the annulus principle (see the proof of Theorem 11.4) that
the function ψ depends smoothly on ω for µ > 0. Moreover, as we have done
with the derivatives of ψ with respect to ϕ we can verify that the derivatives
of ψ with respect to ω tend to zero as µ → 0. This implies that ψ is a smooth
function of ω for all µ ≥ 0.

The map (11.7.3) at µ = 0 transforms into a rotation over the constant angle
ω; its rotation number is equal to ω/2π. Therefore, if we choose two different
values ω = ω1 and ω = ω2, then by virtue of the continuous dependence of
rotation number on parameters, when µ is small the rotation number ν of the
map (11.7.3) is close to ω1/2π at ω = ω1, and is close to ω2/2π at ω = ω2.

Since the derivative ∂ϕ̄/∂ω is equal to 1 + O(µ) > 0, ϕ̄ increases monoton-
ically as ω increases. Therefore, at each fixed small µ, the rotation number ν

changes monotonically as ω changes from ω1 to ω2, assuming all values from
those close to ω1/2π to those close to ω2/2π. Consequently, as in the problem
of a periodic orbit forced by small periodic perturbations (Sec. 4.4), we have
(see Fig. 11.7.1) for each rational ν = M/N from the interval [ω1/2π; ω2/2π],
a resonance zone emanating from the point (µ = 0, ω = 2πM/N). Each reso-
nant zone corresponds to the existence of periodic trajectories with frequency
M : N on the torus. If ν is an irrational number within the given interval,
then there exists a Lipschitz curve of the form ω = h(µ) originating from the
point (µ = 0, ω = 2πν) that corresponds to a quasiperiodic regime with the
frequency ratio ν.
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Fig. 11.7.1. The graph µ versus the frequency ω illustrating the resonance wedges originating
at rational values of ω.

Let us consider in detail what occurs inside the resonance zone when µ is
small enough. Let us choose some ω0 = 2πM/N and reduce the map to the
normal form up to terms of order N − 1. Assuming that the values of µ are
small and ω is close to ω0, we can derive an expression analogous to formula
(10.4.19):

w̄ = (1 + µ)eiω


w


1 +

2p≤N−2∑

p≥1

C ′p+1,p|w|2p


 + C ′0,N−1(w

∗)N−1




+ o(|w|N−1) , (11.7.4)

where w = x1 + ix2. In polar coordinates the above map can be recast in the
form

R̄ = (1 + µ)(R + L1R
3 + · · ·+ LP R2P+1

+ ARN−1 cos(Nϕ + α)) + o(RN−1) ,

ϕ̄ = ϕ + ω + Ω1R
2 + · · ·+ ΩP R2P

−ARN−2 sin(Nϕ + α) + o(RN−2) ,

(11.7.5)

where C ′0,N−1 = Aeiα, P is the largest integer not exceeding [(N/2) − 1], Li

and Ωi are smooth functions of µ and ω.
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Theorem 11.5. Let L1 6= 0 and A 6= 0. Then, for small µ the resonance
zone corresponding to a rotation number M/N has the form of a wedge of
width ∼ |µ|(N−2)/2 tangent to the straight-line ω = ω0 + µΩ1/L1 at the point
(µ = 0, ω = ω0). If µ is sufficiently small, then the map inside the wedge has
exactly two orbits of period N : one orbit is of the saddle type and the other
orbit is stable if L1 < 0, or unstable if L1 > 0 (see Fig. 11.7.2(a), 11.7.3(a) for
N = 5).

Proof. Let us suppose, for definiteness, that the first Lyapunov value L1 is
negative. Then, the invariant curve exists when µ > 0. The resonance zone
adjoining at the point (µ = 0, ω = ω0) corresponds to periodic orbits of period-
N . To find these orbits let us derive the N -th iteration of the map (11.7.5)

R̄ = (1 + µ)N (R + L̃1R
3 + · · ·+ L̃P R2P+1

+ NARN−1 cos(Nϕ + α)) + o(RN−1) ,

ϕ̄ = ϕ + Nω + Ω̃1R
2 + · · ·+ Ω̃P R2P

−NARN−2 sin(Nϕ + α) + o(RN−2) ,

(11.7.6)

where o(RN−1) and o(RN−2) stand for terms which tend to zero faster than
RN−1 and RN−2, respectively, as µ → 0, ω → ω0 and R → 0; and L̃i and Ω̃i are

(a) (b)

Fig 11.7.2. An example of a stable resonant torus with five pairs of periodic orbits on it.
The torus becomes non-resonant when the periodic orbits coalesce in pairs and disappear.
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(a) (b)

Fig 11.7.3. An example of an unstable torus with five pairs of periodic orbits in a resonant
zone (a) and on its boundary.

some functions of {L1, . . . , Li} and {Ω1, . . . , Ωi}, respectively. In particular,

Ω̃1 = Ω1(1 + (1 + µ)2 + · · ·+ (1 + µ)2(N−1)) = NΩ1(1 + O(µ)) ,

L̃1 = L1(1 + (1 + µ)2 + · · ·+ (1 + µ)2(N−1)) = NL1(1 + O(µ)) < 0 .

The fixed points of the map (11.7.6) are found from the condition

R̄ = R , (11.7.7)

ϕ̄ = ϕ mod 2π . (11.7.8)

From (11.7.6) we find the following equation defining the coordinates of the
fixed points:

R = Ψ(µ, ω) +
A

2|L1| (
√

µ/|L1|)N−3 cos(Nϕ + α) + o(µ(N−3)/2) ,

where Ψ =
√

µ/|L1|+ o(
√

µ) does not depend on ϕ. Substituting this expres-
sion into (11.7.8) we obtain

Nω + Ω̃1Ψ2 + · · ·+ Ω̃P Ψ2P =
NA

|L1|
(√

µ

|L1|
)N−2

(Ω1 cos(Nϕ + α)

+ L1 sin(Nϕ + α)) + o(µ(N−2)/2) mod 2π .
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Since ω is close to ω0, it follows that Nω is close to 2πM , and hence the last
equation can be rewritten in the form

δ = Dµ(N−2)/2 sin(Nϕ + γ) + o(µ(N−2)/2) , (11.7.9)

where:

D = A
√

L2
1 + Ω2

1/|L1|N/2 , γ = α + π − arctan |Ω1/L1| ,
(11.7.10)

δ = ω − 2πM/N + (Ω̃1Ψ2 + · · ·+ Ω̃pΨ2P )/N = ω − ω0 + µΩ1/|L1|+ o(µ) .

Since A 6= 0, by assumption, the value D in (11.7.9) is non-zero. Under this
assumption, the Eq. (11.7.10) is easily analyzed if µ is sufficiently small. In-
deed, the right-hand side of the equation for small µ has exactly N maximums
and N minimums in the interval ϕ ∈ [0, 2π]. Hence this equation cannot have
more than 2N roots. On the other hand, this equation defines the period-N
orbits of the map (11.7.5): each such orbit gives exactly N roots of Eq. (11.7.9).
It follows from here that the number of roots must be a multiple of N . Thus,
either the equation has no roots at all (in this case the value δ is larger than the
maximum or smaller than the minimum of the right-hand side) or the equation
has 2N roots if δ is between the maximum and the minimum; or it has N roots
if δ is equal to either the maximum, or the minimum (all maximal (minimal)
values of the right-hand side are equal in this critical case).

By equaling δ to the maximum and then to the minimum of the right-hand
side of (11.7.9) we find that the critical case is realized when (µ, ω) belongs to
some curves K1 and K2 of the form

δ = ±Dµ(N−2)/2 + o(µ(N−2)/2) . (11.7.11)

It follows from (11.7.10) that both curves are tangent to the straight line
ω = ω0 − µΩ1/|L1|. They bound the wedge of width ∼ 2Dµ(N−2)/2.

The Eq. (11.7.9) has no solutions for parameter values outside of this wedge,
but it has exactly 2N solutions inside:

Nϕ + γ = 2πn + arcsin(δ/Dµ(N−2)/2) + · · · (11.7.12)

and
Nϕ + γ = 2πn + π − arcsin(δ/Dµ(N−2)/2) + · · · (11.7.13)
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(here n = 0, . . . , N − 1). These solutions correspond to the fixed points of the
map (11.7.6). Since the N fixed points of the map (11.7.6) correspond to an
orbit of period N , it follows that the map inside the wedge has exactly two
orbits of period N — one orbit defined by formula (11.7.12) and the second
orbit defined by (11.7.13).

Differentiating (11.7.6) we obtain the multipliers of these orbits:

ρ1 = 1− 2µN + o(µ) < 1 ,

ρ2 = 1− AN2

|L1|
(√

µ

|L1|
)N−2 √

L2
1 + Ω2

1 cos(Nϕ + γ) + o(µ(N−2)/2) .

Observe that the trajectory (11.7.12) is stable, whereas the trajectory (11.7.13)
is of saddle type.

We have obtained a complete correspondence to the statement of Theo-
rem 11.7.1. The case L1 > 0 can be carried out in the same way. End of the
proof.

Note that both the saddles and nodes appearing inside the resonant wedge
(called “Arnold tongue,” sometimes) lie on the invariant curve (stable if L1 < 0
or unstable if L1 > 0). Since the only stable invariant curve that can go through
a saddle is its unstable manifold, and since the only unstable curve that can also
go through a saddle is its stable manifold, it follows that inside the resonance
zone the invariant curve is the union of the separatrices of saddles (unstable
separatrices if L1 < 0, or stable separatrices if L1 > 0) that terminate at the
nodes.7

On the curves (11.7.11) which bound a resonant wedge, the saddle and the
unstable periodic orbit coalesce. In this case the separatrix (attractive if L1 >

0, or repelling if L1 < 0) of each saddle-node tends to a neighboring saddle-
node, and together they comprise the invariant curve shown in Figs. 11.7.2 and
11.7.3. Upon exiting from resonance all saddle-nodes disappear; the invariant
curve is preserved but the rotation number is no longer equal to 2πM/N .

Inside the resonant wedge all trajectories on the invariant torus tend to
a stable periodic orbit, which means that the dominating regimes here is a
periodic one. Outside the wedge either a quasiperiodic regime or a periodic
one of a very long period is established on the torus. Both are “practically”
indistinguishable. Therefore, a transition over the boundary of a resonant

7Observe that near each node point the invariant curve coincides with its leading mani-
folds. It follows that the invariant curve has a finite smoothness, generally speaking.
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wedge may be interpreted as a transition from a synchronization regime to
“beating” modulations. An explanation of this phenomenon was first given
within the framework of the “averaging method” by Andronov and Vitt when
they studied a closely related problem on detecting the synchronization region
in the Van der Pol equation under an external force

ẍ− µ(1− x2)ẋ + ω2
0x = µA sin ωt ,

where µ ¿ 1 and ω0 − ω ∼ µ (see Sec. 12.1 for further details).
As µ increases within a resonant zone other periodic orbits with the same

rotation number M/N may appear. In some cases, the boundary of the reso-
nant zone can lose its smoothness at some points, like in the example shown
in Fig. 11.7.4: here, the resonant zone consists of the union of two regions D1

and D2 corresponding to the existence of, respectively, one and two pairs of
periodic orbits on the torus. The points C1 and C2 in Fig. 11.7.4 correspond to
a cusp-bifurcation. At the point S corresponding to the existence of a pair of
saddle-node periodic orbits the boundary of the resonant zone is non-smooth.

Theorem 11.7.1 prohibits the above behavior when µ is small. However,
the value of overcriticality, beyond which the theorem is no longer valid, is
different for different zones. Moreover, it may tend to zero as the denominator
N of the rotation number increases (i.e. when the value of the rotation number
approaches an irrational number).

Fig. 11.7.4. Sketch of the local structure of stability regions of periodic orbits near the
boundary of a resonant zone far beyond the critical threshold.
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In fact, no common upper bound exists on the number of the periodic
orbits which can be generated from a fixed point of a smooth map through the
given bifurcation. If the smoothness r of the map is finite, the absence of this
upper estimate is obvious because it follows from the proof of the last theorem
that to estimate the number of the periodic orbits within the resonant zone
ν = M/N the map must be brought to the normal form containing terms up
to order (N−1). In this case the smoothness of the map must not be less than
(N − 1). Hence, we can estimate only a finite number of resonant zones if the
smoothness is finite.

A similar result for maps of infinite smoothness is given by the following
theorem.

Theorem 11.6. Let a smooth annulus map have a smooth invariant curve
and let the rotation number on the invariant curve be irrational. Then, by an
arbitrarily small smooth perturbation, infinitely many periodic orbits may be
born.

Proof. Let us introduce on the annulus an angular variable ϕ and a radial
variable R as coordinates. We can always choose the coordinates so that the
invariant curve becomes the circle R = 1 so that the map takes the form

R̄ = (1−R)F (R, ϕ) ,
(11.7.14)

ϕ̄ = ϕ + g(ϕ) + (1−R)G(R,ϕ) mod 2π .

Let us embed this map into the family

R̄ = (1−R)F (R, ϕ) ,
(11.7.15)

ϕ̄ = δ + ϕ + g(ϕ) + (1−R)G(R, ϕ) mod 2π ,

where δ is a small parameter. Since the circle R = 1 remains invariant for all
δ, the map on it has the form

ϕ̄ = δ + ϕ + g(ϕ) mod 2π . (11.7.16)

Since the rotation number is irrational at δ = 0 and since ∂ϕ̄/∂ϕ > 0, then
(see Sec.4.4) the rotation number ν of the map (11.7.16) is, at δ = 0, a strictly
monotonic function of δ. This means that as δ varies the value ν(δ) assumes
all values close to ν(0).
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Let us choose δ small enough such that the rotation number ν(δ) is irra-
tional and cannot be well approximated by “short” rational numbers. We will
use the following result proven by Hermann [68]:

If the rotation number of the circle map is irrational and is not well approxi-
mated by rational numbers, then there exists a smooth transformation of vari-
ables which brings the map to a rotation with a constant angle:

ϕ̄ = ϕ + 2πν mod 2π .

If we make such a transformation on the ϕ-variable of the map (11.7.15)
(without affecting R), then the map in the new variables assumes the form

R̄ = (1−R)F̃ (R, ϕ) ,
(11.7.17)

ϕ̄ = 2πν + ϕ + (1−R)G̃(R,ϕ) mod 2π .

Hence, by a small perturbation of the original map (11.7.14) we can transform
(in some new variables) the map of an invariant circle into a rotation with
a constant angle. If we change a little bit the value ν in (11.7.17) so that
it becomes a rational number ν = M/N , then the map on the circle R = 1
assumes the form

ϕ̄ = ϕ + 2πM/N mod 2π ,

and the N -th iteration of this map is

ϕ̄ = ϕ + 2πM mod 2π .

The latter is just the identity map, all points of which are fixed; i.e. we have in-
finitely many periodic orbits here. Recall that (11.7.17) is a small perturbation
of the original map, so the theorem is proven.

Observe that if the N -th iteration of the circle map is an identity, then all
points on the circle are structurally unstable with a multiplier equal to one.
Moreover, all Lyapunov values of each point are equal to zero. This is an
infinitely degenerate case. We saw in Sec. 11.3 that to investigate the bifur-
cations of structurally unstable periodic orbits with k − 1 first zero Lyapunov
values it is necessary to consider at least k-parameter families. It is now clear
that to study bifurcations in this case one has to introduce infinitely many pa-
rameters. Moreover, it is seen from the proof of Theorem 11.5 that such maps
can be obtained by applying a small perturbation to an arbitrary circle map
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with an irrational rotation number. Hence, we can conclude that a complete
finite-parameter description of bifurcations of periodic trajectories for maps
close to a circle map with an irrational rotation number is unrealistic.

Consequently, the bifurcation of the birth of an invariant torus differs sig-
nificantly from other bifurcations discussed in preceding sections. Here, an
arbitrarily small modification of a finite-parameter family passing through a
bifurcation point can always change the structure of the bifurcation set. More-
over, increasing the number of governing parameters will only make the bi-
furcations even more degenerate: in two-parameter families such degenerate
points are cusps and “breaking” points on the boundaries of resonant zones
(see Fig. 11.7.4). In three-parameter families they are swallowtails, etc.

Finally, we note an obvious analogy between the bifurcation of the birth of
a cycle from an equilibrium state, and that of a two-dimensional invariant torus
from a periodic orbit. We can go even further and imagine the next bifurcation
of a three-dimensional torus from a two-dimensional one, a four-dimensional
torus from a three-dimensional one and so on. In principle a dynamical system
with a stable equilibrium state may evolve as follows: the equilibrium state
loses its stability through a supercritical (L1 < 0) Andronov–Hopf bifurca-
tion as a parameter changes, so that a stable periodic orbit bifurcates from it,
i.e. the stationary regime is replaced by a periodic one. Next, as the parameter
varies further, the periodic orbit loses its stability again and a two-frequency
regime (a quasiperiodic trajectory on a two-dimensional torus) appears, which,
in turn, loses and transfer its stability to a three-frequency regime, and so on.
Some time ago such a scenario of sequential evolution in the complexity of the
dynamics (Landau–Hopf scenario) was proposed as a possible mechanism for
the development of turbulence, where a well-developed turbulent process was
interpreted as a quasiperiodic one with a gigantic set of independent frequen-
cies. However, such a sequence of bifurcations is in fact far from being typical.
This rarity can be explained by observation that an equilibrium state, or a pe-
riodic orbit, engaged in various bifurcation routes, always represents a “stand
alone” single trajectory. This is no longer the case for an invariant torus. For
example, within a resonant zone there are at least two periodic orbits on the
torus, a saddle type and a stable orbit. Therefore, we must have some addi-
tional special conditions in order that they may simultaneously bifurcate to
give birth to a three-dimensional torus.

In reality a similar bifurcation chain often ends at the two- (rarely three-)
frequency regime, which as the parameter varies transforms into chaotic one
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with a continuous frequency spectrum. In the phase space such an onset
of chaos originates through the following stages [7]: the invariant curve of
the Poincaré map first becomes non-smooth, and then gets “annihilated” (see
Fig. 11.7.5 where the destruction of the invariant curve is accomplished with the
appearance of homoclinic trajectories, i.e. with the intersections of the stable
and unstable manifolds of the saddle periodic orbit). As soon as the invariant
curve disappears its place in the phase space is filled out by a non-trivial set
containing a countable number of periodic orbits with rotation numbers within
some interval. In the parameter plane this occurs inside the regions where
the resonant zones overlap with each other, as it is illustrated in Fig. 11.7.6.
Note that in the non-resonant or weakly resonant cases, the overlapping of

(a) (b) (c)

Fig. 11.7.5. The typical scenario of the breakdown of a two-dimensional torus due to a loss
of its smoothness.

Fig. 11.7.6. As µ increases to finite values, the resonant zones in Fig. 11.7.1 may overlap.
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resonant zones occurs at finite magnitudes of overcriticality, i.e. quite far away
from the primary torus bifurcation. On the other hand, overlapping of the
resonant zones may occur near the strong resonances ω0 = 2π/3 and ω0 = π/2
just after the bifurcation of the torus, i.e. resonant zones may start overlapping
even for arbitrarily small µ.



Chapter 12

GLOBAL BIFURCATIONS AT THE

DISAPPEARANCE OF SADDLE-NODE

EQUILIBRIUM STATES AND

PERIODIC ORBITS

We have already remarked that the problem concerning the loss of stability of

periodic orbits in autonomous systems cannot always be reduced to a study

of bifurcations of fixed points of the Poincaré map. It may happen that the

periodic orbit does not exist on the stability boundary and, therefore, the

Poincaré map is not defined at the critical parameter value.

To study such bifurcations one should understand the structure of the limit

set into which the periodic orbit transforms when the stability boundary is ap-

proached. In particular, such a limit set may be a homoclinic loop to a saddle

or to a saddle-node equilibrium state. In another bifurcation scenario (called

the “blue sky catastrophe”) the periodic orbit approaches a set composed of

homoclinic orbits to a saddle-node periodic orbit. In this chapter we consider

homoclinic bifurcations associated with the disappearance of the saddle-node

equilibrium states and periodic orbits. Note that we do not restrict our atten-

tion to the problem on the stability boundaries of periodic orbits but consider

also the creation of invariant two-dimensional tori and Klein bottles and discuss

briefly their routes to chaos.

637
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12.1. Bifurcations of a homoclinic loop to a
saddle-node equilibrium state

Consider a one-parameter family of C
r (r ≥ 2) smooth dynamical systems in

R
n+1 (n ≥ 1). Suppose that when the parameter vanishes the system possesses

a non-rough equilibrium state at the origin with one characteristic exponent

equal to zero and the other n exponents lying to the left of the imaginary axis.

We suppose also that the equilibrium state is a simple saddle-node, namely the

first Lyapunov value l2 is not zero (see Sec. 11.2). Without loss of generality

we assume l2 > 0.

We also assume that the family is transverse to the surface of the systems

with a simple saddle-node. Therefore, near the origin such system is written

as
ẋ = µ+ l2x

2 +G(x, µ) ,

ẏ = [A+ h(x, y, µ)]y
(12.1.1)

(see Sec. 11.2, formulas (11.2.2) and (11.2.12)), where µ is a scalar parameter,

x ∈ R
1, y ∈ R

n. Here, G = o(x2) is a function of class C
r with respect to x

and of class C
r−1 with respect to µ; h is a C

r−1-smooth function vanishing at

(x = 0, y = 0, µ = 0); the eigenvalues of the matrix A lie strictly to the left of

the imaginary axes.

Recall from Sec. 11.2 that at µ = 0, a neighborhood of the origin of

system (12.1.1) is partitioned by the non-leading manifold W ss, which is lo-

cally defined by the equation x = 0, into two regions — node and saddle. All

trajectories in the node region converge to the point O as t → +∞. All tra-

jectories, except one, in the saddle region leave a neighborhood of the origin

as t→ ±∞. The single trajectory which enters O as t→ −∞ is the unstable

separatrix Γ. As t increases, Γ leaves a neighborhood of O as well.

Let us suppose that as t increases further, the separatrix Γ returns to

a neighborhood of the saddle-node O from the node region, as shown in

Fig. 12.1.1(b).

It follows from our assumption that Γ tends to O bi-asymptotically, i.e. as

t→ ±∞. In other words, the trajectory Γ is homoclinic to O. The union Γ∪O

is a closed curve which is called a homoclinic loop of the saddle-node.

We will show below that one can choose a small neighborhood V of the

homoclinic loop so that for all small µ the forward trajectories of points in V

remain in it forever. Moreover, at µ = 0, all trajectories in V come into the
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node region as t increases, and in the limit t → +∞, they converge to the

saddle-node.

When µ < 0, the saddle-node is decomposed into a saddle O1(x = x+(µ),

y = 0) and a node O2(x = x−(µ), y = 0), where x± ∼ ±
√

|µ|/l2 (see Sec. 11.2).

The stable invariant manifold W s
O1

of the saddle is locally defined by the equa-

tion x = x+. The unstable manifold W u
O1

is locally defined by the equation

y = 0. The point O1 divides the unstable manifold into two separatrices, one

of which lies entirely in the neighborhood of the origin (it is the segment of the

axis y = 0 which connects the points O1 and O2). The other separatrix comes

out of the neighborhood. Due to continuous dependence on parameters, the

separatrix follows along the loop Γ and returns to the origin from the side of

the node O2. It is clear that all trajectories in V , other than those in the stable

manifold W s
O1

of the saddle O1, converge to O2, as shown in Fig. 12.1.1(a).

The behavior of trajectories for µ > 0 is described by the following theorem.

(a)

(b) (c)

Fig 12.1.1. Bifurcation sequence of a saddle-node equilibrium with a homoclinic trajectory:

(a) before, (b) at, and (c) after the bifurcation.
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Theorem 12.1. The disappearance of the saddle-node equilibrium with the

homoclinic loop results in the appearance of a stable periodic orbit Lµ of period

∼ π/
√
µl2 , which attracts all trajectories in V (see Fig. 12.1.1(c)).

Proof. Let us construct two cross-sections (Fig. 12.1.2) transverse to the

trajectories of the system:

S0 : x = −d , ‖y‖ ≤ d ,

and

S1 : x = d , ‖y‖ ≤ d ,

where d is chosen appropriately small, such that at µ = 0, the separatrix Γ in

its return to the point O intersects S0 (this can always be achieved because Γ

enters O tangentially to the axis y = 0).

Due to continuity, all trajectories starting on S1 sufficiently close to the

point M1(x = d, y = 0) at which Γ intersects S1, come back to the neigh-

borhood of the origin and hit S0 near the point M0 = Γ ∩ S0. Let us choose

a small δ > 0 and construct a tube V1 composed of the segments of the tra-

jectories which originate on S1 at |y| ≤ δ and terminate on S0. Consider

a set V consisting of V1 and of a frustum of cone V0 bounded by the sur-

faces S0, S1 ∩ {‖y‖ ≤ δ} and {|x| ≤ d, ‖y‖ = d − (x + d)(d − δ)/2d}, as

shown in Fig. 12.1.3. We will assume that the y-coordinates are introduced

Fig. 12.1.2. Two cross-sections S0 and S1 to the homoclinic loop Γ are chosen near the
saddle-node equilibrium O.
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Fig. 12.1.3. Due to a strong contraction along W

ss (in the y-direction), for all small µ,

the trajectories near a saddle-node leave the frustum of cone V0 through the cross-section

S1. Therefore, the union of V0 and the tube V1 (composed of the whole segments of orbits

starting on S1) confines all forward semi-orbits starting nearby.

so that the matrix A in (12.1.1) is in the Jordan form and, moreover, the

off-diagonal entries, if there are any, are sufficiently small. If d is small, then

the function h in (12.1.1) is also sufficiently small elsewhere in V0. Hence, the

following estimate for the trajectories in V0 is valid:

d

dt
‖y(t)‖ ≤ −λ‖y(t)‖ , (12.1.2)

where 0 < λ < max |Reλj |, λ1, . . . , λn are the eigenvalues of the matrix A (see

Theorem 2.4). By using (12.1.2), one can show that if δ is small enough, then

for all µ small, the vector field of system (12.1.1) everywhere on the boundary

of V0 is oriented either inward V0 or inward V1 (on S1). Since V1 consists of

entire trajectories, the vector field of the system is everywhere tangent to the

boundary of the set V1. Thus, at each point on the boundary the vector field

either touches the boundary tangentially, or is directed inward V . Hence all

trajectories originating near V must enter V and never leave it.

The value ẋ vanishes nowhere in V0 for µ > 0. Therefore, any trajectory

which starts on S0 will necessarily reach S1 as time increases. It will then enter

the tube V1 and return to V0. It follows that a map T : S0 → S0 is defined for

all small µ > 0: this map is a superposition of two maps along the trajectories

of the system: T0 : S0 → S1 and T1 : S1 → S0. We will call T0 the local

(through) map and T1 the global map.

Let y0 stand for the coordinates on S0 and let y1 stand for the coordinates

on S1. Obviously, the global map is well defined for all (not necessarily positive)
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small µ. Since the flight time from S1 to S0 is bounded, the derivative of T1y1

with respect to y1 remains bounded for all small µ.

Let us show that the local map is contracting, and that the contraction

becomes unboundedly strong, as µ → 0. Let {x(t;µ), y(t; y0, µ)} be the tra-

jectory of system (12.1.1) passing through the point (x = −d, y0) on S0 at

t = 0. Note that since ẋ in (12.1.1) does not depend on y, it follows that

x(t, µ) does not depend on y0 either. Therefore, the flight time t∗ from S0 to

S1 defined by the condition

x(t∗;µ) = d (12.1.3)

is a function of µ only. At µ = 0, any trajectory starting on S0 tends to the

saddle-node, i.e. it remains in V0 infinitely long. Hence, t∗(µ) tends to infinity

as µ→ +0.

To obtain a more precise estimate for t∗ note that it follows from (12.1.1)

and (12.1.3) that

t∗ =

∫
+d

−d

dx

µ+ l2x2 + o(x2)

from which

t∗(µ) = π/
√

µl2 + o(1/
√
µ) . (12.1.4)

The map T0 is defined by the formula

T0 : y 7→ y(t∗(µ); y0, µ) . (12.1.5)

Let us show that ∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥
≤ e−λt∗ . (12.1.6)

Indeed, by differentiating (12.1.1) we find that

∂ẏ(t)

∂y0

= [A+ h(x(y), y(t), µ) + h′y(x(t), y(t), µ)y(t)]
∂y(t)

∂y0

.

Since both h and h′yy are small everywhere in V0 and since A is in the Jordan

form with small off-diagonal entries, we have an estimate analogous to (12.1.2):

d

dt

∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥
≤ −λ

∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥
.

By integrating the last inequality we find
∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥
≤ e−λt

∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥

t=0

,
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or, since (∂y/∂y0)|t=0 is the identity matrix, we have
∥
∥
∥
∥

∂y

∂y0

∥
∥
∥
∥
≤ e−λt .

By substituting t = t∗(µ), we obtain the inequality (12.1.6) for the map

(12.1.5). Because t∗ → ∞ as µ → 0, this inequality means that the map

T0 is strongly contracting if µ is small.

Since the contraction in the local map can be made arbitrarily strong and

the derivative of the global map is bounded, the superposition T = T0 ◦ T1

inherits the contraction of the local map for all small µ as well. It then follows

from the Banach principle of contracting mappings (Sec. 3.15) that the map

T has a unique stable fixed point on S0. As this is a map defined along the

trajectories of the system, it follows that the system has a stable periodic orbit

in V which attracts all trajectories in V . The period of this orbit is the sum

of two times: the “dwelling” time t∗ of local transition from S0 to S1 and

the flight time from S1 to S0. The latter is always finite for all small µ. It

now follows from (12.1.4) that the period of the stable periodic orbit increases

asymptotically of order ∼ π/
√
µl2 . This completes the proof.

The proof of Theorem 12.1 is also applicable to the case of a degener-

ate saddle-node:1 indeed nowhere in the proof have we invoked l2 6= 0. The

only important property employed here is that while approaching the stabil-

ity boundary the transition time from one cross-section to the other increases

unboundedly, which follows from the fact that on the boundary itself all tra-

jectories starting from S0 converge to the saddle-node and, hence, must remain

inside V0 infinitely long. The bifurcation diagram for the degenerate saddle-

node with a homoclinic loop is the same as it is for local bifurcations (for

example, in the case where l4 6= 0, this is a swallowtail , as shown Fig. 11.2.14),

where a stable periodic orbit appears in the region D0.

The bifurcation of a limit cycle from the homoclinic loop to the saddle-node

was first discovered by Andronov and Vitt in their study of the Van der Pol

equation with a small periodic force at a 1 : 1 resonance:

ẍ− µ(1− x2)ẋ+ ω2

0
x = µA sinωt , (12.1.7)

where µ ¿ 1 and |ω0 − ω| ∼ µ (at µ = 0, this equation describes a harmonic

oscillator with the frequency ω0; at zero frequency detuning, this is an exact

1The asymptotic relation for the period of the cycle will be different in this case as it
includes the dependence on not one but many governing parameters.
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1 : 1 resonance). In polar coordinates (R cosϕ = ω0x,R sinϕ = ẋ) Eq. (12.1.7)

assumes the form

Ṙ = µ sinϕ(A sinωt−R(1−R2 cos2 ϕ/ω2

0
) sinϕ) ,

ϕ̇ = −ω0 + µ cosϕ

(
A

R
sinωt− (1−R2 cos2 ϕ/ω2

0
) sinϕ

)

.

Let Φ = ϕ + ωt. Then by making a change of the time variable t → t/µ we

obtain

Ṙ =
A

2
cos(Φ− 2ωt/µ)−

A

2
cosΦ

−R

(

1−
R2

ω2

0

cos2(Φ− ωt/µ)

)

sin2(Φ− ωt/µ) ,

Φ̇ = − δ +
A

2R
sinΦ−

A

2R
sin(Φ− 2ωt/µ)

−

(

1−
R2

w2

0

cos2(Φ− ωt/µ)

)

sin(Φ− ωt/µ) cos(Φ− ωt/µ) ,

(12.1.8)

where δ = (ω0 − ω)/µ is the frequency detuning normalized by the small

parameter.

Andronov and Vitt analyzed the averaged system

Ṙ = −
A

2
cosΦ−

R

2

(

1−
R2

4ω2

0

)

,

Φ̇ = − δ +
A

2R
sinΦ , (12.1.9)

which is obtained from (12.1.8) by replacing the fast (with frequency ≥ ω/µ)

oscillatory terms by their averaged magnitudes. When A = 0, this system

is easily analyzed: it has a repelling equilibrium state at the origin, and all

trajectories tend to the stable limit cycle R = 2ω0; at δ = 0, the limit cycle

degenerates into a single invariant circle filled densely by equilibrium states.

For small A > 0, the repelling equilibrium state persists, whereas only two

points among all others on the circle survive: they are a saddle and a node,

both existing in the region D : 4|δ|ω0 < A. By expanding in a series of powers

of A, one can show that for small A, the system still has an invariant curve

surrounding the origin — outside the resonant zone D, the invariant curve is

the limit cycle; inside D it consists of a connection of the separatrices of the
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saddle which go to the stable node. On the boundary of the zone D, the system

possesses a saddle-node with a separatrix loop.

In terms of the original variable ϕ = Φ−ωt, the stationary value of Φ (the

equilibrium state of system (12.1.9)) corresponds to an oscillatory regime with

the same frequency as that of the external force. The periodic oscillations of

Φ (the limit cycle in (12.1.9)) correspond to a two-frequency regime. Hence,

the above bifurcation scenario of a limit cycle from a homoclinic loop to a

saddle-node characterizes the corresponding route from synchronization to beat

modulations in Eq. (12.1.7).

The generalization of this bifurcation for second-order systems was studied

by Andronov and Leontovich. Their proof uses essentially the features of

systems on a plane. Our proof of Theorem 12.1 is close to that suggested

by L. Shilnikov in [130] for the high-dimensional case with the difference that

we have simplified calculations by reducing the system near the origin to the

form (12.1.1).

We remark that Theorem 12.1 remains valid also in the case where the

separatrix enters an edge of the node region, i.e. Γ ⊂W ss. However, a complete

bifurcation analysis in this case requires an additional governing parameter. It

is introduced in the following way. Let us build a cross-section S0 to the on-

edge homoclinic loop Γ, i.e. we define S0 = {‖y‖ = d, |x| ≤ d/2}, as depicted

in Fig. 12.1.4. At the bifurcation point, the separatrix Γ intersects S0 at some

(a) (b)

Fig 12.1.4. The choice of cross-sections to the nontransverse homoclinic loop Γ in the two-

dimensional (a) and multi-dimensional (b) cases.
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Fig. 12.1.5. Behavior of the unstable separatrix before (ε < 0) and after (ε > 0) on-edge

bifurcation.

point M0 ∈W
ss. Thus, for any nearby system, the global map T1 is defined by

trajectories which start from S1 : {x = d, ‖y‖ ≤ δ} and intersect S0 near M0.

Let ε be the x-coordinate of the point Mε = T1(y1 = 0) on the cross-section

S0. We will treat ε as an additional bifurcation parameter. It is obvious that

at µ = 0, when the saddle-node still exists, the point Mε is the intersection of

the separatrix Γ with S0. Thus, ε = 0 corresponds to the on-edge homoclinic

loop; at ε < 0, the separatrix enters the node region and a generic homoclinic

loop persists, as illustrated in Fig. 12.1.5.

As before, the parameter µ governs the local bifurcations of the saddle-node

O: at µ > 0, it disappears whereas it disintegrates into the saddle O1(µ, ε) and

the node O2(µ, ε) at µ < 0.

As in Theorem 12.2, it is easy to construct a small neighborhood V of the

on-edge homoclinic loop Γ ∪ O such that for all small µ and ε, the forward

trajectory of any point in V stays there forever.

Theorem 12.2. (Lukyanov [88]) On the (ε, µ)-plane, in the region µ < 0,

there is a curve ε = hhom(µ) ∼
√

|µ|/l2 which corresponds to the existence of

a homoclinic loop to the saddle O1. In the region {µ > 0} ∪ {ε > hhom(µ)},

the system has a unique stable periodic orbit L. As t → +∞, the trajectories

in V which do not tend to the equilibrium points tend to L (see the bifurcation

diagram in Fig. 12.1.6).

Proof. As in Theorem 12.2, the problem can be reduced to a study of the

map T = T1 ◦ T0 where T1 : S1 → S0 is the global map and T0 is the local

map. The map T0 is defined at all points of S0 for µ > 0; it is easy to see that
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for µ ≤ 0, the local map is defined at x > x+(µ, ε) (trajectories starting from

x = x+ lie in the stable manifold of O1 and those starting from x < x+ tend

to O2; recall that x
+(µ, ε) is the coordinate of the saddle O1).

Let us prove that the map T0 is strongly contracting. Indeed, represent the

system (12.1.1) in the form

dy

dx
=

A+ h(x, y, µ, ε)

g(x, µ, ε)
y (12.1.10)

where we denote

ẋ = g(x, µ, ε) . (12.1.11)

Obviously, g > 0 at µ > 0 or at x > x+, therefore (12.1.10) is well defined

in the region we are interested in. Let y(x;x0, y0, µ, ε) be the trajectory of

(12.1.10) which starts with y = y0 at x = x0. We must prove that ∂y

∂(x0,y0)
is

small at x = d provided µ and x0 both are small.

Fig. 12.1.6. Bifurcation diagram for the on-edge homoclinic loop to a saddle-node
equilibrium.
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Denote u = ∂y

∂(x0,y0)
. By differentiation of (12.1.10), we have

du

dx
=

A+ h+ h′yy

g
u ,

or
d

dx
‖u‖ ≤ −

λ

g
‖u‖

(we use the fact that the spectrum of A lies to the left of the imaginary axis

and that h and y are small). Finally,

‖u‖ ≤ e
−λ
∫
x

x0

ds
g(s,µ,ε) = e−λt∗(x0,x;µ,ε)

where t∗ is the flight time in (12.1.11) from x0 to x. For fixed x = d, this time

obviously goes to infinity as µ → 0, x0 → 0. Thus, ∂y

∂(x0,y0)
→ 0. This means

that T0 is strongly contracting indeed.

As before, since the map T0 is strongly contracting, the map T = T1 ◦ T0

is also strongly contracting. When µ > 0, the map T is defined everywhere on

S0. Hence, it follows from the contraction mapping principle that the map T

has a unique stable fixed point. The fixed point of the map T corresponds to a

periodic orbit of the system, which gives the theorem for the case µ > 0. When

µ ≤ 0, the domain of definition of T is bounded by the surface Σ : {x = x+},

i.e. by the stable manifold of the saddle point O1 (the strong stable manifold

of the saddle-node O at µ = 0). When a point M ∈ S0 approaches Σ from the

side x > x+, the image TM tends to the point Mε (the point of intersection of

the separatrix of O1 with S0). Thus, by continuity, we may assume that the

image of the surface Σ by the map T is the single point Mε.

This situation is completely analogous to that we have in the study of a

homoclinic loop to a saddle, which is considered in detail in Sec. 13.4. There

(Lemma 13.4.1) we prove that the contracting map of the kind under consid-

eration has a stable fixed point if and only if the single point of the image of

the boundary of the domain of definition lies inside the domain. Thus, our

system has a stable periodic orbit if and only if the point Mε lies in the region

x > x+.

We have found that the region of existence of the stable periodic orbit is

given by the condition ε > x+(µ, ε), which can obviously be rewritten in the

form ε > hhom(µ) where the smooth function hhom behaves asymptotically as
√

|µ|/l2. The boundary of the region corresponds to the point Mε on Σ, i.e. to

a homoclinic loop of O1. End of the proof.
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Fig. 12.1.7. The boundary of the stability region of the periodic orbit born at the bifurcation

of the on-edge homoclinic loop to a degenerate saddle-node corresponds to the homoclinic

loop of the “border” saddle equilibrium state O1.

Remark. This statement remains valid (with obvious modifications) also

in the case of the on-edge homoclinic loop to a degenerate saddle-node. In

this case, µ is a vector of parameters (of dimension equal to the number of

zero Lyapunov values plus one), and an additional bifurcation parameter ε

is introduced as before. A stable periodic orbit exists when the saddle-node

disappears (the region µ ∈ D0 in our notations), or when ε > hhom(µ) at

µ 6∈ D0. Here, the surface ε = hhom(µ) corresponds to the homoclinic loop of

the “border” saddle equilibrium O1, as illustrated in Fig. 12.1.7.

12.2. Creation of an invariant torus

Let us consider a one-parameter family of n-dimensional C
r-smooth (r ≥ 2)

systems having a saddle-node periodic orbit L at µ = 0. We assume that µ

is the governing parameter for local bifurcations. Thus (recall Fig. 11.3.7), for

µ < 0, there exist stable and saddle periodic orbits which collapse into one orbit

L at µ = 0. The local unstable set W u
L,loc

is homeomorphic to a half-cylinder

R
+ × S

1. The orbit L also has a strong-stable manifold W ss
L which divides

a neighborhood of L into a saddle region and a node region. When µ > 0,

the saddle-node disappears and all orbits leave its small neighborhood. Note

that the time necessary to pass through the neighborhood tends to infinity as

µ→ +0.

Our standing assumption is that at µ = 0, all trajectories in W u
L return to

the node region2, and tend to L as t→ +∞.

2In particular, W

u
L
∩W

ss
L

= ∅.
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Thus, W u
L is a compact set (it contains L by definition). Let U be a small

neighborhood of W u
L . It is obvious that at µ = 0, all trajectories in U tend to

L as t → +∞. When µ < 0, the trajectories in U tend to one of the stable

periodic orbits appearing as L disintegrates. The problem we are interested in

is what happens in U when µ > 0?

As already mentioned, problems of this nature had appeared as early as

in the twenties in connection with the phenomenon of transition from syn-

chronization to an amplitude modulation regime. A rigorous study of this

bifurcation was initiated in [3], under the assumption that the dynamical sys-

tem with the saddle-node is either non-autonomous and periodically depending

on time, or autonomous but possessing a global cross-section (at least in that

part of the phase space which is under consideration). Thus, the problem was

reduced to the study of a one-parameter family of C
r-diffeomorphisms (r ≥ 2)

on the cross-section, which has a saddle-node fixed point O at µ = 0 such that

all orbits of the unstable set of the saddle-node come back to it as the number

of iterations tends to +∞ (see Fig. 12.2.1(a) and (b)).

Recall that a saddle-node fixed point or periodic orbit has one multiplier

equal to +1 and the rest of the multipliers lies inside the unit circle. The

diffeomorphism (the Poincaré map) near the fixed point may be represented

(a) (b)

Fig 12.2.1. The unstable manifold W

u of the saddle-node fixed point may be a smooth curve

(a) or a non-smooth curve (b). In the latter case the tangent vector oscillates without a limit
when a point on W

u reaches O from the side of node region.



12.2. Creation of an invariant torus 651

in the standard form:
ȳ = [A+ h(x, y, µ)]y ,

x̄ = x+ g(x, µ) ,
(12.2.1)

where x ∈ R
1, y ∈ R

n−2, A is a matrix whose eigenvalues lie strictly inside the

unit circle, and

h(0, 0, 0) = 0 , g(0, 0) = 0 , g′x(0, µ) = 0 .

Here, the center manifold WC is defined by the equation y = 0. The

surfaces {x = constant} are the leaves of the strong-stable invariant foliation

Fss. In particular, x = 0 is the equation of the strong-stable manifold of O. At

µ = 0, the function g (nonlinear part of the map onWC) has a strict extremum

at x = 0. For more definiteness, we assume that it is a minimum, i.e. g(x, 0) > 0

when x 6= 0. Thus, the saddle region on the cross-section corresponds to x > 0,

and the node region corresponds to x < 0. Since the saddle-node disappears

when µ > 0, it follows that g(x, µ) > 0 for all sufficiently small x and for all

small positive µ.

The saddle-node is simple if g′′xx(0, 0) 6= 0. In this case the second equation

of (12.2.1) may be written in the form

x̄ = x+ µ+ l2x
2 + · · · , (12.2.2)

where l2 = g′′(0)/2 6= 0 > 0.

By assumption, the global unstable manifold W u
O returns to the node re-

gion, i.e. it forms a closed invariant curve. This curve is smooth everywhere,

except possibly at the point O. Indeed, since the rate of contraction along the

x-direction in the node region is less than exponential, it is much weaker than

the contraction in the y-direction. Therefore, any piece of a curve transverse

to the strong-stable foliation, when iterated forward, becomes tangent to y = 0

as it approaches the point O. At the same time, if the invariant curve is tan-

gent to a leaf of the strong-stable foliation at some point, it will be tangent

to the foliation at all forward iterations of this point (because the foliation

is invariant). Therefore, arbitrarily close to O, the invariant curve will have

points where the angle between the tangent to the curve and {y = 0} remains

bounded away from zero.

Thus,

the global unstable manifold W u is smooth everywhere (including O) if it is

transverse to the strong-stable foliation in the node region, as depicted in
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Fig. 12.2.1(a), and it is non-smooth at O if it is tangent to the strong-stable

foliation at the points of some orbit, as depicted in Fig. 12.2.1(b).

The smooth case corresponds, in particular, to a small time-periodic per-

turbations of an autonomous system possessing a homoclinic loop to a saddle-

node equilibrium (see the previous section). Indeed, for a constant time shift

map along the orbits of the autonomous system the equilibrium point becomes

a saddle-node fixed point and the homoclinic loop becomes a smooth closed

invariant curve, but the transversality of W u to F ss
loc

is, obviously, preserved

under small smooth perturbations.

The non-smooth case appears, for example, when W u
O touches the strong-

stable manifold W ss
O , as shown in Fig. 12.2.2. The latter, in turn, may be

detected via a small time-periodic perturbation of a system with an on-edge

homoclinic loop to a saddle-node (see the previous section). Generically, the

non-transversality of W u with respect to Fss
loc

is also preserved under small

smooth perturbations (say, if the tangency between W u and the corresponding

leaf of Fss
loc

is quadratic).

The closed invariant curve W u
O for the Poincaré map on the cross-section

is the loci of intersection of an invariant two-dimensional torus W u
L with the

cross-section. The torus is smooth if the invariant curve is smooth, and it is

non-smooth otherwise. If the original non-autonomous system does not have

a global cross-section, then other configurations of W u
L are also possible, as

Fig. 12.2.2. A nontransverse tangency of the unstable and strong-stable manifolds of a saddle-

node fixed point may be obtained by a small time-periodic perturbation of the system with
an on-edge homoclinic loop to a saddle-node equilibrium state, as shown in Fig. 12.1.4.
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we will discuss below. For example, it may be a Klein bottle, smooth or non-

smooth as well [6].

Theorem 12.3. (Afraimovich Shilnikov [3, 6]) If the global unstable set

of the saddle-node L is a smooth compact manifold (a torus or a Klein bottle)

at µ = 0, then a smooth closed attractive invariant manifold Tµ (a torus or a

Klein bottle, respectively) exists for all small µ.

The invariant manifold depends continuously on µ. At µ = 0, it coincides

with Wu
L . When µ < 0, it is the union of the unstable manifold of the saddle

periodic orbit L−(µ) with the stable periodic orbit L+(µ) (where L±(µ) are the

periodic orbits into which the saddle-node bifurcates3). In the case of torus, for

µ > 0, the Poincaré rotation number on Tµ tends to zero as µ→ +0. Thus, on

the µ-axis there are infinitely many (practically indistinguishable as µ→ +0)

resonant zones which correspond to periodic orbits on Tµ with rational rotation

numbers, as well as an infinite set (typically, a Cantor set) of irrational values

of µ for which the motion on Tµ is quasiperiodic.

Before we proceed to the proof of Theorem 12.3, let us study the global

structure of the W u
L in more detail. Introduce normal coordinates (see

Sec. 3.10) in a small neighborhood of L, such that near L, the system takes

the form

ẏ = A(µ)y +H(x, y, ϕ;µ) , (12.2.3)

ẋ = G(x, y, ϕ;µ) , ϕ̇ = 1 , (12.2.4)

where H and G vanish at (y = 0, x = 0, µ = 0) along with their first derivatives

with respect to (x, y); the eigenvalues of the matrix A lie strictly to the left of

the imaginary axis. Here ϕ ∈ [0, 1] is the angular variable, the surfaces ϕ = 0

and ϕ = 1 are assumed to be glued by some involution, namely, by changing

the sign of a number of components of the vector y (an appropriate choice of

this involution allows one to make the linear part of the system independent

of ϕ, without loss of smoothness; see details in Sec. 3.11).

We also assume that the center manifold WC is locally straightened so that

it has the form {y = 0}. Correspondingly,

H |y=0 ≡ 0 . (12.2.5)

3If the saddle-node is not simple, then there may be more saddle and stable periodic orbits
when µ < 0; in this case Tµ is the union of all of them and all their unstable manifolds.
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Next, let us straighten the strong stable invariant foliation. The leaves of

the foliation are given by {x = Q(y;ϕ, x′, µ), ϕ = constant} where x′ is the

coordinate of intersection of a leaf with the center manifold; Q is a C
r−1-

function (it is C
r-smooth with respect to y). The straightening is achieved via

a coordinate transformation x 7→ x′ which brings the invariant foliation to the

form {x = constant, ϕ = constant}. Thus, Eq. (12.2.4) becomes independent

of y and the system can be recast as follows:

ẏ = A(µ)y +H(x, y, ϕ;µ) , (12.2.6)

ẋ = G(x, ϕ;µ) , ϕ̇ = 1 . (12.2.7)

By construction, the new function G which coincides with the original one at

{y = 0} is still a C
r-function.

In the new coordinates, the strong-stable invariant manifold W ss
L is the

surface {x = 0}; the node region U− now corresponds to small negative x and

the saddle region U+ corresponds to small positive x.

Already we have stated that the invariant foliation is C
r−1-smooth; more-

over, it can be shown for the case of the saddle-node that the foliation is, in

fact, C
r-smooth everywhere except on W ss

L at µ = 0 [140]. The coordinate

transformation that reduces (12.2.4) to (12.2.7) has the same smoothness.

Choose small positive d+ and d−. Consider two cross-sections (both are

(n − 1)-dimensional solid tori) S0 : {x = −d−} and S1 : {x = d+} to the

flow. By assumption, at µ = 0 (and, hence, at all small µ), a trajectory of W u
L

returns to the node region U− = {x < 0} in a finite time. Therefore, the flow

defines a diffeomorphism T1 (the global map) by which a small neighborhood

of the intersection line l− : {y = 0} = W u
L ∩ S1 is mapped into S0. This map

has the form
y0 = p(ϕ1, y1;µ) ,

ϕ0 = q(ϕ1, y1;µ) mod 1 ,
(12.2.8)

where the coordinates on S0 and S1 are denoted by (ϕ0, y0) and (ϕ1, y1)

respectively; the two C
r-smooth functions p and q (mod 1) are both period 1

in ϕ.

The closed curve

l+ = T1l
− : {y0 = p(ϕ1, 0; 0) , ϕ0 = q(ϕ1, 0; 0) mod 1}
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is the intersection of W u
L and S0. Note that the function q can be written in

the form:

q(ϕ, y;µ) = mϕ+ q0(ϕ, y;µ) , (12.2.9)

where q0 is periodic in ϕ. The integer m defines the homotopy class of l+

in S0 (the sign of m determines the orientation of l+ with respect to l−).

If the dimension n of the phase space is greater than three, then S0 is at

least three-dimensional and the integer m may be of arbitrary value. In R
3,

the cross-section S0 is a two-dimensional annulus. Since l+ cannot have self-

intersections, it follows that it is possible to have m = 1 and m = 0 only in this

case (if m = −1, then W u
L is a Klein bottle, so this case cannot occur in R

3).

Note that the structure of the set W u
L is completely determined by the way

Wu
L adjoins to L from the side of the node region. Since the intersection l+ =

Wu
L ∩ S0 is an |m|-winding curve in S0, the intersection of W u

L ∩ U− with any

cross-section of the kind {ϕ = constant} consists, at m 6= 0, of |m| pieces glued

at the point {x = 0, y = 0} = L0 ∩ {ϕ = constant}, as depicted in Fig. 12.2.3.

At m = 0, this intersection is a sequence of circles accumulating at {x = 0, y =

0}, see Fig. 12.4.1. Thus, samples of W u
L corresponding to different values of

m are mutually non-homeomorphic to each other. Moreover, at |m| 6= 1, for

Fig. 12.2.3. The structure of intersection of the unstable manifold W

u
L of a saddle-node

periodic orbit L with a solid-torus-like cross-section S0 in the case m = 2. A trace of the

intersection is a doubly-twisted curve l

+. Consequently, it has at least two intersections
with each level ϕ = constant in S0, and with each level x = constant in the cross-section

S : {ϕ = 0}.
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any point of L, its small neighborhood in W u
L is not homeomorphic to a disk,

i.e. Wu
L is not a manifold in this case.

We will study the case m = 0 in Sec. 12.4 in connection with the problem

of the “blue sky catastrophe”. In the case |m| ≥ 2, infinitely many saddle

periodic orbits are born (see Theorem 12.5) when the saddle-node disappears;

moreover, even hyperbolic attractors may arise here (see [139]). We do not

discuss such kind of bifurcations in this book.

If m = ±1, then W u
L is a manifold. It is homeomorphic to a torus if

m = 1 and to a Klein bottle if m = −1. As already mentioned, this mani-

fold may be smooth or non-smooth, depending on whether W u
L intersects the

strong-stable foliation F ss transversely everywhere or not. When ẋ and ϕ̇ are

independent of y (see (12.2.7)), the leaves of F ss on the cross-section S0 are

the (hyper)planes ϕ0 = constant. The intersection l+ = Wu
L∩S0 is represented

as {y0 = p(ϕ1, 0, 0), ϕ0 = q(ϕ1, 0, 0)} where (p, q) is the right-hand side of the

global map T1 : S1 → S0 (see (12.2.8)). Thus, the transversality of W u
L to Fss

holds if, and only if,
∂q

∂ϕ

∣
∣
∣
∣
y=0,µ=0

6= 0 . (12.2.10)

This inequality, along with the requirement |m| = 1, is the analytical form of

the condition of Theorem 12.3.

The proof of this theorem is based on the reduction of the problem to

a study of some map (“the essential map” below) of a circle. In fact, this

reduction works independently of the value of m or of the smoothness of W u
L ,

and our two next sections are based on it.

As explained in Sec. 12.5, we may assume that in (12.2.7)

∂G

∂ϕ

∣
∣
∣
∣
µ=0

≡ 0 . (12.2.11)

In other words, at µ = 0, the right-hand side of Eq. (12.2.7) can be made

independent on ϕ (by an appropriate change of variables), so it assumes the

following autonomous form
ẋ = g̃(x) ,

ϕ̇ = 1 ,
(12.2.12)

where g̃(0) = 0, g̃′(0) = 0. If x 6= 0, then g̃(x) > 0. Note that the function

g̃(x) is uniquely defined by the nonlinear part g(x, 0) of the Poincaré map on

the center manifold [see (12.2.1)]. It is shown in [140] that the transformation
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which brings the system (12.2.7) to the autonomous form (12.2.12) at µ = 0, is

C
r at x 6= 0. Thus, the system (12.2.6) and (12.2.7) is C

r−1-smooth at x 6= 0

after the transformation, whereas the flow map between any two cross-sections

which did not intersect {x = 0} remains C
r-smooth.

Once we fix coordinates such that the system on the center manifold is in

the autonomous form (12.2.12) at µ = 0, we can then define the essential map

ϕ 7→ f(ϕ) ≡ mϕ+ q0(ϕ, 0; 0) . (12.2.13)

By construction, it is obtained as follows: apply the map T1 to the intersection

line of the local unstable manifold W u
loc

= WC ∩ U+ with the cross-section

S1 and then project the image onto the center manifold along the leaves of

the strong-stable foliation. The projection is done in S0 which lies in the

node region where the foliation is uniquely defined (see Chap. 5). Thus, once

the cross-sections S0 and S1 are fixed, the essential map is defined uniquely,

modulo coordinate transformations on the center manifold which keep the

system autonomous (the center manifold in the node region is not unique

but systems on different center manifolds are smoothly conjugate by their

projection along the strong-stable invariant foliation. Therefore, the choice of

another center manifold is equivalent to a coordinate transformation on the

given one).

In fact, the set of coordinate transformations which keeps the system at

µ = 0 in the form (12.2.12) is rather poor. Indeed, a new coordinate ϕ must

satisfy d
dt
(ϕnew−ϕ) = 0, hence the difference ϕnew−ϕ must be constant along

a trajectory of the system. In particular, it is constant on L. Now, since any

orbit on the center manifold tends to L either as t → +∞ or as t → −∞,

it follows that ϕnew − ϕ = constant everywhere on W c. Furthermore, since

the equation for x in (12.2.12) must remain autonomous, one can show that

only autonomous (independent of ϕ) transformations of the variable x are

allowed. Indeed, consider first a transformation which is identical at ϕ = 0.

By definition, it does not change the Poincaré map of the local cross-section

S : {ϕ = 0}. Therefore, by the uniqueness of the embedding into the flow

(Lemma 12.4), if such transformation keeps the system autonomous, it cannot

change the right-hand side g̃. It follows that if xnew ≡ x at ϕ = 0, then

the time evolution of xnew and the time evolution of x are governed by the

same equation which immediately implies that xnew ≡ x for all ϕ in this

case. Since an arbitrary transformation is a superposition of an autonomous
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transformation and a transformation of the kind we have just considered, this

proves the claim.

Thus, the only possible coordinate transformation is

ϕ 7→ ϕ+ const , x 7→ X(x) . (12.2.14)

For the essential map, the effect of such a transformation of x is equivalent to

a shift of the cross-sections S0 and S1 to x = X−1(−d−) and x = X−1(d+),

respectively. Since the evolution of x is autonomous, the flight time from a

cross-section {x = constant} to any other cross-section of this form depends

only on the position of the cross-sections but not on the initial point on the

cross-section. Thus, any shift of S0 or S1 is equivalent to a rigid rotation of

ϕ0 or ϕ1, respectively. We have finally arrived at

Lemma 12.1. The essential map is uniquely defined by the system at µ = 0,

modulo an arbitrary additive constant and a shift of the origin:

f(ϕ)→ c0 + f(ϕ+ c1) .

The essential map carries most of the information on the global saddle-node

bifurcations. As already mentioned, its degree m defines the topological type

of Wu
L . If |m| = 1, then W u

L is smooth if, and only if, f(ϕ) does not have

critical points (see (12.2.10) and (12.2.13)). Below (Theorem 12.4), we give a

precise formulation to the following reduction principle:

the bifurcations in U(W u
L) as µ → +0 follow the bifurcations in the family of

one-dimensional maps

ϕ̄ = ω(µ) + f(ϕ) , (12.2.15)

where ω(µ)→ +∞ as µ→ +0.

The above reduction principle was applied explicitly in [151] for the case

|m| = 1. An earlier study in [97] was essentially based on the same idea.

Let us consider the Poincaré map T = T0 ◦T1 of the cross-section S1 which

is defined by the trajectories of the system for all small µ > 0. Here, T1 is

a global map defined by (12.2.8) and T0 : S0 → S1 is a through map defined

locally near L for µ > 0.

As in the previous section, the behavior of the trajectories in U for µ > 0

is completely determined by the behavior of the map T .
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Since the Eq. (12.2.7) for ẋ and ϕ̇ are independent of y, the local through

map T0 : (y0, ϕ0) 7→ (y1, ϕ1) is written in the form (for some C
r-function Y )

y1 = Y (ϕ0, y0, µ) ,

ϕ1 = ϕ0 + τ(ϕ0, µ) mod 1 .
(12.2.16)

The function τ is the flight time from S0 to S1. It is a smooth function periodic

in ϕ0. Clearly, τ(ϕ0, µ)→∞ as µ→ +0.

Lemma 12.2. When (12.2.11) is satisfied at µ = 0, then ∂τ/∂ϕ tends uni-

formly to zero as µ→ +0, in the C
r−1-topology.

In its full generality, this lemma is proven in [140] and it implies almost

immediately the basic Theorem 12.4 below. The proof is based on a lengthy

calculations and we omit them here. A simple proof of an analogous statement

is given in Sec. 12.5 under some additional assumptions. Namely, it is assumed

there that the system is sufficiently smooth with respect to all variables and µ,

and that the saddle-node L is simple. Moreover, instead of proving that all of

the derivatives tend to zero, the vanishing of only a sufficiently large number

of derivatives is established. Of course, all this does not represent a severe

restriction.

By denoting ω(µ) = τ(0, µ), we get from Lemma 12.2 that

τ(ϕ0, µ) = ω(µ) + o(1) . (12.2.17)

If the saddle-node is simple, then

ω(µ) ∼
π
√
µl2

. (12.2.18)

Note also that since the eigenvalues of the matrixA(µ) in (12.2.3) lie strictly

to the left of the imaginary axis and since, by (12.2.5), ẏ = (A+ h̃)y for some

C
r−1-function h̃, it is easy to show that

‖ Y ‖Cr−1≤ O(e−λω) (12.2.19)

for some positive λ. In fact, it may be shown [140] that

‖ Y ‖Cr→ 0 as µ→ 0 . (12.2.20)

Collecting formulas (12.2.8), (12.2.9), (12.2.10), (12.2.16), (12.2.17), and

(12.2.20) gives the following result [140].
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Theorem 12.4. (Reduction principle) The Poincaré map T = T0 ◦ T1 is

written as
ȳ = ψ(ϕ, y;µ) ,

ϕ̄ = ω + f(ϕ) + ξ(ϕ, y;µ) mod 1 ,
(12.2.21)

where ω(µ) → ∞ and ψ, ξ tend to zero (along with all derivatives) as

µ→ +0.

It follows immediately from this theorem that if the essential map (12.2.15)

has a rough stable (unstable) periodic orbit at some ω∗, then there is a sequence

of intervals δk of values of µ which accumulate at +0, such that the difference

(ω(µ) − k) remains close to ω∗ at µ ∈ δk, and the system has, respectively, a

rough stable or saddle periodic orbit at µ ∈ δk for all sufficiently large k.

In fact, Theorem 12.4 holds also when the system depends on µ smoothly:

we assume in this case that

the first derivatives of the right-hand sides of (12.2.3) and (12.2.4) with respect

to the phase variables (y, z, ϕ) are C
r−1-smooth with respect to all variables

and µ.

Assume also that the local Poincaré map near L depends monotonically on µ;

i.e.

g′µ(0; 0) > 0 (12.2.22)

in (12.2.1).4 In this case one can prove that

∂ω/∂µ 6= 0 , (12.2.23)

i.e. ω can be viewed as a new parameter, and µ may then be considered as

a function of ω which tends to zero as ω → ∞. It can be proved that all

the derivatives of µ with respect to ω tend to zero too. Lemma 12.1 when

restated for the derivatives of τ ′ϕ with respect to both ω and ϕ0 remains valid.

Theorem 12.4 provides absolutely the same; namely “all derivatives” include

now the derivatives with respect to ω (see [140]).

Note that the above trick of letting the flight time be a new parameter is

necessary only in the case of low smoothness: upon proving Lemma 12.3 which

corresponds to the case where the smoothness is high (and the saddle-node is

4When the saddle-node is simple, (12.2.22) is just a condition of transversality of the
one-parameter family under consideration to the bifurcation surface of systems with the
saddle-node, which allows the Poincaré map on W

C
loc

to be written in the form (12.2.2).
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simple), we show the vanishing of an arbitrarily large number of derivatives

with respect to µ itself.

Now, Theorem 12.3 follows immediately from formula (12.2.21): by the

conditions of the theorem we have |m| = 1 and f ′(ϕ) 6= 0, so the map ϕ 7→

ω+ f(ϕ)+ ξ(ϕ, 0;µ) is a diffeomorphism and it is easy to see that the annulus

principle (Sec. 4.2) is applicable here. Thus, the existence of a uniquely defined

C
r-smooth closed invariant curve

y = η(ϕ;µ) (12.2.24)

which attracts all orbits in S1 is established for the map T for any µ > 0.

Since this map is defined by the orbits of the system under consideration, this

proves the theorem.

Due to the annulus principle, the invariant curve depends continuously on

µ (or smoothly, when the system is smooth with respect to µ). By fixing any

value of ν = ω(µ) mod 1 so that ω = ν + k, where k ∈ Z such that k →∞ as

µ→ +0, the map (12.2.21) has a limit (in smooth topology) as k →∞

ȳ = 0 ,

ϕ̄ = ν + f(ϕ) mod 1 .
(12.2.25)

Thus, the invariant curve of the map T has the invariant curve {y = 0} of the

map (12.2.25) as a limit, i.e. the function η in (12.2.24) vanishes (along with

all derivatives) as µ→ +0.

On the invariant curve, the map T can be represented as

ϕ̄ = ω(µ)± ϕ+ f0(ϕ) + f1(ϕ;µ) mod 1 , (12.2.26)

where “+” (the orientable case) corresponds to the case of a torus and “−”

(the non-orientable case) to a Klein bottle; f0 and f1 are periodic functions

of ϕ and f1 → 0 along with all derivatives as µ → +0. If the system depends

smoothly on µ (and the monotonicity condition (12.2.22) holds), then it follows

from (12.2.23) that this map (when lifted onto R
1) is strictly monotonic with

respect to µ.

Therefore, in the orientable case, the Poincaré rotation number on the

torus depends monotonically on µ (see Sec. 4.4). Typically, each rational

rotation number corresponds to an interval of values of µ (a resonant zone).

In the simplest case, there exist only two periodic orbits on the torus in the
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resonant zone, one stable and the other unstable (for example, there may be

only two fixed points if f0(ϕ) = sinϕ). The unstable periodic orbit on the

invariant curve is a saddle orbit for the map T of the annulus (the solid torus)

S1; the invariant curve is the closure of the unstable manifold of this saddle

periodic orbit. In general, for different functions f0, there may be arbitrarily

many periodic orbits in the resonant zone (with an equal number of stable and

saddle orbits on the torus). In this case the invariant curve is the closure of

the unstable manifolds of all saddle periodic orbits.

The boundary of the resonant zone corresponds to a coalescence of the

stable and unstable periodic orbits on the invariant circle, i.e. to the saddle-

node bifurcation of the same type we consider here. Besides, if there were more

than two periodic orbits, saddle-node bifurcations may happen at the values

of parameters inside the resonant zone. By the structure of the Poincaré map

(12.2.26) on the invariant curve,

if some value ν∗ corresponds to a codimension-one bifurcation (a simple saddle-

node) in the essential map

ϕ̄ = ν + ϕ+ f0(ϕ) ,

then there is a sequence of values µk → +0, such that ω(µk) − k → ν∗, and

the map (12.2.26) undergoes the same bifurcation at µ = µk for all sufficiently

large k.

Let us now consider the question concerning what happens when W u
L is

non-smooth. For the first time, this question was studied in [3] where it was

discovered that the possibility of the breakdown of the invariant manifold causes

an onset of chaos at such bifurcations. In particular, sufficient conditions (the

so-called “big lobe” and “small lobe” conditions) were given in [3] for the

creation of infinitely many saddle periodic orbits upon the disappearance of

a saddle-node in the non-smooth case. Subsequent studies have shown that

these conditions may be further refined so we may reformulate them as follows.

Recall that in the smooth case, the manifold W u
L intersects the strong-

stable foliation Fss transversely, and each leaf has only one point of intersection

with Wu
L . In the generic non-smooth case, some of the leaves have one-sided

tangencies to W u
L . Therefore, there must be leaves in the node region where

each leaf has several intersections with W u
L .

Definition 12.1. The set W u
L satisfies the (refined) big lobe condition if each

leaf of Fss intersects W u
L at least twice in the node region (Fig. 12.2.4).
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Fig. 12.2.4. Geometrical interpretation of the big lobe condition — each leaf of the strong

stable foliation F

ss must cut W

u through not fewer than two points.

In terms of the essential map this condition translates into a condition for

the existence of at least two pre-images for any value of ϕ̄, with respect to the

map

ϕ̄ = f(ϕ) .

The following result is a stronger version of the corresponding theorem

in [3].

Theorem 12.5. If the big lobe condition is satisfied, then the system has in-

finitely many saddle periodic orbits for all small µ > 0.

Note that this theorem holds independently of the type of the topological

structure of W u
L (i.e. independently of the degree m of the essential map).

Obviously, the big lobe condition is always satisfied when |m| > 2, so the

disappearance of the saddle-node always implies chaos in this case. Therefore,

for the rest of this chapter we will be focusing on the cases m = 1, 0,−1.

The small lobe condition was originally introduced for the case where W u
L

is a torus (m = 1), but it makes sense at m = 0 and m = −1 as well. In terms

of the essential map, the small lobe condition is satisfied if

there exist ϕ1 and ϕ2 such that

f(ϕ1) = f(ϕ2)
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Fig. 12.2.5. A form of f(ϕ) satisfying the small lobe condition.

and

max
ϕ∈[ϕ1,ϕ2]

|f(ϕ)− f(ϕ1)| > |ϕ2 − ϕ1|

(see Fig. 12.2.5).

Theorem 12.6. If the small lobe condition is satisfied, then on the µ-axis

there is a sequence of intervals ∆i which accumulate at µ = +0, such that the

system has infinitely many saddle periodic orbits for any µ ∈ ∆i.

Note the difference between the transition to chaos under the big lobe con-

dition and without it: in the second case the intervals ∆i of chaotic dynamics

may, in principle, interchange with the intervals where the system has only

finitely many saddle and stable periodic orbits [151]. According to the reduc-

tion principle (Theorem 12.4), this occurs if, within some interval of ω, the

essential map

ϕ̄ = ω + f(ϕ)

has only a finite number of periodic orbits.

For example, if f(ϕ) = ϕ+ C
2π

sin 2πϕ, then the manifoldW u
L is non-smooth

for C ≥ 1, whereas the big lobe condition is satisfied if

√

C2 − 1 > π + arccos
1

C
,
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and the small lobe condition is fulfilled with ϕ2 = 1/2 if

√

C2 − 1 > π + arccos
1

C
− u ,

where u ∈ (0, π) is the root of the equation π = u + C sinu. It is obvious

that when (C − 1) is sufficiently small, then the essential map has only one

stable and one unstable fixed point in the interval |2πω| < 1, and no other

periodic orbits. Therefore, if (C − 1) is sufficiently small, on the µ-axis there

exist intervals of simple dynamics; in fact, the existence of such intervals may

be easily checked, for example, when

√

C2 − 1 >
3π

4
+ arccos

1

C
.

Note that both theorems above give only sufficient conditions for chaotic

dynamics following the disappearance of the saddle-node. These conditions

may be further refined. The most important improvement (essentially due to

Newhouse, Palis and Takens [97]) can be made in the case m = 1 where the

unstable manifold W u
L of the saddle-node is a torus.

Theorem 12.7. Generically, if W u
L is a non-smooth torus, then on the µ-axis

there is a sequence of intervals ∆i which accumulate at µ = +0, such that the

system has infinitely many saddle periodic orbits for any µ ∈ ∆i.

The genericity condition of this theorem may be explicitly formulated: for

each ϕ0 ∈ S
1, check that either there is another ϕ such that f(ϕ) = f(ϕ0), or

at least some of the derivatives f ′(ϕ0), f
′′(ϕ0), . . . , f

(r)(ϕ0) are non-zero. It is

not clear whether this condition is essential, or it is just a technical restriction.

In any case, the simultaneous vanishing of all derivatives of the essential map

at some point is an extremely rare situation.

So, the results of Theorems 12.3, 12.5 and 12.7 are summarized as follows:

If Wu
L is a smooth torus, then a smooth attracting invariant torus persists after

the disappearance of the saddle-node L. If W u
L is homeomorphic to a torus but

it is non-smooth, then chaotic dynamics appears after the disappearance of L.

Here, either the torus is destroyed and chaos exists for all small µ > 0 (the

big lobe condition is sufficient for that), or chaotic zones on the parameter axis

alternate with regions of simple dynamics.

Theorem 12.7 uses heavily that the degree m of the essential map is equal

to 1. It has no analogues for the cases m = 0 and m = −1 where the scenario

of the onset of chaos is rather vague.



666 Chapter 12. Global Bifurcations at the Disappearance of . . .

12.3. The formation of a Klein bottle

Let us consider next the bifurcation of the saddle-node periodic orbit L in

the case where the unstable manifold W u
L is a Klein bottle, as depicted in

Fig. 12.3.1, i.e. when the essential map has degree m = −1. By virtue of

Theorem 12.3, if W u
L is smooth, then a smooth invariant attracting Klein

bottle persists when L disappears. In its intersection with a cross-section S0,

the flow on the Klein bottle defines a Poincaré map of the form (see (12.2.26))

ϕ̄ = ω(µ)− ϕ+ f0(ϕ) + f1(ϕ, µ) mod 1 , (12.3.1)

where ω → ∞ as µ → +0; f0 and f1 are smooth 1-periodic functions, f1

vanishes at µ = 0 along with all derivatives, −ϕ + f0(ϕ) is the essential map

defined uniquely by the system at µ = 0. As shown in the last section, the

manifold W u
L is smooth if, and only if,

−1 + f ′
0
(ϕ) 6= 0 (12.3.2)

for all ϕ. In this case, the Poincaré map (12.3.1) is a (non-orientable)

diffeomorphism of the circle.

Fig. 12.3.1. A saddle-node periodic orbit on the Klein bottle.
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Fig. 12.3.2. The non-orientable circle map in action.

Fig. 12.3.3. A possible saddle-node bifurcation of a period-two orbit of a non-orientable

circle map.

Such maps are known to have exactly two fixed points. They partition the

circle into two arcs, each one cycles into another under the action of the map.

On these arcs there may also be a number of period-two points, as shown in

Fig. 12.3.2. Generically, the following bifurcations are possible: a period-two

orbit collapses into, or emerges from a fixed point (whose multiplier passes

through −1), or two orbits of period two may coalesce into a saddle-node orbit

of period two, as depicted in Fig. 12.3.3. It follows immediately from (12.3.1)

that if the essential map

ϕ̄ = ν − ϕ+ f0(ϕ) mod 1 (12.3.3)

undergoes one of these bifurcations at some ν = ν∗, then

there exists a sequence µk → +0 such that (ω(µk)− k)→ ν∗ and the Poincaré

map (12.3.1) undergoes the same bifurcation at each µ = µk.

The fixed points of the map (12.3.1) are found from the equation

ϕ0 =
1

2
ω(µ) +

1

2
(f0(ϕ0) + f1(ϕ0, µ)) ,

ϕ1 =
1

2
ω(µ) +

1

2
(f0(ϕ1) + f1(ϕ1, µ)) + π .

(12.3.4)
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Since f0 and f1 are periodic functions, they are bounded. So, it follows from

(12.3.4) and (12.3.2) that as ω →∞, the coordinates ϕ0 and ϕ1 corresponding

to the fixed points increase unboundedly. In other words, as µ → +0, both

fixed points move around along the circle infinitely many times.

The multiplier of the fixed point is equal to −1 + f ′
0
(ϕ0,1) + f ′

1
(ϕ0,1, µ).

Since f ′
1
→ 0 as µ → +0, it follows that if f0(ϕ) 6≡ 0, then the multiplier of

each fixed point oscillates back and forth around −1. We arrive at the following

result (first noticed in [6] with the detailed proof first published in [86]):

Theorem 12.8. For all µ > 0, the system on the Klein bottle has exactly two

periodic orbits with negative multipliers. If f0(ϕ) does not vanish identically,

each of these two periodic orbits undergoes a period-doubling bifurcation in-

finitely many times as µ→ +0.

In the simplest case (say, when f0(ϕ) =
C
2π

sin 2πϕ with C < 1), the bifur-

cations proceed as follows (see Fig. 12.3.4): on some interval of µ one of the

fixed points (ϕ0) is stable and another (ϕ1) is unstable. Then at some value of

µ, the fixed point ϕ0 loses its stability and a stable orbit of period two is born.

After that, in some interval of µ, there exist two unstable fixed points and a

stable orbit of period two; then the stable orbit collapses into the fixed point

ϕ1 which becomes stable now, and then the bifurcation process is repeated:

the stable fixed point again loses its stability via period-doubling, and so on,

infinitely many times without ever ending.

Since the recurrent time of a nearby orbit to a cross-section is about ω(µ)

(see the last section), it follows that the period of the orbits of the flow which

corresponds to the fixed points of the Poincaré map tends to infinity as µ→ +0

(typically, it is ∼ π/
√
µl2). Before the orbits return to the cross-section, each

must make ω(µ) rotations in a small neighborhood of the just disappeared

saddle-node L. Accordingly, the length of these periodic orbits is also increas-

ing to infinity. Thus, Theorem 12.8 gives a positive answer to the following

Fig. 12.3.4. The simplest cycle of bifurcations on the Klein bottle for the Poincaré map
(12.3.1) as µ → +0.
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question posed by Palis and Pugh [105]: can a periodic orbit disappear at a

finite distance from the equilibrium states such that the period and the length

of the orbit increase to infinity when approaching the moment of bifurcation?

Virtual bifurcations of such kind were named “the blue sky catastrophes”

by R. Abraham. The first example of a blue sky catastrophe was constructed

by Medvedev [95] for the saddle-node bifurcation on a Klein bottle. The most

important feature of Medvedev’s example is that the periodic orbit whose

length and period are constantly increasing as µ → +0 remains stable and

does not undergo any bifurcation for all small µ > 0. Theorem 12.8 shows that

this is only possible in the case f0(ϕ) ≡ 0, which means that all points (except

for the two fixed points) of the essential map are of period two.

Since the essential map is highly degenerate in this case, it does not reveal

much information concerning the structure of the Poincaré map (12.3.1). To

find out the ways on how the stable periodic orbit survives, let us choose

f1(ϕ, µ) = µ cosπω(µ) sin 2πϕ− µ sinπω(µ) cos 2πϕ .

The Poincaré map is then written as

ϕ̄ = ω(µ)− ϕ+ µ sin(2πϕ− πω(µ)) mod 1 .

Observe that this map has a fixed point ϕ0 = ω(µ)/2 with a multiplier equal

to −1 + 2πµ, i.e. this point is stable for all µ > 0.

We see that Medvedev’s example describes an extremely degenerate situa-

tion. A generic example of the blue sky catastrophe for a stable periodic orbit

(when the degree m of the essential map is equal to zero) is given in the next

section.

Let us now consider briefly the question on what may happen if W u
L is a

non-smooth Klein bottle. Since Theorems 12.5 and 12.6 are applicable in this

case, it follows that when µ > 0, chaos may appear when the big lobe or the

small lobe condition is satisfied. However, a direct analogue of Theorem 12.7

does not exist here because of the following possibility:

even ifW u
L is non-smooth, the system may nevertheless exhibit simple dynamics

for all small positive values of µ.

The above situation can occur if the essential map (12.3.3) has only finitely

many periodic orbits for all ν. For example, when f0(ϕ) =
C
2π

sin 2πϕ, one can

show that the essential map has only a finite number of fixed points, and points

of period-two, but no other periodic orbits for all ν if, for instance, C <
√
2.
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12.4. The blue sky catastrophe

Let us now consider the case where the global unstable set W u
L of the saddle-

node periodic orbit L is not a manifold, but has the structure like shown in

Fig. 12.4.1. This means that the integer m which determines the homotopy

class of the curve l+ = Wu
L ∩ S0 in the cross-section S0 : {x = −d−} is

equal to zero. In other words, the essential map of Sec. 12.2 in this case has

(a)

(b)

Fig. 12.4.1. (a) Illustrates the mechanism of a blue-sky catastrophe. The unstable manifold
W

u
L returns to the saddle-node from the node region so that the circles of its intersection

with the cross-section S tighten with each subsequent iterate. (b) The return map along

W

u
L .
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the form

ϕ̄ = ω + f0(ϕ) mod 1 , (12.4.1)

where f0 is a 1-periodic smooth function.

Theorem 12.9. Consider a one-parameter family of dynamical systems which

has a saddle-node periodic orbit L at µ = 0 such that all orbits in the global

unstable set W u
L tend to L as t→ +∞, but do not lie in W ss

L . Let the essential

map satisfy m = 0 and |f ′
0
(ϕ)| < 1 for all ϕ. Then, after disappearance of the

saddle-node for µ > 0, the system has a stable periodic orbit Lµ (non-homotopic

to L in U) which is the only attractor for all trajectories in U.

Proof. By Theorem 12.4, the Poincaré map T of a cross-section S1 : {x = d+}

is close (in smooth topology) to the following map

ȳ = 0 ,

ϕ̄ = ω(µ) + f0(ϕ) mod 1
(12.4.2)

for small µ > 0. By assumption, |f ′
0
(ϕ)| < 1. Hence, the map (12.4.2) is a

contraction, and has a unique attractor for any ω; namely, it has a unique stable

fixed point. The same result clearly holds for all close maps; in particular, for

the map T for small µ > 0. Since the map T is defined by the orbits of the

flow, the fixed point corresponds to an attracting periodic orbit Lµ. End of

the proof.

Since the return time from/to the cross-section S1 (i.e. the period of Lµ)

grows proportionally to ∼ ω(µ), it must tend to infinity as µ → +∞ (see

Sec. 12.2; if L is a simple saddle-node, then the period grows as ∼ π/
√
µl2).

Since the vector field vanishes nowhere in U , it follows that the length of Lµ

must tend to infinity also. Since Lµ, does not bifurcate when µ > 0, we have

an example of the blue sky catastrophe [152].

If the saddle-node L is simple, then all neighboring systems having a saddle-

node periodic orbit close to L constitute a codimension-one bifurcational sur-

face. By construction (Sec. 12.2), the function f0 depends continuously on the

system on this bifurcational surface. Thus, if the conditions of Theorem 12.9

are satisfied by a certain system with a simple saddle-node, they are also sat-

isfied by all nearby systems on the bifurcational surface. This implies that

Theorem 12.9 is valid for any one-parameter family which intersects the sur-

face transversely. In other words, our blue sky catastrophe occurs generically
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in one-parameter families. The corresponding bifurcation surface is a new sta-

bility boundary for periodic orbits (the orbit Lµ here), which has no analogues

in two-dimensional systems.

Note that the specific topological structure of W u
L is not yet sufficient for

realizing a blue sky catastrophe: there exists also a quantitative condition

in Theorem 12.9 which is needed to ensure contraction. If this condition is

violated, i.e. if |f ′
0
(ϕ)| > 1 at some ϕ, then infinitely many bifurcations occur

in the region µ > 0, just like the cases considered in the preceding sections.

Indeed, consider the lift of the map (12.4.1) onto R
1:

ϕ̄ = ω + f0(ϕ) . (12.4.3)

The fixed points of this map correspond to the fixed points of the essential

map (12.4.1). Since f0 is periodic, it is bounded. Thus, (12.4.3) always has

at least one fixed point and the corresponding value of ϕ becomes arbitrarily

large as ω grows. In the region where f ′
0
(ϕ) < 1, the coordinate of the fixed

point is a monotonically increasing function of ω, but it is a decreasing one

in the region f ′
0
(ϕ) > 1. Thus, if |f ′

0
(ϕ)| > 1 at certain intervals of ϕ, then

we inevitably have the sequence of values of ω for which either a stable and

an unstable fixed points coalesce into a saddle-node, or a stable fixed point

undergoes a period doubling, changing its stability. Since ω →∞ corresponds

to µ → +0 and the Poincaré map T approaches the essential map arbitrarily

closely (Theorem 12.4), it follows that the fixed points of map T must undergo

the same bifurcations infinitely many times as µ→ +0.

Moreover, it follows from Theorems 12.5 and 12.6 that chaotic behavior may

also be possible if the condition |f ′
0
(ϕ)| < 1 of Theorem 12.9 is not met. In

particular, the big lobe condition (Sec. 12.2) is here equivalent to the existence

of a leaf of the strong-stable foliation which intersects at least two connected

components of the intersection of W u
L with the local cross-section S : {ϕ =

constant} (see Fig. 12.4.2). In terms of the essential map this condition is

written as

max f0 ≥ min f0 + 1 , (12.4.4)

i.e. this inequality will guarantee chaos at all small µ > 0.

To make it clear that the configuration of W u
L shown in Fig. 12.4.1(a) is

indeed possible for the flows in R
n with n ≥ 3, let us consider the following

geometrical construction. Let a two-parameter family of three-dimensional
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Fig. 12.4.2. The option of chaotic behavior resulted from the disappearance of a saddle-node

fixed point of the corresponding Poincaré map, assuming the contraction condition is not

satisfied but the big lobe condition holds: each leaf of the foliation F ss must intersect at
least two of the connected components of W

s ∩ S.

vector fields have, for some parameter values, a saddle-node periodic orbit L

and a saddle-node equilibrium state O. Suppose that all orbits of W u
L tend

to O as t → +∞ and that the one-dimensional separatrix of O goes to L, as

shown in Fig. 12.4.3. If one of the parameters of the system is introduced in a

way such that O disappears but L does not when it is slightly tuned, then the

set Wu
L will have the desired configuration.

By following this recipe, a family of three-dimensional systems with ana-

lytically defined right-hand side has been explicitly designed which realizes the

blue sky catastrophe [53]. This family is as follows

ẋ = x(2 + µ−B(x2 + y2)) + z2 + y2 + 2y ≡ P ,

ẏ = − z3
− (1 + y)(z2 + y2 + 2y)− 4x+ µy ≡ Q , (12.4.5)

ż = (1 + y)z2 + x2
− ε ≡ R ,

where µ, ε and B are some parameters. At µ = ε = 0 it has a closed in-

tegral curve (x = 0, z2 + y2 + 2y = 0). There are two equilibrium states

on it (see Fig. 12.4.5(a)). The first one O′(0,−2, 0) is a simple saddle-node

with one zero λ1 = 0 and two negative characteristic exponents found from
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Fig. 12.4.3. A phemenological scenario of development of the blue sky catastrophe: when

the saddle-node equilibrium O disappears, the unstable manifold of the saddle-node periodic

orbit L has the desired configuration, as the one shown in Fig.12.4.1(a).

the equation λ2 +4Bλ+8B − 12 = 0. The second equilibrium state O(0, 0, 0)

also has one zero exponent λ1 = 0, but along with a pair of purely imaginary

characteristic exponents λ1,2 = ±2i. The point O′ is of codimension one (a

simple saddle-node), whereas the point O is of codimension three because the

two-dimensional divergence σ(z) = P ′x + Q′y = −z2 + · · · at O starts with a

quadratic term in z. This means that a double (semi-stable) cycle may emerge

from O in the (x, y)-plane [51].

The bifurcation diagram is presented in Fig. 12.4.4. When ε > 0, the

saddle-node O′ disappears, while the equilibrium state O is decomposed into

two ones O1 and O2 (region b in Fig. 12.4.4.), where zO1,2
= ∓
√
2ε + · · · . In

this region the point O1 is stable and O2 is a saddle-focus of type (2,1) whose

one-dimensional separatrices tend to O1 as t → +∞ (Fig. 12.4.5(b)). As µ

increases, the point O1 loses its stability through a super-critical Andronov–

Hopf bifurcation on the curve AH1 in Fig. 12.4.4 and becomes a saddle-

focus (1,2), and the unstable separatrices of the saddle-focus O2 tend now

to the new-born stable periodic orbit as shown in Fig. 12.4.5(c). The equilib-

rium state O2 bifurcates on the curve AH2. It also undergoes a supercritical

Andronov–Hopf bifurcation, so that it becomes totally repelling. The un-

stable manifold of the saddle periodic orbit L2, continues to tend to L1 as

t → +∞, as sketched in Fig. 12.4.5(d). On the bifurcation curve labeled SN
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Fig. 12.4.4. The (µ, ε)-bifurcation diagram of system (12.4.5).

both cycles coalesce thereby composing a saddle-node cycle L∗ whose unstable

manifold is biasymptotic to L∗, as shown in Fig. 12.4.5(e). To the right of the

curve SN , the cycle L∗ disappears and in accordance with Theorem 12.9, the

global stability is inherited by a new, large amplitude, stable periodic orbit

Lbs which is not homotopic to either L1 or L2.

Another kind of examples where our blue sky catastrophe may appear

naturally is given by singularly perturbed systems, i.e. the systems of the

form
ẋ = g(x, y, ε) ,

εẏ = h(x, y, ε) ,
(12.4.6)

where ε is a small parameter. This system may be regularized by rescaling the

time t = ετ . In the new time τ , (12.4.6) becomes

x′ = εg(x, y, ε) ,

y′ = h(x, y, ε) ,
(12.4.7)
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(a) (b)

(c) (d)

(e) (f)

Fig. 12.4.5. Route to the blue sky catastrophe in (12.4.5) as µ, ε vary from (a) to (f) in
Fig. 12.4.4.
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where the prime denotes differentiating with respect to τ . Taking the limit

ε = 0 here, we obtain
x′ = 0 ,

y′ = h(x, y, 0) .
(12.4.8)

The second equation here is called the fast system. For simplicity, we assume

that x ∈ R
1. The variable x may be considered as a parameter which governs

the motion of the fast y-variable.

Starting with any (x, y), a trajectory of system (12.4.8) converges typically

to an attractor of the fast system corresponding to the chosen value of x.

This attractor may be a stable equilibrium, or a stable periodic orbit, or of a

less trivial structure — we do not explore this last possibility here. When an

equilibrium state or a periodic orbit of the fast system is structurally stable, it

depends smoothly on x. Thus, we obtain smooth attractive invariant manifolds

of system (12.4.8): equilibrium states of the fast system form curves Meq and

the periodic orbits form two-dimensional cylindersMpo, as shown in Fig. 12.4.6.

Locally, near each structurally stable fast equilibrium point, or periodic orbit,

such a manifold is a center manifold with respect to system (12.4.8). Since the

center manifold exists in any nearby system (see Chap. 5), it follows that the

smooth attractive invariant manifolds Meq(ε) and Mpo(ε) exist for all small ε

in the system (12.4.7) [48].

Fig. 12.4.6. Structurally stable equilibria and structurally stable limit cycles of the fast
system compose invariant manifolds as x varies: respectively, curve Meq and two-dimensional
cylinder Mpo.
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Thus, a trajectory of the system (12.4.7) for small ε behaves in the following

way: during some finite time it comes to a small neighborhood of one of the

invariant manifolds Meq or Mpo, so that its x-coordinate is nearly fixed. Then,

it drifts along the invariant manifold so that it corresponds to a slow change

of x. As for the initial system (12.4.6) one observes a jump of the y-variables

to the invariant manifold followed by a finite speed motion in the x-variable.

In addition, if this is a manifold of a fast periodic orbit, then we have a fast

circular motion of the y-variables on the manifold, as depicted in Fig. 12.4.7.

The equilibrium states of the fast system are found from the condition

h(x, y, 0) = 0, which gives the equation of Meq. If y = yeq(x) is a stable

branch of Meq, then the evolution of x along it is, to first order in ε, given by

the equation

ẋ = g(x, yeq(x), 0) . (12.4.9)

This is a one-dimensional system which may have stable and unstable equilib-

rium states corresponding to stable and saddle equilibrium states of the entire

system (12.4.6) or (12.4.7). The evolution along Meq is either limited to one

of the stable points, or it reaches a small neighborhood of the critical values of

x. Recall, that we consider x as a governing parameter for the fast system and

critical values of x are those ones which correspond to bifurcations of the fast

system. In particular, at some x∗ two equilibrium states (stable and saddle)

of the fast system may coalesce into a saddle-node. This corresponds to a

maximum (or a minimum) of x on Meq, so the value of x cannot further

Fig. 12.4.7. The fast circular motion along an invariant cylinder Mpo(ε) defines the Poincaré
map on the intersection line lpo(ε) with a cross-section.
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increase (respectively decrease) along the stable branch of Meq when it reaches

a small neighborhood of x∗. Instead, the orbit jumps to a new attractor, which

is the ω-limit set of the separatrix of the saddle-node for the fast system at

x = x∗, as shown in Fig. 12.4.8.

To find the evolution of x along the cylinderMpo we must find the equation

y = ypo(τ ;x) of the corresponding fast periodic orbits, then substitute y =

ypo(tε;x) into the right-hand side of the first equation of (12.4.6) and average

it over one period. The result of the averaging gives a first order approximation

for the x-motion along a stable branch of Mpo; namely:

ẋ = φ(x) ≡
1

T (x)

∫ T (x)

0

g(x, ypo(τ ;x)) dτ , (12.4.10)

where T (x) is the period of the fast periodic orbit corresponding to the given

value x. By chopping the cylinder by a cross-section transverse to the fast

motion, one finds a Poincaré map on the intersection line lpo(ε), as shown in

Fig. 12.4.7, whose first approximation is given by

x̄ = x+ εφ(x)T (x) . (12.4.11)

This is a one-dimensional map which may have stable and unstable fixed points

(at the zeros of φ(x)). They correspond to stable and saddle periodic orbits

of the system (12.4.6). The evolution along leq either converges to one of the

Fig. 12.4.8. A moment of the disruption occurs when an evolving stable node merges with
a saddle and disappears. The representative point jumps onto a stable cylinder.
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stable fixed points, or it reaches a small neighborhood of a critical value of

x. In particular, if at some x∗, the stable fast periodic orbit coalesces with a

saddle periodic orbit at a saddle-node, then the orbit must jump to an ω-limit

set of the unstable manifold of the saddle-node for the fast system at x = x∗.

Let us now suppose that a singularly perturbed system has a curve Meq of

stable equilibria of the fast system along which the x-variable decreases until it

reaches a critical value x∗
1
. At x = x∗

1
, the trajectories jump to a cylinder Mpo

of stable periodic orbits of the fast system. Assume that x increases along Mpo

and that x = x∗
2
is the critical value on Mpo where the orbits jump to Meq, as

depicted in Fig. 12.4.9 (note that y must be at least three-dimensional to make

this particular picture possible). Let the Poincaré map on the curve lpo(ε) have

a saddle-node fixed point. This corresponds to a saddle-node periodic orbit L

on the cylinder Mpo(ε). The unstable manifold of this periodic orbit coincides

with the Mpo(ε) above L. After the jump at x = x∗
2
, the manifold W u

L shrinks

to an extremely thin tube which goes along the curve Meq until it makes a

new jump at x = x∗
1
, after which it returns to L from below, winding around

Mpo. This gives exactly the configuration of W u
L required by Theorem 12.9;

moreover, it can be computed that the contraction condition required by the

theorem also holds here. Thus, the blue sky catastrophe occurs in the singularly

perturbed system under consideration.

Fig. 12.4.9. Mechanism of a blue sky catastrophe in fast–slow systems.



12.5. On embedding into the flow 681

In fact, the triggering from one stable branch to another is the most typical

phenomenon in singularly perturbed systems, so one may encounter for our

blue sky catastrophe every time when jumps between the branches of fast

periodic orbits and fast equilibrium states are observed.

To conclude we remark that the mechanism suggested above may be helpful

for a qualitative explanation of the frequently observed transitions from low-

amplitude (spiking) oscillations to large bursting ones in models of neuronal

activity, or to flow surges in jet engines.

12.5. On embedding into the flow

This section addresses the question on the local behavior of the flow near a

saddle-node periodic orbit. Since the dynamics in the directions transverse

to the center manifold is trivial (it is a strong contraction), we restrict our

consideration to the system on the center manifold:

ẋ = G(x, ϕ, µ), ϕ̇ = 1 , (12.5.1)

where x ∈ R
1, ϕ ∈ S

1, and G is a smooth function, 1-periodic in ϕ, such that

G(0, ϕ, 0) ≡ 0. We assume that L : {x = 0} is a saddle-node periodic orbit at

µ = 0, which disappears for µ > 0.

The main result which we establish here is that the evolution of the x-

variable in this system at µ ≥ 0 is well described by an autonomous equation

(i.e. independent on the angular variable ϕ). An immediate advantage of this

is that such equations are easily integrated (since x is one-dimensional) which

allows for obtaining long-time asymptotics for the local dynamics near a saddle-

node.

Let G be sufficiently smooth with respect to (x, ϕ, µ). It follows from

Theorem 3.23 (see Sec. 3.14) that we may always assume that some sufficiently

long finite segment of the Taylor expansion of G in powers of x and µ is

independent of ϕ.

We assume also that L is a simple saddle-node. Thus, the function G can

be represented in the form

G(x, ϕ, µ) = µ+ x2 +O(x2 + µ) (12.5.2)

for µ ≥ 0. As mentioned, the order of ϕ-dependent terms in G can be made

arbitrarily high. It follows that we may take an arbitrarily large k such that
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under an appropriate choice of the variable x, we will have

lim
µ→+0,x→0

1

Gk

∂G

∂ϕ
= 0 . (12.5.3)

We can also add

lim
1

Gk

∂2G

∂ϕ2
= 0 , lim

1

Gk

∂3G

∂ϕ3
= 0, · · · (12.5.4)

for an arbitrary fixed number of derivatives.

Lemma 12.3. For µ ≥ 0, there exists a smooth transformation of the angu-

lar variable ϕ 7→ Φ and a rescaling of time which reduce the system to the

autonomous form

ẋ = g̃(x, µ) , Φ̇ = 1 . (12.5.5)

As we mentioned, the importance of this result is that the flight time from

any cross-section x = constant to any other cross-section of this form is inde-

pendent on the initial point on this cross-section. Thus, when the system is

brought to the form (12.5.5), Lemma 12.2 is valid which, in turn, implies the

reduction principle of Theorem 12.4.

Note that when the system is in the form (12.5.5), the local Poincaré map

on the cross-section Φ = 0 coincides with the time 1 shift by the autonomous

flow given by ẋ = g̃(x, µ). In such cases, it is said that the map is embedded into

the flow. Strictly speaking, we did not prove yet that the local Poincaré map of

the original system (12.5.1) is embedded into the flow: original Poincaré map is

defined on a different cross-section ϕ = 0. However, the change of cross-section

is equivalent to a change of variables on the cross-section (see Sec. 3.1), but

the fact that a map can be embedded into a flow is valid independently on the

choice of coordinates.

Let us now prove the lemma. Let τ(x;x0, ϕ0, µ) be the time at which the

orbit of (12.5.1) starting with (x = x0, ϕ = ϕ0) attains the given value of x.

Since ẋ > 0 for µ > 0, and since ẋ 6= 0 at µ = 0, it follows that the function τ

is well-defined and smooth for µ > 0 at all small x and x0, as well as at µ = 0

for x0 and x of the same sign. Denote

u ≡
∂τ

∂ϕ0

.
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Let us show that as µ → +0, the function u has a finite limit, in smooth

topology, uniformly for all ϕ0 and for all small x0 and x such that x0 6= 0 and

x · x0 ≥ 05.

Indeed, integrating the system (12.5.1) gives:

ϕ = ϕ0 + τ(x;x0, ϕ0, µ) , (12.5.6)

τ(x;x0, ϕ0, µ) =

∫ x

x0

ds

G(s, ϕ0 + τ(s;x0, ϕ0, µ), µ)
. (12.5.7)

Differentiating (12.5.7) with respect to ϕ0, we find that

u(x) = −

∫ x

x0

1

G2

∂G

∂ϕ

∣
∣
∣
∣
(s,ϕ0+τ(s),µ)

[1 + u(s)]ds (12.5.8)

(we do not indicate the dependence of τ on (x0, ϕ0, µ) for the sake of brevity).

By (12.5.3), we have

G′ϕ

G2
→ 0 as µ→ +0, x→ 0 , (12.5.9)

so the integral operator on the right-hand side of (12.5.8) is contracting. Thus,

by the Banach contraction mapping principle, the function u can be found by

the successive approximation method as a unique continuous solution of the

integral Eq. (12.5.8).

By the contraction mapping principle, the solution u(x;x0, ϕ0, µ) depends

continuously on (x0, ϕ0, µ) when the integral operator on the right-hand side of

(12.5.8) depends on these data continuously. Note that the function τ entering

expression (12.5.8) has a finite limit at µ = 0 only if x · x0 > 0. Nevertheless,

by virtue of (12.5.9), the integral in (12.5.8) has a finite limit at x = 0. Thus,

the function u(x; x0, ϕ0, µ) has a finite limit at µ = 0 uniformly in the region

{x · x0 ≥ 0, x0 6= 0}.

Using estimates (12.5.4), we can repeat these arguments for any given num-

ber of derivatives of u with respect to ϕ0, x0 and µ (this number can be made

arbitrarily large by increasing the value of k in the estimates). This completes

the proof of the claim.

5It is important here that we have the convergence at x = 0, despite the function τ tends
to infinity as µ → +0, x → 0.
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Now, since the right-hand side of Eq. (12.5.8) for the function u is small for

small x, x0 and µ, it follows that the function u is small itself. Moreover, ob-

serve that it tends to zero uniformly as x−x0 → 0. The same conclusion holds

for the derivatives of u (because they are found from the integral equations of

the same type). Now we see that the function u(0;x0, ϕ0, µ) is well defined

and smooth for all µ ≥ 0 (a priori, it might happen here that, as µ → +0,

the function u, or some of its derivatives, had different limits at x0 = +0 and

x0 = −0, but all these limits are zero as we just have shown).

Let us now introduce a new angular variable

Φ = ϕ+

∫ ϕ

0

u(0;x, φ, µ)dφ . (12.5.10)

This is a correct transformation of variables because u is small. Moreover, u

is a derivative of a 1-periodic function (u = ∂τ
∂ϕ0

) — hence the integral in the

right-hand side defines a 1-periodic function indeed.

Let, in the old variables, an orbit which starts with (x0, ϕ0), reach a point

(x1, ϕ1) at the moment of time τ(x1;x0, ϕ0, µ). By differentiating the obvious

identity

τ(x1;x0, ϕ0, µ) = τ(0;x0, ϕ0, µ)− τ(0;x1, ϕ1, µ)

(the flight time from x0 to x1 is equal to the flight time from x0 to 0 plus the

flight time from 0 to x1), we obtain

∂ϕ1

∂ϕ0

=
1 + u(0;x0, ϕ0, µ)

1 + u(0;x1, ϕ1, µ)
.

Comparing this formula with (12.5.10), we see that in the new variables

∂Φ1

∂Φ0

≡ 1 . (12.5.11)

Let us rescale the time variable so that Φ̇ = 1. Now, the difference between

Φ1 and Φ0 is the flight time from x = x0 to x = x1. By (12.5.11), this time

is independent of the initial value Φ0 but depends only on (x0, x1, µ). This

means that dx
dΦ

is now independent of Φ, which gives the lemma.

As we mentioned, Lemma 12.3 may be reformulated as a possibility to

embed a sufficiently smooth one-dimensional map near a simple saddle-node

fixed point into a smooth one-dimensional flow for µ ≥ 0. An analogous

result was proved in [74] in connection with the problem on the appearance of
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separatrix connections between saddles at the disappearance of a semi-stable

cycle on the plane (see Sec. 8.1) and in [45] in connection with the problem of

appearance of strange attractors at the disappearance of a saddle-node periodic

orbit on a non-smooth torus. The embedding into a flow at µ = 0 is due to

Takens (see [97]). Our proof is based on the method from [152, 139]. In

[140], the existence of smooth embedding into the flow at µ = 0 was shown

without the high-smoothness assumption and without the assumption that the

saddle-node is simple.

While defining the essential map in Sec. 12.2, we used the following property

of rigidity of the embedding into the flow:

Lemma 12.4. Let the C
r-smooth (r ≥ 2) map

x̄ = x+ g(x) (12.5.12)

have a saddle-node at x = 0, i.e. g(0) = 0, g′(0) = 0, and g(x) > 0 for x 6= 0.

Let this map coincide with the time-1 map of the smooth flow

x̄ = x+ g̃(x) (12.5.13)

Then the function g̃ is defined uniquely by g.

Proof. Map (12.5.12) coincides with the time-1 map of flow (12.5.13) if and

only if
∫ x̄

x

ds

g̃(s)
= 1 . (12.5.14)

Since x = 0 must be the fixed point of the time shift of (12.5.13) with the

multiplier equal to 1, it follows that g̃ must vanish at zero along with g̃′.

Taking then the limit x→ 0 in (12.5.14) gives

lim
x→0

g̃(x)

g(x)
= 1 (12.5.15)

(for a proof, note that

∫ x̄

x

ds

g̃(s)
=

x̄− x

g̃(x) + 1

2
g̃′(x)(x̄− x) + o(x̄− x)

∼
g(x)

g̃(x)
;

here we use smoothness of g̃ at zero).
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Differentiating (12.5.14), we obtain

1 + g′(x)

g̃(x̄)
−

1

g̃(x)
= 0 . (12.5.16)

Therefore, if there exist two functions g̃1 and g̃2 which provide the embedding

of the map (12.5.12) into the flow, then (12.5.16) implies

g̃1(x̄)

g̃2(x̄)
=

g̃1(x)

g̃2(x)
.

In other words, the ratio g̃1/g̃2 is invariant with respect to map (12.5.12). Since

any orbit of (12.5.1) tends to zero either at forward or at backward iterations,

we obtain that
g̃1(x)

g̃2(x)
= lim

x→0

g̃1(x)

g̃2(x)
.

By virtue of (12.5.15) we have that g̃1 ≡ g̃2 which completes the proof of

Lemma 12.4.



Chapter 13

BIFURCATIONS OF HOMOCLINIC LOOPS

OF SADDLE EQUILIBRIUM STATES

The problem of the birth of a limit cycle from a separatrix loop to a saddle
had already been solved in the two-dimensional case by Andronov and Leon-
tovich at the end of the thirties, even though the corresponding publications
appeared years later. Their investigation on this subject embraced both the
generic case and the case of an arbitrarily high degeneracy. In the latter case,
their theory was related to the work of Dulac concerning the stability of the
separatrix loop. We present these results in the first three sections of this
chapter. Our proof of the main theorem differs from the classical treatment in
[12]. Namely, we explicitly reduce the problem to a study of the Poincaré map
near the loop. Such an approach allows one to extend the result naturally to
the multi-dimensional case. Moreover, by applying the center manifold the-
orem near a homoclinic loop (Chap. 6), one may, in some cases, reduce the
multi-dimensional problem directly to a two-dimensional problem.

We should, however, stress that such a reduction to the two-dimensional
case is not always possible. In particular, it cannot be performed when the
equilibrium state is a saddle-focus. Moreover, under certain conditions, we
run into an important new phenomenon when infinitely many saddle periodic
orbits coexist in a neighborhood of a homoclinic loop to a saddle-focus. Hence,
the problem of finding the stability boundaries of periodic orbits in multi-
dimensional systems requires a complete and incisive analysis of all cases of
homoclinic loops of codimension one, both with simple and complex dynamics.
This problem was solved by L. Shilnikov in the sixties.

We prove the main theorem on the birth of a stable periodic orbit from
a homoclinic loop to a saddle with the negative saddle value in Sec. 13.4.

687
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We also show in Secs. 13.4 and 13.5 (the latter deals with the case where the
dimension of the unstable manifold of the saddle is greater than one) that in
other cases either a saddle periodic orbit is born from the loop, or a system
exhibits complex dynamics (the case of a saddle-focus).

We study some homoclinic bifurcations of codimension two in Secs. 13.6.
In Sec. 13.7, we review the results on the bifurcations of a homoclinic-8, and
on the simplest heteroclinic cycles.

13.1. Stability of a separatrix loop on the plane

Suppose that a smooth two-dimensional system

ẋ = X(x) ,

has a structurally stable equilibrium state O(0, 0) of the saddle type. Recall
that in this case the saddle has two one-dimensional local invariant manifolds:
the stable manifold

W s
O = O ∪ Γ+

1 ∪ Γ+
2 ,

and the unstable manifold

Wu
O = O ∪ Γ−1 ∪ Γ−2 ,

where Γ+
1,2 denote the stable separatrices and Γ−1,2 denote the unstable separa-

trices of the saddle O.
If Γ+

1 and Γ−1 coincide, then Γ = Γ+
1 = Γ−1 is called a separatrix loop (or a

homoclinic loop). The closure Γ̄ of the separatrix loop is an invariant closed set
Γ̄ = O∪Γ. Our goal of this section is to describe the behavior of trajectories in
a sufficiently small neighborhood of Γ̄ (the bifurcations of the separatrix loop
will be analyzed in the following section).

A sufficiently small neighborhood of Γ̄ is an annulus, partitioned by Γ̄ into
two regions which we denote by U and V , as shown in Fig. 13.1.1. Let V

be the outer region within which there are two small pieces passing through
O which belong to the separatrices Γ+

2 and Γ−2 . It is clear that all other
trajectories from V must leave V both as t → −∞ and t → +∞. Hence, we
can define the stability of Γ̄ from one side only, i.e. from the side of the inner
region U . In this context we say that the separatrix loop is asymptotically
one-side stable if it is the ω-limit of all trajectories starting from U .1 On the

1It may turn out that Γ̄ is one-side stable, but not asymptotically. For example, in the
case of Hamiltonian systems the region U may be filled by periodic orbits.
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contrary, the separatrix loop is unstable if it is the α-limit of all trajectories
from U .

A basic method for studying the homoclinic loop is to construct a Poincaré
map T via a superposition of two maps: a local map T0 and a global map T1.
To do this let us choose two cross-sections S0 and S1 near the saddle, which
are both transverse to Γ, as shown in Fig. 13.1.2. The map T1 : S1 → S0 is

Fig. 13.1.1. A separatrix loop Γ̄ is within an annulus consisting of an outer neighborhood V
and an inner neighborhood U .

Fig. 13.1.2. The Poincaré map T is represented as the local map T0 by the orbits of the
system from the cross-section S0 to S1 along with the global map T1 from S1 to S0.
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defined as follows: let us take any point on S1; then its image by T1 is the point
of intersection of its trajectory with S0. Since the flight time from S1 to S0 is
bounded, it follows that T1 is a diffeomorphism and it is well approximated by
the Taylor expansion near the point of intersection of Γ with S1. As for the
map T0 : S0 → S1, the situation here is less obvious because the trajectories
come arbitrarily close to the saddle. Therefore, the flight time from S0 to S1

is not bounded from above.
Hence, the first problem in studying homoclinic loops is to obtain

appropriate/suitable estimates for the local map T0. To do this we will re-
duce the system in a neighborhood of O to a special form (see Appendix A in
Part I of this book).

The problem of stability of a separatrix loop on a plane is easily solved
when the so-called saddle value

σ0 = div X|O
is non-zero at the saddle. In this case, we have the following result:

Theorem 13.1. If σ0 < 0, the homoclinic loop Γ̄ is asymptotically one-side
stable. If σ0 > 0, the homoclinic loop Γ̄ is unstable.

Here we prove this theorem for the case where the system is Cr-smooth
with r ≥ 2. In the C1-case the theorem is still true (see the next section).

Let us straighten the local stable and unstable invariant manifolds. Then
the system near O takes the form (see Sec. 2.7)

ẋ = (λ + f(x, y))x , ẏ = (γ + g(x, y))y , (13.1.1)

where λ < 0 < γ, and the Cr−1-smooth functions f and g vanish at the origin.
Observe that σ0 = λ+γ. Recall, that we can make an additional Cr−1-smooth
transformation of coordinates such that the system will retain its form (13.1.1)
and such that the functions f and g will satisfy the following identities (see
Theorem 2.17)

f(x, 0) ≡ 0 , f(0, y) ≡ 0 , (13.1.2)

g(x, 0) ≡ 0 , g(0, y) ≡ 0 . (13.1.3)

It is known (see, for example, [27]) that a Cr-system (r ≥ 2) near a saddle
on the plane can be reduced to the linear form by a C1-transformation, and
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finding the map T0 in that case would be very easy. However, the form (13.1.1)–
(13.1.3) suffices for our purposes because there is no essential loss of smoothness
in this case. Moreover, the method we will develop can be generalized directly
to the multi-dimensional case.

Let us rescale the time dt → (γ + g(x, y))−1dt. The system then assumes
the form

ẋ = (−ν + f(x, y))x, ẏ = y (13.1.4)

with some new function f which still satisfies (13.1.2). Here, the ratio ν = |λ/γ|
is called the saddle index. Note that ν > 1 corresponds to a negative saddle
value σ0, and ν < 1 corresponds to σ0 > 0, respectively.

Let us choose a small d > 0 and let x = d be the cross-section S0 and y = d

be the cross-section S1 (we assume that the separatrices Γ+
1 and Γ−1 adjoin the

saddle point O from the side of positive x and y, respectively). If the system
were locally linear (i.e., if f were identically zero in (13.1.4)), the solution with
the initial point (d, y0) on S0 would be

x = e−νtd , y = y0e
t .

The flight time τ from S0 to S1 can be found from the condition

d = y0e
τ .

Hence,
τ = − ln

y0

d

(it is evident that the trajectory starting from y0 ≤ 0 never reaches S1). Thus,
in the linear case, the point (x1, d) of the intersection of the trajectory with
the cross-section S1 is found as

x1 = e−νtd = yν
0 d1−ν .

In the general case, where f is non-zero, this formula for the local map T0 does
not change significantly.

Lemma 13.1. If the function f satisfies identity (13.1.2), then the local map
for the system (13.1.4) assumes the form

x1 = yν
0d1−ν + o(yν

0 ) . (13.1.5)
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Proof. One may show that a solution of (13.1.4) which starts from S0 at t = 0
and hits S1 at t = τ satisfies

y(t) = et−τd ,

x(t) = e−νtd +
∫ t

0

e−ν(t−s)f(x(s), y(s)) x(s)ds .
(13.1.6)

Here, y(0) ≡ y0 is the coordinate of the initial point on S0 and x(τ) ≡ x1 is
the coordinate of the point of intersection of the trajectory with S1.

As shown in Sec. 2.8, the integral equation (13.1.6) is solved by the method
of successive approximations, i.e. the solution x(t) is the limit of a sequence
xn(t) defined inductively by

xn+1(t) = e−νtd +
∫ t

0

e−ν(t−s)f(xn(s), es−τd)xn(s)ds , (13.1.7)

where we take x1(t) = e−νtd as the first approximation. It is easy to see that
all further approximations satisfy

|xn(t)| ≤ 2de−νt (13.1.8)

for t ∈ [0, τ ]. Indeed, by induction, it is enough to show that
∫ t

0

|f(xn(s), es−τd)|ds ≤ 1
2

,

provided (13.1.8) is satisfied. Since f is a smooth function vanishing at y = 0,
it follows that |f(x, y)| ≤ C|y| for some constant C. Thus, the above integral
can be estimated by

Cde−τ

∫ t

0

esds ≤ Cd .

Obviously, this integral is less than 1
2 provided d is sufficiently small. This

proves the inequality (13.1.8). Taking the limit n → +∞, we have found that
the solution x(t) of the system satisfies the same estimate, i.e.

x(t) ≤ 2de−νt . (13.1.9)

By assumption [see (13.1.2)], the function f vanishes at y = 0. Therefore,

|f(x, y)| ≤ |y|max |f ′y| ,
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where the maximum is taken over |y| ≤ d and for a fixed value of x. Since f

vanishes at x = 0 as well, we have f ′y(0, y) ≡ 0. Hence, the inequality above
gives us the following estimate

|f(x, y)| ≤ |y| o(1)x→0 .

Thus, in (13.1.6), we have

|f(x(s), y(s))| ≤ e−τo(es) .

Hence, taking into account (13.1.9), we obtain
∣∣∣∣
∫ t

0

e−ν(t−s)f(x(s), y(s))x(s)ds

∣∣∣∣ ≤ e−νte−τo(et) .

At t = τ , we have from (13.1.6) that

x1 ≡ x(τ) = e−ντd + o(e−ντ ) . (13.1.10)

The flight time τ is found from the first equation of (13.1.6) at t = 0:

y0 = e−τd .

Substituting this expression into (13.1.10) we obtain Lemma 13.1.

Remark. By rescaling variables x0 → x0d and y1 → y1d one can always
assume (and we will henceforth do so) that d = 1 in (13.1.5). Note also that
one can differentiate the formula (13.1.5): the sth (s = 1, . . . , r− 1) derivative
of the o(yν

0 )-term in (13.1.5) can be easily estimated as o(yν−s
0 ). We skip the

proof of this estimate for the derivatives because it goes absolutely along the
same lines as the proof of an analogous statement (Lemma 3.6) presented in
Appendix B in Part I of this book. A close statement will be also proven in
Sec. 13.8 [see (13.8.30)–(13.8.33)]. By applying these estimates to our situation
we find that if the system is Cr-smooth with r ≥ 3, then after a reduction to
the form (13.1.1)–(13.1.3), the local map can be written in the form

x1 = yν
0 + o(yν̃

0 ) (13.1.11)

for any ν̃ such that ν < ν̃ < ν +min(1, ν). Moreover, the sth (s = 1, . . . , r−2)
derivative of the o(yν̃

0 ) term is estimated by o(yν̃−s
0 ).
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Let us now consider the global map T1 : S1 → S0 defined by the orbits
close to the piece of Γ that lies outside of a small neighborhood of O. Recall
that this global map is a diffeomorphism. The fact that there is a homoclinic
loop to the saddle O means that the point x1 = 0 on S1 is mapped by T1 into
y0 = 0 on S0. Thus, the map T1 can be written in the form

ȳ0 = Ax1 + h(x1) ,

where A 6= 0, and h(x) tends to zero along with its first derivative. Observe
that since the problem under consideration is planar, we have A > 0 (the case
A < 0 is possible for systems on a non-orientable two-dimensional surface).

Finally, we arrive at the following formula for the map T = T1 ◦ T0:

ȳ0 = Ayν
0 + o(yν

0 ) . (13.1.12)

It is immediately seen from the above formula that ȳ0 < y0 for any suffi-
ciently small positive y0, provided ν > 1 (or, provided that ν = 1 and A < 1).
Therefore, in this case, the iterations of any point by the map T converge to
the fixed point y0 = 0. The latter is the point of intersection of the separa-
trix loop Γ with S0. It follows that any trajectory starting from the side of
a positive y0 must converge to the loop Γ as t → +∞. This means that the
separatrix loop is asymptotically one-side stable if σ0 < 0, or if σ0 = 0 and
A < 1.

If ν < 1 (i.e. σ0 > 0), or if ν = 1 (i.e. σ0 = 0), but A > 1, we have y0 < ȳ0

in (13.1.12). Therefore, the backward iterations of any point by the map T

converge to the fixed point y0 = 0 in this case. This means that the homoclinic
loop is one-side unstable here. This completes the proof.

Observe also that we have meanwhile proven the following result.

Theorem 13.2. Let σ0 = 0. Then, the separatrix loop is stable if A < 1, and
unstable if A > 1.

Remark. As noted above, Theorem 13.1 holds even for C1-smooth systems.
However, Theorem 13.2 does not hold in the C1-case. To show this let us
consider the following counterexample. Assume that a system near the saddle
is represented in the following form

ẋ = −x , ẏ = y

[
1 +

1
| ln y|+ 1

]
,
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where |x| ≤ 1 and |y| ≤ 1. Its solution, starting from the cross-section S0 :
{x = 1} with a positive y0, is given by

x = e−t , y(| ln y|+ 2) = ety0(| ln y0|+ 2) .

Hence, the local map T0 from S0 to S1 : {y = 1} is given by

x1 =
1
2
y0(| ln y0|+ 2) .

Assume also the global map T1 is linear, i.e. ȳ0 = Ax1. Then, the Poincaré
map T = T1 ◦ T0 near the loop is given by

ȳ0 =
1
2
Ay0(| ln y0|+ 2) .

Obviously, since ȳ0 > y0 for all small y0, it follows that the homoclinic loop
is unstable here, no matter what the value of A is.

The above counterexample shows that Theorem 13.2 is valid only if the
system is Cr-smooth with r ≥ 2. Note that in this case the integral

s1 =
∫ +∞

−∞
div X(ϕ(t))dt

is convergent [where (x, y) = ϕ(t) is a parametric equation of the separatrix
loop Γ; recall that σ0 = 0 implies div X(ϕ(t)) → 0 as t → ±∞]. The real
number s1 is called the first separatrix value. It is obvious that it is invariant
with respect to smooth coordinate transformations.

One can show that when σ0 = 0, the derivative A of the global map T1 :
S1 → S0 at the point x1 = 0 can be found2 as follows:

A = es1 ,

provided that W s and Wu are locally straightened [i.e. the system is in the
form (13.1.1)] and the identities (13.1.2) and (13.1.3) hold. Therefore, the
value A is also an invariant in this case.

Let us now elaborate on the case where σ0 = 0, and s1 = 0. First of all, we
will need to reduce the system (13.1.1) near the saddle to some normal form.

2Independent of the choice of the constant d which defines the position of the cross-
sections S0 and S1.
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Observe that since σ0 ≡ λ + γ = 0, there emerge the following resonances

λ = (m + 1)λ + mγ ,

γ = mλ + (m + 1)γ ,

where m is any positive integer. These resonances are the same ones we met
in the case of a weak focus. In order to analyze this situation, we need to
introduce a more refined form of the system which is called a canonical normal
form.

Lemma 13.2. A Cr−(2n+1)-transformation, where (r ≥ 2n + 2), reduces a
Cr-smooth system near a resonant saddle with σ0 = 0 to the following form:

ẋ = −x(1− σ1xy − · · · − σn(xy)n − (xy)nf(x, y)) ,

ẏ = y ,
(13.1.13)

where the Cr−(2n+1)-smooth function f vanishes identically at both x = 0 and
y = 0 (see (13.1.2)).

The above coefficients σi, . . . , σn are called saddle values. Although they are
not all invariant with respect to smooth coordinate transformations, however
the number of the first non-zero saddle value is defined by the system uniquely
(because it is the coefficient of the first non-zero resonant term), and is therefore
invariant.

The above canonical normal form was first constructed by Dulac [47] in the
analytic case. The smooth case was considered by E.A. Leontovich [85]. Below
we briefly review the proof by Leontovich.

Note that we have already included the result of Lemma 13.2 for n = 0
[see (13.1.4)] as part of a more general statement (Theorem 2.17). Thus, we
can proceed further by induction. Namely, let us assume that the system has
already been reduced to the form (13.1.13) for some n = k. Then, if r ≥ 2k+4,
the Cr−(2k+1)-smooth function f is, at least, C3-smooth, and, since f vanishes
at both x = 0 and y = 0, it can be written in the form

f(x, y) = xyF (x, y) ,

where F is a Cr−(2k+3)-smooth function. Denote

F (x, y) = σk+1 + φ1(x) + φ2(y) + f̃(x, y) ,
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where φ1 and φ2 vanish at x = 0 or y = 0, respectively, and f̃ vanishes at both
x = 0 and y = 0. By construction, since

σk+1 = F (0, 0) = f ′′xy(0, 0) ,

φ1(x) = F (x, 0)− F (0, 0) ,

φ2(y) = F (0, y)− F (0, 0) ,

it follows that the functions φ1,2 and f̃ possess the same smoothness as that
of F .

Thus, the system can be rewritten as

ẋ = −x

(
1−

k+1∑

i=1

σi(xy)i − (xy)k+1f̃(x, y)

)
+ x(xy)k+1(φ1(x) + φ2(y)) ,

ẏ = y .

Now note that the transformation

xnew = x(1 + α(x)(xy)k+1 − β(y)(xy)k+1)

brings the system to the form (13.1.13) for n = k + 1 if

α(x) =
∫ 1

0

φ1(xs)
ds

s
, β(y) =

∫ 1

0

φ2(ys)
ds

s
. (13.1.14)

Since φ1,2 are smooth functions vanishing at zero, the above integrals are
well-defined. Moreover, α and β have the same smoothness as φ1,2; i.e. the
coordinate transformation is Cr−(2n+1)-smooth as required. Continuing further
by induction, we obtain the result of the lemma.

Observe that Leontovich’s result is much broader. Namely, while deriv-
ing estimates for the solution of the system in the canonical form, she had
shown that after an additional smooth change of coordinates a system of the
form (13.1.13) becomes integrable. Explicitly, it was shown in [22] that in the
C∞-smooth case with σ1 = · · · = σn−1 = 0 and σn 6= 0, the system near a
saddle can be reduced by a C∞-transformation to the following integrable form

ẋ = −x(1− σn(xy)n − σ2n(xy)2n) ,

ẏ = y .

It also follows that when all saddle values vanish (i.e. in the infinitely degen-
erate case) the system is locally reduced to the linear form.
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Let us now proceed further and evaluate the local map T0 : S0 → S1 for
the system in the canonical form (13.1.13). Let σn be the first non-zero saddle
value in (13.1.13), i.e. the system assumes the form

ẋ = −x(1− σn(xy)n − (xy)nf(x, y)) ,

ẏ = y .
(13.1.15)

As before, we assume that the homoclinic loop Γ adjoins the saddle from the
side of positive x and y. Note that this assumption fixes the direction of the
x and y axes and, therefore, it holds the sign of the nth saddle value σn fixed.
Let us choose a small d > 0 and define the cross-sections S0 and S1 by {x = d}
and {y = d}, respectively.

The solution of (13.1.15) which starts from S0 at t = 0 and reaches S1 at
t = τ satisfies

y(t) = et−τd ,

x(t) = e−td +
∫ t

0

e−(t−s)x(s) (x(s)y(s))n(σn + f(x(s), y(s)))ds .
(13.1.16)

This integral equation can be solved by the successive approximation method
(see Sec. 2.8). Let us choose

x(t) = e−td

as our first approximation. Substituting this expression into the right-hand
side of the integral equation, we obtain the second approximation

x(t) = e−td + d2n+1σnte−te−nτ + e−to(e−nτ )

(here we must make use of the observation that since f is smooth and vanishes
at both x = 0 and y = 0, it satisfies the sublinear estimate |f | ≤ |y|o(1)x→0;
see the proof of Lemma 13.1).

It is easy to see that all further approximations will have the same form,
and so does the solution x(t). Hence, we obtain

y(0) = e−τd , x(τ) = e−τd + d2n+1σnτe−(n+1)τ + o(e−(n+1)τ ) .

Thus, denoting by y0(≡ y(0)/d), the coordinate of the initial point on S0 and
by x1(≡ x(τ)/d), the coordinate of the point of intersection of the trajectory
with S1, we obtain the following formula for the local map T0:

x1 = y0 + d2nσnyn+1
0 | ln y0|+ o(yn+1

0 ) .
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A Taylor expansion for the global map T1 : S1 → S0 near the separatrix loop
Γ can be written in the form

ȳ0 = x1 + s2x
2
1 + · · ·+ smxm

1 + · · ·

(recall that we have assumed the first saddle value s1 = 0, which is equivalent
to A ≡ dȳ0

dx1
= 1). Let s2 = · · · = sm−1 = 0 and sm 6= 0 for some m. In this

case the Poincaré map T = T1 ◦ T0 assumes the form

ȳ0 = y0 + σ̃nyn+1
0 | ln y0|+ smym

0 + · · · , (13.1.17)

where σ̃n has the same sign as σn; the ellipsis denote terms of order higher
than at least one of the two leading terms. Finally, if m ≤ n in (13.1.17), then
ȳ0 can be represented by:

ȳ0 = y0 + smym
0 + · · · ; (13.1.18)

or by
ȳ0 = y0 + σ̃nyn+1

0 | ln y0|+ · · · (13.1.19)

if n < m.
It follows that the fixed point y0 = 0 is stable if sm < 0 in (13.1.18), or if

σ̃n < 0 in (13.1.19) (the latter condition is equivalent to σn < 0). Vice versa,
the fixed point is unstable if sm or, respectively, σn, is positive.

Thus, we arrive at the following result. Consider the series

σ0, s1, σ1, . . . , sn, σn, sn+1, . . . . (13.1.20)

called a Dulac sequence. Suppose that not all entries in the sequence are
vanishing. Then, the following theorem takes place:

Theorem 13.3. The stability of a separatrix loop is determined by the first
non-zero entry in a Dulac sequence: if the first non-zero entry is negative, then
the loop is stable. Otherwise, if it is positive, then the loop is unstable.

This theorem in the analytic case is due to Dulac. He had also shown that
if the system is analytic and all entries of the sequence (13.1.20) are zero, then
the system is integrable (Hamiltonian), and a small neighborhood U of the
separatrix loop is filled by periodic orbits. These results had enabled Dulac
to show that in the nondegenerate case of polynomial vector fields limit cycles
cannot accumulate to a separatrix loop.
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13.2. Bifurcation of a limit cycle from a separatrix
loop of a saddle with non-zero saddle value

Two-dimensional systems having a separatrix loop to a saddle with non-zero
first saddle value σ0 form a bifurcation set of codimension one. Therefore, we
can study such homoclinic bifurcations using one-parameter families.

Consider a continuous one-parameter family Xµ of Cr-smooth (r ≥ 1)
systems on a plane which have a saddle equilibrium state Oµ. Suppose that at
µ = 0, the system has a separatrix loop of the saddle; i.e. the separatrix Γ−1
coincides with the separatrix Γ+

1 at µ = 0.
We assume that the family Xµ is defined in such a way that for µ 6= 0, the

loop may be broken and split so that if µ > 0, the unstable separatrix Γ−1 (µ)
goes inwards the loop and enters the inner neighborhood U as t → +∞; and
if µ < 0, it goes outwards, i.e. it gets into the outer neighborhood V .

Theorem 13.4. (Andronov and Leontovich) Let σ0 6= 0.

(1) If σ0 < 0, then for sufficiently small µ > 0, there exists a unique stable
limit cycle L(µ) in U which as µ → +0 gets closer to the saddle and
becomes the separatrix loop at µ = 0 (see Fig. 13.2.1). When µ < 0,

there are no limit cycles.
(2) If σ0 > 0, then for sufficiently small µ < 0 there exists a unique unstable

cycle L(µ) in U which becomes the separatrix loop Γ̄ as µ → −0 (see
Fig. 13.2.2). When µ > 0, there are no limit cycles.

µ < 0 µ = 0 µ > 0

Fig. 13.2.1. Planar bifurcation of a stable separatrix loop of a saddle with σ0 < 0.
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µ < 0 µ = 0 µ > 0

Fig. 13.2.2. Bifurcation of an unstable separatrix loop of a saddle with σ0 > 0 in R2.

Remark 1. It is obvious that the case σ0 > 0 reduces to the case σ0 < 0 by a
reversion of the time variable t → −t. Therefore, the second part of the above
theorem follows immediately from its first part.

Remark 2. The proof by Andronov and Leontovich was given under the
assumption that the system is C1-smooth. This was in fact the first example
where the vector fields had been required to possess only a minimal degree of
smoothness. We will see later that the possibility to work with the case of
low smoothness will become especially relevant for the analysis of the multi-
dimensional case.

The original proof of the Andronov-Leontovich theorem assumes that the
system is defined on the plane. We choose here a somewhat different approach
which can be easily adopted to the case of systems defined on non-orientable
two-dimensional surfaces as well.

Let us introduce coordinates (x, y) near the saddle O. Without loss of
generality we may assume that the saddle resides at the origin for all µ. We
may also assume that the unstable separatrices are tangent at O to the y-axis
and the stable separatrices are tangent to the x-axis. Thus, the system can be
written in the following form

ẋ = λ(µ)x + p(x, y, µ) ≡ P (x, y, µ)

ẏ = γ(µ)y + q(x, y, µ) ≡ Q(x, y, µ)
(13.2.1)

where p and q vanish at the origin along with their derivatives with res-
pect to (x, y); the characteristic exponents λ(µ) and γ(µ) are such that
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λ(µ) < 0 < γ(µ). By definition, the saddle value is given by

σ0(µ) = λ(µ) + γ(µ) .

Let the separatrix Γ+
1 enter the saddle from the half-plane x > 0, and let

the separatrix Γ−1 leave O towards positive values of y. Since we have not
yet straightened the invariant manifolds, the local equations of Γ+

1 and Γ−1 are
given by, respectively,

y = ϕ(x, µ) , x > 0 , and x = ψ(y, µ) , y > 0 ,

where ϕ and ψ vanish at the origin along with their derivatives with respect
to x and y.

Let us choose a small positive d and consider two cross-sections S0 : {x = d}
and S1 : {y = d}. Just like in the previous section, we are going to reduce our
problem to a study of the Poincaré map T : S0 → S0 formed by a composition
of the local map T0 : S0 → S1 and the global map T1 : S1 → S0, both defined
by the trajectories of the system.

As in the preceding section, the flight time of a nearby trajectory from
S1 to S0 along the separatrix loop is bounded. Therefore, the global map
T1 is a diffeomorphism of a small neighborhood of the point M− = Γ−1 ∩ S1

into a small neighborhood of the point M+ = Γ+
1 ∩ S0. By our assumption,

T1M
− = M+ at µ = 0. Thus, the map T1 is written as

ȳ0 − y+ = a(µ) + A(µ)(x1 − x−) + o(x1 − x−) . (13.2.2)

Here we denote the coordinate on S1 by x1 and the coordinate on S0 by y0;
then, the x-coordinate of M− is x− = ψ(d, µ) and the y-coordinate of M+ is
y+ = ϕ(d, µ). The coefficient A(µ) is non-zero because T1 is a diffeomorphism.
Moreover, A > 0 (always) for systems defined on the plane.

The term a(µ) governs the splitting of the separatrix loop (see Fig. 13.2.3):
it follows from (13.2.2) that a(µ) is equal to the difference between the y-
coordinates of the points M+ and T1M

− (the latter is the point where the
unstable separatrix Γ−1 first intersects S0). By assumption, the separatrix
splits inwards for µ > 0, and outwards for µ < 0. Thus, sign a(µ) = sign µ.

Let us now study the local map T0. It maps the interval y0 > y+ on the
cross-section S0 into the interval x1 > x− on S1. Let us represent this map as

x1 − x− = η(y0 − y+, µ) . (13.2.3)



13.2. Bifurcation of a limit cycle from a separatrix loop . . . 703

Fig. 13.2.3. An illustration to Theorem 13.4.

We also denote by τ(y0, µ) the flight time from the point (d, y0) on S0 to the
point (η(y0−y+, µ), d) on S1. Obviously, η(y0−y+, µ) → 0 and τ(y0, µ) → +∞
as y0 → y+.

Lemma 13.3. The map T0 is contracting if σ0 = λ + γ < 0 and expanding if
σ0 = λ + γ > 0. Furthermore,

lim
y0→y+

∂η

∂y0
=

{
0 for σ0 < 0

+∞ for σ0 > 0
(13.2.4)

uniformly for all small µ.

Proof. It suffices to consider the case σ0 < 0 (the case σ0 < 0 is reduced to
this one by a reversion of time). The idea of the proof is relatively simple:
since we assume that the divergence of the vector field at O is negative, it is
also negative in a small neighborhood of O. This implies that the flow near O

contracts areas. The latter immediately implies that the Poincaré map between
any two cross-sections is indeed a contraction.

Let us be more precise. Denote by u(t) the derivative of the solution
(x(t), y(t)) of the system (13.2.1) with respect to initial conditions (x0, y0).
This is a matrix which satisfies the variational equation

u̇ =

(
Px Py

Qx Qy

)

x=x(t)
y=y(t)

u
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with the initial condition u(0) = I. Therefore, the determinant of u satisfies
the following equation

d

dt
det u = tr

(
Px Py

Qx Qy

)
detu

which yields

detu(t) = e

∫ t

0
(λ+γ+Px(x(s),y(s))+Qy(x(s),y(s)))ds

.

Since we assume that λ+γ < 0 and that the derivatives of P and Q vanish
at O, it follows that the determinant of u decreases exponentially all the time
until the trajectory (x(t), y(t)) stays in a small neighborhood of O:

detu(t) ≤ eσ̄t (13.2.5)

for some σ̄ < 0. This means indeed that the flow defined by system (13.2.1)
contracts areas exponentially; namely, for any two vectors e1 and e2

[u(t)e1, u(t)e2] = det u(t)[e1, e2] ≤ eσ̄t[e1, e2] , (13.2.6)

where [e1, e2] denotes the area of the parallelogram spanned by e1 and e2, and
[u(t)e1, u(t)e2] is the area of the parallelogram spanned by the images of e1

and e2 by the linearized flow.
Another fact we need is (see Sec. 3.11) that the matrix u(t) takes the phase

velocity vector at the point (x0, y0) into the phase velocity vector at the point
(x(t), y(t)): (

P (x(t), y(t))
Q(x(t), y(t))

)
= u(t)

(
P (x0, y0)
Q(x0, y0)

)
. (13.2.7)

Let us now choose a point (x0 = d, y0) on the cross-section S0. Its orbit
hits S1 at a point (x(τ) = η(y0 − y+) , y(τ) = d) at some time τ(y0). The
derivative η′(y0 − y+) is given by

η′(y0 − y+) =
∂x(τ)
∂y0

+ ẋ(τ)τ ′(y0) ,

where τ ′(y0) is found from the condition

∂y(τ)
∂y0

+ ẏ(τ)τ ′(y0) = 0 .
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Hence it follows that

η′(y0 − y+)ẏ(τ) = [e′1, e
′
2] = [u(τ)e1, u(τ)e2] ≤ eσ̄τ |ẋ(0)| , (13.2.8)

where e1 = (0, 1) (the unit vector parallel to S0), e′1 = (∂x(τ)
∂y0

, ∂y(τ)
∂y0

) [recall
that it is equal to u(τ)e1 by definition of u(t)) and e2 and e′2 are the phase
velocity vectors at the points (x0, y0) and (x(τ), y(τ)], respectively:

e2 = (ẋ(0), ẏ(0)) ≡ (P (x0, y0), Q(x0, y0)) ,

and
e′2 = (ẋ(τ), ẏ(τ)) ≡ (P (x(τ), y(τ)), Q(x(τ), y(τ))) ,

where we have used relations (13.2.6) and (13.2.7) in deriving (13.2.8).
Observe now that since y(τ) = d, it follows that ẏ(τ)(= γd + q(x(τ), d)) is

bounded away from zero. Hence, by (13.2.8)

η′(y0 − y+) = O(eσ̄τ ) ,

which gives the lemma because τ(y0) → +∞ as y0 → y+, and because σ̄ < 0
due to the assumption λ + γ < 0. End of the proof.

Thus, denoting v = y0 − y+ we have from (13.2.2) and (13.2.3) that the
Poincaré map T : S0 → S0 can be written in the form

v̄ = a(µ) + A(µ)η(v, µ) + o(η) , v > 0 , (13.2.9)

where a(µ) is the splitting parameter of the separatrices Γ−1 and Γ+
1 and η is an

increasing function which is either strongly contracting (λ+γ < 0) or strongly
expanding (λ + γ > 0). Recall that a(µ) has the same sign as µ (in general,
a(µ) is proportional to µ, but we do not use this property).

The analysis of such maps is obvious. The associated Lamerey diagrams
are shown in Figs. 13.2.4 (λ + γ < 0) and 13.2.5 (λ + γ > 0). When λ + γ < 0,
the fixed point v∗(µ) of the map exists for µ ≥ 0 only. It corresponds to the
limit cycle L−(µ) for µ > 0 and to the separatrix loop at µ = 0 [formally,
the map T is not defined at v = 0, but we define it by continuity, assuming
T (M+) = T1(M−)]. Since the map T is a contraction, the fixed point is stable
(one-side stable at µ = 0). Correspondingly, L−(µ) is a stable cycle and the
loop Γ is also stable (this generalizes Theorem 13.1.1 of the preceding section
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µ < 0 µ = 0 µ > 0

Fig. 13.2.4. Lamerey diagram of the Poincaré map corresponding to the bifurcation in
Fig. 13.2.1.

µ < 0 µ = 0 µ > 0

Fig. 13.2.5. Lamerey diagram of the Poincaré map corresponding to the bifurcation in
Fig. 13.2.2.

for the C1-case). Note that for µ > 0, the separatrix Γ−1 (µ) tends to L−(µ) as
t → +∞.

In the case λ+γ > 0, the fixed point v∗(µ) is unstable and exists for µ ≤ 0
only. It corresponds to the unstable limit cycle L+(µ) for µ < 0 and to the
separatrix loop at µ = 0, respectively.

Remark 3. When the system is at least C2-smooth one may introduce local
coordinates near O (see Lemma 13.1) so that

η(v) = vν(µ) + o(vν(µ)) ,

where ν = |λ/γ| is the saddle index. In this case the fixed point of the map
(13.2.9) satisfies the following relation:

v∗ = a(µ) + A(µ)(v∗)ν(µ) + · · · ,
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whence we have

v∗(µ) ∼





a(µ) for λ + γ < 0
(
− a(µ)

A(µ)

) 1
ν(µ)

for λ + γ > 0 .
(13.2.10)

Remark 4. The above proof can be easily adopted to the case of a separatrix
loop on a general two-dimensional surface, regardless whether it is orientable
or non-orientable. In both cases the map will have the form (13.2.9). Note,
however, that if a small neighborhood of the separatrix loop is homeomorphic
to an annulus, then A > 0; and if a neighborhood of Γ̄ is a Möbius band, then
A < 0 (the latter corresponds, obviously, to the non-orientable case). In the
case A > 0, the Andronov-Leontovich theorem holds without changes.

Let us now consider the case A < 0 in more detail. First, let us examine the
associated Lamerey diagram (Fig. 13.2.6) with A < 0 when ν > 1 (λ + γ < 0).
Just as in the orientable case, a stable fixed point exists for µ > 0: indeed, the
map T is decreasing and contracting, so the interval [0, a(µ) = T (0)] is mapped
into the inside itself by T , which implies the existence of a unique stable fixed
point on this interval by virtue of the Banach contraction mapping principle.

The Lamerey diagram corresponding to the case ν(µ) < 1 is shown in
Fig. 13.2.7. Here, in contrast to the orientable case, an unstable fixed point
v∗(µ) exists for µ > 0.

Note that in the orientable case (A > 0), the separatrix loop at µ = 0 is a
limit trajectory (ω-limit if ν > 1, or α-limit if ν < 1) for nearby trajectories
from the inner neighborhood U . On the contrary, in the non-orientable case

µ < 0 µ = 0 µ > 0

Fig. 13.2.6. Lamerey diagram of the Poincaré map for the non-orientable separatrix loop
with σ0 < 0.
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µ < 0 µ = 0 µ > 0

Fig. 13.2.7. Lamerey diagram for the non-orientable separatrix loop to a saddle with σ0 > 0.

(A < 0), each point of Γ is non-wandering but it cannot be a limit point. This
shows that while limit points are non-wandering (see Chap. 8), the converse is
not true.

Remark 5. The splitting parameter a(µ) may be an arbitrary continuous
function of µ satisfying the above sign condition. When the system depends on
µ smoothly, the family Xµ is transverse to the bifurcation surface if a′(0) 6= 0.
In this case, one can always assume that a(µ) ≡ µ.

Remark 6. It follows from the above analysis that all properties of the
Poincaré map of the transverse family Xµ are exhibited by the simplified map

ȳ = µ± yν , (13.2.11)

where ν 6= 1. The sign “+” corresponds to the orientable case, and the sign
“−” corresponds to the non-orientable case. In essence, the map (13.2.11) is a
kind of a normal form of the Poincaré map near a separatrix loop with non-zero
saddle value.

We can now discuss the bifurcation of an equilibrium state with two zero
characteristic exponents. This bifurcation is worth being distinguished because
its analysis includes nearly all bifurcations of codimension one.

In general, system on the center manifold near an equilibrium state (0, 0)
with a couple of zero characteristic exponents can be represented by

ẋ = y + g(x, y) ,

ẏ = f(x, y) ,
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where f and g vanish at the origin along with their first derivatives. Note that
we assume that the linearization matrix at the origin has a Jordan box. In this
case, we may introduce y + g(x, y) as a new y-variable and recast the system
into the form

ẋ = y ,

ẏ = ax2 + bxy + h(x, y) ,
(13.2.12)

where h(x, y) is of third order of smallness.
Let us suppose that the coefficients a and b do not vanish. One can now

rescale the phase and time variables so that the system assumes the form

ẋ = y ,

ẏ = x2 ± xy + h̃(x, y) ,
(13.2.13)

where the sign “+” corresponds to b > 0, and the sign “−” corresponds to
b < 0. Observe that the transformation t → −t, y → −y reduces the first case
to the second one. Let us choose the sign “−” in front of xy in (13.2.13).

The behavior of trajectories of system (13.2.13) near O(0, 0) is shown in
Fig. 13.2.8. To investigate the bifurcations near this point let us consider a
two-parameter family which can be written in the following form:

ẋ = y ,

ẏ = µ1 + µ2x + x2 − xy + h̃(x, y, µ) .
(13.2.14)

The bifurcation diagram and the corresponding phase portraits are shown in
Fig. 13.2.9. The bifurcational curves L1, . . . , L4 partition the (µ1, µ2)-plane
into four regions D1, . . . , D4. Since there are no equilibrium states in the
region D1, all trajectories leave a neighborhood of the origin in the phase
space as t → ±∞. When moving from D1 across the curves L1 : {µ1 =
µ2

2/4 + · · · , µ2 > 0}, or L4 : {µ1 = µ2
2/4 + · · · , µ2 < 0}, there arises a saddle-

node equilibrium state. This saddle-node is simple in the sense that the first
Lyapunov value l2 is non-zero on L1 and L4. However, there is a difference in
the trajectory behavior on these curves: on L1 the saddle-node is unstable in
the node region, whereas on L4 it is stable in the node region. Upon crossing
L1, the saddle-node is decomposed into an unstable node and a saddle. As
the parameter varies further, the node becomes an unstable focus, as shown in
Fig. 13.2.9 (region D2). On the curve L2 : {µ1 = −6/25µ2

2 + o(µ2
2), µ2 < 0}

the system has a stable separatrix loop. Therefore, in the region D3, there is a
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Fig. 13.2.8. Behavior of trajectories near an equilibrium state with two zero characteristic
exponents.

Fig. 13.2.9. Bifurcation diagram of the Bogdanov-Takens point in the (µ1, µ2)-parameter
plane.
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stable limit cycle born from the separatrix loop. The focus becomes weak on
the curve L3 : {µ1 = 0, µ2 < 0}; it has a pair of purely imaginary eigenvalues.
The associated Lyapunov value is negative on L3. When moving from D3 to
D4, the stable cycle collapses into a weak focus and disappears via a super-
critical Andronov-Hopf bifurcation on the curve L3, so that the focus inherits
the stability of the stable limit cycle. Near the curve L4, the stable focus
transforms into a stable node, and merges with the saddle on the curve L4.
Both equilibrium states disappear in region D1.

The asymptotics of curves L1, L3, L4 come from the analysis of the lin-
earization of system (13.2.14) at the equilibrium states. The existence of the
curve L2 corresponding to the separatrix loop is necessary for the completeness
of the bifurcation puzzle; the stable cycle generating from the weak focus on
the curve L3 must disappear in the loop (when moving towards L2).

The asymptotics for the curve L2 may be found as follows. Assume µ1 < 0
in (13.2.14). Upon rescaling variables and time: x → x

√
|µ1|, y → y|µ1|3/4,

t → t/|µ1|1/4, the system takes the form

ẋ = y ,

ẏ = −1 + Cx + x2 − εxy + o(ε) ,
(13.2.15)

where C = µ2/
√
|µ1| and ε = |µ|1/4. At ε = 0, this system becomes a

Hamiltonian system with the first integral

H =
y2

2
+ x− 1

2
Cx2 − 1

3
x3 .

It has a saddle equilibrium at x = x0 = − 1
2C + 1

2

√
C2 + 4 (and y = 0) with

a separatrix loop which is a component of the level set of the integral H;
namely, Γ = {H(x, y) = H(x0, 0), x < x0}. For arbitrarily small non-zero
ε, this system is no longer Hamiltonian, and H is no longer its first integral
because Ḣ 6= 0 at ε = 0. The loop is split, in general. It is sufficiently obvious
that if for some C

∂

∂ε

∫ +∞

−∞

d

dt
H(x(t), y(t))dt

∣∣∣∣
ε=0

6= 0 ,

then the loop is split for sufficiently small ε 6= 0 (here, (x = x(t), y = y(t))
yields the homoclinic trajectory at ε = 0). By virtue of system (13.2.15), this
inequality can be rewritten as

∫ x0

x1

xy(x)dx 6= 0 ,
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Fig. 13.2.10. The phase portrait of the associated Hamiltonian system with the loop at the
level H(x, y) = H(x0, 0).

where x1 is the point of intersection of the loop Γ with the x-axis, H(x0, 0) =
H(x1, 0); and y = y(x) is the equation of Γ, i.e. H(x, y(x)) = H(x0, 0), see
Fig. 13.2.10. Thus, the above inequality reduces to

∫ x0

x1

x(x0 − x)
√

x− x1dx 6= 0 ,

which can be easily solved, thereby giving C 6= C∗ = −5/
√

6. These values of
C correspond to splitting the loop for non-zero ε. On the other hand, one may
prove that there is a curve C = C∗+O(ε) which corresponds to the existence of
a separatrix loop for ε 6= 0. Returning to the (µ1, µ2)-plane gives the required
asymptotic for the curve L2: {µ2 = −5/

√
6
√
|µ1|}.

This bifurcation diagram for the equilibrium state with two zero charac-
teristic exponents had been known for a long time. However, there remained
a problem of proving the uniqueness of the limit cycle. In other words, one
must prove additionally that there are no other bifurcational curves besides
L1, . . . , L4 (namely, curves corresponding to semi-stable limit cycles). This
problem was independently solved by Bogdanov [33] and Takens [146] with
whom this bifurcation is often named after.

13.3. Bifurcations of a separatrix loop with zero
saddle value

The question of the bifurcations of a separatrix loop to a saddle with zero
saddle value σ0 was first considered by E. Leontovich. She had proven the
following theorem:
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Theorem 13.5. (Leontovich) If

σ0 = s1 = · · · = sn−1 = σn−1 = 0 , sn 6= 0

in the Dulac sequence, then no more than 2n limit cycles can bifurcate from a
separatrix loop of the saddle.
If

σ0 = s1 = · · · = sn = 0 , σn 6= 0 ,

then the number of limit cycles which can be spawned from the separatrix loop
does not exceed 2n + 1. These estimates are sharp, i.e., one may perturb the
system so that the resulting system will have, respectively, 2n or 2n + 1 limit
cycles.

In her proof of the above theorem, Leontovich had assumed Cr-smoothness
for the system, where r ≥ 4n + 6. First of all, she proved that when the first
saddle value is close to zero, a system near the saddle can be transformed into

ẋ = −x(1 + ε− σ1xy − · · · − σn(xy)n − (xy)n+1F (x, y)) ,

ẏ = y ,
(13.3.1)

where 1 + ε = ν is the saddle index, σi are the saddle values, F is a smooth
function. It is assumed that n|ε| < 1. The coordinate transformation is con-
structed in the same way as in the case ε = 0 (see Lemma 13.2); the only
difference is that the formulas (13.1.14) are modified as follows:

α(x) =
1

1 + ε

∫ 1

0

φ1(xs)
ds

s1−(k+1)ε
,

β(y) =
∫ 1

0

φ2(ys)
ds

s1+(k+1)ε
.

(13.3.2)

One can trace through the proof of Lemma 13.2 that the coordinate transfor-
mation is Cr−(2n+1) and the function F is Cr−(2n+3)-smooth.

On the next step of the proof Leontovich had evaluated the local map. She
considered, in fact, the map from the cross-section S1 : {y = d} to S0 : {x = d},
i.e. the inverse of the local map T0 in our notations. Note that by assumption of
the theorem only the last saddle value σn is bounded away from zero, whereas
σ1, . . . , σn−1 are small. Therefore, by rescaling time variable the system may
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be rewritten in the form
ẋ = −x ,

ẏ = y(1 + ε̃ + σ̃1xy + · · ·+ σ̃n(xy)n + (xy)n+1F̃ (x, y)) ,
(13.3.3)

where the coefficients ε̃ and σ̃1, . . . , σ̃n−1 are small and σ̃n is bounded away
from zero. Leontovich showed that the map T−1

0 for the system (13.3.3) has
the form3

y0 = x1 + ε̃[θx1 + ψ1(x1)] + σ̃1[θx2
1 + ψ2(x1)] + · · ·+ σ̃n[θxn+1

1 + ψn+1(x1)] ,

(13.3.4)

where

θ =
xε̃

1 − 1
ε̃

,

and ψk = O(xk+δ
1 ) for some δ > 0 (moreover, the jth derivative of ψk is

estimated as O(xk−j+δ
1 ) for j = 1, . . . , 2n + 1).

The Taylor expansion for the global map T1 : S1 → S0 is represented by

ȳ0 = µ + x1e
s1 + s2x

2
1 + · · ·+ snxn

1 + O(xn+1
1 ) , (13.3.5)

where µ is the small splitting parameter and s1, . . . , sn are the separatrix val-
ues. By assumption of the theorem, s1, . . . , sn−1 are small. The nth separatrix
value sn is bounded away from zero in the first case of the theorem and it is
small in the second case.

If the system has a limit cycle, the x1-coordinate of its intersection with
S1 satisfies T−1

0 (x1) = T1(x1). Therefore, the problem of the number of limit
cycles is reduced here to the problem on the number of zeros of the smooth
(at least C2n+1) quasi-polynomial

G(x1) = − µ +[ε̃(θx1 + O(x1+δ
1 ))− x1(es1 − 1)]

+ [σ̃1(θx2 + O(x2+δ))− s2x
2]

+ [σ̃n−1(θxn
1 + O(xn+δ

1 ))− snxn
1 ] + σ̃n[θxn+1 + O(xn+1)] .

(13.3.6)

(where δ is not necessarily an integer). While proving the theorem, Leontovich
developed a calculus of quasi-polynomials of the above kind which allowed her
to show that for small µ, ε̃, s1, . . . , σ̃n−1, the function G cannot have more than

3This formula can be derived by applying the boundary-value problem method as in the
proof of Theorem 13.3.
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2n zeros for small x1 if sn is bounded away from zero, or more than 2n + 1
zeros if sn is small.

To finish the proof, one must also prove the “sharpness” of this estimate.
To do this, Leontovich presented a very detailed construction of the perturbed
system with the given number of limit cycles.

Note that she did not use finite-parameter families. Nevertheless, it is
understood that an appropriate transverse family can be found such that the
governing parameters are µ, ε, s1, σ1, . . . , σn−1 in the first case of Theorem 13.5,
or µ, ε, s1, σ1, . . . , sn in the second case.

Our review of the proof of this theorem is, of course, too narrative. The
original proof by Leontovich, consisting of two large parts, had been stored at
the VINITI archive in Moscow, and was therefore available only to researchers
from the Soviet Union. More than thirty years later, Roussarie had published
an independent proof of the above estimate for the number of bifurcating
periodic orbits but without proving its “sharpness”. The reader interested
in further details is referred to the review [73]. In the spirit of this review,
the Leontovich theorem can be rephrased as follows: in a generic p-parameter
family of smooth vector fields on the plane the number of limit cycles bifurcating
from a separatrix loop to a rough saddle does not exceed p. Moreover, this
estimate is sharp.

Let us now consider the case of codimension two in more detail. Recall
that this case is distinguished by two conditions: the first is the existence of
a separatrix loop, and the second condition is the vanishing of the first saddle
value σ0 while the first separatrix value s1 is non-zero. The latter is equivalent
to A 6= 1. We will assume that A < 1 because the case A > 1 follows directly
by a reversion of time.

It follows from the results of Sec. 13.8 (see formulas (13.8.30)–(13.8.32))
that the local map T0 can be written as

x̄1 = yν
0 + ϕ(y0)

in some Cr−1-coordinates; here ν is the saddle index which equals to 1 at the
bifurcation point. The function ϕ satisfies the estimates

ϕ(y) = o(y1+δ) ,

ϕ(s)(y) = o(y1−s+δ) (s = 1, . . . , r − 2) ,

ϕ(r−1)(y) = o(yν−(r−1))

(13.3.7)

for some positive δ bounded away from zero.
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Combining the above formula for the local map with the formula (13.3.5)
(at n = 1) for the global map T1, we obtain the equation

ȳ = µ + A(µ, ε)y1+ε + ϕ(y), y > 0 , (13.3.8)

for the Poincaré map T = T1 ◦ T0, where ν = 1 + ε, and ϕ is a new function
which still satisfies (13.3.7). We will assume that the system is at least C3-
smooth, so that the Poincaré map (13.3.8) is to be at least C2-smooth.

This map is a monotonically increasing (since A > 0 for systems on the
plane) one-dimensional map. The only possible bifurcation occurring in such
maps is the bifurcation of a fixed point with a multiplier equal to +1. The
y-coordinate of such a point must satisfy

y = µ + A(µ, ε)y1+ε + o(y1+δ) ,

1 = (1 + ε)A(µ, ε)yε + o(yδ) .
(13.3.9)

The right-hand side of the second equation is at least C1-smooth. So, the
y-coordinate can be uniquely found from this equation when ε < 0:

y = e−1A1/|ε| + o(A(1+δ)/|ε|) . (13.3.10)

The second derivative of the map at this point is equal to

(1 + ε)A(µ, ε)εyε−1 + o(yε−1) ,

and, obviously, it is non-zero. Therefore, the saddle-node fixed point is simple.
By substituting (13.3.10) into the first equation in (13.3.9), we obtain the
equation of the corresponding bifurcation curve L1

µ = εe−1A(0, ε)1/|ε|[1 + o(1)] . (13.3.11)

The bifurcation diagram is shown in Fig. 13.3.1. The curve L1 corresponds
to a semi-stable limit cycle. The curve L2 (the negative ε-semi-axis) corre-
sponds to a separatrix loop with a positive saddle value, whereas L3 (the
positive ε-semi-axis) corresponds to a separatrix loop with a negative saddle
value. These curves divide a neighborhood of the origin on the parameter
plane into three regions. In the region D1, there are two limit cycles. Upon
crossing L1, they coalesce and disappear, so in the region D2, there are no
limit cycles. Upon moving from D1 to D3, a stable limit cycle bifurcates from
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Fig. 13.3.1. Bifurcation diagram for the homoclinic loop to a saddle with zero saddle value
(λ + γ = 0) in the orientable case (0 < A < 1). Parameter µ governs the splitting of the
loop; the sign of ε is opposite to the sign of the saddle value.

the homoclinic loop on the curve L3 (σ0 < 0). The stable limit cycle exists for
the parameter values from D3, L2 and D1. Upon crossing the curve L2 towards
D3, one more limit cycle, this time unstable, bifurcates from the homoclinic
loop (σ0 > 0). This bifurcation diagram is due to Nozdracheva [99].

Let us consider next the case where −1 < A < 0 which corresponds to
a separatrix loop Γ on a non-orientable surface (the case A < −1 follows
similarly by a reversion of time). A neighborhood of Γ̄ is then a Möbius band
whose median is Γ̄. The Poincaré map in this case also has the form (13.3.8)
with the function ϕ satisfying estimates (13.3.7). However, now we need more
smoothness. So we assume that the system is at least C4-smooth, i.e. r ≥ 4 in
(13.3.7).

Since A < 0, the Poincaré map is decreasing. The new feature in this case
is that such maps may have orbits of period two, which correspond to the so-
called double limit cycles. They may appear via a period-doubling bifurcation
(a fixed point with a multiplier equal to −1) or via a bifurcation of a double
homoclinic loop. The latter corresponds to the period-two point of the Poincaré
map at y = 0 (see Fig. 13.3.2).
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Fig. 13.3.2. Lamerey diagram corresponding to the double separatrix loop.

Since T (0) = µ, the double loop occurs when

0 = µ + A(µ, ε)µ1+ε + o(µ1+δ) .

From this constraint we obtain the following equation for the bifurcational
curve L2 corresponding to a double loop:

µ = |A(0, ε)|1/|ε|[1 + o(1)] , ε < 0 . (13.3.12)

Since ε < 0, the saddle value is positive, and hence the periodic orbit bifurcat-
ing from the separatrix loop is unstable here.

Observe that the curve L2 lies above the curve L1 defined by the system
(see Fig. 13.3.3)

y = µ + A(µ, ε)y1+ε + o(y1+δ) ,

−1 = (1 + ε)A(µ, ε)yε + o(yδ)
(13.3.13)

which corresponds to the period-doubling bifurcation. Eliminating y from
(13.3.13), we find that the curve L1 is given by

µ =
2
e
|A(0, ε)|1/|ε|[1 + o(1)] , ε < 0 . (13.3.14)

The bifurcation diagram (proposed in [38]) for this case is shown in
Fig. 13.3.3. It includes the following four bifurcation curves:

• L1 corresponds to a period-doubling bifurcation, i.e. to a structurally
unstable limit cycle with one multiplier equal to −1 and a positive first
Lyapunov value4

4To compute the Lyapunov value we need at least three derivatives of the function in the
right-hand side of (13.3.8), and that is why we require r ≥ 4 in (13.3.7).
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Fig. 13.3.3. Bifurcation diagram of the homoclinic loop to a saddle with zero saddle value
in the non-orientable case (−1 < A < 0). The governing parameters are the same as in
Fig. 13.3.1.

• L2 corresponds to a “double” separatrix loop on the Möbius band. The
saddle value σ0 is positive on this curve;

• L3 (the negative ε-semi-axis) corresponds to a simple separatrix loop
with a positive saddle value σ0; and

• L4 (the positive ε-semi-axis) corresponds to a simple separatrix loop with
a negative saddle value σ0.

In the (µ, ε)-parameter plane thsese curves separate four regions of the
structurally stable behavior of trajectories.

In the region D1, there are no limit cycles. On the curve L4, upon moving
from D1 towards D2, a stable limit cycle is born from a simple separatrix
loop. An unstable double-loop limit cycle bifurcates from a double separatrix
loop with σ0 > 0 on L2. Thus, in the region D3, there are two limit cycles:
one stable and the other is unstable. The unstable double limit cycle merges
with the stable limit cycle on the curve L1. After that only one single-circuit
unstable limit cycle remains in region D4. It adheres into the homoclinic loop
on the curve L3.
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Note that one must also prove that there are no other bifurcational curves
in this bifurcation diagram; namely, that there may not be any saddle-node
orbits of period two. An orbit (y1, y2) of period two of the map (13.3.8) must
satisfy the equation

y2 = µ + A(µ, ε)y1+ε
1 + ϕ(y1) ,

y1 = µ + A(µ, ε)y1+ε
2 + ϕ(y2) .

(13.3.15)

If (y1, y2) is a solution of this system, then (y2, y1) is a solution as well. There
is also the solution y1 = y2 = y0 where y0 is the unique fixed point of the map
(13.3.8), which always exists for µ > 0. Therefore, to prove that there are no
saddle-node orbits of period two, it suffices to check that system (13.3.8) has
no more than three solutions, including multiplicity. This verification will be
performed in Sec. 13.6 for a more general system (see (13.6.26)), corresponding
to the bifurcation of a homoclinic loop of a multi-dimensional saddle with
σ0 = 0.

13.4. Birth of periodic orbits from a homoclinic loop
(the case dim Wu=1)

Let us now study the bifurcations of homoclinic loops in dimensions higher
than two. Consider a continuous one-parameter family Xµ of Cr-smooth
(r ≥ 1) systems in Rm+1 (or, more generally, on an (m+1)-dimensional smooth
manifold) having a saddle equilibrium state Oµ. With no loss of generality we
may assume that the equilibrium state is at the origin for all µ. Assume also
that only one characteristic exponent of O is positive and that the others lie
to the left of the imaginary axis. We denote the characteristic exponents as γ

and λ1, . . . , λm, respectively, so that

γ > 0 > Re λi , i = 1, . . . , m .

By this assumption, the unstable manifold Wu of the saddle O is one-
dimensional and the stable manifold W s of O is m-dimensional. The unstable
manifold consists of three orbits: the saddle O itself and two separatrices: Γ1

and Γ2. We suppose that at µ = 0, the system has a separatrix loop of the
saddle O; i.e. Γ1 tends to O as t → +∞. Thus,

Γ1 ⊂ W s .



13.4. Birth of periodic orbits from a homoclinic loop . . . 721

Besides, we suppose that the loop splits for µ 6= 0: inwards (above W s) if
µ > 0 and outward (below W s) if µ < 0.

Let us consider first the case of a negative saddle value σ

σ = γ + max Re λi < 0 . (13.4.1)

Geometrically, this means that the linearized flow near the saddle contracts
two-dimensional areas. This implies, in turn, that the local map between any
two cross-sections is a contraction (see the proof of Lemma 13.3). By this
reason, the dynamics of the system near such homoclinic loop remains simple.

Theorem 13.6. (Shilnikov [130]) When the saddle value σ is negative at
the saddle, a single stable periodic orbit L is born from the homoclinic loop for
µ > 0. The separatrix Γ1 tends to L as t → +∞. For µ ≤ 0, there are no peri-
odic orbits in a small neighborhood U of the homoclinic loop. The trajectories
of Xµ tend either to L (or, to the loop Γ at µ = 0), or to O, or leave U as
t → +∞.

The qualitative behavior described by the theorem is illustrated in
Fig. 13.4.1.

Originally, this theorem was proved for C2-smooth systems. We stress here
that our proof includes the C1-case which allows for a direct use of this theorem
in the situation where the system is defined on a C1-smooth invariant manifold
(see Theorem 13.9).

The proof of the above theorem is based on the study of the Poincaré map
T = T1 ◦ T0. As usual, the local map by the trajectories near O between some
cross-sections S0 and S1 is denoted by T0, and the global map from S1 to S0 by
the trajectories close to the homoclinic loop Γ is denoted by T1, respectively.

µ < 0 µ = 0 µ > 0

Fig. 13.4.1. Birth of a stable periodic orbit from a separatrix loop to the saddle with σ0 < 0.
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Fig. 13.4.2. An illustration to the proof of Theorem 13.6.

Let us introduce coordinates (u, y), u ∈ Rm, y ∈ R1, near O such that
the unstable manifold is tangent to the y-axis at O and the stable manifold
is tangent to the u-space. Thus, the system near O can be written in the
following form

u̇ = B(µ)u + p(u, y, µ) ,

ẏ = γ(µ)y + q(u, y, µ) ,
(13.4.2)

where p and q vanish at the origin along with their first derivatives with respect
to (u, y); the eigenvalues λ1(µ), . . . , λm(µ) of the matrix B have negative real
parts by assumption, and the characteristic exponent γ(µ) is real and positive.

Let M+ be some point of the homoclinic loop Γ on W s
loc, and let M−

be a point of Γ on Wu
loc. We choose these points sufficiently close to O so

that we can construct two cross-sections transverse to Γ1: the cross-section
S0 goes through the point M+, and the cross-section S1 goes through M−

(Fig. 13.4.2). Since the stable manifold is tangent to the u-space, it follows
that if M+ is sufficiently close to O, then u̇ 6= 0 at M+. Recall that u is the
vector of coordinates u1, . . . , um. Since their choice is arbitrary, let us assume
that u̇1 6= 0 at M+. Hence, we can choose the cross-section S0 as a small area
through M+ at u1 = constant. The other cross-section S1 through M− is a
small area at y = constant.

Thus, u1 = (u1, . . . , um) serve as the coordinates on S1 and (y0, u0) =
(y, u2, . . . , um) are the coordinates on S0. It was proved in Sec. 6.2 of the first
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part of the book (Lemma 6.1) that
∥∥∥∥

∂u1

∂(y0, u0)

∥∥∥∥ ≤ Ce(σ+δ)τ , (13.4.3)

where u1 = T0(y0, u0) (i.e. the orbit starting from (u0, y0) on S0 hits S1 at the
point u1) and τ is the flight time between corresponding points. The quantity
δ can be made as small as necessary by moving the cross-sections closer to O.

The orbits on the stable manifold stay in a small neighborhood of O for all
positive times. Therefore, for the points on S0 close to W s

loc, the flight time τ is
large. Thus, the meaning of the formula (13.4.3) is that the map T0 is strongly
contracting (recall that σ < 0 by assumption). As mentioned previously, this
contraction is a direct consequence of the contraction of areas by the linearized
flow (in Lemma 6.1 the proof of the estimates like (13.4.3) is based on a more
general approach).

Observe that the stable manifold divides the cross-section S0 into two parts,
and that the map T0 is defined only on the upper part S+

0 (all trajectories
starting from the lower part S−0 leave a small neighborhood of O close to the
other separatrix Γ2, and, therefore, do not intersect S1).

Just like in the two-dimensional case, the global map T1 from S1 to S0 by
the trajectories of the system near the homoclinic loop is a diffeomorphism of
a small neighborhood of the point M− into a small neighborhood of the point
M+. Thus, its derivative is bounded.

Hence, the Poincaré map T = T1 ◦ T0 is a strongly contracting map from
S+

0 to S0. Obviously, as the point M ∈ S+
0 approaches the boundary S00 =

W s
loc ∩ S0, its image T0M tends to the point M−(µ) = Γ1(µ) ∩ S1. Therefore,

by continuity, we can define

TS00 = M+(µ) ≡ T1M
−(µ) .

By assumption, the loop is split inward (above W s
loc) for µ > 0 and outward

(below W s
loc) for µ < 0. This is equivalent to the following condition:

M+(µ) ∈





S+
0 for µ > 0 ,

S00 at µ = 0 ,

S−0 for µ < 0 .

Lemma 13.4. Let V be a closed convex set in Rm and U be a closed subset
of V. Let T be a contracting map T : U → V. Assume also that the boundary
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∂U of U in V is mapped by T into a single point M+. Then, if M+ ∈ U, the
map has a unique fixed point M∗ in U which is the limit of the iterations of
M+ by T. All trajectories which do not enter V \U tend to the fixed point in
U. On the contrary, if M+ ∈ V \U, then there is no fixed point in U ; moreover
any orbit leaves U after a finite number of iterations of the map.

Note that Theorem 13.6 follows immediately from this lemma. Here V =
S0, U = S+

0 , ∂U = S00, V \U = S−0 , and since T is the Poincaré map, its
stable fixed point in S+ corresponds to a stable limit cycle (the fixed point on
S00 = W s

loc ∩ S0 corresponds to the homoclinic loop Γ by construction).
To prove the above lemma, let us continue the map T on V \U so that

TM = M+ for all M ∈ V \U . This extended map remains contracting and
takes V into V . Thus, it has a unique fixed point M∗ which attracts forward
orbits of all points of V . This fixed point is a fixed point of the original map
T provided it belongs to U ; otherwise, it is “a virtual fixed point” if it lies in
V \U . In the latter case, M∗ = TM∗ = M+ by construction. Vice versa, if
M+ ∈ V \U , then TM+ = M+. This means that M+ = M∗ (by uniqueness
of the fixed point). Thus, M∗ 6∈ U if and only if M+ 6∈ U . We have almost
proven the lemma. The final step to be proven is to show that the iterations
of M+ never leave U if M∗ ∈ U (this implies that these iterations converge to
M∗). To do this we must observe that by virtue of the contraction property
we have the following relationship

dist (T kM+,M∗) = dist (T k+1(∂U), T k+1M∗) < dist (∂U,M∗)

which proves our claim, and hence completes the proof of Lemma 13.4 and
Theorem 13.6.

This result gives us the last known principal (codimension one) stability
boundary for periodic orbits. We will see below (Theorems 13.9 and 13.10)
that the other cases of bifurcations of a homoclinic loop lead either to complex
dynamics (infinitely many periodic orbits), or to the birth of a single saddle
periodic orbit.

So, let us consider the case of the positive saddle value, i.e.

γ + max
i=1,...,m

Re λi > 0

(where, as before, we denote the only positive characteristic exponent as γ and
λ1, . . . λm stand for the characteristic exponents with negative real parts). We
assume that the characteristic exponent nearest to the imaginary axis is simple
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and real, i.e.
0 > λ1 > max

i=2,...,m
Re λi .

The case where λ1 is complex will be discussed later (Theorem 13.8).
Let us make the following nondegeneracy assumptions5:

(1) Γ 6⊂ W ss.
(2) The extended unstable manifold WuE is transverse to the stable

manifold W s at the points of Γ (Fig. 13.4.3).

Traditionally, this condition is written as

A 6= 0 .

We will define below the quantity A in terms of the Poincaré map. It is an
analogue of the separatrix value A introduced in Secs. 13.1 and 13.2 for the
two-dimensional case. Recall that A is always non-zero in dimension two.
However, in the multi-dimensional case the non-vanishing of A is an essential
assumption.

Fig. 13.4.3. Illustration of the non-degeneracy condition of Theorem 13.7: the homoclinic
loop enters the saddle along the leading direction; the two manifolds W uE and W s intersect
transversely to each other.

5Recall that the strong stable invariant manifold W ss is tangent at O to the eigenspace
of the linearization matrix which corresponds to the non-leading characteristic exponents
λ2, . . . , λm. It is (m−1)-dimensional and it partitions W s into two components. The orbits
of W s which do not belong to W ss tend to O along the leading direction as t → +∞. The
extended unstable manifold is a smooth invariant one which is tangent at O to the eigenspace
corresponding to the characteristic exponents γ and λ1.
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The situation which we consider here is a particular case of Theorem 13.9
of the next section.6 It follows from this theorem (applied to the system in the
reversed time) that a single saddle periodic orbit L is born from a homoclinic
loop; it has an m-dimensional stable manifold and a two-dimensional unstable
manifold. This result is similar to Theorem 13.6. Note, however, that in the
case of a negative saddle value the main result (the birth of a unique stable
limit cycle) holds without any additional non-degeneracy requirements (the
leading stable eigenvalue λ1 is nowhere required to be simple or real). On the
contrary, when the saddle value is positive, a violation of the non-degeneracy
assumptions (1) and (2) leads to more bifurcations. We will study this problem
in Sec. 13.6.

Let us assume further that the system is Cr with r ≥ 2.7 In this case, the
system near O may be written in the form [see Sec. 13.8 and formula (13.8.28)]

ẋ = −λ1x + f11(x, y)x + f12(x, u, y)u ,

u̇ = B2u + f21(x, y)x + f22(x, u, y)u ,

ẏ = γy ,

(13.4.4)

where x ∈ R1 and y ∈ R1 are the leading coordinates, u ∈ Rm−1 is the vector
of stable non-leading coordinates, the eigenvalues (λ2, . . . , λm) of B2 lie to the
left of the line Re(·) = λ1. The functions fij satisfy

fi1(x, 0) ≡ 0 , f1j(0, 0, y) ≡ 0 . (13.4.5)

In these coordinates, the stable manifold is locally defined by y = 0, the local
unstable manifold is defined by {x = 0, u = 0}, and the strong stable manifold
is defined by {x = 0, y = 0}.

The extended unstable manifold WuE
loc is tangent to the plane u = 0 at

the points of the unstable manifold. Indeed, the equation for u̇ linearized at
{x = 0, u = 0} is (here, we have made use of f21 = 0 at x = 0)

u̇ = (B2 + f22(0, 0, y(t)))u .

Hence it follows that the plane u = 0 is invariant with respect to the linearized
flow along Wu

loc, and transverse to W ss at O. Therefore, it is indeed the
uniquely defined tangent to WuE

loc at Wu
loc (see Sec. 5.3 of Part I).

6Consider the case of the one-dimensional stable manifold in Theorem 13.9 and make a
reversal of time. After that, the conditions (1) and (2) of the theorem will coincide with the
two nondegeneracy assumptions above.

7The picture we obtain here remains valid in the C1-case as well; however when the
system is at least C2, the analysis becomes much more explicit.
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By assumption, the loop Γ enters O as t → +∞ along the x-axis. Mean-
while, it coincides locally with the y semi-axis when it leaves O at t = −∞.
We assume that Γ adjoins O from the side of positive x and y, respectively.

Choose two cross-sections transverse to Γ; namely S0 : {x = d} and S1 :
{y = d} for some small d > 0. Denote the coordinates on S0 by (y0, u0) and
the coordinates on S1 by (x1, u1). We are interested in what happens in a
small neighborhood of Γ, and therefore let us assume ‖u0−u+‖ ≤ δ on S0 and
‖x1, u1‖ ≤ δ on S1 for some small δ > 0. Here, u+ is the u-coordinate of the
point M+(0, u+) = Γ ∩ S0.

The local map T0 : S0 → S1 in the given coordinates can be recast as (see
formula (13.8.30) in Sec. 13.8)

x1 = yν
0d1−ν + o(yν

0 ) , u1 = o(yν
0 ) , (13.4.6)

where ν = |λ1/γ| is the saddle index. Note that only the o(yν
0 )-like terms

depend on u0 in the right-hand sides of (13.4.6). The local map T0 is defined
on the upper part S+

0 : {y0 ≥ 0} of S0 (the orbits starting from y0 < 0 leave a
small neighborhood of O along the other unstable separatrix which coincides
locally with the negative y semi-axis). It is immediately seen from (13.4.6) that
the image T0S

+
0 on S1 is a curvilinear triangle (Fig. 13.4.4) with the apex at

Fig. 13.4.4. The local Poincaré map T0 transforms the upper part S+
0 of the cross-section

S0 into a curvilinear rectangle on the cross-section S1. The points in S0 ∩W s
loc are mapped

into a single point M−.
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the point M−(0, 0) = Γ ∩ S1 and with both boundary sides at M− tangent to
WuE

loc ∩ S1 (the x1-axis in our coordinates).
One can see that the map T0 is strongly contracting in the u-directions

and, since ν < 1, (equiv. σ = γ + λ1 > 0), it is expanding in y;8 i.e.

∂x1

∂y0
À 1 .

The flow outside a small neighborhood of O defines the global map T1 :
S1 → S0 by the trajectories close to Γ. In a small neighborhood of the origin
M− on S1, the map T1 can be written in the form

ȳ0 = µ + a11x1 + a12u1 + · · · ,

ū0 = u+(µ) + a21x1 + a22u1 + · · · ,
(13.4.7)

where µ is the splitting parameter of the loop. If we denote M+(µ) = Γ1(µ)∩
S0 = T1M

−, then (µ, u+(µ)) are the coordinates of this point. By definition,
M+ ∈ W s

loc ∩ S0 at µ = 0. When µ > 0, the point M+(µ) lies in S+
0 , i.e. the

loop is split inward. When µ < 0, the point M+(µ) lies in S−0 , i.e. the loop
splits outward.

Since T1 is a diffeomorphism, we have

∆ =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ 6= 0

(moreover, ∆ > 0 when the flow is defined in Rn+1 or on an orientable mani-
fold). It also follows that both a11 and a12 cannot vanish simultaneously.

8We have already presented this picture in Sec. 2.4 for the case where the system near
the saddle is linear. In the case of a C1-smooth nonlinear system, this picture follows from
the estimates proven in Sec. 6.2. Indeed, it follows from Lemma 6.3 that in our case the
image by T0 of any line {u0 = constant, y0 ≥ 0} from S0 is the curve

u1 = wloc(d, x1, u0), x1 ≥ 0

on S1 where wloc is a smooth function which vanishes identically at x1 = 0 along with the
first derivative with respect to x1. Thus, for any fixed u0 this curve is tangent to the x1-
axis at the point M−, and hence the whole set T0S+

0 is a curvilinear wedge tangent to the
x1-axis. The contraction in the u-directions and the expansion in the y-direction are due to
Lemma 6.1. Note that our notations here and those in Sec. 6.2 are different. To establish the
correspondence with Lemmas 6.1–6.3, one must make the following substitution: the map
Tloc of Sec. 6.2 is the inverse of our map T0, our cross-sections S0 and S1 are, respectively,
Sout and Sin in Sec. 6.2. Finally, the coordinates (u0, y0, w0) on Sin and (u1, w1) on Sout

in Lemma 6.3 correspond to our coordinates (y = d, x1, u1) on S1 and, respectively, (y0, u0)
on S0.
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Nevertheless, the coefficient a11 alone may vanish. We will denote a11 ≡ A.
By definition,

A =
∂ȳ0

∂x1

∣∣∣∣
M−

. (13.4.8)

Observe that the transversality of WuE and W s on Γ is indeed equivalent to the
condition A 6= 0. Note that the choice of the coordinates on the cross-sections
is important here: since we take the x1-axis tangent to the line WuE

loc ∩S1, the
image of this line T1(WuE

loc ∩ S1) is transverse to {y0 = 0} = W s
loc ∩ S0 if, and

only if ∂ȳ0
∂x1

6= 0.
Combining formulas (13.4.6) and (13.4.7), we obtain the following repre-

sentation for the Poincaré map T :

ȳ = µ + Ayν + o(yν) ,

ū = u+(µ) + a21y
ν + o(yν)

(13.4.9)

(we drop the sub-index “0” and rescale variables to make d = 1 in (13.4.6);
the dependence on u in the right-hand side is concealed in the o(yν) terms).
Observe that the separatrix value A appears as a coefficient in front of the
leading term yν of the asymptotics for ȳ in the Poincaré map.

Hence, if A 6= 0, then the map T = T1 ◦ T0 has the same property as the
local map T0, namely: it is contracting in the u-directions and expanding in
the y-direction, i.e. it is a saddle map (see Sec. 3.15). The image TS+

0 on
S0 will have a form similar to that shown in Fig. 13.4.5 at µ = 0. Observe
that TS+

0 ∩ S+
0 = ∅ for A < 0, i.e. any orbit from a small neighborhood of

the homoclinic loop must leave the neighborhood after one iteration performed
near the loop in this case. On the contrary, in the case A > 0, the intersection
TS+

0 ∩S+
0 is non-empty. For any vertical line u0 = constant in S+

0 , its iterations
by the map T will lie in S+

0 and converge to the smooth invariant curve l+0 of
T emanating from the point M+ = Γ ∩ S0.

Figures 13.4.6 (Aµ > 0) and 13.4.7 (Aµ < 0) show how the image of S+
0

by the map T moves when the loop is split. In any case, since the map T

is contracting in the u-variables and expanding in y, it follows that it has a
smooth attracting invariant curve l0(µ), transverse to {y0 = 0} in S0.

The trajectories starting from l0(µ) compose a two-dimensional attracting
invariant manifold Mµ of the flow. The proof of the existence of such a mani-
fold in a small neighborhood of the homoclinic loop is given by Theorem 6.2
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Fig. 13.4.5. The image TS+
0 of S+

0 on S0 is a wedge which is mapped to S+
0 if A > 0, or it

is mapped upside down about W s
loc ∩ S0 if A < 0. When A > 0, there exists an invariant

curve l+0 of the map.

Fig. 13.4.6. The map after the spliting of the separatrix loop.

in Sec. 6.1 under assumptions which coincide with our conditions (1) and (2)
in the case under consideration.

The manifold Mµ contains all trajectories staying in a small neighborhood
U of Γ for all negative times. Near O, the manifold Mµ coincides with an
extended unstable manifold WuE

loc (not unique). Thus, if we denote l1(µ) =
Mµ∩S1, then l1(µ) is tangent to the x1-axis at the point M−. Since Mµ is an



13.4. Birth of periodic orbits from a homoclinic loop . . . 731

Fig. 13.4.7. The fixed point M∗ corresponds to a saddle periodic orbit that emerges from
the homoclinic loop. Its unstable multiplier is positive when A > 0, and it is negative in the
case A < 0.

invariant manifold, the orbits starting from l1(µ) must intersect S0 at the
points of l0(µ), i.e. T1l1(µ) = l0(µ). It follows from (13.4.7) and (13.4.8) that
at the points of l0(µ), the manifold Mµ is glued to itself with a reversal of
orientation if A < 0, or with the same orientation if A > 0. So, Mµ is an
annulus if A > 0, or a Möbius band if A < 0 (see Fig. 13.4.8).

When restricted onto the invariant curve l0(µ), the map T is an expanding
one-dimensional map, monotonically increasing when A > 0, or monotonically
decreasing when A < 0. The Lamerey diagrams for such maps are shown in
Figs. 13.2.5 and 13.2.6 in Sec. 13.2. Thus, one can see that all trajectories leave
S+

0 upon iterations of T if Aµ > 0. If Aµ < 0, then the map T has an unstable
fixed point M∗(µ) on l0(µ). Due to contraction in directions transverse to
l0(µ), the point M∗(µ) is a saddle in S+

0 .
The following coordinates of the fixed point are easily found from (13.4.9):

u ∼ u+(µ) , y ∼
(−µ

A

) 1
ν

.

Since a fixed point of the Poincaré map T corresponds to a periodic orbit
of the flow, we may formulate the following result (see Fig. 13.4.9).

Theorem 13.7. If a homoclinic loop Γ to a saddle with a positive saddle
value satisfies both conditions (1) and (2), then a single saddle periodic or-
bit L(µ) is born from the loop for Aµ < 0. The unstable manifold of L(µ) is
two-dimensional and orientable when A > 0 (then there is only one positive
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(a)

(b)

Fig. 13.4.8. The invariant manifold Mµ is an orientable surface when A > 0 (a), or it is a
Möbius band if A > 0 (b).

multiplier greater than one), or non-orientable when A < 0 (then the multiplier
greater than one in absolute value is negative). For Aµ > 0, there are no orbits
(besides the equilibrium state O) staying in a small neighborhood U of Γ for
all times. For Aµ < 0, almost all orbits leave U. The exceptions are O, L and
one heteroclinic orbit which is α-limit to L and ω-limit to O.9

9This orbit is the stable separatrix of O on the invariant manifold Mµ.
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Fig. 13.4.9. The birth of a saddle periodic orbit from a homoclinic loop to a saddle with the
positive saddle value.

On the cross-section S0, the local unstable manifold of the fixed point
M∗(µ) is a small piece of the invariant curve l0(µ) through this point. The
entire unstable manifold of M∗(µ) on S0 can be obtained by iterating the local
unstable manifold under the action of the map T . Since the domain S+

0 of
the map T is bounded by the surface {y0 = 0} = W s

loc(O) ∩ S0, the unstable
manifold of M∗(µ) is bounded by the images of this surface. Thus, it is a part
of l0(µ) bounded by the point M+(µ) = T1M

− = Γ1(µ) ∩ S0 if A > 0, or
a part of l0(µ) between the points M+(µ) and T (M+(µ)) when A < 0 (see
Fig. 13.4.7). As µ → 0, the unstable manifold of M∗(µ) tends to the invariant
curve l+0 for A > 0, or shrinks to the point M+ for A < 0; the stable manifold
of M∗(µ) tends to {y0 = 0}.

By construction, the curve l+0 is the intersection of the invariant manifold
M0 with S+

0 . If A > 0, the backward orbits of the points of l+0 tend to the
point M+ = Γ ∩ S0 at µ = 0. Thus, in the case A > 0, all orbits from the
upper part (y0 > 0) of the invariant manifold M0 are α-limit to the homoclinic
loop Γ (see also Remark 4 in Sec. 13.2). Since the manifold M0 is attracting,
it must repel backward semi-trajectories. Therefore, there may not be other
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Fig. 13.4.10. The orientable homoclinic loop (A > 0) to a saddle with the positive saddle
value has unstable invariant manifold.

orbits which are α-limit to Γ. It follows that the upper half of M0 is a uniquely
defined unstable manifold of the loop Γ for A > 0 (Fig. 13.4.10).

When µ 6= 0, the fixed point M∗(µ) of the Poincaré map corresponds
to the saddle periodic orbit L(µ) of the flow. The unstable manifold of L(µ)
intersects the stable manifold of O, and therefore it is bounded by the unstable
separatrices Γ1,2. It follows from the above analysis that, when A > 0, the
unstable manifold of L(µ) is a two-dimensional cylinder which tends to the
unstable manifold of Γ as µ → −0. When A < 0, the unstable manifold of
L(µ) is a Möbius band which shrinks to Γ as µ → +0.

As µ → 0, the stable manifold of L(µ) approaches the component W s
+

of W s(O)\W ss(O) which contains Γ. The characteristic form of W s
+ in the

small neighborhood U of Γ is sketched in Fig. 13.4.11. Here, the local stable
manifold can be continued along Γ in backward time so that it returns to the
small neighborhood of O. Since A 6= 0, the manifold W s is transverse to WuE

loc ,
and therefore it is limited to the manifold W ss as t → −∞. This geometry of
W s is a direct consequence of the non-vanishing of the value of A. We remark,
however, that in some cases, even if A = 0, the manifold W s may be still
limited to W ss in backward time.

Observe also that in the case σ < 0, we have the same geometrical behavior
provided that the following three conditions hold:
(1) the leading eigenvalue λ1 is simple and real,
(2) the homoclinic loop Γ does not belong to the strong stable manifold, and
A 6= 0.
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Fig. 13.4.11. Behavior of the stable manifold W S
+ in backward time near a homoclinic loop

to the saddle with real λ1, provided the non-degeneracy assumptions hold.

Here the map T will still have an attracting invariant curve l0(µ), but (in the
case σ < 0) the map T is a contraction on l0(µ). It follows that the homoclinic
loop Γ possesses a stable manifold when A > 0, i.e. the set of points which are
ω-limit to Γ. This set consists from all trajectories passing through the upper
part S+

0 of the cross-section S0 and is bounded by the closure of W s
+. Note

that the possible existence of stable or unstable manifolds for homoclinic loops
opens the way for the appearance of the so-called superhomoclinic (homoclinic
to homoclinic) orbits which could enrich dynamics essentially. We refer the
reader to [69, 157, 159].

As we have seen above, the dynamics near the homoclinic loop to a saddle
with real leading eigenvalues is essentially two-dimensional. New phenom-
ena appear when we consider the case of a saddle-focus. Namely, we take a
Cr-smooth (r ≥ 2) system with an equilibrium state O of the saddle-focus
saddle-focus (2, 1) type (in the notation we introduced in Sec. 2.7). In other
words, we assume that the equilibrium state has only one positive characteris-
tic exponent γ > 0, whereas the other characteristic exponents λ1, λ2, . . . , λm

are with negative real parts. Besides, we also assume that the leading (nearest
to the imaginary axis) stable exponents consist of a complex conjugate pair λ1

and λ2:
λ1,2 = −ρ± iω , Re λj < −ρ < 0 (j = 3, . . . , m) .

By time rescaling we can always make γ = 1, which we will assume to be
throughout this section. So, the case ρ > 1 corresponds here to the negative
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Fig. 13.4.12. A homoclinic loop to a saddle-focus.

saddle value (and it is hence covered by Theorem 13.6). Thus, we will mainly
be focused here on the case ρ < 1 (positive saddle value).

The unstable Wu and stable manifold W s of O are one-dimensional and
n-dimensional, respectively. The unstable manifold is the union of O and two
separatrices, Γ1 and Γ2. By definition, the separatrices Γ1,2 tend to O as
t → −∞. Suppose that one of the separatrices (Γ1) tends to O as t → +∞
thereby forming a homoclinic loop Γ̄ (Fig. 13.4.12).

The structure of the phase space in a small neighborhood of Γ̄ depends on
the sign of the saddle index ρ. We will see that the behavior of the trajecto-
ries in a neighborhood of Γ̄ differs essentially in the two cases ρ > 1 (simple
dynamics) and ρ < 1 (complex dynamics).

Our study is based on the construction of a Poincaré map T via a super-
position of a local map T0 : S0 → S1 and a global map T1 : S1 → S0, where S0

and S1 are appropriately matching cross-sections to Γ.
It follows from the result of Appendix A in Part I (see also formula (13.8.28)

in Sec. 13.8) that a system near O can be recast into the form

ẋ1 = −ρx1 − ωx2 + f11(x, y)x + f12(x, u, y)u ,

ẋ2 = ωx1 − ρx2 + f21(x, y)x + f22(x, u, y)u ,

u̇ = Bu + f31(x, y)x + f32(x, u, y)u ,

ẏ = y ,

(13.4.10)

by some Cr−1-transformation of coordinates and time. Here, u ∈ Rm−2 is
the vector of non-leading coordinates, and the eigenvalues of the matrix B are
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(λ3, . . . , λm). The Cr−1-functions fij satisfy

fi1(x, 0) ≡ 0 , f1j(0, 0, y) ≡ 0 , f2j(0, 0, y) ≡ 0 . (13.4.11)

In these coordinates the invariant manifolds are locally straightened: their
equations are Wu

loc = {x = 0, u = 0} and W s
loc = {y = 0}, respectively.

Moreover, the system in the leading coordinates (x1, x2) is linear on the stable
manifold.

We will assume that Γ leaves O at t = −∞ towards positive y, i.e. it
coincides locally with the positive y semi-axis. Therefore, we may chose the
cross-section S1 as y = d for some small d > 0.

When the separatrix returns to O, it lies in the stable manifold y = 0. If
the system has order more then three, we will assume that Γ does not belong
to the strong stable manifold W ss. Recall that W ss is a smooth invariant
manifold which is tangent at O to the u-space; and when (13.4.11) is satisfied,
W ss = {x = 0, y = 0}. Recall from Secs. 2.6 and 2.7 that any trajectory from
W s\W ss (and hence the separatrix Γ too) tends to O along the leading plane
u = 0, so that its projection onto this plane is a spiral which intersects, say,
the positive x1 semi-axis infinitely many times. Let M+(x+ > 0, 0, u+, 0) be a
corresponding point on Γ. Let us take the cross-section S0 : {x2 = 0} through
this point.

It follows from Sec. 13.8 [see (13.8.30)–(13.8.33)] that the solution (x(t),
u(t), y(t)) which starts from x = (x0, 0), u = u0 at t = 0 and ends at y = d at
t = τ must satisfy the relation

y(0) = e−τd ,

x(τ) = exp

[
τ

(
−ρ −ω

ω −ρ

)](
x0

0

)
+ o(e−ρτ ) ,

u(τ) = o(e−ρτ ) ,

(13.4.12)

where the o(e−ρτ )-terms denote some Cr−1-smooth functions of (x0, u0, τ)
which decay to zero faster than e−ρτ along with all their derivatives up to
the order (r − 1).

We can now evaluate the flight time τ from the point (x0, u0, y0) ∈ S0

to S1

τ = − ln
y0

d
.



738 Chapter 13. Bifurcations of Homoclinic Loops . . .

Substituting this expression into (13.4.12), we obtain the following formula for
the local map T0 : (x0, u0, y0) 7→ (x1, x2, u1) ∈ S1

10 by the trajectories of the
flow near O:

x1 = x0

(y0

d

)ρ

cos ω ln
d

y0
+ o(yρ

0) ,

x2 = x0

(y0

d

)ρ

sin ω ln
d

y0
+ o(yρ

0) ,

u1 = o(yρ
0) .

(13.4.13)

Here, the derivatives of the o(yρ
0)-terms with respect to (x0, u0, y0) up to the

order (r−1) are estimated as o(yρ−q
0 ) where q is the number of differentiations

with respect to y0.
Observe that the map T0 is defined only for y0 > 0. Choose a small δ > 0

and let S+
0 be the rectangle {|x0 − x+| ≤ δ, ‖u0 − u+‖ ≤ δ, 0 ≤ y0 ≤ δ} on

S0 (recall that (x+, u+, 0) are the coordinates of the point M+ = Γ ∩ S0).
We can see from formulas (13.4.13) that the image T0S

+
0 in S1 looks like a

“snake” (Fig. 13.4.13) which spirals onto the point M−(0, 0, 0) = Γ∩S1 along

Fig. 13.4.13. The local Poincaré map T0 near a saddle-focus.

10We denote the u-coordinates of a point on S1 by u1 and that on S0 by u0.
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the plane u1 = 0 (we have already described this shape in more detail in
Sec. 2.4). By continuity, let us define the map T0 at y0 = 0 by T0(W s

loc∩S0) =
M−.

The global map T1 : S1 → S0 is defined by the trajectories close to that
piece of Γ which lies outside a small neighborhood of O. The map T1 is
a diffeomorphism which takes the point M− to M+, and can be therefore
represented by

x̄0 = x+ + a11x1 + a12x2 + a13u1 + · · · ,

ȳ0 = a21x1 + a22x2 + a23u1 + · · · ,

ū0 = u+ + a31x1 + a32x2 + a33u1 + · · · .

(13.4.14)

We will require that

A ≡
√

a2
21 + a2

22 6= 0 . (13.4.15)

Note that this condition is automatically satisfied for three-dimensional sys-
tems, where there is no non-leading u-coordinates. In this case the global map
assumes the form

x̄0 = x+ + a11x1 + a12x2 + · · · ,

ȳ0 = a21x1 + a22x2 + · · · .

Since the global map must be a diffeomorphism, it follows that
∣∣ a11 a12

a21 a22

∣∣ 6= 0,

which indeed implies (13.4.15).

In dimensions higher than three, the condition A 6= 0 is an essential non-
degeneracy condition. It is important that we use the coordinates in which the
system has locally the form (13.4.10) and that the identities (13.4.11) are hold.
In these coordinates the intersection of W s

loc with S0 is the straightline y0 = 0,
and the intersection of the extended unstable manifold WuE

loc with S1 is tangent
to the space u1 = 0 (the extended unstable manifold is a smooth invariant
manifold which is transverse to W ss

loc at O). Thus, one can see from (13.4.14)
that the condition A 6= 0 is equivalent to the condition of transversality of
T1(WuE

loc ∩S1) to W s
loc∩S0 at the point M+, i.e. to the transversality condition

of the extended unstable manifold Wue to the stable manifold W s at the points
of the homoclinic loop Γ.
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Formulas (13.4.13) and (13.4.14) yield the following expression for the
Poincaré map T = T1 ◦ T0:

ȳ = Axyρ cos
(

ω ln
1
y

+ θ

)
+ o(yρ) ,

x̄ = x+d−1 + A1xyρ cos
(

ω ln
1
y

+ θ1

)
+ o(yρ) ,

ū = u+d−1 + A2xyρ cos
(

ω ln
1
y

+ θ2

)
+ o(yρ) ,

(13.4.16)

where (x, u, y) = (x0, u0, y0)d−1, and A1, A2, θ, θ1, θ2 are some constants.
The image of T0S

+
0 by the diffeomorphism T1 also has a spiraling shape.

It intersects W s
loc infinitely many times near M+. Indeed, it is immediately

seen from (13.4.16)11 that the preimage T−1(W s
loc ∩S0) of y = 0 consists of an

infinite sequence of surfaces

lk : y = yk(x, u) ≡ Ce−πk/ω(1 + o(1)k→+∞) , (13.4.17)

where C = e(θ−π
2 )/ω and k runs through all sufficiently large positive integer

values. As k → +∞, these surfaces accumulate on y = 0. By construction,
they are intersections of the (global) stable manifold of O with S0. Thus, the
stable manifold is self-limiting here (it has the helicoid-like shape shown in
Fig. 13.4.14).

Fig. 13.4.14. The stable manifold of the saddle-focus continued along the homoclinic loop in
backward time has a helicoid form.

11Note that A > 0 by assumption, and that x > 0 because x is close to x+ (the coordinate
of the point M+ = Γ ∩ S0) which is positive. Recall that x+ 6= 0 because Γ does not lie in
the strong stable manifold by assumption.
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Fig. 13.4.15. The structure of the Poincaré map near a homoclinic loop to the saddle-focus.

Let σk be the region in S+
0 bounded by l2k−1 and l2k. By construction, the

images by the Poincaré map T of those points on S+
0 which do not belong to

the union of the “strips” σk fall into the region y < 0. Thus, their orbits leave
a neighborhood of the loop. Let us therefore restrict our consideration to the
strips σk.

The image Tσk of each strip is one half of a single curl of the “snake” located
on the surface y = 0 (see Fig. 13.4.15). Observe that it has a distinguishable
horseshoe-like form. It follows from (13.4.16) and (13.4.17) that the top of the
kth horseshoe corresponds to

y ∼ yρ
2k ∼ e−2πρk/ω .

Thus, when ρ > 1, there is no intersection between σk and Tσk. On the
contrary, when ρ < 1, the intersection Tσk ∩ σk is non-empty and consists
of two connected components (Fig. 13.4.16). It is geometrically evident that
there is a fixed point of T at each of the components.12

The fixed points of the Poincaré map T correspond to the periodic orbits
of the system. Thus, we have almost proved the following theorem.

Theorem 13.8. If ρ < 1, then there exists infinitely many saddle periodic
orbits in any neighborhood of the loop Γ̄.

12What we see is analogous to the famous Smale horseshoe.
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Fig. 13.4.16. Location of the strip σk and its image Tσk under the Poincaré mapping for
ρ > 1 and ρ < 1.

This theorem is a part of a more general assertion [including also the case of
a multi-dimensional unstable manifold as well as saddle-foci of types (2, 1) and
(2, 2)] on complex dynamics near the homoclinic loop of a saddle-focus [136].
Condition ρ < 1 also known as the Shilnikov condition is very important here,
because the structure of the phase space near the homoclinic loop is drastically
changed in comparison to the case ρ > 1 covered by Theorem 13.6. The main
bifurcations in the boundary case ρ = 1, when a small perturbation trigging the
system into a homoclinic explosion from simple dynamics (ρ > 1) to complex
dynamics (ρ < 1) were first considered in [29].

Proof. The fixed points of the Poincaré map T given by (13.4.16) are found
from the equation

y = Axyρ cos
(

ω ln
1
y

+ θ

)
+ o(yρ) ,

x = x+d−1 + A1xyρ cos
(

ω ln
1
y

+ θ1

)
+ o(yρ) ,

u = u+d−1 + A2xyρ cos
(

ω ln
1
y

+ θ2

)
+ o(yρ) .

(13.4.18)

The values of x and u are uniquely determined from the second and third
equations:

x = x+d−1 + O(yρ) , u = u+d−1 + O(yρ) . (13.4.19)
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Substituting these expressions into the first equation of (13.4.18), we obtain
the following equation for the y-coordinate of a fixed point:

y = A
x+

d
yρ cos

(
ω ln

1
y

+ θ

)
+ o(yρ) . (13.4.20)

The graph of the right-hand side of this equation is shown in Fig. 13.4.17.
When ρ < 1 [Fig. (13.4.17(b)], there are infinitely many roots accumulating to
zero:

y∗k = Ce−πk/ω(1 + o(1)k→+∞) , (13.4.21)

where C = e(θ−π
2 )/ω.

The Jacobian matrix of the map T at the corresponding fixed point is given
by [see (13.4.16), (13.4.19) and (13.4.21)]




(−1)k+1A
x+

d
ω (y∗k)ρ−1(1 + o(1)) O((y∗k)ρ) O((y∗k)ρ)

O((y∗k)ρ−1) O((y∗k)ρ) O((y∗k)ρ)

O((y∗k)ρ−1) O((y∗k)ρ) O((y∗k)ρ)




. (13.4.22)

Since y∗k → 0 as k → +∞, it follows that (y∗k)ρ → 0 and (y∗k)ρ−1 → +∞
(recall that ρ < 1). It is easy to see now that the matrix (13.4.22) has only
one eigenvalue

(
estimated as ∼ (−1)k+1A

x+

d
ω(y∗k)ρ−1

)

which is greater than 1 in absolute value, while all other eigenvalues tend to
zero as k → +∞.

We have shown the existence of infinitely many saddle fixed points of
the map T which correspond to saddle periodic orbits (with two-dimensional
unstable and m-dimensional stable manifolds) of the system. Those with
even k’s have a negative unstable multiplier, and their unstable manifolds are
non-orientable. The periodic orbits corresponding to odd k’s have a positive
unstable multiplier, and hence, orientable unstable manifolds.

The y-coordinate of the kth fixed point tends to zero as k → +∞, which
implies that the x-coordinate tends to x+, and the u-coordinate tends to u+
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(a)

(b)

Fig. 13.4.17. Modelling one-dimensional Poincaré map for ρ > 1 (a) and ρ < 1 (b).

[see (13.4.19)]. Thus, these periodic orbits do accumulate to the homoclinic
loop Γ. End of the proof.

Remark. Note that the problem on the fixed points of the Poincaré map near
the homoclinic loop to a saddle-focus is reduced to the study of the fixed point
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of the one-dimensional map

ȳ = Ayρ cos
(

ω ln
1
y

+ θ

)
+ o(yρ) .

In fact, this map indeed captures many (not all, though) features of the dy-
namics near such homoclinic loop.

13.5. Behavior of trajectories near a homoclinic loop
in the case dim Wu >> 1

Let us consider next the general case where the dimension of the unstable
manifold of O is n ≥ 1. Let γ1, . . . , γn be the characteristic exponents with
positive real parts, ordered so that

0 < Re γ1 ≤ Re γ2 ≤ · · · ≤ Re γn .

Let us assume that the saddle value is negative:

σ = Re λ1 + Re γ1 < 0 , (13.5.1)

i.e. the characteristic exponent nearest to the imaginary axis has a positive real
part.

It is obvious that if σ > 0, we can always make it negative by a reversion
of time.

Generically, we may assume that if the leading exponent γ1 is real, then

γ1 < Re γi (i = 2, . . . , n) , (13.5.2)

and if γ1 is complex, then

Re γ1 = Re γ2 < Re γi (i = 3, . . . , n) . (13.5.3)

To distinguish between these two cases, we will call the equilibrium state a
saddle in the first case, and a saddle-focus in the second case, for the sake of
brevity. Note that this terminology differs from what we have used throughout
the first part of this book. Namely, in this section we do not take into account
whether the leading characteristic exponent λ is real or complex. Thus, in this
particular section, we call O a saddle if (13.5.1) and (13.5.2) are satisfied, even
if λ1 is complex.
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Let us now make two more non-degeneracy assumptions. Namely, we as-
sume that

(1) the homoclinic loop Γ does not belong to the strongly unstable manifold
Wuu. Recall (Secs. 2.6 and 2.7) that the unstable manifold of a saddle has
a special subset — an invariant smooth strong unstable manifold Wuu. It is
tangent at O to the eigenspace of the linearization matrix which corresponds
to the non-leading characteristic exponents γ2, . . . , γn in the case of a saddle,
or to γ3, . . . , γn in the case of a saddle-focus. The trajectories of Wu which
do not belong to Wuu tend to O as t → −∞ along the leading direction (the
eigenvector corresponding to the leading characteristic exponent γ1) in the case
of saddle, or they spiral toward O along the two-dimensional leading plane (the
eigenplane corresponding to the leading characteristic exponents γ1 and γ2) in
the case of a saddle-focus.

In other words, we assume that the homoclinic loop behaves in one of the
two ways described above as it approaches O as t → −∞. In principle, this
is not a strong restriction since it defines an open and dense subset on the
bifurcation surface: if Γ lies in Wuu for some system, then by an arbitrarily
small smooth perturbation it may be pushed into Wu\Wuu.

(2) The extended stable manifold W sE is transverse to the unstable manifold
Wu at the points lying on Γ. Recall (Sec. 2.7) that a two-dimensional local
invariant manifold W sE is tangent at O to the eigenspace of the linearization
matrix corresponding to the stable characteristic exponents λ1, . . . , λm and the
leading unstable exponents γ1 (in the case of the saddle), or γ1,2 (in the case
of the saddle-focus), respectively. Since it contains the local stable manifold, it
also contains the homoclinic loop Γ. Continuation along the backward orbits
near Γ defines the invariant manifold W sE globally. The local (hence, global)
extended stable manifolds are not unique, but any two such manifolds are
tangent to each other at any point on the stable manifold. Therefore, our
transversality condition is well-posed.

Note that in the case of a saddle (γ1 is real) the tangent to the unstable
manifold at any point which does not belong to the strong unstable manifold
Wuu is spanned onto the phase velocity vector and the tangent to a leaf of
the strong-unstable foliation Fuu through the given point.13 Since W sE is
an invariant manifold, it consists of whole trajectories. Therefore, its tangent
contains the phase velocity vector as well. Hence, in the case of a saddle the

13This is the uniquely defined invariant foliation of W u transverse to the leading direction
near O; see Sec. 6.1.
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transversality of W sE to Wu is equivalent to the transversality of W sE to the
foliation Fuu.

One can now notice that in the case of a saddle, the above assumptions
coincide with the conditions of Theorem 6.1 in Sec. 6.1 of Part I of this book.
This theorem constitutes the existence (for the system with a homoclinic loop
itself, and for all nearby systems) of a repelling smooth (C1) invariant (m+1)-
dimensional manifold M which contains all orbits staying in a small neigh-
borhood U of Γ for all positive times. It follows that our problem on the
bifurcations of Γ can be reduced here to that on the bifurcations on M.

In a small neighborhood of the saddle O, this invariant manifold coin-
cides with some extended stable manifold W sE

loc . Thus, the latter manifold
is tangent at O to the eigenspace corresponding to the characteristic expo-
nents γ1 and λ1, . . . , λm. Hence, the saddle equilibrium state of the system
restricted on M has a one-dimensional (corresponding to γ1) unstable mani-
fold and an m-dimensional stable manifold (corresponding to λ1, . . . , λm). The
associated saddle value is negative. The bifurcations of the homoclinic loop
in this situations are described by Theorem 13.6. Now, recall that M is a
repelling manifold, i.e. flow is expanding in directions transverse to M. There-
fore, the stable periodic orbit bifurcating from the saddle on M (according to
Theorem 13.6) is indeed a saddle periodic orbit with an n-dimensional
unstable manifold for the whole system. Thus, we arrive at the following result.

Theorem 13.9. (Shilnikov [134]) Let a saddle O with saddle value σ < 0
have a homoclinic loop Γ which satisfies the non-degeneracy conditions (1) and
(2). Let U be a small neighborhood of Γ. If the homoclinic loop splits inward on
the invariant manifold M, then a single periodic orbit L with an n-dimensional
unstable manifold will be born. Furthermore, the only orbits which stay in U

for all times are the saddle O, the cycle L and a single heteroclinic orbit14

which is α-limit to O and ω-limit to L.

When the loop splits outward, there are no periodic orbits in U ; moreover, the
only entire orbit in U is the saddle O. When there exists the separatrix loop Γ,

there are no other entire orbits in U, except for Γ and O.

This theorem was originally proved without a reduction onto the invariant
manifold (although the original formulation was somewhat different from the
present one, both are equivalent). Its proof was based on a direct analysis

14This is the unstable separatrix Γ1 for the system on M.
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of the (m + n− 1)-dimensional Poincaré map near the homoclinic loop. This
map was shown to be a saddle map in the sense similar to our definition in
Sec. 3.15 of Part I, and after that a fixed point theorem was applied, analogous
to Theorem 3.28 in Sec. 3.15. In order to obtain suitable estimates on the
Poincaré map, the system was assumed to be analytical in [134]. Note that
the present proof needs only C1-smoothness.

In the case of a saddle-focus the following result holds.

Theorem 13.10. (Shilnikov [136]) Let a saddle-focus O have a homoclinic
loop Γ which satisfies the non-degeneracy conditions (1) and (2). Then, in an
arbitrarily small neighborhood of Γ, there exist infinitely many saddle periodic
orbits.

We do not give its proof here because it is beyond the scope of this book.
A partial case (Theorem 13.8) was discussed in the preceding section. In fact,
the main theorem of [136] contains much more detailed information on the
structure of the phase space in a neighborhood of the homoclinic loop of the
saddle-focus; namely, a description of hyperbolic subsets in terms of symbolic
dynamics.

In the original proof the system under consideration was assumed to be an-
alytic. Later on, other simplified proofs have been proposed which are based
on a reduction to a non-local center manifold near the separatrix loop (such
a center manifold is, generically, 3-dimensional if the stable characteristic ex-
ponent λ1 is real, and 4-dimensional if λ1 = λ∗2 is complex) and on a smooth
linearization of the reduced system near the equilibrium state (see [120, 147]).
The existence of the smooth invariant manifold of low dimension is important
here because it effectively reduces the dimension of the problem.15

13.6. Codimension-two bifurcations of homoclinic
loops

In this and the following sections we will review some codimension-two bi-
furcations of homoclinic loops and heteroclinic cycles which occur in various
models.

15We should however stress that conditions (1) and (2) alone are not sufficient for the
existence of any smooth invariant manifold near the loop in the case of a saddle-focus (what
one really needs for such manifold to exist is the tranversality condition of W sE to F uu; see
[150]). Therefore, the reduction to an invariant manifold cannot give Theorem 13.10 in its
full generality.
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Fig. 13.6.1. The inclination-flip bifurcation (A = 0) is due to a violation of the transversality
of the intersection of W uE and W s at the points of the homoclinic loop Γ.

Consider an (n + 1)-dimensional Cr-smooth (r ≥ 4) system with a saddle
equilibrium state O. Let O have only one positive characteristic exponent
γ > 0; the other characteristic exponents λ1, λ2, . . . , λn are assumed to have
negative real parts. Moreover, we want the leading stable exponent λ1 to be
real:

λ1 > Re λj , j = 2, . . . , n .

The unstable manifold Wu of O is one-dimensional, and the stable manifold
W s is n-dimensional. Suppose that one of the unstable separatrices (Γ1) tends
to O as t → +∞, thereby forming a homoclinic loop, as shown in Fig. 13.6.1.

We will analyze the following three cases of codimension-two bifurcations
of such homoclinic loops.

Case A.
(1) ν = 1;
(2) Γ 6⊂ W ss; and
(3) A 6= 0.

Case B.
(1) A = 0,

i.e. WuE is tangent to W s at the points of Γ (see Fig. 13.6.1);
(2) Γ 6⊂ W ss,

i.e. Γ enters O as t → +∞ along the leading direction; and
(3) 1

2 < ν < 1, νj > 1 (j = 2, . . . , n).
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Case C.

(1) Γ ⊂ W ss,

i.e. Γ enters O as t→+∞ along a non-leading direction (see Fig. 13.6.2);
(2) The extended unstable manifold WuE is transverse to the stable

manifold W s at points on Γ; and
(3) ν < 1, νj > 1 (j = 2, . . . , n).(

Here: ν =
∣∣∣λ1

γ

∣∣∣ , νj =
∣∣∣Reλj

γ

∣∣∣ .
)

Case A corresponds to the boundary between positive and negative saddle
values. Cases B and C correspond to a violation of the non-degeneracy condi-
tions (1) and (2) of Theorem 13.4.2, respectively (the birth of a saddle periodic
orbit from a homoclinic loop with positive saddle value). Condition (3) in the
last two cases is necessary to exclude the transition to complex dynamics via
these bifurcations (some of the cases with complex dynamics were studied in
[44, 70, 78, 96, 79, 71, 72]).

Codimension-two bifurcations of homoclinic loops are essential for studying
bifurcation phenomena in the Lorenz equation

ẋ = −σ(x− y) , ẏ = rx− y + xz, ż = −bz + xy .

When σ = 10, b = 8/3 and r ≈ 13.926, both of the one-dimensional unsta-
ble separatrices Γ1 and Γ2 of the saddle O(0, 0, 0) return to the saddle, along
the same direction (the positive z semi-axis). They form a geometrical con-
figuration called a homoclinic butterfly (Fig. 13.6.3). Note that a homoclinic
butterfly may only occur in Rn with n ≥ 3.

Fig. 13.6.2. The orbit-flip bifurcation — the homoclinic loop Γ gets closed along the non-
leading submanifold at the moment of bifurcation.
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Fig. 13.6.3. A homoclinic butterfly. Both separatrices return to the saddle tangentially to
each other.

In general, the bifurcation of a homoclinic butterfly is of codimension two.
However, the Lorenz equation is symmetric with respect to the transformation
(x, y, z) ↔ (−x,−y, z). In such systems the existence of one homoclinic loop
automatically implies the existence of another loop which is a symmetrical
image of the other one. Therefore, the homoclinic butterfly is a codimension-
one phenomenon for the systems with symmetry.

In the Lorenz model, the saddle value is positive for the parameter values
corresponding to the homoclinic butterfly. Therefore, upon splitting the two
symmetric homoclinic loops outward, a saddle periodic orbit is born from each
loop. Furthermore, the stable manifold of one of the periodic orbits inter-
sects transversely the unstable manifold of the other one, and vice versa. The
occurrence of such an intersection leads, in turn, to the existence of a hyper-
bolic limit set containing transverse homoclinic orbits, infinitely many saddle
periodic orbits and so on [1]. In the case of a homoclinic butterfly without
symmetry there is also a region in the parameter space for which such a rough
limit set exists [1, 141, 149]. However, since this limit set is unstable, it cannot
be directly associated with the strange attractor — a mathematical image of
dynamical chaos in the Lorenz equation.
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In order to resolve this problem, it was proposed in [138] to study the
homoclinic butterflies in the Cases A, B and C above. Namely, it was estab-
lished that the bifurcation of a homoclinic butterfly results in the immediate
appearance of a Lorenz attractor when

(a) the saddle value σ = 0 with the additional condition that |A| < 2 on
both loops; or when

(b) A = 0 on both loops with σ > 0 and condition 3 of Case B is satisfied;
or when

(c) both loops belong to the non-leading manifold (with σ > 0 and condi-
tion 3 satisfied, as well).

Case (a) corresponds to a codimension-three bifurcation, while Cases (b)
and (c) are of codimension four. However, if the system exhibits some sym-
metry, then all of the above three bifurcations reduce to codimension two. It
was established in [126, 127, 129] that a symmetric homoclinic butterfly with
either σ = 0 or A = 0 appears in the so-called extended Lorenz model, and in
the Shimizu–Morioka system, as well as in some cases of local bifurcations of
codimension three in the presence of certain discrete symmetries [129].

We will not consider here the birth of the Lorenz attractor (see [114, 115,
117, 126, 127, 129] for that), but we consider the codimension-two bifurcations
of a single homoclinic loop. The bifurcation diagrams for Case A are the same
as in the two-dimensional case (see Fig. 13.3.1 when 0 < A < 1 and Fig. 13.3.3
for −1 < A < 0, respectively; the situation where |A| > 1 reduces to that of
|A| < 1 upon a reversion of time). This was established in [38], although the
proof of the completeness of the diagrams (the absence of other bifurcational
curves) was not done. We close this problem here (Subsec. 13.6.3).

The bifurcation unfoldings for Cases B and C are identical and shown in
Fig. 13.6.4. Here, µ is the splitting parameter of the homoclinic loop, and A

is the separatrix value. Since in Sec. 13.4 the separatrix value A was defined
only when the loop does not belong to W ss, we must specify its meaning for
Case C.

Recall that the non-leading manifold W ss
loc is (n − 1)-dimensional. It par-

titions W s
loc into two components. If the loop Γ lies in W ss, then a small

perturbation may make it miss W ss
loc so that it enters the saddle from either

component of W s
loc. We will show (Subsec. 13.6.2) that when the loop is moved

from one component to the other, it is accompanied by a change in the sign of
the separatrix value A.
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Fig. 13.6.4. The bifurcation unfoldings for an orbit- and an inclination-flip bifurcation are
identical in the simplest case.

The bifurcation diagram for Case B was proposed, independently, in [126]
(see also [127, 129]) and in [77], for Case C — in [119]. Here, we give a unified
and self-consistent proof for both cases, including the proof of the completeness
of the bifurcational diagram. In the West, the Case B is called the inclination-
flip bifurcation and the Case C is called the orbit-flip.

Let us introduce coordinates near the saddle so that the system assumes,
locally, the following form [see Sec. 13.8, formula (13.8.28)]

ẋ = −νx + f11(x, y)x + f12(x, u, y)u ,

u̇ = Bu + f21(x, y)x + f22(x, u, y)u ,

ẏ = y ,

(13.6.1)

where x ∈ R1 and y ∈ R1 are the leading coordinates, u ∈ Rn−1 is the vector
of stable non-leading coordinates; ν = |λ1/γ| is the saddle index, and the
eigenvalues of matrix B are −ν2, . . . ,−νn, where νj = |Re λj/γ|. Recall that
1 < νj , j = 2, . . . , n. In Case B we have 1

2 < ν < 1, and ν < 1 in Case C. In
Case A, ν = 1 at the bifurcation point, so we can let ν = 1 + ε here, where ε

is a small parameter. The Cr−1-functions fij satisfy

fi1(x, 0) ≡ 0 , f1j(0, 0, y) ≡ 0 . (13.6.2)
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In these coordinates, the stable manifold is locally given by y = 0, the local
unstable manifold is given by {x = 0, u = 0}. The equation of the strong
stable manifold is {x = 0, y = 0}.

By assumption, the loop Γ coincides locally with the y semi-axis when it
leaves O at t = −∞. Since Γ 6⊂ W ss in Cases A and B, it enters O as t → +∞
along the x-axis. In Case C, the separatrix Γ lies locally in {x = 0, y = 0} as
it returns to the saddle. We assume also that the loop adjoins O from the side
of positive y as t → −∞ and, in the first two cases, from the side of positive x

as t → +∞.
Let us choose two cross-sections S0 and S1 transverse to the loop Γ. Let S1

be given by {y = d} and S0 be given by {‖u‖ = d} in Case C, or by {x = d} in
Cases A and B, where d > 0 is small. Denote the coordinates on S1 by (x1, u1)
and the coordinates on S0 by (y0, u0) in Cases A and B, or by (y0, x0, u0) in
Case C.

On the upper part S+
0 : {y0 ≥ 0} of S0, the local map T0 : S+

0 → S1 is
defined by the orbits of the system. It follows from the last equation in (13.6.1)
that the flight time from S+

0 to S1 is

τ = − ln
y0

d
. (13.6.3)

It was shown in Sec. 13.8 [see formulas (13.8.30)–(13.8.36)] that the fulfillment
of identities (13.6.2) implies the following estimates for the solution of the
system starting from a point (x0, u0) at t = 0 and ending on {y = d} at t = τ :

x(τ) = e−ντx0 + ξ1(x0, u0, τ) + ξ̄1(u0, τ) ,

u(τ) = ξ2(x0, u0, τ) + ξ̄2(u0, τ) ,
(13.6.4)

where

ξ1,2(0, u0, τ) ≡ 0 ,

‖ξ1,2‖Cr−2 = o(e−ν̃τ ), ‖ξ̄1,2‖Cr−2 = o(e−(1+δ)τ ) ,

‖ξ1,2‖Cr−1 + ‖ξ̄1,2‖Cr−1 = o(e−ντ ) ,

(13.6.5)

where ν̃ may be taken arbitrarity close from below to min{2ν, 1+ν, ν2, . . . , νn}
(so ν̃ > ν and, moreover, ν̃ > 1 in Case A and B where we have 2ν > 1) and
δ is such that 0 < δ < min{ν, ν2 − 1, . . . , νn − 1}.

Substituting formula (13.6.3) for the flight time into (13.6.6) and (13.6.5),
we obtain the following estimate for the local map T0 : S+

0 → S1 in Case C
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(where the cross-section S0 is ‖u0 = d‖)

x1 = x0y
ν
0d−ν + ϕ1(x0, y0, u0) , u1 = ϕ2(x0, y0, u0) , (13.6.6)

where

ϕ = o(|x0|yν̃
0 + y1+δ

0 ) ,

∂p+qϕ

∂up
0∂yq

0

= o(|x0|yν̃−q
0 + y1+δ−q

0 ) (p + q ≤ r − 3) ,

∂r−2ϕ

∂up
0∂yq

0

= o(yν̃−q
0 ),

∂s+p+qϕ

∂xs
0u

p
0∂yq

0

= o(yν̃−q
0 ) (s + p + q ≤ r − 2) ,

∂p+qϕ

∂(x0, u0)p∂yq
0

= o(yν−q
0 ) at p + q = r − 1 .

(13.6.7)

In both Cases A and B, where x0 = d on S0, we have the following formula
for T0:

x1 = yν
0d1−ν + ϕ1(y0, u0) , u1 = ϕ2(y0, u0) , (13.6.8)

where the functions ϕ1,2 satisfy

ϕ = o(yν̃
0 ) ,

∂p+qϕ

∂up
0∂yq

0

= o(yν̃−q
0 ) (p + q ≤ r − 2),

∂r−1ϕ

∂up
0∂yq

0

= o(yν−q
0 ) .

(13.6.9)

Recall that ν̃ > 1 here, contrary to (13.6.7) where we have only ν̃ > ν.

13.6.1. The case A = 0 inclination-flip

The flow outside a small neighborhood of O defines the global map T1 : S1 → S0

by the orbits close to Γ. In Case B the map T1 in a small neighborhood of the
point M−(0, 0) = Wu

loc ∩ S1 can be represented by

ȳ0 = µ + Ax1 + a12u1 + · · · ,

ū0 = u+ + a21x1 + a22u1 + · · · ,
(13.6.10)

where A is the separatrix value which is assumed to vanish at the bifurcation
point. In this formula, (µ, u+(µ,A)) are the coordinates of the point M+ =
T1M

− where the separatrix Γ1 first intersects S0. The homoclinic loop exists
at µ = 0 (since M+ ∈ W s

loc ∩ S0 in this case).
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Combining formulas (13.6.8) and (13.6.10), we obtain the following repre-
sentation for the Poincaré map T in Case B:

ȳ = µ + Ayν + ϕ1(y, u) , y ≥ 0 ,

ū = u+ + a21y
ν + ϕ2(y, u)

(13.6.11)

(we drop here the sub-index “0” and also rescale variables to make d = 1 in
(13.6.8); the modified functions ϕ1,2 still satisfy estimates (13.6.7) — note that
the second-order terms in the Taylor expansion for the global map T1 make a
contribution of order O(y2ν) in the new functions ϕ1,2, but it is negligible in
comparison with (13.6.7) because ν > 1/2).

Let α be the root of the equation

(µ

α

)2

+
(

A

α1−ν

)2

= 1 . (13.6.12)

Observe that α, which is uniquely defined by (13.6.12), converges to zero as
µ,A → 0. One can see from (13.6.11) that ȳ < y for y > α/(1 − ν). Thus,
upon iterating the map T , the value of y decreases until it becomes of size
O(α). Therefore, it is reasonable to rescale the variables and parameters via:

y 7→ αy , u 7→ u+ + ανu, µ = α sin φ, A = α1−ν cosφ ,

where (α, φ) are a kind of polar coordinates on the (µ,A)-plane. We can then
recast this map into the form

ȳ = sin φ + cos φ yν + · · · ,

ū = a21y
ν + · · · ,

(13.6.13)

where the ellipsis stand for the terms which vanish along with the first deriva-
tives with respect to yν and u as α → +0; moreover, all their derivatives up
to order (r − 1) tend to zero uniformly on any interval of values of y bounded
away from zero. This type of convergence is sufficient for one to show that the
map (13.6.13) undergoes the same bifurcations as the limiting one-dimensional
map

ȳ = sin φ + cos φ yν , y ≥ 0 . (13.6.14)

The Lamerey diagrams for this map are shown in Fig. 13.6.5. The right-hand
side of the map is either monotonically increasing (when −π/2 < φ < π/2), or
monotonically decreasing (when π/2 < φ < 3π/2). Such maps may have only
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Fig. 13.6.5. The Lamerey diagrams for the map (13.6.14).

fixed points and orbits of period two, respectively. Moreover, the only possible
bifurcations occurring in such maps are saddle-node bifurcations and primary
period-doubling’s (“primary” is applied to fixed points only). In addition, a
fixed point or a period-two orbit may vanish on the boundary (given by y = 0)
of the domain of definition of the map. This corresponds to the bifurcation of
a homoclinic loop (simple or double, respectively) in the original system. The
bifurcation values of φ are found from the system

y = sin φ + yν cos φ ,

±1 = νyν−1 cos φ ,
(13.6.15)

where “+” corresponds to a saddle-node bifurcation of a fixed point, and “-”
corresponds to a period-doubling of a fixed point. This system can be recast
as

y = − ν

1− ν
sin φ ,

(1− ν)1−ν

νν
=

cos φ

(− sinφ)1−ν

(13.6.16)
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for the saddle-node bifurcation case, or as

y =
ν

1 + ν
sin φ ,

− (1 + ν)1−ν

νν
=

cosφ

(sinφ)1−ν

(13.6.17)

for the period-doubling case. Here, y is the coordinate of the bifurcating fixed
point. One can see that these equations define a unique value of φ for each
bifurcation. Moreover, both bifurcations are non-degenerate: the Lyapunov
value is non-zero at a saddle-node bifurcation, and is non-zero and positive at
a period-doubling bifurcation.

Thus, the saddle-node bifurcation leads to the appearance of a pair of
fixed points, stable and unstable, whereas the period-doubling leads to the
appearance of an unstable orbit of period two. An unstable fixed point vanishes
at y = 0 (corresponding to a single-circuit homoclinic loop) when φ = 0 and
φ = π. An unstable orbit of period two approaches y = 0 (a double homoclinic
loop) when

0 = 1 +
cosφ

(sinφ)1−ν
. (13.6.18)

To make sure that there are no other bifurcation values (which might also
give rise to saddle-node bifurcations of period-two orbits), just note that the
third derivative of the second iterate of the map (13.6.14) never vanishes. This
means that the second iteration of the map cannot have more than three fixed
points, including their multiplicity. Hence, this guarantees the absence of other
orbits of period two in the map.

We have completed our analysis of the one-dimensional map (13.6.14). The
phase portraits for the degenerate multi-dimensional map T̃

ȳ = sin φ + cos φ yν , ū = a21y
ν (13.6.19)

can be easily constructed. Since the Poincaré map T is close to the above
map [see (13.6.13)], every orbit which does not escape from the region 0 ≤
y ≤ 2/(1 − ν) must come to a small neighborhood of α− or ω− limit sets of
the map T̃ given by (13.6.19). As the analysis above shows, these limit sets
are fixed points or periodic orbits of period two. When they are not close to
y = 0, the map T is close to T̃ along with at least three derivatives [for this
purpose we have assumed above that the system under consideration is Cr-
smooth with r ≥ 4; see comments after the formula (13.6.13)]. This guarantees
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that the two maps have the same phase portraits when all periodic points of
(13.6.19) are rough, and that these maps undergo the same bifurcations near
the values of φ for which the map T̃ undergoes a non-degenerate saddle-node or
period-doubling bifurcation. Near the values of φ for which a fixed point or a
period-two orbit of T̃ comes close to y = 0 [these values are, given, respectively,
by the equations sin φ = 0 and (13.6.18)], this fixed point or period-two orbit
is always of a saddle type. Moreover, the first or, respectively, second iteration
of the map T̃ is a saddle map near y = 0 in the sense of Sec. 3.15. The same
is true for the map T : since its first derivative with respect to yν is uniformly
close to that of T̃ , one can find y as a function of ȳ and u and check, for
the obtained cross-map, that conditions (3.15.10) of Definition 3.7 are fulfilled.
Since a saddle map can have only a single saddle fixed point, it follows that
the map T may have only a single saddle periodic orbit close to y = 0, and
this periodic orbit is close to that of the map T̃ .

Thus, the map T undergoes (for small α) the same bifurcations as the
one-dimensional map (13.6.14). Returning to the original parameters (µ,A)
we obtain the following asymptotics for the bifurcational curves (13.6.16)–
(13.6.18):

• µ ∼ − ν
ν

1−ν

1− ν
A

1
1−ν , A > 0 — a saddle-node;

• µ ∼ ν
ν

1−ν

1 + ν
(−A)

1
1−ν , A < 0 — a period-doubling bifurcation; and

• µ ∼ (−A)
1

1−ν , A < 0 — a double loop.

Recall also that the line µ = 0 corresponds to the primary homoclinic loop.
Summarizing, we have obtained the following description of the bifurcations

on the (A,µ)-plane in Case B (see Fig. 13.6.4):
in the region D1 there is no orbit (except the saddle) staying inside a small
neighborhood U of the homoclinic loop Γ for all times. Upon crossing the curve
L1 corresponding to a saddle-node bifurcation, a stable and a saddle single-
circuit periodic orbits are born. The saddle periodic orbit adheres to a homo-
clinic loop with A > 0 on the curve L2. After this, the single stable periodic
orbit exists in the region D3. Upon crossing the line L3, a saddle double peri-
odic orbit bifurcates from a double homoclinic loop. This double-circuit peri-
odic orbit coalesces with the single-circuit periodic orbit on the line L4, so that
the latter periodic orbit looses its stability (the reverse period-doubling bifurca-
tion) and becomes of the saddle type. The new saddle periodic orbit disappears
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in a single non-orientable/twisted (A < 0) homoclinic loop on the bifurcation
curve L5.

13.6.2. The case ΓΓ ⊂⊂ W ss orbit-flip

Let us show next that the bifurcations in Case C (Γ ⊂ W ss) proceed in the
exactly same way. Here, the cross-section S0 is given by {|u| = d}. The global
map T1 : S1 → S0 defined by the orbits close to Γ is now represented by

ȳ0 = µ + a11x1 + a12u1 + · · · ,

x̄0 = η + a21x1 + a22u1 + · · · ,

ū0 = u+ + a31x1 + a32u1 + · · · ,

(13.6.20)

where (µ, η, u+(µ, η)) are the coordinates of the point M+ = T1M
− = Γ1∩S0.

At (µ, η) = (0, 0), the system has a homoclinic loop lying in W ss (since M+ ∈
W ss

loc ∩S0 in this case). Thus, we must consider bifurcations for small η and µ.
Note that the assumed transversality of WuE to W s is equivalent to the

condition a11 6= 0 (see Sec. 13.4).
Combining formula (13.6.20) with formula (13.6.6) for the local map, we

obtain the following representation for the Poincaré map T in Case C:

ȳ = µ + a11xyν + ϕ1(x, y, u) , y ≥ 0 ,

x̄ = η + a21xyν + ϕ2(x, y, u) ,

ū = u+ + a31xyν + ϕ3(x, y, u)

(13.6.21)

(we omit here the sub-index “0” and also rescale variables to let d = 1 in
(13.6.6); the functions ϕ1,2,3 satisfy estimates (13.6.7), i.e. ϕ1,2,3 = o(|x|yν̃ +
y1+δ)).

Let us define the separatrix value as

A = ηa11 .

Note that at µ = 0 and η 6= 0, the separatrix Γ1 forms a homoclinic loop,
approaching one of the two components of W s

loc\W ss
loc depending on the sign

of η. Since the non-degeneracy conditions of Theorem 13.7 are satisfied for
η 6= 0, the Poincaré map T has a smooth invariant curve through the point
M+(0, η, u+), transverse to the stable manifold. When restricted to this curve,
the map T assumes the form

ȳ = a11ηyν + o(yν) ,
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Fig. 13.6.6. Orbit-flip homoclinic bifurcation: the change of the way the separatrix Γ tends
to the saddle results in the change of sign of separatrix A.

i.e. our definition of the separatrix value A is consistent with the definition
in Sec. 13.4 for the case of a non-degenerate (codimension one) homoclinic
loop. Observe that when the homoclinic loop moves from one component
of W s

loc\W ss
loc to the other, the separatrix value changes its sign as shown in

Fig 13.6.6.
Let us transform the x-variable: x → x+ η. The map T can then be recast

as
ȳ = µ + Ayν + a11xyν + ϕ1(x + η, y, u) , y ≥ 0 ,

x̄ = a21ηyν + a21xyν + ϕ2(x + η, y, u) ,

ū = u+ + a31ηyν + a31xyν + ϕ3(x + η, y, u) .

After rescaling y 7→ yα, x 7→ αx, u 7→ u+ + αu (where α is taken from
(13.6.12)) the map is brought to a form analogous to (13.6.13). After this
point, all considerations may now proceed in the same way as in Case B and
leading to the exactly same result.

13.6.3. The case σσ =0

Let us now examine Case A — bifurcations of a homoclinic loop with σ = 0.
Here, the local map from S0 to S1 is given by the formula (13.6.8) where
ν = 1 + ε. The global map from S1 to S0 is defined by formula (13.6.10)
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(where A is no longer assumed small; moreover, it depends now on the small
parameters (µ, ε)). We also assume that |A| < 1 (the case |A > 1 can be
similarly obtained by reversing of time). Combining formulas (13.6.8) and
(13.6.10), we can write the Poincaré map T in the form

ȳ = µ + A(µ, ε)y1+ε + ϕ1(y, u) , y ≥ 0 ,

ū = u+ + a21y
1+ε + ϕ2(y, u) ,

(13.6.22)

where ϕ1,2 satisfy the estimates (13.6.7) (in which the dependence on x must
be suppressed).

Note that conditions 2 and 3 in Case A coincide with the conditions of
Theorem 6.2 (see detailed explanations in Sec. 13.4) which guarantees the
existence of a smooth attracting two-dimensional invariant manifold M for
all small µ. It is only C1, in general. Therefore, we cannot apply the two-
dimensional results from Sec. 13.3 directly to our case because the former
requires a higher order of smoothness. Nonetheless, the intersection of the
invariant manifold M with S0 is a smooth attracting invariant curve l0 (trans-
verse to y = 0) for the Poincaré map T . The Poincaré map, when restricted
to this curve, is a one-dimensional map with either a monotonically increas-
ing (when A > 0), or a monotonically decreasing (when A < 0) right-hand
side. This gives us an important qualitative information on the anticipated
bifurcations of the original map T : they may include only a saddle-node and
a period-doubling bifurcation of a fixed point when A > 0 and, virtually, a
saddle-node bifurcation of an orbit of period two when A < 0. In addition,
a fixed point, or an orbit of period two when A < 0, may migrate to the
boundary {y = 0} of the domain of definition of the map (this corresponds to
a homoclinic loop, simple or double, respectively).

A simple homoclinic loop corresponds to µ = 0. A double homoclinic loop
exists for A < 0 if TM+ ∈ W s

loc, i.e.

0 = µ + A(µ, ε)µ1+ε + ϕ1(µ, u+)

(see (13.6.22)). This gives the following asymptotics for the corresponding
bifurcational curve:

µ = |A(0, ε)|1/|ε|[1 + o(1)] , ε < 0 .
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The bifurcations of the fixed point are found from the system (compare
with (13.6.22)):

y = µ + Ay1+ε + ϕ1(y, u), y ≥ 0 ,

u = u+ + a21y
1+ε + ϕ2(y, u) ,

±
(

1
z

)
=

(
A(1 + ε)yε + ϕ′1y ϕ′1u

a21(1 + ε)yε + ϕ′2y ϕ′2u

) (
1
z

)
.

(13.6.23)

Here, “+” corresponds to a saddle-node bifurcation and “−” corresponds to a
period-doubling bifurcation; (y, u) are the coordinates of the bifurcating fixed
point, and (1, z) is the eigenvector corresponding to the multiplier ±1.

Since ϕ′(1,2)y = o(yδ) and ϕ′(1,2)u = o(y1+δ), one can easily express z and u

in terms of y:
z ∼ ±a21(1 + ε)yε, u ∼ u+ .

Thus, the system takes the form

y = µ + Ay1+ε + o(y1+δ), y ≥ 0 ,

±1 = A(1 + ε)yε + o(yδ) ,
(13.6.24)

which is analogous to systems (13.3.9) and (13.3.13) which define the bifur-
cation curves of the fixed points of the map T in the two-dimensional case
(Sec. 13.3). This system gives the following asymptotics for the bifurcation
curves (ε < 0):

• µ =
1
e
A(0, ε)

1
ε (1 + o(1)) — a saddle-node fixed point (A > 0); and

• µ =
2
e
|A(0, ε)| 1ε (1 + o(1)) — period-doubling (A < 0).

It can also be shown that these bifurcations are non-degenerate, i.e. the first
Lyapunov value is non-zero in both cases. Moreover, at the period-doubling
bifurcation the Lyapunov value is positive. Therefore, a saddle orbit of period
two is born at this bifurcation.

All of these results coincide with those we have obtained in the two-
dimensional case. Therefore the bifurcation diagrams are the same. The re-
maining final step is to verify that there may not be saddle-node bifurcations
of the orbits of period two for A < 0. A period-two orbit {(y1, u1), (y2, u2)}
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must satisfy the equation

y2 = µ + A(µ, ε)y1+ε
1 + ϕ1(y1, u1) ,

y1 = µ + A(µ, ε)y1+ε
2 + ϕ1(y2, u2) ,

u2 = u+ + a21y
1+ε
1 + ϕ2(y1, u1) ,

u1 = u+ + a21y
1+ε
2 + ϕ2(y2, u2) ,

(13.6.25)

where y1 ≥ 0 and y2 ≥ 0.
Since ϕ′2u is small for small y, one can find (u1, u2) as functions of (y1, y2)

from the two last equations in (13.6.25). The equations for y1,2 can be written
as

y2 = µ + A(µ, ε)y1+ε
1 + ϕ(y1, y2) ,

y1 = µ + A(µ, ε)y1+ε
2 + ϕ(y2, y1) , y1 ≥ 0, y2 ≥ 0 .

(13.6.26)

Here, the function ϕ is estimated as follows:

ϕ(y1, y2) = o(y1+δ
1 ) ,

∂qϕ

∂yq
1

= o(y1−q+δ
1 ) (q = 1, . . . , r − 2) ,

∂r−1ϕ

∂yr−1
1

= o(y2−r+ε
1 ) , (13.6.27)

∂q+pϕ

∂yq
1∂yp

2

= o(y1−q+δ
1 y1−p+ε

2 ) (1 ≤ p ≤ r − 2− q) ,

∂p+qϕ

∂yq
1∂yp

2

= o(y1−q+ε
1 y1−p+ε

2 ) at p + q = r − 1, p ≥ 1 .

Recall that we have assumed −1 < A < 0. Therefore, for ε ≥ 0, the right-
hand side of (13.6.26) is a contraction. Hence, the system may have only one
solution for ε ≥ 0. By symmetry, we have y1 = y2 at this solution; i.e. it
corresponds to a fixed point of the map T . Thus, the map T does not have
orbits of period two for ε ≥ 0 and we will now restrict our consideration to
negative ε.

Since A < 0, the right-hand side of the first equation in (13.6.26) decreases
as y1 increases. Therefore, y2 ≤ µ. Analogously, y1 ≤ µ as well. Thus, we may
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rescale variables: y1 → y1µ, y2 → y2µ. The resulting system takes the form

y2 = 1− Cy1+ε
1 +

1
µ

ϕ(µy1, µy2) ,

y1 = 1− Cy1+ε
2 +

1
µ

ϕ(µy2, µy1) ,

(13.6.28)

where

C =
|A|
µ|ε|

, (13.6.29)

and both rescaled variables y1,2 belong to the interval [0, 1]. With no loss of
generality we may assume that y1 ≥ y2, and y1 is bounded away from zero for
bounded C.

It is easy to see, that if C remains bounded away from C = 1, then system
(13.6.28) has a unique solution for small µ and ε. Observe that the symmetry
of the system implies y1 = y2 in this case, which means that the map T cannot
have orbits of period two when C is not close to 1.

Thus, the only relevant region in the parameter plane corresponds to µ|ε| ∼
|A|. Since |A| < 1 by assumption, it follows that µ is exponentially small with
respect to ε; namely,

µ < e−K/|ε|

for some positive K. It follows that the ϕ-terms in (13.6.28) are negligible and
it can be easily checked that solving y1 in terms of y2 from the second equation
of (13.6.28) and substituting the resulting expression into the first equation,
the third derivative of the right-hand side of the resulting equation will never
vanish for small ε < 0.

This implies that the system cannot have more than three solutions. Each
orbit of period two gives two solutions [(y1, y2) and (y2, y1)]. Therefore, the
map T cannot have more than one period-two orbit, even accounting for mul-
tiplicity, i.e. there may not be saddle-node orbits of period two either.

13.7. Bifurcations of the homoclinic-8 and
heteroclinic cycles

In this section, we will review the bifurcations of a homoclinic-8, as well as
of heteroclinic cycles including a pair of saddles such that they do not induce
complex dynamics. We skip all proofs here just because our goal is only to
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Fig. 13.7.1. A homoclinic-8 — the separatrices leave the saddle from opposite directions.

acquaint the readers with the results obtained in [148, 149, 151] and [50] for the
homoclinic-8, and in [121–125] and in [34–35] for heteroclinic cycles of various
kinds which have not yet been widely known.

The homoclinic-8 consists of a pair of homoclinic loops to a saddle such that
the unstable separatrices Γ1 and Γ2 come out from the saddle in the opposite
directions at t = −∞ (Fig. 13.7.1). We will consider the case where the
unstable manifold of the saddle O is one-dimensional; i.e. the saddle has only
one positive characteristic exponent γ > 0; all other exponents are assumed to
have negative real parts: Re λj < 0, j = 1, . . . , n. Moreover, we assume that
the saddle value σ is negative:

σ = γ + max Re λj < 0 .

We assume also that the system is Cr-smooth with r ≥ 1, and can hence ex-
amine its bifurcations under Cr-smooth perturbations. Consider a sufficiently
small neighborhood U of the homoclinic-8 Γ1 ∪ Γ2 ∪ O. Denote by N the
set of all orbits lying entirely in U . The following theorem asserts that the
set N contains no other orbits except for the two homoclinic loops and O at
the bifurcation point. It also describes the structure of this set in any nearby
system.
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Theorem 13.11. For any system sufficiently close to the system with a
homoclinic-8 with σ < 0, the set N is the closure of the union of the sepa-
ratrices Γ1 ∪ Γ2 and may be of the following six possible types:

(1) N\O contains two stable periodic orbits, one of which is the ω-limit set
of Γ1 and the other is the ω-limit set of Γ2;

(2) N\O contains one stable periodic orbit which is the ω-limit set of both
separatrices Γ1 and Γ2;

(3) N\O contains a stable periodic orbit which is the ω-limit set of one of
the separatrices, and the second separatrix forms a homoclinic loop;

(4) N = Γ1∪Γ2∪O, where one of the separatrices forms a homoclinic loop
and the second separatrix is ω-limit to this loop;

(5) N = Γ1∪Γ2∪O, where both separatrices form homoclinic loops (thereby
forming a homoclinic-8); and

(6) N is an attracting quasiminimal set which contains two P+-stable sep-
aratrices Γ1 and Γ2, one P−-orbit in W s(O) and a continuum of un-
closed Poisson-stable trajectories.

Note that only cases (1) and (2) correspond to structurally stable systems;
the other cases are non-rough. In essence, a bifurcation of a homoclinic-8 with
a negative saddle value is an internal bifurcation in the Morse-Smale class.

Of special consideration are systems with symmetry where both separatrix
loops approach together the saddle point. Such a situation is rather trivial;
namely: when the loops split inwards, each gives the birth to a single stable
limit cycle, in view of Theorem 13.4.1. When the loops split outwards, the
stability migrates to a large-amplitude symmetric stable periodic orbit that
bifurcates from the homoclinic-8 as shown in Fig. 13.7.2. And that is it. This is
the reason why the theory below focuses primarily on non-symmetric systems.

Introduce a neighborhood U of the homoclinic-8 as a small ball U0 with two
handles U1 and U2 glued to U0 containing the saddle O and the separatrices
inside. Thus, for any orbit lying entirely in U , there exists a natural code — a
sequence of symbols 1 and 2 which describes an itinerary according to which
the orbit cruises along inside the handles U1 and U2. The codes for homoclinic
loops are finite; furthermore we will also assign the codes of a finite length to the
limit cycles, defined modulo a cyclic permutations of the symbols. To describe
the possible codes for periodic orbits, as well as for homoclinic loops, which
can be born from the homoclinic-8, let us construct a binary tree analogous to
the Farey tree from number theory. We will assign the symbol pair (1, 2) at the
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Fig. 13.7.2. The bifurcations of the homoclinic-8 in the symmetric case. An “outward”
breakdown of both homoclinic loops gives birth to a large symmetric periodic orbit. When
the loops split inwards, a periodic orbit bifurcates from each of the loops.

Fig. 13.7.3. A binary tree describing possible types of periodic orbits and homoclinic loops
which can be born from the homoclinic-8 in the asymmetric case.

first vertex; from which two arrows descend to the vertices (1, 21) and (12, 1),
and so on by following the rule that from a vertex (p, s), there are arrows going
to the vertices (p, sp) and (ps, s) (as depicted in Fig. 13.7.3), where p and s

denote finite words made up from the alphabet {1, 2}. We call a pair (p, s)
admissible if it is at one of the vertices of the tree so constructed. A pair
of infinite sequences (p, s) of symbols 1 and 2 is admissible if there exists an
infinite path formed by the edges of the tree which passes through the vertices
(pi, si) such that pi → p and si → s as i → +∞. A word is called admissible
if it is an element of an admissible pair.



13.7. Bifurcations of the homoclinic-8 and heteroclinic cycles 769

Theorem 13.12. For any system sufficiently close to a system with the
homoclinic-8 with a negative saddle value, the periodic orbits or homoclinic
loops in U must have admissible codes. If there is a pair of periodic orbits, or
a pair of homoclinic loops, or a limit cycle and a homoclinic loop, their codes
must form an admissible pair. If the separatrices Γ1 and Γ2 are P+-stable
(i.e. N is a quasi-minimal set), then their codes form an admissible pair of
infinite sequences.

The local structure of the quasiminimal sets here is completely determined
by the codes of the separatrices. Let us introduce a rotation number β(s) for
an infinite sequence s = {si}+∞i=0 of symbols 1 and 2 by the formula:

β(s) = lim
n→+∞

1
n
{number of 1′s in the sequence {si}n

i=0} , (13.7.1)

assuming that this limit exists. It is easy to show that if a pair of infinite
sequences (p, s) is admissible, then the rotation numbers β(p) and β(s) indeed
exist; moreover, they are equal to each other:

β(p) = β(s) ,

and are irrational. For any irrational number β from the interval [0, 1], there
exists a unique admissible pair of infinite sequences with a rotation number
equal to β.

Thus, one can assign a rotation number β to each quasiminimal set born
from bifurcations of a homoclinic-8.

Theorem 13.13. If the set N of Theorem 13.11 is quasiminimal with a rota-
tion number β, then the flow on N is topologically conjugate to a special Cherry
flow (restricted to its quasiminimal set ) with a rotation number β.

The Cherry flow is a flow on a two-dimensional torus with two equilibrium
states: a saddle and an unstable node; both unstable separatrices are P+-
stable; one stable separatrix is α-limit to a node and the other lies in the
closure of the unstable separatrices and it is P−-stable [see Fig. 13.7.4(a)].
The closure of the unstable separatrices is a quasiminimal set which contains
the saddle O and a continuum of unclosed P -stable trajectories. The rotation
number for such flows is defined in the same way as for flows on a torus
without equilibrium states. Since there is no periodic orbits in a Cherry flow,
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(a) (b)

Fig. 13.7.4. (a) The Cherry flow on a torus. (b) A quasiperiodic flow obtained from the
Cherry flow by identifying the separatrices of the saddle.

its rotation number is irrational. The Cherry flow is special, if it contracts
areas everywhere except for a small neighborhood of the unstable node. Two
special Cherry flows are topologically conjugate, if and only if, their rotation
numbers coincide (see more details in [104, 16]). We see that Theorem 13.13
gives a complete characterization of quasiminimal attractors which can be born
from a homoclinic-8 with a negative saddle value. Note that one can glue the
unstable separatrices Γ1 and Γ2 together so that the flow on the quasiminimal
set after this “gluing” operation becomes topologically conjugate to the system

ẋ = x2 + y2 , ẏ = (x2 + y2)β

on the torus {|x| ≤ 1, |y| ≤ 1} [see Fig. 13.7.4(b)].
Generically, one must distinguish between the following two cases:

Case 1. saddle-focus: λ1,2 are complex and

0 > Re λ1 = Re λ2 > Re λj (j = 3, . . . , n) .

Case 2. saddle: λ1 is real and

0 > λ1 > Re λj (j = 2, . . . , n) .

In both cases, let us assume that at the bifurcation point,

• the homoclinic loops Γ1,2 do not lie in the strong stable manifold W ss,
and

• the separatrix values A1,2 do not vanish on both loops.
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The latter condition can be interpreted as the transversality of the two-
dimensional extended unstable manifold WuE to the stable manifold along
both loops. The separatrix values are defined by formula (13.4.8) in the case
of a saddle, and by formula (13.4.15) in the case of a saddle-focus.

Consider a smooth two-parameter family Xµ1µ2 which is transverse to the
codimension-two bifurcation set of systems with a homoclinic-8 with a negative
saddle value, and which satisfy the above non-degeneracy conditions. The
governing parameters µ1,2 are the splitting parameters for the homoclinic loops:
when µi > 0, the loop Γi is assumed to split inwards.

Let Cs denote the bifurcation set on the (µ1, µ2)-plane that corresponds
to the existence of a homoclinic loop with a code s. By definition, {µ1 = 0}
defines the curve C1 and {µ2 = 0} corresponds to the curve C2. For the
other codes in the cases below, Cs is either a curve defined by an equation
µ1 = hs(µ2) (if the last symbol in the word {s} is 1) or µ2 = hs(µ1) (if the
last symbol in {s} is 2) where hs is a smooth function defined for µ < 0 whose
first derivative tends to zero as µ → −0 (uniformly for all possible codes {s}),
or it is an infinite set of open arcs (intervals) of such a curve.

In the case of a saddle-focus, all possibilities allowed by Theorems 13.11
and 13.12 are encountered in any transverse family Xµ1µ2 . The bifurcation
diagram for this case is shown in Fig. 13.7.5. Observe that the bifurcation
curves which correspond to the homoclinic loops whose codes are ending by
“1” are close to the negative µ2 semi-axis and, therefore, they all lie in the
sector |µ1| < |µ2|. The curves that correspond to the homoclinic loops whose
codes are ending by “2” lie within the sector |µ2| < |µ1|. Since the picture in
both sectors is symmetric here, it suffices to describe only the configuration
of the bifurcational curves corresponding to homoclinic loops with the codes
ending by “1”.

Here, µ1 = 0 corresponds to the curve C1; the curve C21 also leaves the
point (0, 0) towards negative values of µ2; the curves C21 and L1 intersect at
infinitely many points. Then, one may continue inductively according to this
rule: let (p, s) be an admissible pair of words ended by 1; then Cp and Cs

intersect at infinitely many points, and if P and Q are neighboring points of
intersection of Cp and Cs such that hp > hs on the interval between P and Q,
then P and Q are further connected by arcs of Cps and Csp which intersect
Cs and, respectively, Cp infinitely many times, etc. In the region bounded by
these arcs of Cps and Csp, a stable limit cycle exists with the code {ps}. On
the contrary, if hp < hs on the interval between P and Q, then for these values
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Fig. 13.7.5. A bifurcation diagram for a homoclinic-8 of a saddle-focus with a negative saddle
value.

of µ2 there cannot be homoclinic loops with the codes composed of the words
p and s. Moreover, if hp < hs, then everywhere in the region bounded by the
segments of the curves Cp and Cs from P to Q, there exists a pair of stable
limit cycles with the codes {p} and {s}.

The quasiminimal attractors correspond to the limit points of the union of
the curves Cs.

In the case of a saddle (the leading characteristic exponent λ1 is real), the
bifurcation diagram depends on the signs of the separatrix values A1 and A2, as
well as on the way the homoclinic loops Γ1 and Γ2 enter the saddle at t = +∞.
Let us consider first the case where Γ1 and Γ2 enter the saddle tangentially to
each other, i.e. bifurcations of the stable homoclinic butterfly.
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Fig. 13.7.6. A bifurcation diagram for an orientable (A1,2 > 0) homoclinic butterfly of the
saddle with a negative saddle value.

Here, if A1 > 0 and A2 > 0 (see Fig. 13.7.6), the region (µ1 > 0, µ2 > 0)
corresponds to the existence of a pair of cycles with the codes {1} and {2},
and the region µ1 > 0, µ2 < 0 corresponds to the existence of a unique cycle
with the code {1}. The region (µ1 < 0, µ2 > 0) corresponds to the existence
of a unique cycle with the code {2}. In the region (µ1 < 0, µ2 < 0), the
bifurcation set is a Cantor pencil of curves emanating from the origin, and
composed of a countable number of curves corresponding to homoclinic loops
and a continuum of curves corresponding to quasiminimal sets. This region
has the following structure: for any admissible pair of finite words (p, s) there
exist curves Cp and Cs; in the region bounded by Cp and Cs, the curves Cps

and Csp are positioned in such a way that Csp lies between Cp and Cps. The
region bounded by the curves Cps and Csp corresponds to the existence of a
single stable limit cycle with the code {ps}. On each curve Cs, one of the
unstable separatrices forms a homoclinic loop with the code s whereas the
second separatrix tends to this homoclinic loop (i.e. it belongs to the stable
manifold of the homoclinic loop; see the end of Sec. 13.4).
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For each admissible pair (p, s) of infinite sequences, there exists a curve
C(p, s) corresponding to the existence of a quasiminimal attractor with the
rotation number β(p) = β(s). The curve C(p, s) is found from

limCsi = lim Cpi ,

where (pi, si) is a sequence of admissible pairs of finite words approximating
(p, s).

In the other remaining cases, quasiminimal attractors do not appear. In
the case A1 > 0 and A2 < 0 (see Fig. 13.7.7), there exist cycles only with the
codes {1}, {2} and {21k}, k = 1, 2, . . . (here {1k} denotes the word consisting
of k “ones”), and the parameter plane is partitioned into a countable number
of regions by the curves C1, C2, C12, C21k and C121k (k = 1, 2, . . .). Note that
these curves accumulate onto the negative µ2 semi-axis where the separatrix
Γ1 forms a simple homoclinic loop and the separatrix Γ2 tends to the loop as
t → +∞.

Fig. 13.7.7. A bifurcation diagram for a semi-orientable (A1 > 0 and A2 < 0) homoclinic
butterfly of the saddle with a negative saddle value.
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Fig. 13.7.8. A bifurcation diagram for a non-orientable (A1,2 < 0) homoclinic butterfly of
the saddle with a negative saddle value.

In the case A1 < 0 and A2 < 0 (see the diagram shown in Fig. 13.7.8)
there exist cycles only with codes {1}, {2} and {12}; the parameter plane is
partitioned into 6 regions.

The bifurcation diagrams for the case where Γ1 and Γ2 arrive at the saddle
from opposite directions are shown in Figs. 13.7.9–13.7.11. In this case there
cannot be quasiminimal attractors and the codes of the limit cycles can only
be {1}, {2}, {12}, {1(21)k} and {2(12)k} (k = 1, 2, . . .). In the cases A1 >

0, A2 > 0 and A1 < 0, A2 > 0, the bifurcation set consists of a finite number
of curves. In the case A1 < 0, A2 < 0, it consists of a countable number of
curves which accumulate at the curves C12 and C21. On these curves, one of
the unstable separatrices forms a double-circuit homoclinic loop and the other
separatrix converges to it as t → +∞.

We remark that a systematic study of the bifurcations of a homoclinic loop
which is a limit set for the other separatrix was undertaken in [69].
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Fig. 13.7.9. A bifurcation diagram for a non-orientable (A1,2 < 0) homoclinic-8 of the saddle
with a negative saddle value.

Fig. 13.7.10. A bifurcation diagram for a semi-orientable (A1 > 0 and A2 < 0) homoclinic-8
of the saddle with a negative saddle value.
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Fig. 13.7.11. A bifurcation diagram for an orientable (A1,2 > 0) homoclinic-8 of the saddle
with a negative saddle value.

Note also that these results can be extended immediately to the case of a
saddle with a multi-dimensional unstable manifold. Namely, if O has several
characteristic exponents with positive real parts but the leading characteristic
exponent γ1 is real, i.e. if

γ1 < Re γj ,

and if both the homoclinic loops do not belong to the strong unstable man-
ifold Wuu and leave the saddle in opposite directions, and if the extended
stable manifold is transverse to the unstable manifold on both loops, then
Theorem 6.3 can be applied to guarantee the existence of a repelling (n + 1)-
dimensional C1-smooth invariant manifold. Since the system on the invariant
manifold has only one positive characteristic exponent at O, it follows that all
of the above results can be used here with the only difference that the limit
cycles and the quasiminimal sets will no longer remain attracting but have
become a saddle instead.

Let us now consider the case of a heteroclinic cycle with two saddles O1

and O2. Let the unstable manifolds of both saddles be one-dimensional and
let an unstable separatrix Γ1 of O1 tend to O2 as t → +∞ and an unstable
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separatrix Γ2 of O2 tend to O1 as t → +∞. The union Γ1 ∪ Γ2 ∪O1 ∪O2 is a
heteroclinic cycle. The question of bifurcations in a small neighborhood U of
such a cycle was considered in detail in [121].

We assume throughout this section that the saddle values are negative in
both saddles. In this case, no more than one periodic orbit can bifurcate from
the heteroclinic cycle. Moreover, this unique orbit is stable (attracting).

When the system has a symmetry such that O1 is symmetric with respect
to O2 and the separatrix Γ1 is symmetric with respect to the separatrix Γ2,
then the bifurcations are rather simple: a stable periodic orbit is born when the
separatrices split inwards; when the separatrices split outwards, all trajectories
(next to O1,2) leave U .

In the general case the picture may be more involved due to the appearance
of multi-circuit heteroclinic connections.

Let us take a smooth two-parameter family Xµ1µ2 transverse to the
codimension two-bifurcational surface of Cr-smooth (r ≥ 1) systems with a
heteroclinic cycle of the type under consideration. Let µ1 and µ2 be the split-
ting parameters governing the heteroclinic orbits Γ1 and Γ2 so that the hete-
roclinic connection Γi splits inward for µi > 0.

On the plane (µ1, µ2), there exist two curves L1 and L2, corresponding
to the homoclinic loops of the saddles O1 and O2 respectively. These curves
are the graphs of some smooth functions µ1 = h1(µ2) and µ2 = h2(µ1), re-
spectively, which are defined for positive µ and such that h(0) = 0, h′(0) =
0. A stable periodic orbit exists in the region between L1 and L2. Note
that multi-circuit homoclinic loops cannot appear when the saddle values are
negative.

The bifurcation diagram for the family Xµ1µ2 may also contain the curves
Ck

12 and Ck
21 (k = 1, . . .) such that at µ ∈ Ck

ij the unstable separatrix Γi of
Oi (i = {1 2}) makes k complete rotations along U and enters the saddle Qj

(i 6= j), thereby forming a heteroclinic connection. The curves Ck
ij are defined

by the equations µj = hkij(µi), where hkij is some smooth function defined
on an open subset of the positive µi-axis such that the first derivative of hkij

tends uniformly (with respect to k) to zero as µi → 0. The exact structure of
the bifurcation set corresponding to heteroclinic connections is quite different
depending on whether the equilibria Oi are saddles or saddle-foci.

The bifurcation diagrams for the case where both O1 and O2 are saddles are
shown in Figs. 13.7.12–13.7.15. Here, if both the separatrix values are positive,
the only possible heteroclinic connections are the original ones which exist at
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Fig. 13.7.12. A one-dimensional two-way heteroclinic connection between two saddles.

Fig. 13.7.13. The (µ1, µ2)-plane for the bifurcation of the heteroclinic cycle in Fig. 13.7.12
for the case A1 > 0, A2 > 0, and ν1,2 > 1. Only one stable periodic orbit exists in regions 1,2
and 3.



780 Chapter 13. Bifurcations of Homoclinic Loops . . .

Fig. 13.7.14. Same as in Fig. 13.7.13, but A1 < 0, A2 < 0. The system has one stable
periodic orbit in region 1, and has no periodic orbits elsewhere.

Fig. 13.7.15. Same as in Fig. 13.7.13, but A1 > 0, A2 < 0. The system has one stable
periodic orbit in regions 1-3, and has no periodic orbits elsewhere.

µ1 = 0 or at µ2 = 0. When A1 > 0 and A2 < 0, the only new bifurcation
curve is that labeled by C1

21. In the case where A1 < 0 and A2 < 0, there exist
infinitely many bifurcational curves corresponding to all possible heteroclinic
connections. The curves Ck

ij accumulate to the curve Cj such that, for µ ∈ Cj ,
the separatrix Γj forms a simple homoclinic loop to Oj and the separatrix Γi

of Oi tends to the loop as t → +∞.
The separatrix values A1,2 on the heteroclinic orbits are defined in the same

way as in the case of homoclinic loops. Note that both cases {A1 > 0, A2 > 0}
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(a) (b)

(c)

Fig. 13.7.16. Three types of heteroclinic cycles: (a) A1,2 > 0; (b) A1,2 < 0; (c) A semiori-
entable heteroclinic connection between two saddles on a Möbius band A1 < 0, A2 > 0.

and {A1 < 0, A2 < 0} are possible in systems defined on the plane (see
Fig. 13.7.16) but in the latter case both orbits Γ1 and Γ2 are wandering.

The bifurcation diagram for the case where both O1 and O2 are saddle-foci
is shown in Fig. 13.7.17. Here, the curves L1 and L2 which correspond to
the homoclinic loops intersect the curves C0

21 : {µ1 = 0} and C0
12 : {µ2 = 0}

infinitely many times. Next, for each k = 0, 1, 2, . . ., for any two neighboring
points of intersection of L1 with a connected component of Ck

21 (L2 with a
connected component of Ck

12) such that the inequality h1(µ2) > hk12(µ2) (re-
spectively, h2(µ1) > hk21(µ)) holds between these points, there is a component
of the curve Ck+1

21 (respectively Ck+1
21 ) which connects these points. In turn,

this component intersects L1 (respectively L2) infinitely many times, etc.
The limit points of this process correspond to the existence of a homoclinic

loop which is the ω-limit set for a separatrix of the other saddle-focus.
The bifurcation diagrams for the case where O1 is a saddle-focus and O2 is

a saddle are shown in Figs. 13.7.18 and 13.7.19. Here, the picture depends on
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(a)

(b)

Fig. 13.7.17. (a) A one-dimensional two-way heteroclinic connection between a pair of saddle-
foci. (b) The corresponding bifurcation diagram.
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(a)

(b)

Fig. 13.7.18. (a) A two-way heteroclinic connection between a saddle-focus and a saddle.
The corresponding bifurcation diagrams for the case A2 < 0 (b) and A2 > 0 (c).
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(c)

Fig. 13.7.18. (Continued)

the sign of the separatrix value A2 computed along the heteroclinic orbit Γ2.
There are no curves like Ck

21 with k ≥ 1 for A2 > 0. When A2 < 0, the curve
C1

21 intersects L1 infinitely many times and the structure of the set of curves
Ck

21 for A2 < 0 is the same as in the case where both O1,2 are saddle-foci.
The set of curves Ck

12 is organized as follows. Observe that the curve
L2 : µ2 = h2(µ1) intersects the line C0

12 : {µ2 = 0} infinitely many times. Let
P (µ′1, 0) and Q(µ′′1 , 0) be two neighboring points of the intersection such that
h2 > 0 between these points. Let µ′1 > µ′′1 . Then, infinitely many curves Ck

12

emanate from the point P when A2 > 0 (or from the point Q when A2 < 0)
each of which intersects L2 at one point. The curve C1

12 ends at Q (at P if
A2 < 0), the curve C2

12 ends at the point of intersection C1
12 ∩ L2, etc: the

curve Ck+1
12 ends at the point Ck

12 ∩ L2.
All these intersection points correspond to a non-orientable homoclinic loop

of O2 (the separatrix value on the loop is negative), and they accumulate at
the point where the separatrix value vanishes on the loop. The segment of L2

between this point and the point P (the point Q at A2 < 0) corresponds to
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an orientable homoclinic loop onto which the separatrix Γ1 of O1 winds around
as t → +∞. The curves Ck

12 accumulate to this segment from the left.
We must note that this picture is proven to hold only if the system is at

least C3 and providing
2ρν < ρν̄ + 2 .

Here ρ is the saddle index at the saddle-focus O1, and ν is the saddle index at
the saddle O2 and ν̄ = |Re λ2/γ|, where γ denotes the positive characteristic ex-
ponents of O2, and λ2 is the non-leading characteristic exponent of O2 nearest
to the imaginary axis (λ1 is the leading exponent so ν = |λ1/γ| and 1 < ν < ν̄;
recall also that ρ > 1 by assumption — the saddle values are negative).

If this inequality is not satisfied, then the structure of the set of curves Ck
12

may differ: there will be still infinitely many curves Ck
12 starting from P or Q

but, in some cases, only a finite number of them will have an intersection with
L2 and the rest of the curves will end at the last intersection point.

Note that all of these results (except for the subtle structure of the set of
curves Ck

12 in the case where O1 is a saddle-focus and O2 is a saddle) are proven
for C1-smooth systems. Therefore, just like in the case of a homoclinic-8, these
results can be directly extended to the case where the unstable manifolds of
O1 and O2 are multi-dimensional (but they must have equal dimensions in this
case), provided that the conditions of Theorem 6.4 in Part I of this book, which
guarantee the existence of an invariant C1-manifold near the heteroclinic cycle,
are satisfied.

Another case studied in [121] corresponds to the bifurcations of a hetero-
clinic cycle when the saddle values have opposite signs at equilibrium state O1

and O2 (the case where both saddle values are positive leads either to com-
plex dynamics, if O1 and O2 are both saddle-foci, or reduces to the preceding
one by a reversal of time and reduction to the invariant manifold). The main
assumption here is that both O1 and O2 are simple saddles (not saddle-foci).

In particular, let the dimension of the unstable manifold of O1 be equal
to the dimension of the unstable manifold of O2. Besides, let both the stable
and unstable leading characteristic exponents at both O1 and O2 be real. As-
sume also that both heteroclinic orbits Γ1,2 enter and leave the saddles along
the leading directions. We also assume that the extended unstable manifold
of one saddle is transverse to the stable manifold of the other saddle along
every orbit Γ1,2, and that the extended stable manifold of one saddle is trans-
verse to the unstable manifold of the other saddle along Γ1,2 as well. Under
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these assumptions, Theorem 6.4 constitutes the existence of a two-dimensional
invariant manifold which captures all orbits staying in a small neighborhood
of the heteroclinic cycle for all times. Thus, the dynamics here is essentially
two-dimensional. Note once again that because the invariant manifold is, in
general, only C1-smooth, in order to study the problem one has to perform
computations for the original multi-dimensional system.

Let ν1 and ν2 be the saddle indices at O1 and O2, respectively. Assume
that ν1 6= 1, ν2 6= 1 and ν1ν2 6= 1. Then, no more than two periodic orbits can
bifurcate from the heteroclinic cycle under consideration.

The bifurcation diagrams are shown in Figs. 13.7.20–13.7.23. The sepa-
ratrix values A1 and A2 are defined as derivatives of the global maps near
the heteroclinic orbits Γ1 and Γ2 on the two-dimensional invariant manifold.
Note that the other cases of combinations of the signs of A1,2 and of saddle
values can be obtained similarly by a reversal of time and a permutation of
the sub-indices “1” and “2”.

One may see that the peculiarity of this case, in contrast to the case where
the saddle values have the same sign, is the possibilities of a saddle-node

Fig. 13.7.20. The bifurcation diagram for the case where both equilibrium states of the
heteroclinic cycle are saddles (see Fig. 13.7.12) provided A1,2 > 0, ν1 > 1, ν2 < 1 and
ν1ν2 > 1. The system has one limit cycle in regions 1-3, two limit cycles in region 4, none in
regions 5–7. A pair of limit cycles are born from a saddle-node on the curve SN ; the unstable
one becomes a homoclinic loop on the curve L2, whereas the stable limit cycle terminates
on L1.
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Fig. 13.7.21. The bifurcation diagram for the heteroclinic cycle in Fig. 13.7.12 for the case
A1,2 < 0, ν1 > 1, ν2 < 1 and ν1ν2 > 1. This system has one limit cycle in region 1, two
limit cycles in region 2, none elsewhere.

Fig. 13.7.22. The bifurcation diagram for the heteroclinic connection in Fig. 13.7.12 when
A1 > 0, A2 < 0, ν1 > 1, ν2 < 1 and ν1ν2 > 1. The system has one simple periodic
orbit in regions 1, 2, 3 and 5, two periodic orbits (one simple and one of double period) in
region 4, and no periodic orbits elsewhere. The stable periodic orbit loses stability on the
curve PD corresponding to a period-doubling (flip) bifurcation. The unstable limit cycle of
double period becomes a double-circuit separatrix loop on L2

2. The stable simple limit cycle
terminates on L1.
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Fig. 13.7.23. The bifurcation diagram for the heteroclinic connection in Fig. 13.7.12 when
A1 > 0, A2 < 0, ν1 < 1, ν2 > 1 and ν1ν2 > 1. This system has one simple periodic orbit in
regions 1, 2, 3 and 5, two periodic orbits (one simple and one of double period) in region 4,
and no periodic orbits elsewhere.

bifurcation and a period-doubling bifurcation of single-circuit periodic orbits,
as well as of the appearance of double-circuit homoclinic loops.

The heteroclinic cycles including the saddles whose unstable manifolds have
different dimensions were first studied in [34, 35]. This study mostly focused on
systems with complex dynamics. Let us, however, discuss here a case where the
dynamics is simple. Let a three-dimensional infinitely smooth system have two
equilibrium states O1 and O2 with real characteristic exponents, respectively,
γ > 0 > λ1 > λ2 and η2 > η1 > 0 > ξ (i.e. the unstable manifold of O1 is one-
dimensional and the unstable manifold of O2 is two-dimensional). Suppose
that the two-dimensional manifolds W s(O1) and Wu(O2) have a transverse
intersection along a heteroclinic trajectory Γ0 (which lies neither in the cor-
responding strongly stable manifold, nor in the strongly unstable manifold).
Suppose also that the one-dimensional unstable separatrix of O1 coincides with
the one-dimensional stable separatrix of O2, so that a structurally unstable
heteroclinic orbit Γ exists (Fig. 13.7.24). The additional non-degeneracy as-
sumptions here are that the saddle values are non-zero and that the extended
unstable manifold of O1 is transverse to the extended stable manifold of O2 at
the points of the structurally unstable heteroclinic orbit Γ.

This bifurcation has codimension two: the governing parameters (µ1, µ2)
are chosen here to be the coordinates of the point of intersection of the one-
dimensional unstable separatrix of O1 with some cross-section transverse to
the one-dimensional stable separatrix of the other saddle O2. Since the
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Fig. 13.7.24. A heteroclinic cycle between two saddles. Notice that the heteroclinic trajectory
Γ1 connecting O1 with O2 is structurally stable.

corresponding bifurcation diagrams are rather complicated, we do not present
them here but refer the interested reader to the original works [34, 35].
Nonetheless, in this case no more than two periodic orbits (always saddle) bi-
furcate from such a heteroclinic connection.

13.8. Estimates of the behavior of trajectories near a
saddle equilibrium state

In this section, we prove our estimates of the solutions near a saddle equilibrium
state which we used throughout this chapter.

Consider a Cr-smooth (r ≥ 3) system in a neighborhood of a saddle equi-
librium state with m-dimensional stable and n-dimensional unstable invariant
manifolds.

Let the characteristic exponents of the saddle be (λ1, . . . , λm) and (γ1, . . . ,

γn), where Reλi < 0 (i = 1, . . . , m) and Re γi > 0 (i = 1, . . . , n). Assume that
the real parts of (λ1, . . . , λm1) are equal to some −λ < 0 and the rest of the
stable characteristic exponents (λm1+1, . . . , λm) lie strictly to the left of the
line Re (·) = −λ. Concerning the unstable characteristic exponents we assume
that Re γ1 = · · · = Re γn1 = γ > 0 and Re γi > γ for i > n1.

As shown in Appendix A of the Part I of this book, a system in Rn+m,
satisfying to the above assumptions, can be reduced by a Cr−1-transformation
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of variables to the form

ẋ = B1x + f11(x, y, v)x + f12(x, u, y, v)u ,

u̇ = B2u + f21(x, y, v)x + f22(x, u, y, v)u ,

ẏ = C1y + g11(x, u, y)y + g12(x, u, y, v)v ,

v̇ = C2v + g21(x, u, y)y + g22(x, u, y, v)v ,

(13.8.1)

where the eigenvalues of B1 are (λ1, . . . , λm1), the eigenvalues of B2 are (λm1+1,

. . . , λm), those of C1 are (γ1, . . . , γn1) and those of C2 are (γn1+1, . . . , γn).
Moreover, the Cr−1-smooth functions fij and gij satisfy

f11(x, 0, 0) ≡ 0 , g11(0, 0, y) ≡ 0 ,

f12(x, u, 0, 0) ≡ 0 , g12(0, 0, y, v) ≡ 0 ,

fj1(0, y, v) ≡ 0 , gj1(x, u, 0) ≡ 0 ,

f22(0, 0, 0, 0) = 0 , g22(0, 0, 0, 0) = 0 .

(13.8.2)

Let λ0 > 0 and γ0 > 0 be such that for all t ≥ 0

‖eB1t‖ ≤ e−λ0t , ‖e−C1t‖ ≤ e−γ0t . (13.8.3)

For example, when there is only one stable leading characteristic exponent
(m1 = 1 and λ1 = −λ is real), or if there is a pair of complex-conjugate stable
leading characteristic exponents (m1 = 2 and λ1 = λ∗2 = −λ + iω with ω 6= 0),
then λ0 = λ. Analogously, γ0 = γ if n1 = 1, or if n1 = 2 and γ1 = γ∗2 is not
real.

Let us also choose some quantities λ′ and γ′, satisfying

0 < λ0 < λ′ < min{2λ0, λ
′′} and 0 < γ0 < γ′ < min{2γ0, γ

′′} , (13.8.4)

where λ′′ and γ′′ are such that for all t ≥ 0

‖eB2t‖ ≤ e−λ′′t , ‖e−C2t‖ ≤ e−γ′′t . (13.8.5)

We also take some λ̃ and γ̃ such that

0 < λ0 < λ̃ < min{λ′, λ0 + γ0} and 0 < γ0 < γ̃ < min{γ′, γ0 + λ0} .

(13.8.6)
Let two points M0(x0, u0, y0, v0) and M1(x1, u1, y1, v1) be in a small neigh-

borhood of the saddle, and let the orbit of M0 reach M1 at the time t = τ ,
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without leaving the neighborhood of the saddle. It is shown in Sec. 2.8 that
(x1, u1) and (y0, v0) are uniquely defined for any small (x0, u0, y1, v1) and τ ≥ 0.
Moreover, (x1, u1, y0, v0) depends smoothly on (x0, u0, y1, v1, τ).

Lemma 13.5. (Ovsyannikov-Shilnikov [101]) Denote

x1 = eB1τx0 + ξ1(x0, u0, y1, v1, τ) ,

y0 = e−C1τy1 + η1(x0, u0, y1, v1, τ) ,

u1 = ξ2(x0, u0, y1, v1, τ) ,

v0 = η2(x0, u0, y1, v1, τ) .

(13.8.7)

If identities (13.8.2) hold, then the following estimates are valid :

‖ξ1‖Cr−2 = o(e−λ̃τ ) , ‖η1‖Cr−2 = o(e−γ̃τ ) , (13.8.8)

‖ξ2‖Cr−2 = o(e−λ′τ ) , ‖η2‖Cr−2 = o(e−γ′τ ) , (13.8.9)

where ‖ · ‖Cr−2 denotes the maximum of the norm of the function itself and the
norms of all of its derivatives up to the order (r − 2).

Proof. Let us denote

fi = fi1x + fi2u and gi = gi1y + gi2v . (13.8.10)

It is sufficient to show (see Sec. 2.7) that, given small (x0, u0, y1, v1), the
solution (x(t), u(t), y(t), v(t)) of the system

x(t) = eB1tx0 +
∫ t

0

eB1(t−s)f1(x(s), u(s), y(s), v(s))ds ,

u(t) = eB2tu0 +
∫ t

0

eB2(t−s)f2(x(s), u(s), y(s), v(s))ds ,

y(t) = e−C1(τ−t)y1 −
∫ τ

t

e−C1(s−t)g1(x(s), u(s), y(s), v(s))ds ,

v(t) = e−C2(τ−t)v1 −
∫ τ

t

e−C2(s−t)g2(x(s), u(s), y(s), v(s))ds

(13.8.11)
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satisfies the following estimates

‖x(t)− eB1tx0‖ ≤ K1e
−λ0te−(λ̃−λ0)τ ,

‖u(t)‖ ≤ K2e
−λ′t ,

‖y(t)− e−C1(τ−t)y1‖ ≤ K1e
−γ0(τ−t)e−(γ̃−γ0)τ ,

‖v(t)‖ ≤ K2e
−γ′(τ−t)

(13.8.12)

for t ∈ [0, τ ]; here K1,2 are some constants.16

Moreover, analogous estimates must hold for all derivatives of the expres-
sions in the left-hand side of (13.8.12) with respect to (x0, u0, y1, v1) while the
values of K’s may depend on the order of the derivatives. Note that there
is no need to evaluate the derivatives with respect to t and τ because they
are related to the other derivatives by simple identities (see Lemma 5.1 and
explanations in Sec. 5.2).

As shown in Sec. 2.8, the solution of (13.8.11) is the limit of successive
approximations (x(k)(t), u(k)(t), y(k)(t), v(k)(t)) (k → +∞) computed as

x(k+1)(t) = eB1tx0 +
∫ t

0

eB1(t−s)f1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds ,

u(k+1)(t) = eB2tu0 +
∫ t

0

eB2(t−s)f2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds ,

y(k+1)(t) = e−C1(τ−t)y1 −
∫ τ

t

e−C1(s−t)g1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds ,

v(k+1)(t) = e−C2(τ−t)v1 −
∫ τ

t

e−C2(s−t)g2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds

(13.8.13)
starting with the initial guess (x(1)(t), u(1)(t), y(1)(t), v(1)(t)) = 0.

Thus, to prove some estimates of the solution of (13.8.11), we may assume
that the kth successive approximation satisfies these estimates and then, based
on this assumption, we must check that the (k + 1)th approximation satisfies
them too; of course, the estimators must be independent of k.

16Strictly speaking, this gives O(·)-type estimates in the right-hand side of (13.8.8) and
(13.8.9), but the O-symbol can be replaced by o by just moving λ̃, λ′, γ̃, γ′ slightly closer
to zero.
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Let us now assume that the kth approximation satisfy (13.8.12) for some
K1,2. It follows that

‖x(k)(t)‖ ≤ 2εe−λ0t , ‖y(k)(t)‖ ≤ 2εe−γ0(τ−t) , (13.8.14)

independently of the value of K1, provided τ is large enough; here ε is the size
of the neighborhood of the saddle under consideration (so ‖x0‖ ≤ ε, ‖y1‖ ≤ ε).

Based on identities (13.8.2), the function f1 can be estimated as

‖f1‖ ≤ sup ‖f ′′11x(y,v)‖ · ‖x‖2‖y, v‖+ sup ‖f ′12(y,v)‖ · ‖u‖ · ‖y, v‖ . (13.8.15)

Thus, it follows from (13.8.14) and from the assumed validity of (13.8.12), that
for sufficiently small ε

‖f1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))‖

≤ e−2λ0se−γ0(τ−s) + K0K
2
2e−λ′se−γ0(τ−s) (13.8.16)

≤ (1 + K0K
2
2 )e−λ̃se−γ0(τ−s) ,

where K0 is some constant; note that we use here the relations (13.8.4) and
(13.8.6) between the λ’s.

Analogously, if ε is sufficiently small, then

‖f2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))‖ ≤ (ε + δK2)e−λ′s , (13.8.17)

where δ ≡ sup ‖f22‖ may be choosen as small as necessary by decreasing the
size of the neighborhood of the saddle.

By (13.8.16) and (13.8.17) we obtain, respectively,
∥∥∥∥
∫ t

0

eλ0sf1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds

∥∥∥∥

≤ (1 + K0K
2
2 )e−γ0τ

∫ τ

0

e(γ0+λ0−λ̃)sds

and
∥∥∥∥
∫ t

0

eλ′′sf2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds

∥∥∥∥

≤ (ε + δK2)
∫ t

0

e(λ′′−λ′)sds .
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Thus [see (13.8.13), (13.8.3) and (13.8.5)], (x, u)(k+1) satisfy (13.8.12) with the
same K1 and K2 if

K1 ≥ (1 + K0K
2
2 )

1
λ0 + γ0 − λ̃

and

K2 ≥ ε + (ε + δK2)
1

λ′′ − λ′
.

By the symmetry of the problem, we obtain immediately the inequalities on
K1,2 which are sufficient for (y, v)(k+1) to satisfy (13.8.12). Altogether, this
gives

K1 ≥ (1 + K0K
2
2 )

1
λ0 + γ0 −max{γ̃ , λ̃} ,

K2 ≥ ε + (ε + δK2) max
{

1
γ′′ − γ′

,
1

λ′′ − λ′

}
,

(13.8.18)

where δ tends to zero as the size ε of the neighborhood of the saddle is
diminished.

These inequalities are easy to satisfy for K2 = O(ε) and K1 = O(1). Thus,
one can indeed choose appropriate constants K1,2 such that the estimates
(13.8.12) are satisfied. To complete the proof of our lemma we must show that
analogous estimates hold for all derivatives of the solution (x(t), u(t), y(t), v(t))
of (13.8.11).

It is shown in Sec. 2.8 that the successive approximations converge to the
solution of the boundary-value problem along with all derivatives. Thus, we
may assume that the kth approximation satisfies17

‖Dpx
(k)(t)−Dp

(
eB1tx0

) ‖ ≤ K
(p)
1 e−λ0te−(λ̃−λ0)τ ,

‖Dpu
(k)(t)‖ ≤ K

(p)
2 e−λ′t ,

‖Dpy
(k)(t)−Dp

(
e−C1(τ−t)y1

) ‖ ≤ K
(p)
1 e−γ0(τ−t)e−(γ̃−γ0)τ ,

‖Dpv
(k)(t)‖ ≤ K

(p)
2 e−γ′(τ−t) ,

(13.8.19)

for some K1,2 which are independent of k but may depend on the order p of the
derivative. Then, based on this assumption, we must show that the derivatives

17We use the notation Dp = ∂p

∂(x0,u0,y1,v1)p .
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of the next approximation (x(k+1)(t), u(k+1)(t), y(k+1)(t), v(k+1)(t)) satisfy the
same estimates.

In fact, it suffices to make computations only for x(k+1)(t) and u(k+1)(t);
the formulas concerning y(k+1)(t) and v(k+1)(t) will follow from the symmetry
of the problem.

The differentiation of (13.8.13) gives

Dpx
(k+1)(t) = Dp

(
eB1tx0

)
+

∫ t

0

eB1(t−s)

×Dpf1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds ,

Dpu
(k+1)(t) = Dp(eB2tu0) +

∫ t

0

eB2(t−s)

×Dpf2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))ds .

By (13.8.3) and (13.8.5), we have

‖Dpx
(k+1)(t)−Dp(eB1tx0)‖

≤ e−λ0t

∫ t

0

eλ0s
∥∥∥Dpf1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

∥∥∥ ds ,

‖Dpu
(k+1)(t)‖

≤ e−λ′′t
[
1 +

∫ t

0

eλ′′s
∥∥∥Dpf2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

∥∥∥ ds

]
.

(13.8.20)

Now, in the same way as done earlier in proving our lemma we must check
that the estimates analogous to (13.8.16) and (13.8.17) hold for the derivatives
Dpf1,2 for any p:

‖Dpf1(x(k)(s), u(k)(s), y(k)(s), v(k)(s))‖ ≤ K̃1e
−γ0(τ−s)e−λ̃s (13.8.21)

and

‖Dpf2(x(k)(s), u(k)(s), y(k)(s), v(k)(s))‖ ≤ (K̃2 + δK
(p)
2 )e−λ′s , (13.8.22)

where δ may be chosen arbitrarily small by decreasing the size of the neigh-
borhood of the saddle under consideration; K̃2 is independent of the specific
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choice of the constants K
(p)
1,2 in (13.8.19), and K̃1 is independent of K

(p)
1

(nevertheless, K̃1,2 may depend on K1,2 corresponding to the derivatives of
lower orders).

By the chain rule, the derivatives

Dpfi(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

can be estimated by the sum

const ·
∑
q1,q2

∥∥∥∥
∂pfi

∂(x, u)q1∂(y, v)q2
(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

∥∥∥∥

×‖Dl1(x
(k)(s), u(k)(s))‖ · · · ‖Dlq1

(x(k)(s), u(k)(s))‖

×‖Dlq1+1(y
(k)(s), v(k)(s))‖ · · · ‖Dlq1+q2

(y(k)(s), v(k)(s))‖ , (13.8.23)

where q1,2 are non-negative integers such that 1 ≤ q1 + q2 ≤ p, and l’s are
positive integers such that l1 + · · ·+ lq1+q2 = p.

By assumption, the estimates for the derivatives ‖Dlu
(k)(s)‖ and ‖Dlv

(k)

(s)‖ are given by (13.8.19). For large τ , the estimates (13.8.19) imply

‖Dlx
(k)(s)‖ ≤ 2e−λ0s , ‖Dly

(k)(s)‖ ≤ 2e−γ0(τ−s) . (13.8.24)

Thus, the estimate (13.8.23) can be rewritten as

const ·
∑
q1,q2

∥∥∥∥
∂pfi

∂(x, u)q1∂(y, v)q2
(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

∥∥∥∥

× e−q1λ0se−q2γ0(τ−s) . (13.8.25)

Obviously, in the estimate for f1, the terms with q1 ≥ 2 and q2 ≥ 1 fit
(13.8.21), and all terms with q1 ≥ 2 in the estimate for f2 fit (13.8.22). Note
also, that

∂q2fi

∂(y, v)q2
≡ ∂q2fi1

∂(y, v)q2
· x(k)(s) +

∂q2fi2

∂(y, v)q2
· u(k)(s) = O(e−λ′s) . (13.8.26)

Here, we use (13.8.12), (13.8.14), (13.8.4) and the identities (13.8.2) which give
∂q2fi1

∂(y,v)q2 = 0 at x = 0. Since q2 ≤ r − 2 and fi1 ∈ Cr−1, the derivative of order
q2 of fi1 is a smooth function. Thus, once it vanishes at x = 0, it can be
estimated by ∂q2fi1

∂(y,v)q2 = O(x).
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Hence, it follows from (13.8.26) that the terms with q1 = 0 and q2 ≥ 1 in
the estimate (13.8.25) for f1, and all terms with q1 = 0 in the estimate for f2

also fit (13.8.21) and (13.8.22), respectively.
Analogously, since f1 vanishes identically at (y, v) = 0, it follows that

∂q1f1

∂(x, u)q1
= O(e−γ0(τ−s)) .

Hence, all terms with q1 ≥ 2 in the estimate (13.8.25) for f1 fit (13.8.21).
The last remaining terms to examine in (13.8.25) are (q1 = 1)

∥∥∥∥
∂

∂x

∂q2fi

∂(y, v)q2

∥∥∥∥ · e−q2γ0(τ−s)e−λ0s

and ∥∥∥∥
∂

∂u

∂q2fi

∂(y, v)q2

∥∥∥∥ · e−q2γ0(τ−s)e−λ′s .

Note that f ′ix = 0 at (x, u) = 0 [see (13.8.2)]. Hence, it is of order O(x, u) along
with all of its derivatives with respect to (y, v) up to the order q2 ≤ r−3. Thus,
it follows from (13.8.12), (13.8.14) and (13.8.4) that both terms above can be
estimated by constant · e−q2γ0(τ−s)e−λ′s; i.e. they fit (13.8.22), and if q2 ≥ 1,
they fit (13.8.21).

It remains to consider the case q1 = 1, q2 = 0 for f1. To satisfy (13.8.21)
we have to show that

e−λ0s ∂f1

∂(x, u)
= O(e−γ0(τ−s)e−λ̃s) ,

but this obviously follows from (13.8.14) and (13.8.12) because f1 = f11x+f12u

and both f1i vanish at (y, v) = 0 [see (13.8.2)].
We have proven that the derivatives Dpfi(x(k)(s), u(k)(s), y(k)(s), v(k)(s))

satisfy estimates (13.8.21) and (13.8.22). Note that for the derivatives of x(k)(s)
and y(k)(s), we used only estimates (13.8.24) which are independent of the
choice of K1,2 in (13.8.19). Thus, the estimator K̃1 in (13.8.21) is indeed inde-
pendent of K

(p)
1 . The only terms in (13.8.23) which might give a contribution

in (13.8.22) depending on K
(p)
1,2 are

‖f ′2u‖ · ‖Dpu
(k)(s)‖ and ‖f ′2v‖ · ‖Dpv

(k)(s)‖ .

The first term here can be estimated by δK
(p)
2 e−λ′s where δ may be chosen

arbitrarily small by diminishing the size ε of the neighborhood of the saddle



798 Chapter 13. Bifurcations of Homoclinic Loops . . .

under consideration. The second term can be estimated [see (13.8.14), (13.8.12)
and (13.8.18)] by

K
(p)
2 e−γ′(τ−s) · (‖f ′21v‖‖x(k)(s)‖+ ‖f ′22v‖‖u(k)(s)‖)

= K
(p)
2 ·O(‖x(k)(s)‖2 + ‖u(k)(s)‖) = K

(p)
2 ·O(εe−λ′s) .

All this is in complete agreement with (13.8.22).
Now, the validity of estimates (13.8.19) for the next approximation

(x(k+1)(t), u(k+1)(t), y(k+1)(t), v(k+1)(t)) follows from (13.8.21), (13.8.22)
exactly in the same way as the validity of (13.8.12) follows from (13.8.16), and
(13.8.17).
This completes the proof of the Lemma 13.5.

Remark 1. Following exactly the same procedure as in Appendix B of Part I
for the trajectories near a saddle fixed point of a diffeomorphism, one may
show also that

‖ξ1,2‖Cr−1 = o(e−λ0τ ) , ‖η1,2‖Cr−1 = o(e−γ0τ ) , (13.8.27)

and this estimate is valid at r = 2 as well.

Remark 2. Recall that when the system depends smoothly (Cr) on some
parameters, the coordinate transformation which brings the system to the form
(13.8.1) and (13.8.2) depends on the parameters Cr−2-smoothly (precisely, it
has continuous derivatives with respect to all variables and parameters up to
the order (r − 1), except for the last (r − 1)th derivative with respect to the
parameters alone which may not exist). In this case the matrices B1,2 and C1,2

are Cr−2-smooth functions of the parameters.
The estimates of Lemma 13.5 remain valid in this case. Indeed, it is easy

to trace throughout our proof (compare also with the analogous statement in
Appendix B of Part I) that an additional q-times (q ≤ r − 2) differentiation
with respect to the parameters may only lead to the appearance of a factor
τ q in the right-hand side of the estimates (13.8.8) and (13.8.9), but this factor
can be absorbed by the o(e−λτ ) and o(e−γτ ) terms by pushing the λ’s and γ’s
closer to zero.

The derivatives of the order (r − 1) of the functions ξ and η can now be
estimated by o(τ qe−λ0τ ) and o(τ qe−γ0τ ), respectively (the proof follows exactly
the same procedure as in Appendix B). Here q = 0, . . . , r − 2 is the number
of the differentiations with respect to the parameters; λ0 and γ0 depend now
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on the parameters in such a way that the estimates (13.8.3) for the matrix
exponents are always satisfied.

Remark 3. Let us draw more attention to the case where the unstable mani-
fold of the saddle is one-dimensional. There is no v-variables here and y ∈ R1.
By rescaling time, the system (13.8.1) can be reduced to the form

ẋ = B1x + f11(x, y)x + f12(x, u, y)u ,

u̇ = B2u + f21(x, y)x + f22(x, u, y)u ,

ẏ = y ,

(13.8.28)

where all eigenvalues (ν1, . . . , νm1) of B1 have the same real part −ν < 0, and
all eigenvalues (νm1+1, . . . , νm) of B2 lie to the left of the line Re (·) = −ν′′ <

−ν. The Cr−1-smooth functions fij must satisfy

fi1(x, 0) ≡ 0 , f1j(0, 0, y) ≡ 0 . (13.8.29)

Lemma 13.5 asserts here that the solution of the boundary-value problem
is given by

y0 = e−τy1 ,

x1 = eB1τx0 + ξ1(x0, u0, y1, τ) ,

u1 = ξ2(x0, u0, y1, τ) ,

(13.8.30)

where
‖ξ1‖Cr−2 = o(e−ν̃τ ) , ‖ξ2‖Cr−2 = o(e−ν′τ ) . (13.8.31)

Here,
ν < ν′ < min{2ν, ν′′} , ν < ν̃ < min{ν′, ν + 1} . (13.8.32)

The estimates (13.8.27) can be written as follows

‖ξ1,2‖Cr−1 = o(e−ντ ) . (13.8.33)

Remark 4. One may obtain slightly refined estimates for the functions ξ1,2

in (13.8.30). Namely, let

ξ̄1,2(u0, y1, τ) = ξ1,2(0, u0, y1, τ) . (13.8.34)

Then the functions ξ̄1,2 satisfy some better estimates than those for ξ1,2 re-
spectively. Indeed, we have

‖ξ̄1‖Cr−2 = o(e−ν̄τ ), ‖ξ̄2‖Cr−2 = o(e−ν̂τ ) , (13.8.35)
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for any ν̄ and ν̂ such that

ν < ν̂ < min{ν′′, 2(1 + ν)}, ν < ν̄ < min{ν′′, 1 + ν} . (13.8.36)

For a proof note that ξ̄1 = x(τ) and ξ̄2 = u(τ), where (x(t), u(t), y(t)) is the
solution of the boundary value problem {x(0) = 0, u(0) = u0, y(τ) = y1} for
system (13.8.28). It satisfies the system of integral equations (see (13.8.11)):

x(t) =
∫ t

0

eB1(t−s)f1(x(s), u(s), y1e
s−τ )ds ,

u(t) = eB2tu0 +
∫ t

0

eB2(t−s)f2(x(s), u(s), y1e
s−τ )ds ,

(13.8.37)

which can be solved by successive approximations, starting with (x, u)(t) =
0. One can check (in the same way as Lemma 13.5 was proved) that every
successive approximation satisfies the inequalities

‖x(t)‖Cr−2 ≤ K1e
−ν̄t, ‖u(t)‖Cr−2 ≤ K2e

−ν̂t (13.8.38)

for all t ∈ [0, τ ], with some constant K, the same for every approximation step.
Thus, the limit of approximations satisfies the same inequalities, and this gives
(13.8.35) (see comments on the inequalities (13.8.12)).



Chapter 14

SAFE AND DANGEROUS

STABILITY BOUNDARIES

The material presented so far in this book covers the theoretical foundation

for the analysis of two non-transient phenomena: stationary states and self

(auto)-oscillations. The mathematical image of the former is a stable equi-

librium state, and that of the latter is a stable periodic orbit. Theoretically,

the observable state of a system that is associated with the position of a rep-

resentative point in the phase space is not necessarily located precisely at an

equilibrium state, or on a periodic orbit but can be only infinitesimally close

to it.1 One must also take into account possible variations of the parameters

of the system. If a parameter varies sufficiently slowly, then the representative

point is able to follow the evolution of the limit regime within the stability

region. However, while studying a concrete dynamical system and choosing

parameter values, one must care not only about the requirements concern-

ing the stability of regimes but also about other problems. For instance, it

may turn out that the optimal working conditions of a device can be achieved

only near the threshold of its stability region. Another matter is that the

parameters of the system may evolve in a quasistationary way towards the

stability boundary. Any further trespassing beyond this boundary may lead

to rather non-trivial dynamics.2 To analyze such situations, we now arrive at

1The process of convergence of a representative point to a limiting state is called the
transient regime. Formally, the limit regime and a nearby transient process cannot be
clearly distinguished. Nevertheless, the intuitive understanding of these processes in each
specific field of nonlinear dynamics and their separation in time usually cause no difficulties.

2Such a situation is literally called “on the edge of chaos.”
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the main topic of this final chapter: how does the representative point behave

while cruising over the boundary of the stability region?

14.1. Main stability boundaries of equilibrium states
and periodic orbits

To answer the question raised in the preceding paragraph, we must first itemize

the main types of boundaries of stability regions of equilibrium states and

periodic orbits. To do this we must undertake a systematic classification of

the information we have presented in all previous chapters. We will pay special

attention to the features that distinguish each type of boundaries.

Consider a p-parameter family of n-dimensional systems described by

ẋ = X(x, ε) , ε = (ε1, . . . , εp) . (14.1.1)

Let us assume that the system has an equilibrium state (in the origin,

for simplicity, i.e. X(0, ε) = 0). The principal boundaries of the stability

region of the equilibrium in the parameter space R
p are two codimension-one

surfaces defined by the conditions given below, on which the equilibrium states

becomes

(1) A saddle-node

X(0, ε) = 0 , ∆n(ε) = 0 ,

∆1(ε) > 0, . . . ,∆n−1(ε) > 0 , l2(ε) 6= 0 ,

where ∆i(ε) is the ith Routh-Hurwitz minor, and l2(ε) is the first

Lyapunov value.

(2) A weak focus

X(0, ε) = 0 , ∆n−1(ε) = 0 ,

∆1(ε) > 0, . . . ,∆n−2(ε) > 0 , ∆n(ε) > 0 , L1(ε) 6= 0 ,

where L1(ε) is the first Lyapunov (focal) value.

Suppose next that system (14.1.1) possesses a stable periodic orbit in some

parameter region. Here, the boundaries of the stability region may be of two

principally different types depending on whether the periodic orbit exists on the
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boundary or not. If the periodic orbits exists on the stability boundary, then

the problem reduces to the study of stability conditions of the corresponding

fixed point of the Poincaré map.

Let

Ξ(ρ, ε) ≡ ρn−1 + a1(ε)ρ
n−1 + · · ·+ an−1(ε) = 0 (14.1.2)

be the characteristic equation of the linearized map at the fixed point. Then

the stability boundaries of the first type are given by the following conditions

corresponding to

(1) A saddle-node periodic orbit (fold bifurcation) Ξ(+1, ε) = 0, l2(ε) 6= 0.

Moreover, except for ρ = +1, all other roots of the characteristic

Eq. (14.1.1) must lie strictly inside the unit circle.

(2) A period-doubling bifurcation (flip bifurcation) Ξn(−1, ε) = 0,

l3(ε) 6= 0. Except for ρ = −1, the remaining roots of (14.1.1) must

lie strictly inside the unit circle.

(3) A birth of an invariant torus Ξ(e±iω, ε) = 0, ω 6= {0, π/2, 2π/3, π},

L1(ε) 6= 0. Except for ρ1,2 = e±iω, all other roots of (14.1.1) must lie

strictly inside the unit circle.

There are also four known types of the principal stability boundaries on

which the periodic orbit no longer exists.

(4) A periodic orbit collapses into a weak focus (the length of the peri-

odic orbit shrinks to zero while it approaches the bifurcation point).

This condition coincides with the condition defining the boundary of

an equilibrium state with a single pair of pure imaginary eigenvalues

provided that the Lyapunov value L1(ε) < 0.

(5) A periodic orbit merges with a homoclinic loop Γ(ε) to a saddle-node

equilibrium state Oε, where Γ(ε) /∈W ss(Oε).

(6) A periodic orbit merges with a homoclinic loop Γ(ε) to a saddle equilib-

rium state Oε whose characteristic exponents λ1(ε), . . . , λn(ε) satisfy

the following conditions:

Reλi(ε) < 0 , (i = 1, . . . , n− 1) , λn(ε) > 0

max
1≤i≤n−1

λi(ε) + λn(ε) < 0 .

The period of the periodic orbits in this case, and in the previous one,

increases unboundedly whereas its length remains finite.
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(7) The fourth and last situation corresponds to the “blue sky

catastrophe”, i.e. when both period and length of the periodic orbit Lε

go to infinity upon approaching the stability boundary. This bound-

ary is distinguished by the existence of a saddle-node periodic orbit L∗

under the assumption that all trajectories of the unstable set W u(L∗)

return to L∗ as t → +∞, where W u(L∗) ∩ W ss(L∗) = ∅. The tra-

jectories in W u(L∗) define the so-called essential map f (see details

in Chap. 12). It is the map of a circle and the blue sky catastrophe

emerges upon crossing that part of the saddle-node boundary where

the degree of f is zero and, max |f ′| < 1.

The computing algorithms of most of these bifurcations have been well

developed and can therefore be implemented in software; we mention here

the packages designed to settle these bifurcation problems: LOCBIF [76],

AUTO [46] and CONTENT [83]. The exception is the “blue sky catastrophe.”

Despite the fact that it is a codimension-one boundary, this bifurcation has

not yet been found in applications of nonlinear dynamics although an explicit

mathematical model does exist [53].

14.2. Classification of codimension-one boundaries of
stability regions

The notion of safe and dangerous boundaries of stability was suggested by

Bautin [24] who studied the stability boundaries for equilibrium states.

Safe boundaries are such that crossing over them leads to only small quan-

titative changes of the system′s state. Dangerous boundaries are such that ar-

bitrarily small perturbations of the system beyond them cause significant and

irreversible changes in the system′s behavior.

We should notice here that in the case of safe boundaries, a slow drift of

the parameters back into the stability region brings a system back into the

original response, whereas in the dangerous case this is generally impossible.

Obviously, safe and dangerous boundaries are distinguished mainly by the

stability or instability of the corresponding equilibrium state, or periodic tra-

jectory, on the boundary.

Definition 14.1. A point ε0 on the stability boundary of an equilibrium state

Oε is said to be safe if Oε0
is asymptotically stable.
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Definition 14.2. A point ε0 on the stability boundary of a periodic trajectory

Lε is said to be safe if Lε0
is asymptotically orbitally stable.

In the latter case the corresponding fixed point of the Poincaré map is

asymptotically stable.

On such a stability boundary, a bifurcating equilibrium state Oε0
(or pe-

riodic trajectory Lε0
) still possesses a basin of attraction. Therefore, after

crossing the boundary, a small attracting “cloud” (whose size depends on how

far away we are from the boundary) will inherit the stability of Oε0
(or Lε0

).

A reverse evolution of the parameters which returns to the stability boundary

will make the spot shrink back to a point (or periodic trajectory).

In such a case we have the so-called soft loss of stability. The newly estab-

lished regime inside the attracting spot may be either a new equilibrium state,

a periodic trajectory, a non-resonant torus, or even a strange attractor (a sit-

uation generally referred as instant chaos). The latter option is possible when

Oε0
has three zero eigenvalues (see [18], or [129] for systems with symmetry).

Definition 14.3. A point ε0 on the stability boundary of an equilibrium state

Oε is said to be dangerous if Oε0
is unstable in the sense of Lyapunov.

Definition 14.4. A point ε0 of the stability boundary of a periodic trajectory

Lε is said to be dangerous if the corresponding fixed point of the Poincaré map

is unstable in the sense of Lyapunov.

Remark that Definitions 14.2 and 14.4 apply only to the cases where the

periodic orbit exists on the stability boundary.

Here, the following scenarios is played when approaching the stability

boundary: the attraction basin of Oε(Lε) is getting smaller and smaller, and

in the limit at ε = ε0, it degenerates into a stable set W s(Oε0
)(W s(Lε0

)).

This set is not empty because, by definition, Oε0
∈W s(Oε0

)(Lε0
⊆W s(Lε0

)).

However, it may also consist of one point Oε0
only: this, for example, occurs

on a plane when an unstable cycle collapses into a stable focus. In the general

case, W s(Oε0
)(W s(Lε0

)) is non-trivial. Moreover, it may have a full dimension

(the dimension of the phase space) in some cases: if Oε0
is a saddle-node, for

example.

After the dangerous point has passed, the behavior of the representative

point may be as follows:
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(1) If no new limit set appears in a small neighborhood of Oε0
(Lε0

), then

the representative points diverges from the neighborhood. In such case

we have the so-called rigid loss of stability.

(2) If new attractors do appear, there still exists the possibility that a

representative point can escape from the neighborhood, rather than

choose one of the stable regimes which has emerged. Hence, one can

also refer to this case as a rigid loss of stability.

The latter comment is only heuristic. It reflects the influence of small noise,

which always persists in real systems (moreover, it is well-known that fluctua-

tions near bifurcational thresholds are amplified). Therefore, a representative

point may break loose from an old regime even before the system reaches the

dangerous boundary.

It follows from the above reasoning that the question concerning the dy-

namics of a system while crossing a stability boundary depends on the system’s

behavior in the critical cases. This is why the study of critical cases is very

important even without a further investigation of the associated bifurcation

phenomena. Moreover, a complete bifurcation analysis in a number of cases

(e.g. an equilibrium state with at least three characteristic exponents on the

imaginary axis, or a periodic trajectory with three multipliers on the unit

circle) is unrealistic in principle (see [60]).

For the case of the safe/dangerous points on a stability boundary where

periodic trajectories do not exist (the case of global bifurcations), the situation

becomes less definite and cannot yet be well specified in general. However, it

is well understood in the main cases (see below).

For the remainder of this section we consider only safe and dangerous sta-

bility boundaries of codimension one. This allows us to use only one bifurcation

parameter. We therefore assume that at ε = 0, the system

ẋ = X(x, ε) (14.2.1)

lies on a boundary of the stability region; when ε < 0, it is inside the region

of stability and outside when ε > 0.

14.2.1. Criteria for safe boundaries

(1) Let Oε be an equilibrium state and let Oε=0 have a single pair of purely

imaginary eigenvalues. In this case, the system X(ε) is written in the
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form

ẋ = ρ(ε)x− ω(ε)y + (L1(ε)x− Ω1(ε)y)(x
2 + y2) + · · · ,

ẏ = ω(ε)x+ ρ(ε)y + (Ω1(ε)x+ L1(ε)y)(x
2 + y2) + · · · , (14.2.2)

ż = (A(ε) + h(x, y, z, ε))z ,

where x, y ∈ R
1, z ∈ R

n−2, ω(0) 6= 0, ρ(0) = 0, ρ(ε)ε > 0 at ε 6= 0; and the

eigenvalues of the matrix A(ε) have negative real parts. The corresponding

boundary S1 is safe if the Lyapunov value L1(0) is negative. When ε increases

from zero, a unique stable periodic trajectory emerges from the weak focus

Oε=0 (Fig. 14.2.1).

(2) Let one multiplier of a periodic trajectory Lε become equal to −1 on

the stability boundary. The Poincaré map T on a cross-section transverse to

the periodic trajectory may be represented in the form:

x̄ = ρ(ε)x+ a2(ε)x
2 + a3(ε)x

3 + · · · ,

ȳ = (A(ε) + g(x, y, ε))y ,
(14.2.3)

where x ∈ R
1, y ∈ R

n−2 ρ(0) = −1, |ρ(ε)| < 1 when ε < 0, |ρ(ε)| > 1 when

ε > 0, and the eigenvalues of A(ε) lie strictly inside a unit circle. The stability

boundary S2 is safe if the Lyapunov value l2 = −a3(0)− a2

2
(0) is negative.

Fig. 14.2.1. Super-critical Andronov–Hopf bifurcation occurs on the safe boundary.
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Fig. 14.2.2. A period-doubling bifurcation or a flip.

It follows from the form of the Poincaré map that the invariant center man-

ifold, corresponding to y = 0, is a Möbius band in this case, with the periodic

trajectory as its median line. At ε > 0, another, double-round periodic trajec-

tory appears which inherits the stability and attracts all nearby trajectories,

see Fig. 14.2.2.

(3) Let the system have a periodic trajectory with a pair of multipliers

equal to e±iϕ(ε), where ϕ(0) 6= {0, π/2, 2π/3, π}. The Poincaré map is then

written in the form

x̄ = ρ(ε)(x cosϕ(ε)− y sinϕ(ε)) + (L1(ε)x− Ω(ε)y)(x2 + y2) + · · · ,

ȳ = ρ(ε)(x sinϕ(ε) + y cosϕ(ε)) + (Ω(ε)x+ L1(ε)y)(x
2 + y2) + · · · , (14.2.4)

z̄ = (A(ε) + h(x, y, z, ε))z ,

where x, y ∈ R
1, z ∈ R

n−3, |ρ(ε)| < 1 when ε < 0, |ρ(ε)| > 1 when ε > 0,

and the eigenvalues of A(ε) lie strictly inside the unit circle. In this case, the

boundary S3 is safe provided that the Lyapunov value L1(0) is negative. Upon

crossing S3, a stable two-dimensional invariant torus emerges from the periodic

trajectory, “the cycle loses its skin” as Andronov described this bifurcation,

see Fig. 14.2.3. This is a mechanism responsible for a soft transition from

self-oscillation to a beat modulation.

(4) In this case the limit of a periodic trajectory Lε as ε → 0 is a ho-

moclinic cycle Γ∗ composed of a simple saddle-node equilibrium state and its
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Fig. 14.2.3. Soft birth of an invariant torus. The cycle loses its skin.

Fig. 14.2.4. The disappearance of the stable cycle may result in the appearance of a saddle-

node with a bi-asymptotic trajectory.

separatrix, see Fig. 14.2.4. We also assume that the Γ∗ is a smooth curve

(i.e. the homoclinic trajectory does not lie in the non-leading manifold of the

saddle-node). The given stability boundary S4 is safe since the curve Γ∗ is

stable (it attracts every trajectory located inside a small neighborhood Γ∗).

Beyond the bifurcation point, when ε > 0, a stationary regime emerges due to

the appearance of the stable point.

(5) One more codimension-one boundary of stability of periodic trajectories

which corresponds to the “blue sky catastrophe” [152]. It may occur in n-

dimensional systems where n ≥ 3.

In this case, the topological limit of the bifurcating periodic motion Lε as

ε → −0 contains no equilibrium point, but a periodic trajectory L∗ of the

saddle-node type which disappears when ε < 0. The trajectory L∗ is a simple

saddle-node in the sense that it has only one multiplier, equal to 1, and the

first Lyapunov value is not equal to zero.

The following conditions of general position are needed to define the sta-

bility boundary S5: let us denote the unstable set of L∗ by Wu
L∗

. It is locally
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Fig. 14.2.5. A sketch of the blue sky catastrophe; the shape of the periodic orbit L(ε) looks

like a helix condensed near a saddle-node cycle.

homeomorphic to a semi-cylinder R
1 × S

1. We suppose that all trajectories in

Wu
L∗

tend to L∗ as t → +∞ and none lies in the strong stable subset W ss
L∗

,

i.e. W ss
L∗
∩Wu

L∗
= ∅. We require additionally that W u

L∗
adjoins to L∗ from the

side of the node region in such a way as it shown in Fig. 14.2.5; plus, some

quantitative restrictions are imposed (see Sec. 12.4 for more detail).

The boundary S5 is safe; when ε > 0, the periodic orbit L∗ is split into

two components: a stable cycle L+

ε and a saddle L−ε . The new stable limiting

regime will therefore be given by L+

ε .

14.2.2. Criteria for dangerous boundaries

(6) In this case, the topological limit of a periodic trajectory Lε is a separatrix

loop Γ biasymptotic to a saddle equilibrium state. It is required that the

roots ρ1, ρ2, . . . , ρn of the characteristic equation at the saddle are such that

Re ρn ≤ · · · ≤ Re ρ2 < 0 < ρ1 and the saddle value σ = Re ρ2 + ρ1 is negative.
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Fig. 14.2.6. A periodic orbit bifurcates into a homoclinic loop to a saddle.

The boundary S6 is dangerous because the loop Γ is unstable: some trajectories

will escape from its small neighborhood as t→ ±∞, see Fig. 14.2.6.

(7) Let one eigenvalue of an equilibrium state Oε vanish at ε = 0. The

system then can be represented in the form

ẋ = R(x, ε) + f(x, y, ε)y ,
(14.2.5)

ẏ = (A(ε) + g(x, y, ε))y ,

where x ∈ R
1, y ∈ R

n−2, R(0, ε) = ε, Rx(0, ε) = 0. The generic case is selected

by the condition l2 = Rxx(0, 0) 6= 0. Since we have supposed that the transition

over the boundary starts from negative values of ε, let us assume l2 > 0. The

associated stability boundary S7 is dangerous: when ε → −0, another saddle

equilibrium state is approaching Oε and merging with it at ε = 0. When

ε > 0(R(x, ε) > 0), the resulting saddle-node point O∗ disappears and all

trajectories diverge from it, see Fig. 14.2.7.

(8) This is similar to Case 1, but with L1(0) > 0. As ε → −0, a saddle

periodic trajectory shrinks into a stable point Oε. Upon moving through ε = 0,

the equilibrium state becomes a saddle-focus: it spawns a two-dimensional

unstable invariant manifold (i.e. the boundary S8 is dangerous).

(9) This is the same as Case 2 but with l1 > 0. The instability occurs

because a period-two saddle periodic trajectory merges with a stable periodic

orbit. When ε ≥ 0, the latter becomes a saddle so that its unstable manifold

is homeomorphic to a Möbius band.

(10) Same as Case 3 but L1(0) > 0. The stable periodic orbit becomes

unstable when an unstable two-dimensional invariant torus shrinks into it.
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Fig. 14.2.7. A saddle-node bifurcation without homoclinics.

When ε ≥ 0, the unstable invariant manifold W u of the periodic trajectory

has dimension three.

(11) Let one multiplier of a periodic trajectory Lε become equal to +1 at

ε = 0. The associated Poincaré map can be represented in the following form:

x̄ = x+R(x, ε)
(14.2.6)

ȳ = (A(ε) + g(x, y, ε))y ,

where x ∈ R
1, y ∈ R

n−2. Let l2 = Rxx(0, 0) > 0. Then, the boundary S11

exhibits a dangerous character because Lε coalesces with a saddle periodic

trajectory as ε→ 0. The bifurcating trajectory L∗ is of saddle-node type and

has an unstable invariant manifold W u homeomorphic to a cylinder S
1 × R

+,

see Fig. 14.2.8.

Summary: The set of principal stability boundaries of equilibrium states

consists of surfaces of three kinds: S1, S7 and S8. Only the S1-like boundaries

are safe. As for periodic orbits, there are nine types of principal stability

boundaries: among them S6, S9, S10, S11 are dangerous, while S2, S3, S4 S5

and S̃1, S̃2 are safe (the latter two correspond to the subcritical Andronov–

Hopf and flip bifurcations, respectively).
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Fig. 14.2.8. A saddle-node (fold) bifurcation of periodic orbits in R3.

14.3. Dynamically definite and indefinite boundaries
of stability regions

In this section we will attempt to answer the following question: where is the

representative point heading for upon crossing over a stability boundary? Or,

in other words, what is its Ω-limit set?

The answer is obvious when we deal with principal safe boundaries of sta-

bility regions: the representative point tends to a new stable regime which,
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emerges from a soft bifurcation. The situation is dramatically different when

a system passes through a dangerous boundary: the point escapes the old

regime and runs away. In this situation the theory of local bifurcations does

not provide a straightforward answer to the above question. Nevertheless, to

figure out what may happen beyond the bifurcation it is useful to introduce two

subtypes of the stability boundaries — dynamically definite and dynamically

indefinite boundaries [137, 26]. Let us consider first a few examples.

The first example illustrates one of the most typical bifurcations which

occur in dissipative systems; namely a stable periodic orbit L1 adheres to the

homoclinic loop of a saddle. Denote the unstable separatrices of the saddle by

Γ1 and Γ2. Let Γ1 form a homoclinic loop at the bifurcation point. Denote

the limit set of the second separatrix by Ω(Γ2). In the general case Ω(Γ2) is an

attractor; for instance, a stable equilibrium state, a stable periodic trajectory,

or a stable torus, etc. Since immediately after bifurcation a representative

point will follow closely along Γ2, it seems likely that Ω(Γ2) will become its

new attractor.

The second example exhibits a stable equilibrium state which merges with

a saddle to spawn a saddle-node. Denote by Γ, the only unstable trajectory

leaving the saddle-node as t → +∞, and its limit set by Ω(Γ). If Ω(Γ) is an

attractor, then the representative point will tend to it after the saddle-node has

disappeared. However, another scenario is also possible; namely, when Γ tends

to the same saddle-node as t → ±∞. Then we have the situation described

in the previous sections: a stable periodic trajectory that bifurcates from Γ

becomes a new limit regime for the representative point.

Both cases have much in common in the sense that the unstable set of both

bifurcating equilibrium states is one-dimensional. If the unstable set of the

critical equilibrium state is of a higher-dimension, then the subsequent picture

may be completely different. Figure 14.3.1 depicts such a situation. When

the unstable cycle shrinks into the equilibrium state we have a dilemma: the

representative point may jump either to the stable node O1 or to the stable

node O2. Therefore this dangerous boundary must be classified as dynamically

indefinite.

Consider the other hypothetical example. Let a two-dimensional diffeo-

morphism at ε = 0 have a phase portrait as shown in Fig. 14.3.2. Here,

O2 and O3 are stable fixed points, and O1 is a saddle. The unstable set

Wu
O of the saddle-node O intersects transversely the stable manifold W s

O1
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(a) (b)

Fig. 14.3.1. Uncertainty occurs when the unstable cycle vanishes at the origin.

Fig. 14.3.2. Dynamical uncertainty due to heteroclinic wiggles.
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of the saddle. When the saddle-node disappears there is an uncertainty on the

choice of the new regime for a representative point because it may converge to

either O2 or O3.

We can now assert that a stability boundary is dynamically definite if upon

crossing over the boundary the behavior of the representative point is uniquely

defined. This situation does occur in the case where the unstable set W u of

the equilibrium state (the periodic trajectory) contains at most one attractor

at the critical parameter value.

In contrast, if the choice of the new regime for the representative point is

ambiguously defined, then we can assert that such a boundary is dynamically

indefinite. This occurs if at least two attractors belong to the boundary of the

unstable set. It must also contain saddles whose unstable invariant manifolds

separate the basins of the attractors.

Next, let us consider a particular case typical of symmetrical systems. For

example, consider the family

ẋ = εx− x3 ,

which is invariant with respect to x → −x. The stability boundary ε = 0 is

easily seen to be safe for the equilibrium state at the origin. When ε > 0,

the origin looses its stability, which is inherited by two new equilibrium points

O1(x =
√
ε) and O2(x = −

√
ε). So, ε = 0 is a dynamically indefinite safe

boundary in view of the above arguments.

A more complicated example is the pendulum-like equation

ẍ = f(x, ẋ, ε) ,

where f(x, ẋ, ε) is a periodic function in x, and f(x, ẋ, ε) = −f(−x,−ẋ, ε). The

transition through the boundary of the stability region of an “oscillating” limit

cycle in this example results in the appearance of two stable periodic orbits

which span the cylinder and correspond to two opposite directions of rotation of

the pendulum. Here, an exit across the boundary occurs when the oscillating

cycle merges with a heteroclinic connection between two saddles, as shown

in Fig. 14.3.3. Observe from this picture that this boundary is dynamically

indefinite.
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Fig. 14.3.3. Evolution of the phase cylinder. Anyone has experienced with the devil’s wheel in

fairs knows how it feels when situated up-side-down at the top point. For a fleeting moment

which seems forever, you cannot tell which way the wheel will roll over down, clock-wise

or counter-clock-wise. A.L.S. had, personally, made it once, and thereby had dramatically

improved his qualitative understanding of the behavior near a saddle point.
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EXAMPLES, PROBLEMS AND EXERCISES

We hope the examples presented in this appendix will provide some pedagogi-

cal illustrations and applications of the “qualitative” theory developed in this

book. The range of instances varies from phenomenological problems to appli-

cations. Since very few nonlinear systems can be analyzed without computers,

we will perform numerical computations where necessary. At some points,

our de facto presentation will bear a descriptive character, avoiding techni-

cal details of computations. The two packages which have been used in the

preparation of this appendix are Content [182] and Dstool [164].

C.1 Qualitative integration

C.1.#1. Classify the trajectories shown in Figs. 1.3.1, 1.3.2 and C.1.1 in

the following terms: non-wandering, Poisson-stable, periodic, and homoclinic.

What are the corresponding α- and ω-limit sets of these trajectories? ¤

C.1.#2. For different parameter values of a, construct the phase portraits

for the following planar systems

(a) ṙ = r(a− r2), ϕ̇ = 1 ;

(b)





ẏ = x− (y2 − 1)

(
x2

2
− y + y3

3
− 2

3

)
,

ẋ = 1− y2 − x
(
x2

2
− y + y3

3
− 2

3

)
;

(c) ẋ = y, ẏ = 1− ax2 + y(x− 2) ;

819
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(d) the van der Pol equation:

ẍ+ a(x2 − 1)ẋ+ x = 0 ;

(e) the Duffing equation:

ẍ+ aẋ+ x− x3 = 0;

(f) the Bogdanov-Takens normal form:

ẋ = y, ẏ = −x+ ay + x2 ;

(g) the Khorozov-Takens normal form:

ẋ = y, ẏ = −x+ ay + x3 . ¤

C.1.#3. Discuss the phase portraits of the cells shown in Fig. C.1.1.

What are the special trajectories here? ¤

(a) (b) (c)

Fig. C.1.1. Examples of cells.

C.2 Rough equilibrium states and stability
boundaries

C.2.1 Routh-Hurwitz criterion

Here we will formulate the rule that allows one to determine the structural sta-

bility of an equilibrium state and its topological type without solving explicitly

the characteristic equation.

The problem in question is how many roots of the characteristic equation

Ξ(λ) = a0λ
n + a1λ

n−1 + · · ·+ an
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lie to the left or to the right of the imaginary axis and how many roots lie

on that axis. The number of zero roots is determined easily: there are s zero

roots if and only if an = · · · = an−s+1 = 0 and an−s 6= 0. So, if we have a zero

root of algebraic multiplicity s, we can just divide the characteristic equation

by λs and proceed to the case where the last coefficient of the characteristic

equation is non-zero, as we will assume to be the case. The next step is to

compose the following Routh-Hurwitz matrix:




a0; a2; a4; · · ·
a1; a3; a5; · · ·

a1a2 − a0a3

a1
;

a1a4 − a0a5

a1
; · · · · · ·

a1a2 − a0a3

a1
a3 −

a1a4 − a0a5

a1
a1

a1a2 − a0a3

a1

; · · · · · · · · ·

· · · · · · · · ·




(C.2.1)

Let us describe the algorithm for constructing the above matrix in detail.

The entries of the first two rows are the coefficients of Ξ(λ) with even and odd

subscripts, respectively. The k-th row is built as follows: the entry rkj at the

j-th column is equal to the fraction

rkj =
rk−1,1rk−2,j+1 − rk−2,1rk−1,j+1

rk−1,1

whose numerator is taken with opposite sign of the determinant of the (2×2)-

matrix at the intersection of the two previous rows with the first column and

the (j+1)-th column, whereas the denominator is the entry located in the first

column of the previous row. The algorithm is subsequently applied until the

overall number of the rows in the matrix becomes equal to (n+ 1).

Such a construction for the matrix becomes possible only if all entries of

the first column do not vanish. This is the regular case. Here, the number of

the roots of Ξ(λ) (including multiplicity) with positive real parts, is equal to

the number q of sign changes of the entries in the first column. The polyno-

mial Ξ(λ) has no purely imaginary roots in the regular case. Therefore, the

corresponding equilibrium state O is structurally stable in the regular case,

and its topological type is given by (n− q, q).
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One can verify that the first column in (C.2.1) can be expressed through

the main minors ∆i of the Routh-Hurwitz matrix (2.1.10) as follows

a0, ∆1,
∆2

∆1
,

∆3

∆2
, . . . ,

∆n

∆n−1
.

In particular, if a0 > 0 and ∆i > 0 (i = 1, 2, . . . , n), then the Routh-Hurwitz

conditions hold (see Sec. 2.1).

While constructing the matrix (C.2.1) it may turn out that some entry

rm+1,1 (1 ≤ m ≤ n) of the first column vanishes. In this irregular case one

should find the first non-zero entry rm+1,k+1 in the (m + 1)-th row, as well

as the last non-zero entries rm,p and rm+1,s in the m-th and (m+ 1)-th rows,

respectively. Compute the deficiency number Sm+1 by the following rule:

Sm+1 =





k if k ≤ s− p
s− p if k > s− p and (−1)s−prm,prm+1,s < 0

s− p+ 1 if k > s− p and (−1)s−prm,prm+1,s > 0 .

Then, shift the (m+1)-th row to the left over k positions, so that the element

rm+1,k+1 becomes the first one in the line, and multiply all other entries of this

row through by (−1)k. Since the first entry is now non-zero, one proceeds as

in the regular case. Eventually, the number of roots of Ξ(λ) with positive real

parts will be equal to the number of sign changes in the first column added to

the sum of deficiency numbers over all irregular rows.

There still remains a special case where for some m the entire (m + 1)-th

row of the matrix consists of zeros, i.e. rm+1,j = 0 at all j. This is the only

situation when pure imaginary roots are possible. If this case is encountered,

we should replace the (m + 1)-th row by a row consisting of the following

numbers

(p− 1) rm,1; (p− 2) rm,2; (p− 3) rm,3; · · · ,

where p is the number of the last non-zero entry in the m-th row, and proceed

as before. Upon completing the construction (there may be other vanishing

rows that should be replaced too) we count the number of sign changes in the

first column plus the sum of deficiency numbers (if some irregular rows have

appeared). The result equals the number of roots with positive real parts. The

number of purely imaginary roots here is equal to 2(p− 1− l), where p is the

ordinal number of the last non-zero entry in the row which precedes the first
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vanishing one, and l is the number of sign changes in the first column plus

the sum of deficiency numbers computed after this row. The corresponding

equilibrium state will be structurally stable only if p = l + 1.

C.2.#4. Determine the stability and the topological type of an equilib-

rium state whose characteristic equation is given below:

Ξ(λ) = λ4 + 2λ3 + λ2 − 8λ− 20 = 0 .

Solution. The corresponding Rough-Hurwitz matrix is given by

1 1 −20
2 −8
5 −20 (p = 2)

5 (zero entry replaced by (p− 1)rm,1 = 5)

−20

Here there is one sign change in the first column, i.e. Ξ(ξ) has one root in

the right open half-plane. Let us count the number of purely imaginary roots:

2(p− 1− l) = 2(2− 1− 1) = 0. Thus, the equilibrium state O is structurally

stable, and its topological type is saddle (3,1). 2

C.2.2 3D case

Consider a three-dimensional system

ẏ1 = a
(1)
1 y1 + a

(1)
2 y2 + a

(1)
3 y3 + P1(y1, y2, y3),

ẏ2 = a
(2)
1 y1 + a

(2)
2 y2 + a

(2)
3 y3 + P2(y1, y2, y3),

ẏ3 = a
(3)
1 y1 + a

(3)
2 y2 + a

(3)
3 y3 + P3(y1, y2, y3) .

(C.2.2)

Here, the functions Pi contain no linear terms. The characteristic equation of

the system (C.2.2) is given by

Ξ(λ) =

∣∣∣∣∣∣∣∣

a
(1)
1 − λ a

(1)
2 a

(1)
3

a
(2)
1 a

(2)
2 − λ a

(2)
3

a
(3)
1 a

(3)
2 a

(3)
3 − λ

∣∣∣∣∣∣∣∣
= 0 . (C.2.3)

Equation (C.2.3) can be rewritten in the form of a cubic polynomial:

λ3 + pλ2 + qλ+ r = 0 , (C.2.4)
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where
p = −(a(1)

1 + a
(2)
2 + a

(3)
3 ) ,

q =

∣∣∣∣∣
a
(1)
1 a

(1)
2

a
(2)
1 a

(2)
2

∣∣∣∣∣+
∣∣∣∣∣
a
(1)
1 a

(1)
3

a
(3)
1 a

(3)
3

∣∣∣∣∣+
∣∣∣∣∣
a
(2)
2 a

(2)
3

a
(3)
2 a

(3)
3

∣∣∣∣∣ ,

r = −

∣∣∣∣∣∣∣∣

a
(1)
1 a

(1)
2 a

(1)
3

a
(2)
1 a

(2)
2 a

(2)
3

a
(3)
1 a

(3)
2 a

(3)
3

∣∣∣∣∣∣∣∣
.

(C.2.5)

Here, the Routh-Hurwitz stability condition reduces to the following

relation:

p > 0, q > 0, r > 0, and R ≡ pq − r > 0 . (C.2.6)

The boundaries of the stability region are two surfaces given by (r = 0,

p > 0, q > 0) and (R = 0, p > 0, q > 0). The characteristic equation has

at least one zero root on the surface r = 0, and a pair of purely imaginary

roots on the surface (R = 0, q > 0).

C.2.#5. Show that the characteristic exponents of the equilibrium state

on the bifurcation surface R = 0 are (−p, i√q,−i√q). ¤

The number of real roots of Eq. (C.2.4) depends on the sign of the discrim-

inant of the cubic equation:

∆ = −p2q2 + 4p3r + 4q3 − 18pqr + 27r2 . (C.2.7)

(1) If ∆ > O, the cubic equation has one real root and two complex-

conjugate ones;

(2) If ∆ < O, the cubic equation has three distinct real roots;

(3) When ∆ = 0, the equation has one real root of multiplicity 3 if q = 1
3p

2

and r = 1
27p

3, or two real roots (one of multiplicity 2).

The equation ∆ = 0 can be resolved as follows:

r =
1

3
pq − 2

27
p3 ± 2

27
(p2 − 3q)3/2, q ≤ p2

3
.

Hence, the characteristic equation has all the three roots real if and only if

q ≤ p2

3
and r−(p, q) ≤ r ≤ r+(p, q) , (C.2.8)
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where we denote

r± =
1

3
pq − 2

27
p3 ± 2

27
(p2 − 3q)3/2 .

When the equilibrium state is topologically saddle, condition (C.2.8)

distinguishes between the cases of a simple saddle and a saddle-focus. However,

when the equilibrium is stable or completely unstable, the presence of complex

characteristic roots does not necessarily imply that it is a focus. Indeed, if the

nearest to the imaginary axis (i.e. the leading) characteristic root is real, the

stable (or completely unstable) equilibrium state is a node independently of

what other characteristic roots are.

The boundary between real and complex leading characteristic roots is

formed by a part of the surface ∆ = 0 which corresponds to the double roots

and by the surface

r =
p

3

(
q − 2p2

9

)
, q ≥ p2

3
, (C.2.9)

which joins the surface ∆ = 0 along the line of triple roots. This surface

corresponds to the existence of a pair of complex-conjugate roots whose real

part is equal to the third root. When we cross this surface towards decreasing

|r| this pair is moved farther from the imaginary axis than the real root, so

the equilibrium state becomes a node. To the other side of this surface the

complex-conjugate pair becomes closer to the imaginary axis than the real

root, so that the equilibrium state becomes a focus.

When studying homoclinic bifurcations, an important characteristic of sad-

dle equilibria is the sign of the saddle value σ defined as the sum of the real

parts of the two leading characteristic exponents nearest to the imaginary axis

from the left and from the right.

In the case of a saddle, when both leading exponents λ1,2 are real, the

condition σ = 0 is a resonance relation λ1+λ2 = 0. In terms of the coefficients

of the cubic characteristic equation, this condition recasts as

R ≡ pq − r = 0, −p2 < q < 0 . (C.2.10)

Observe that when q > 0, the surface R = 0, corresponds to the Andronov-

Hopf bifurcation, whereas the part of the surface where q < −p2, corresponds

to the vanishing of the sum of one leading exponent and a non-leading one of

opposite sign.
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In the case of a saddle-focus of a three-dimensional system the condition

σ = 0 reads as λ1 + Reλ2 = 0 where λ1 is a real root and λ2,3 are the pair of

complex-conjugate roots. This can be written as

r = −p(q + 2p2), −p2 < q . (C.2.11)

When crossing this surface towards increasing r, the saddle value becomes

positive.

Another important characteristic of saddle equilibria of three-dimensional

systems is the divergence of the vector field at the equilibrium state. It is equal

to the sum of the characteristic roots, i.e. to −p.
Summarizing, we can classify the rough equilibrium states in R3 as

follows:

(1) The case p > 0 (div < 0) (See Table C.1).

(2) The case p < 0 (div > 0) (See Table C.2).

(3) The case p = 0 (div = 0) (See Table C.3).

C.2.#6. Draw the corresponding bifurcation diagrams on the (q, r)-plane

with fixed p. 2

Let us consider next a few examples. We will focus our consideration on

the Lorenz equation, the Chua’s circuit, the Shimizu-Morioka model and some

others.

The Chua’s circuit [179] is given by

ẋ = a(y − f(x)) ,
ẏ = x− y + z ,

ż = −by ,
(C.2.12)

with cubic nonlinearity f(x) = −x/6 + x3/6. Here, a and b are some positive

parameters. System (C.2.12) is invariant under the transformation (x, y, z)↔
(−x,−y,−z).

Let us find the equilibrium states in (C.2.12) by solving the following sys-

tem:
0 = a(y + x/6− x3/6),

0 = x− y + z,

0 = −by .
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Table C.1

Parameter regions Types of equilibria σ
Eigenvalues

λi, i = 1, 2, 3

0 < r <





r+(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Stable node

dimWs = 3

dimWu = 0

—
0 > λ1 > Reλi

(i = 2, 3)

pq > r >





r+(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Stable focus

dimWs = 3

dimWu = 0

— 0 > Reλ1,2 > λ3

r >

{
r+(p, q) for q ≤ 0

pq for q ≥ 0
Saddle-focus (1,2) σ < 0 Reλ2,3 > 0 > λ1

0 < r < r+(p, q), q < 0

Saddle

dimWs = 1

dimWu = 2

σ < 0 λ1 < 0 < λ2 < λ3

0 > r >

{
r−(p, q) for q ≤ −p2

pq for − p2 ≤ q < 0

Saddle

dimWs = 2

dimWu = 1

σ > 0 λ1 > 0 > λ2 > λ3

r−(p, q) < r <





pq for − p2 < q ≤ 0

0 for 0 ≤ q <
p2

4

Saddle

dimWs = 2

dimWu = 1

σ < 0 λ1 > 0 > λ2 > λ3

−p(q + 2p2) < r <





r−(p, q) for − p2 < q ≤
p2

4

0 for q ≥
p2

4

Saddle-focus (2,1) σ < 0 λ1 > 0 > Reλ2,3

r <

{
r−(p, q) for q ≤ −p2

−p(q + 2p2) for q ≥ −p2
Saddle-focus (2,1) σ > 0 λ1 > 0 > Reλ2,3
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Table C.2

Parameter regions Types of equilibria σ
Eigenvalues

λi, i = 1, 2, 3

0 > r >





r−(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Repelling node

dimWs = 0

dimWu = 3

—
0 < λ1 < Reλi

(i = 2, 3)

pq < r <





r−(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Repelling focus

dimWs = 0

dimWu = 3

— 0 < Reλ1,2 < λ3

r <

{
r−(p, q) for q ≤ 0

pq for q ≥ 0
Saddle-focus (2,1) σ > 0 Reλ2,3 < 0 < λ1

0 > r > r−(p, q), q < 0

Saddle

dimWs = 2

dimWu = 1

σ > 0 λ1 > 0 > λ2 > λ3

0 < r <

{
r+(p, q) for q ≤ −p2

pq for − p2 ≤ q < 0

Saddle

dimWs = 1

dimWu = 2

σ < 0 λ1 < 0 < λ2 < λ3

r+(p, q) > r >





pq for − p2 < q ≤ 0

0 for 0 ≤ q <
p2

4

Saddle

dimWs = 1

dimWu = 2

σ > 0 λ1 < 0 < λ2 < λ3

−p(q + 2p2) > r >





r+(p, q) at q ∈

(
−p2,

p2

4

)

0 at q ≥
p2

4

Saddle-focus (1,2) σ > 0 λ1 < 0 < Reλ2,3

r >

{
r+(p, q) for q ≤ −p2

−p(q + 2p2) for q ≥ −p2
Saddle-focus (1,2) σ < 0 λ1 < 0 < Reλ2,3
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Table C.3

Parameter regions Types of equilibria
Eigenvalues

λi, i = 1, 2, 3

Dimensions of

W s and Wu

0 < r <
2

9

√
3|q|3/2, q < 0 Saddle λ1 < 0 < λ2 < λ3

dimW s = 1

dimWu = 2

r >





2

9

√
3|q|3/2 for q ≤ 0

0 for q ≥ 0
Saddle-focus (1,2) λ1 < 0 < Reλ2,3

dimW s = 1
dimWu = 2

r <




−2

9

√
3|q|3/2 for q ≤ 0

0 for q ≥ 0
Saddle-focus (2,1) Reλ2,3 < 0 < λ1

dimW s = 2

dimWu = 1

0 > r > −2

9

√
3|q|3/2, q < 0 Saddle λ1 > 0 > λ2 > λ3

dimW s = 2

dimWu = 1

2

From these equilibrium equations, we find that y = 0, x = −z and x(1−x2) =

0. Thus, there are always three equilibria: O(0, 0, 0) and O1,2(±1, 0,∓1). The
Jacobian matrix at the origin is given by



a/6 a 0

1 −1 1

0 −b 0


 .

The characteristic equation at O(0, 0, 0) is

det



a/6− λ a 0

1 −1− λ 1

0 −b −λ


 = 0,

or

λ3 + (1− a/6)λ2 + (b− 7a/6)λ− ab/6 = 0. (C.2.13)

One can see that since the constant term is negative, it follows immediately

from the Routh-Hurwitz criterion that the origin is an unstable equilibrium

state. Furthermore, it may have no zero characteristic roots when a and b are

positive. The codimension-2 point (a = b = 0) requires special considerations.

We postpone its analysis to the last section, where we discuss the bifurcation

of double zeros in systems with symmetry.
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The condition R ≡ pq − r = 0 reads here as

b = 7a/6− 7a2/36 .

We have q = −7a2/36 < 0 at R = 0. This means that the point at the

origin cannot have a pair of purely imaginary eigenvalues. Thus, it is always

structurally stable when (a, b) 6= 0. In accordance to the above classification

table, its topological type is a saddle with a two-dimensional stable manifold,

and a one-dimensional unstable manifold.

C.2.#7. In the (a, b)-parameter plane, find the transition boundary:

saddle → saddle-focus for the origin, and equations for its linear stable and

unstable subspaces. Detect the curves in the parameter plane that correspond

to the vanishing of the saddle value σ of the equilibrium state at the origin.

Find where the divergence of the vector field at the saddle-focus vanishes. Plot

the curves found in the (a b)-plane. 2

Let us examine next the stability of the non-trivial equilibria O1,2(±1, 0,
∓1). First, we linearize the system at either O1 or O2. The associated Jacobian

matrix is given by 

−a/3 a 0

1 −1 1

0 −b 0


 .

The characteristic polynomial is given by

λ3 + (1 + a/3)λ2 + (b− 2a/3)λ+ ab/3 = 0 . (C.2.14)

Like O, the equilibria O1,2 cannot have a zero characteristic exponent for

ab 6= 0. The condition R = 0 reads here as

b =
2

9
a(3 + a) .

This bifurcation boundary is plotted in Fig. C.2.1. The corresponding expres-

sion for q is q = 2a2/9 > 0. Therefore, at R = 0, the equilibria O1,2 have a

pair of pure imaginary characteristic exponents, namely,

λ1,2 = ±ia
√
2

3
and λ3 = −(1 + a/3) .

This corresponds to the Andronov-Hopf bifurcation. When R > 0 the equi-

libria O1,2 are stable foci, and when R < 0, they are saddle-foci (1,2). The
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stability of O1,2 in the critical case depends on whether the corresponding

Andronov-Hopf bifurcation is sub- or super-critical (see Secs. 9.3 and 11.5),

i.e. whether the point O1,2 is a stable or unstable weak focus. To find out

what occurs here we will need to determine the sign of the first Lyapunov

value L1. When L1 < 0, O1,2 are stable, and they are unstable if L1 > 0. If

the Lyapunov value vanishes on the Andronov-Hopf bifurcation curve, the sign

of the next Lyapunov value L2 must be computed, etc.

Consider the Lorenz equation [87]

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ż = −bz + xy ,

(C.2.15)

where σ, r and b are positive parameters; we will assume, moreover, that σ >

b + 1. Notice that this equation is invariant under the involution (x, y, z) ↔
(−x,−y, z).

Let us find the equilibrium states of this equation by solving the following

system:

0 = −σ(x− y) ,
0 = rx− y − xz ,
0 = −bz + xy ,

We find that x = y, x(r − 1 − z) = 0 and bz = x2. Plugging the last relation

into the middle one, we arrive at the equation for the coordinates of equilibria:

x(b(r − 1)− x2) = 0 . (C.2.16)

One can see that the Lorenz equation always has one equilibrium state O at

the origin. When r > 1, along with O there are two more equilibrium states

O1,2(x1,2 = y1,2 = ±b1/2(r − 1)1/2, z1,2 = r − 1).

The Jacobian matrix at the origin is given by



−σ σ 0

r −1 0

0 0 −b


 .
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The characteristic equation

det



−σ − λ σ 0

r −1− λ 0

0 0 −b− λ


 = 0

has three real roots:

λ1 = −b and λ2,3 =
−(σ + 1)±

√
(σ + 1)2 + 4σ(r − 1)

2
.

Thus, when r < 1, the origin is a stable equilibrium state. When r = 1, the

equilibrium state has one zero root. When r > 1, the origin becomes a saddle

with a one-dimensional unstable manifold, and its stability is inherited by the

stable equilibria O1,2.

The unstable manifold W u
O is composed of the saddle point itself and two

trajectories Γ1,2 that come from O as t→ +∞. The stable manifoldW s
0 is two-

dimensional. The leading stable direction in W s
0 is given by the eigenvector

corresponding to the smallest negative characteristic root. In our case, this is

λ1 = −b, and the corresponding eigenvector is (0, 0, 1). Note that there is an

invariant line x = y = 0 in W s
O.

C.2.#8. Find the equations of EuO and EssO at the origin. 2

Let us carry out the stability analysis for O1,2. We can choose either one;

let it be O1. The Jacobian matrix at O1 is given by


−σ σ 0

r − z1 −1 −x1

x1 y1 −b


 .

The corresponding characteristic equation is given by

λ3 + (σ + b+ 1)λ2 + b(σ + r)λ+ 2bσ(r − 1) = 0 .

The stability boundary of the equilibria O1,2 is determined by the condition:

R ≡ b(σ + r)(σ + b+ 1)− 2bσ(r − 1) = 0 . (C.2.17)

Thus, provided σ > b+ 1, the equilibrium states O1,2 are stable when

1 < r <
σ(σ + b+ 3)

σ + b− 1
.
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Fig. C.2.1. A part of the (a, b)-bifurcation diagram of the Chua’s circuit; AH denotes the
Andronov-Hopf bifurcation curve; σ = 0 corresponds to the vanishing of the saddle value

when the origin is a saddle.

Fig. C.2.2. The Andronov-Hopf bifurcation curve AH and a pitch-fork curve r = 1 in the

(r, σ)-plane of the Lorenz model at b = 8/3.
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They become saddle-foci (1,2) when R ≤ 0. This happens on, and to the right

of the Andronov-Hopf bifurcation curve AH in the (r, σ)-parameter plane in

Fig. C.2.2.

The stability of the bifurcating equilibria O1,2 at the critical moment R = 0

is determined by the first Lyapunov value L1. We will derive its analytical

expression in Sec. C.5.

C.2.#9. Find a point in the (r, a)-parameter plane in Fig. C.2.3 where

an equilibrium state of the asymmetric Lorenz model [189]

ẋ = −10(x− y) ,
ẏ = rx− y − xz + a ,

ż = −8

3
z + xy

(C.2.18)

has a pair of zero eigenvalues. 2

Consider next the following third-order system from atmospheric physics

[128] and [183]
ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z ,
(C.2.19)

where (a, b, F,G) are positive parameters. To find its equilibrium states (x0, y0,

z0), we equate the right-hand side of (C.2.19) to zero:

0 = −y2
0 − z2

0 − ax0 + aF ,

0 = x0y0 − bx0z0 − y0 +G ,

0 = bx0y0 + x0z0 − z0 .
(C.2.20)

From the second and the third equations, we obtain

y0 =
G(1− x0)

1− 2x0 + (1 + b2)x2
0

,

z0 =
bGx0

1− 2x0 + (1 + b2)x2
0

.

(C.2.21)

Substituting (C.2.21) into the first equation in (C.2.20), we obtain

(1 + b2)x3
0 − [2 + (1 + b2)F ]x2

0 + (1 + 2F )x0 +

(
G2

a
− F

)
= 0 . (C.2.22)
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Next, we introduce the new parameters

B =
1

1 + b2
, G′ =

G2

a
− F

1 + b2
,

and make a translation

x0 = x̄+
2B + F

3
.

Then (C.2.22) transforms into the cubic canonical equation

x̄3 + sx̄+ t = 0 , (C.2.23)

where

t = B(1 + 2F )− (2B + F )2

3
,

s =
B(1 + 2F )(2B + F )

3
+G′ − 2(2B + F )3

27
.

The discriminant of Eq. (C.2.23) is given by

∆ =
t2

4
+
s3

27
.

The corresponding bifurcation curve determined by the condition ∆ = 0 is

plotted in Fig. C.2.4. It breaks the parameter plane (F,G) into regions where

system (C.2.19) possesses either one or three equilibrium states (inside the

wedge in Fig. C.2.4). The precise location of the cusp, where all three equi-

librium states coalesce, is determined by the simultaneous vanishing of s and

t (the point labeled CP ). This occurs when

G =
2
√
12b
√
ab

3(1 + b2)
, F =

1 +
√
3b

1 + b2
.

C.2.#10. Show that the system possesses an equilibrium state with char-

acteristic exponents (0,±iω) (Gavrilov-Guckenheimer bifurcation) at

F ∗ =
3a2 + 3a2b2 + 12ab2 + 12b2 + 4a

4(a+ ab2 + 2b2)

G∗ =

√
a(a2 + a2b2 + 4ab2 + 4b2)

4
√
a+ ab2 + 2b2

.
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Fig. C.2.3. A partial bifurcation diagram for the asymmetric Lorenz model. The point

CP is a cusp, at BT the system has a double-degenerate equilibrium state with two zero

characteristic exponents (see Sec. 13.2).

Fig. C.2.4. A fragment of the (F,G)-bifurcation portrait derived from a linear stability

analysis for a = 1/4 and b = 4.
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Hint: use the fact that at this bifurcation point the trace and the determinant

of the Jacobian matrix must vanish simultaneously. 2

C.2.#11. Carry out a linear stability analysis of the following system

ṙ = r(µ1 + az + z2) ,

ż = µ2 + z2 + br2 ,

ϕ̇ = ω + cz ,

where r, ϕ and z are cylindrical coordinates, µ1,2 are control parameters, and

a, b, c assume the values ±1. This is a truncated normal form for the Gavrilov-

Guckenheimer bifurcation. 2

C.2.#12. Find the transformation of coordinates and time which brings

the Lorenz system (C.2.15) to the following form

ẋ = y ,

ẏ = x− xz − ay +Bx3 ,

ż = −b′(z − x2) .

(C.2.24)

Hint: the corresponding relation between the parameters of both systems is

b′ =
b√

σ(r − 1)
, a =

1 + σ√
σ(r − 1)

, B =
b

2b− σ . 2

The system (C.2.24) is the asymptotic normal form appearing in the study

[129] of local codimension-three bifurcations of equilibria and periodic orbits

of systems with a symmetry (see Sec. C.4). When B = 0, system (C.2.24) is

the Shimizu-Morioka model [127], [191]

ẋ = y ,

ẏ = x− xz − ay ,
ż = −bz + x2 ,

(C.2.25)

which can be viewed as the approximation of the Lorenz equation for large

Raleigh numbers r. In a slightly different form, it can also be derived from

PDEs describing a weekly nonlinear magneto-convection in the limit of tall,

thin rolls [187].
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The Shimizu-Morioka model has three equilibria when b > 0. The origin

O(0, 0, 0) is a saddle of type (2,1) with the characteristic exponents

λ1,2 = −a/2± (a2/4 + 1)1/2, λ3 = −b .

The change of the leading direction in Es occurs on the curve a = (b2 − 1)/b

when λ2 = λ3. The saddle value σ = λ1 + λ3 vanishes on the curve a =

(1− b2)/b.

C.2.#13. Write down the equations of the eigenspaces E s, Eu, EsL for

the saddle at the origin. 2

The characteristic equation at the non-trivial equilibria O1,2(±
√
b, 0, 1) of

the Shimizu-Morioka model is given by

λ3 + (a+ b)λ2 + abλ+ 2b = 0 .

The Andronov-Hopf bifurcation curve AH in Fig. C.2.5 is given by (a +

b)a− 2 = 0. The characteristic exponents at O1,2 on it are

λ3 = −2/a, λ1,2 = ±i
√

2− a2 .

Above the curve AH the equilibria O1,2 are stable foci; they are saddle-foci of

type (1, 2) below the curve.

The equilibrium states in the Rössler system [172, 188]

ẋ = −y − z ,
ẏ = x+ ay ,

ż = bx− cz + xz ,

are O(0, 0, 0) and O1(c− ab, b− c/a, c/a− b). The characteristic equation at

O is given by

λ3 + (c− a)λ2 + (1 + b− ac)λ+ (c− ab) = 0 .

It has the roots (iω,−iω, λ) when

a =
(1 + c2) +

√
(1 + c2)2 − 4bc2

2c
,

√
c2 +

1

4
− 1

2
< b <

(1 + c2)2

4c2



C.2. Rough equilibrium states and stability boundaries 839

or

a =
(1 + c2)−

√
(1 + c2)2 − 4bc2

2c
, b <





√
c2 +

1

4
− 1

2
for c ≥

√
2 +
√
5 ,

(1 + c2)2

4c2
for c ≤

√
2 +
√
5 .

This equilibrium state has one zero root when a = c/b.

The characteristic equation at O1 assumes the form

λ3 + a(b− 1)λ2 +
(
1 +

c

a
− a2b

)
λ+ (ab− c) = 0 .

It has a pair of purely imaginary roots on the curve

c =
a

b
+ (b− 1)a3, a2 < 1 +

1

b
.

In addition, this equilibrium state may have a single zero root when a = c/b.

Thus, the equilibrium states O1 and O2 coalesce when ab = c. The two other

characteristic exponents of this degenerate point are given by

λ1,2 =
a(1− b)±

√
a2(b+ 1)2 − 4(b+ 1)

2
.

Hence, the exponents λ1,2 become pure imaginary when

b = 1, 0 < a <
√
2 .

The Rössler system and the new Lorenz system (C.2.19) are remarkable in

that both have a doubly degenerate equilibrium state with characteristic ex-

ponents equal to (0,±iω). The feature of this bifurcation is that the unfolding

may contain a torus bifurcation curve along with curves corresponding to ho-

moclinic loops to saddle-foci, and therefore non-trivial dynamics may emerge

instantly in a neighborhood of the bifurcating equilibria. 2

C.2.#14. Study the equilibria of the Hindmarsh-Rose model of neuronal

activity [177]
ẋ = y − z − x3 + 3x2 + I ,

ẏ = −y − 2− 5x2 ,

ż = ε(2(x+ 1.6)− z) ,
(C.2.26)
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Fig. C.2.5. The (a, b)-bifurcation diagram in the Shimizu-Morioka system derived from a

linear stability analysis. AH labels the Andronov-Hopf bifurcation curve; σ = 0 corresponds

to zero saddle-value; HB − H8 corresponds to the change of the leading direction at the

origin.

Fig. C.2.6. The x-coordinate of the equilibrium state versus z in the fast planar system at

I = 5 and ε = 0. AH and SN denote, respectively, the Andronov-Hopf and the saddle-node
bifurcations of the equilibria.
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where I and ε are two control parameters. Start with the case ε = 0 (see

Fig. C.2.6).

C.2.#15. Perform the linear stability analysis of the following systems

describing bifurcations of an equilibrium state with three zero characteristic

exponents in the case where the Jacobian matrix has a complete Jordan block

[162, 163]:

ẋ = y ,

ẏ = z ,

ż = ax− x2 − by − z;

ẋ = y ,

ẏ = z ,

ż = ax− x3 − by − z .
(C.2.27)

How does the cubic term change the symmetry properties of the system? 2

C.2.#16. The following “dimensional” perturbations of the Lorenz equa-

tion and the Shimizu-Morioka model are given by the following augmented

systems

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ẇ = z ,

ż = −bw − az + xy ,

ẋ = y ,

ẏ = −ay + x− xz ,
ż = −bz + µw + x2 ,

ẇ = −bw − µz ,

ẋ = y ,

ẏ = −ay + x− xz ,
ż = w ,

ẇ = −bw − µz + x2 + cz2 .

Find equilibrium states of these system and determine their types. 2

C.2.#17. What are the minimum dimensions of W s and Wu of the

equilibrium state shown in Fig. C.2.7? 2

Fig. C.2.7. Trajectory homoclinic to a saddle-focus (2,2).
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C.3 Periodically forced systems

Consider an n-dimensional system

ẋ = Ax+ f(t) , (C.3.1)

where f(t) is a continuous periodic function of period 2π.

C.3.#18. Construct a Poincaré map of the plane (x, y, t = 0) onto the

plane (x, y, t = τ = 2π).

Solution. According to the Lagrange method of variations of parameters,

the solution of (C.3.1) is given by

x(t) = eAtx0 +

∫ t

0

eA(t−τ)f(τ)dτ .

Assuming t = 2π, we obtain the mapping

x1 = e2πAx0 +

∫ 2π

0

eA(2π−τ)f(τ)dτ . (C.3.2)

2

C.3.#19. Determine the condition under which the above map has: (1) a

unique fixed point and, (2) no fixed points.

Solution. The equation for the fixed points is given by

[I − e2πA]x = C ,

where C denotes the integral in (C.3.2). The two cases possible here are:

(1) det(I − e2πA) 6= 0. In this case there exists only one fixed point.

(2) det(I − e2πA) = 0. Then, it follows from the Kroneker-Capelli

(consistency) theorem that if the rank of (I − e2πA) is equal to that

of the augmented matrix (I − e2πA|C), then there are infinitely many

fixed points. Otherwise, there are no fixed points. 2

C.3.#20. Show that the roots z1, . . . , zn of the characteristic equation

det(zI − e2πA) = 0 are given by e2πλ1 , . . . , e2πλn , where λ1, . . . , λn are the

eigenvalues of the linear system

ẋ = Ax . (C.3.3)
2
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C.3.#21. Prove that if the origin is a structurally stable equilibrium

state of the system (C.3.3), then the corresponding fixed point of the map

(C.3.2) is structurally stable as well. Furthermore, show that the topological

types of the equilibrium state of (C.3.3) and the fixed point of (C.3.2) are the

same. 2

C.3.#22. Show that det(I − e2πA) = 0 if only one of the eigenvalues

λ1, . . . , λn is zero or is equal to iω with integer ω. 2

C.3.#23. Determine the condition under which the two-dimensional

system
ẋ = −ωy + f(t) ,

ẏ = ωx+ g(t) ,
(C.3.4)

where f and g are continuous functions of period 2π, has an infinite number

of periodic orbits of period 2πq, where q ≥ 1 is some integer.

Solution. The mapping T : t = 0→ t = 2π can be written in the form

x1 = x0 cos 2πω − y0 sin 2πω + C1 ,

y1 = x0 sin 2πω + y0 cos 2πω + C2 ,

where

C1 =

∫ 2π

0

(f(τ) cosω(2π − τ)− g(τ) sinω(2π − τ))dτ ,

C2 =

∫ 2π

0

(f(τ) sinω(2π − τ) + g(τ) cosω(2π − τ))dτ .

When

det

(
cos 2πω − 1 − sin(2πω)

sin(2πω) cos(2πω)− 1

)
= (cos 2πω − 1)2 + sin2 2πω 6= 0

this map has a unique fixed point. This condition is violated when ω is an

integer. In the latter case, the map is recast as

x1 = x0 + C1, y1 = y0 + C2 .

Therefore, if C2
1 + C2

2 6= 0, it is clear that the map can have neither fixed nor

periodic points; and if C1 = C2 = 0, all points are fixed ones.
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Consider now the case where ω is not an integer. Let (x∗, y∗) be the

coordinates of the fixed point. Applying the transformation x = x∗ + ξ and

y = y∗ + ν we translate the fixed point to the origin. Introducing polar

coordinates, the map T assumes the form

ρ1 = ρ0 ,

θ1 = θ0 + 2πω mod 2π .

One can see that every circle r = constant is invariant here and that the map

on every circle is the same:

θ1 = θ0 + 2πω mod 2π .

The last one has no periodic points when ω is irrational. When ω = p/q with

integer p and q, all the points are periodic with period q. 2

Let us consider next a quasi-linear system

ẋ = Ax+ µf(x, y) ,

ẏ = By + µg(x, y) ,
(C.3.5)

where x ∈ Rn and y ∈ Rm. The spectrum of A is supposed to lie on the

imaginary axis, that of B lies in the left half-plane, and f, g ∈ Ck.

C.3.#24. Prove the following theorem, which is analogous to the center

manifold theorem:

Theorem C.1. For any R > 0 there is a µ0, such that for |µ| < µ0 the

sphere ‖(x, y)‖ ≤ R contains an attracting invariant Ck-smooth manifold

y = µϕ(x, µ). 2

It follows from the above theorem that the study of (C.3.5) is reduced to the

study of the n-dimensional system

ẋ = Ax+ µf(x, µϕ(x, µ)) = Ax+ µf̃(x) + o(µ)

where f̃(x) = f(x, 0).

C.3.#25. Consider the analogous case of quasi-linear maps. 2

C.3.#26. Prove the analog of Theorem C.1 for the following (n + m)-

dimensional system
ẋ = Ax+ h1(t) + µf(x, y, t) ,

ẏ = By + h2(t) + µg(x, y, t) ,
(C.3.6)
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where all functions are smooth and 2π-periodic. The spectra of A and B are

supposed to lie on the imaginary axes and to the left of it, respectively.

Note that the truncated equation

ẏ = By + h2(t)

has a unique 2π-periodic solution y = α(t). Thus, we can always make h2(t) ≡
0 (using the change ỹ → y + α(t)). 2

Let us consider the system

ẋ = µf(x, t) , (C.3.7)

where f(x, t) = f(x, t + 2π) is a continuous function with respect to t and

smooth with respect to x, x ∈ Rn.

C.3.#27. Find the Poincaré map up to the terms of order µ2.

Hint: the solution is found from the integral equation

x(t) = x0 + µ

∫ t

0

f(x(τ), τ)dτ

using the method of successive approximations:

1st approximation is given by x(t) = x0 ,

2nd approximation is given by x(t) = x0 + µ

∫ t

0

f(x0, τ)dτ ,

n-th approximation has the form xn+1(t) = x0 + µ

∫ t

0

f(x0, τ)dτ +O(µ2) .

Solution:

x1 = x0 + µ

∫ 2π

0

f(x0, τ)dτ +O(µ2) . (C.3.8)
2

Denote f0(x) =
∫ 2π

0
f(x0, τ)dτ .

C.3.#28. Show that the time 2π shift along the trajectories of the system

ẋ =
µ

2π
f0(x) (C.3.9)

coincides with (C.3.8) up to the terms of order µ2. The system (C.3.9) is called

an averaged system. 2
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C.3.#29. Prove the following theorem

Theorem C.2. Structurally stable equilibrium states of the averaged system

correspond to structurally stable periodic orbits of the original system: if x∗ is a

structurally stable equilibrium state in (C.3.9), then the Poincaré map (C.3.8)

for the system (C.3.7) has a structurally stable fixed point close to x∗ for all

sufficiently small µ. 2

Proof. Let x∗ be a structurally stable equilibrium state of the system (C.3.9);

i.e.

f0(x
∗) = 0

and the roots λ1, . . . , λn of the characteristic equation do not lie on the imag-

inary axis. Hence, we can seek them as λ = µ
2πσ:

det

(
∂f0
∂x

(x∗)− σI
)

= 0 . (C.3.10)

The fixed points of (C.3.8) can be found from the equation

f0(x) +O(µ) = 0 .

Since f0(x
∗) = 0 and |∂f0∂x (x∗)| 6= 0 because (C.3.10) has no zero roots, it

follows that there exists a fixed point x = x∗ + O(µ). The corresponding

characteristic equation at this point is written in the form:

det

(
I + µ

∂f0
∂x

(x∗) +O(µ2)− zI
)

= 0 .

We seek the roots of this equation in the form z = 1 + µσ. Then we find that

it recasts as

det

(
∂f0
∂x

(x∗) +O(µ)− σI
)

= 0 .

Therefore, for all small µ the roots σ will be close to those of (C.3.10). Thus,

the fixed point will be structurally stable. Moreover, it has the same topological

type as the equilibrium state of the averaged system. 2

C.3.#30. Prove that in the general case

ẋ = Ax+ µf(x, t) ,
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where f(x, t) is a continuous function of time, smooth with respect to x, the

associated Poincaré map is given by

x1 = e2πAx0 + µ

∫ 2π

0

eA(2π−τ)f(eAτx0, τ)dτ +O(µ2) . 2

C.3.#31. Verify that if det(e2πA − I) 6= 0, it follows that for any given

R, if µ is small enough, in the sphere of radius R there is a single fixed point

x∗(µ) such that x∗(µ)→ 0 as µ→ 0. 2

Let us examine the system of two equations

ẋ = −ωy + µf(x, y, t),

ẏ = ωx+ µg(x, y, t) .
(C.3.11)

C.3.#32. Compute the map up to the terms of order µ2.

Solution:

x1 = x0 cos 2πω − y0 sin 2πω + µΦ1(x0, y0) + µ2(· · · ) ,

y1 = x0 sin 2πω + y0 cos 2πω + µΦ2(x0, y0) + µ2(· · · ) ,
(C.3.12)

where

Φ1 =

∫ 2π

0

[f(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) cosωτ

+ g(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) sinωτ ]dτ

Φ2 =

∫ 2π

0

[−f(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) sinωτ

+ g(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) cosωτ ]dτ . 2

C.3.#33. Write the system (C.3.11) in polar coordinates x = r cos θ,

y = r sin θ.

Solution:
ṙ = µR(r, θ, t),

θ̇ = ω + µΨ(r, θ, t) ,
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where

R = f(r cos θ, r sin θ, t) cos θ + g(r cos θ, r sin θ, t) sin θ

Ψ =
1

r
[−f(r cos θ, r sin θ, t) sin θ + g(r cos θ, r sin θ, t) cos θ] . 2

C.3.#34. Let

R(r, θ, t) =

∞∑

n=0

∞∑

m=0

anm(r)ei(mθ+nt)

Ψ(r, θ, t) =
∞∑

n=0

∞∑

m=0

bnm(r)ei(mθ+nt) .

Construct the Poincaré map up to O(µ2) for the case where ω is an integer.

Solution:

r1 = r0 + 2πµ
∑

mω+n=0

anm(r0)e
imθ0 + µ2(· · · )

θ1 = θ0 + 2πµ
∑

mω+n=0

bnm(r0)e
imθ0 + µ2(· · · ) . 2

If ω is an integer, the map (C.3.12) can be represented as follows

x1 = x0 + µΦ1(x0, y0) + µ2(· · · ) ,

y1 = y0 + µΦ2(x0, y0) + µ2(· · · ) ,

C.3.#35. Prove the following theorem:

Theorem C.3. (Averaging Theorem) If ω is an integer, then for suffi-

ciently small µ > 0 structurally stable equilibrium states of the system

ẋ =
µ

2π
Φ1(x, y) ,

ẏ =
µ

2π
Φ2(x, y)

will correspond to structurally stable fixed points of the Poincaré map.

Moreover, stable equilibria correspond to stable fixed points. 2
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In polar coordinates the averaged system is given by

ṙ = µ
∑

mw+n=0

anm(r)eimθ = µR0(r, θ),

θ̇ = µ
∑

mw+n=0

bnm(r)eimθ = µΨ0(r, θ) .

One should take into account that r = 0 is a singularity here.

C.3.#36. Find the associated averaged system for the van der Pol

equation

ẍ+ µ(1− x2)ẋ+ ω2x = µA sin t

provided that ω2 = 1+µ∆ (where ∆ is called a detuning). Examine the types

of equilibrium states as A and ∆ vary. 2

Consider now the case where ω is not an integer. According to C.3.#31,

the map (C.3.12) has a unique fixed point close to zero in this case.

C.3.#37. Find the periodic motion (x∗(t), y∗(t)) corresponding to this

fixed point and find the equations of the system after straightening this periodic

solution (translate the origin into (x∗(t), y∗(t))).

Solution:

ẋ = −ωy + µF (x, y, t) + µ2(· · · ) ,

ẏ = ωx+ µG(x, y, t) + µ2(· · · ) ,

where

F (x, y, t) = f(x, y, t)− f(0, 0, t) ,

G(x, y, t) = g(x, y, t)− g(0, 0, t) . 2

Assume now ω = p/q where p and q are integers, q > 1. In this case, one is to

find periodic motions of period 2πq that correspond to the fixed points of the

map T q. This map is written in the form

xq = x0 + µΦ1(x0, y0) + µ2(· · · ) ,

yq = y0 + µΦ2(x0, y0) + µ2(· · · ) ,
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where

Φ1 =

∫ 2πq

0

[f(·) cosωτ + g(·) sinωτ ]dτ ,

Φ2 =

∫ 2πq

0

[−f(·) sinωτ + g(·) cosωτ ]dτ ,

where (·) stands for (x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ) as above in

(C.3.12), and ω = p
q .

In the same manner as in the previous case, we can treat the averaged

system

ẋ =
µ

2πq
Φ1(x, y) ,

ẏ =
µ

2πq
Φ2(x, y) .

In polar coordinates, the map T q can be recast as

rq = r0 + 2πqµ
∑

mp+nq=0

anm(r0)e
imθ0 + µ2(· · · ) ,

θq = θ0 + 2πqµ
∑

mp+nq=0

bnm(r0)e
imθ0 + µ2(· · · ) .

Here, the averaged system is given by

ṙ = µR0(r, θ) ,

θ̇ = µΨ0(r, θ) ,

where R0 =
∑
mp+nq=0 anm(r)eimθ and Ψ0 =

∑
mp+nq=0 bnm(r)eimθ. It

should be noted that f(0, 0, t) ≡ 0 and g(0, 0, t) ≡ 0 in this case, i.e. the

averaged system in polar coordinates no longer has a singularity at r = 0. 2

C.3.#38. Consider the case of irrational ω. As above, one may assume

f(0, 0, t) ≡ 0, g(0, 0, t) ≡ 0 in (C.3.11). The system in polar coordinates takes

the form

ṙ = µ

∞∑

n=0

∞∑

m=0

anm(r)ei(mθ+nt), θ̇ = ω + µ

∞∑

n=0

∞∑

m=0

bnm(r)ei(mθ+nt)
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with non-singular (smooth) coefficients anm, bnm. Prove that for any given

N,M there exists a smooth coordinate transformation which brings the system

to the form

ṙ = µa00(r) +O(µ2) + µ

∞∑

n=N

∞∑

m=M

anm(r)ei(mθ+nt),

θ̇ = ω + µb00(r) +O(µ2) + µ
∞∑

n=N

∞∑

m=M

bnm(r)ei(mθ+nt) .

Note that since the series here tend to zero as N,M → +∞, it follows that for

an arbitrarily small δ the map T in appropriate coordinates can be written as

follows

r1 = r0 + 2πµa00(r0) + δO(µ) ,

θ1 = θ0 + 2πω + 2πµb00(r0) + δO(µ) . 2

C.3.#39. Examine the shortened map

r1 = r0 + 2πµa00(r0) ,

θ1 = θ0 + 2πω + 2πµb00(r0) .

Show that in addition to the trivial fixed point (0, 0), the above map may have

invariant closed curves determined by the zeros of the equation

a00(r0) = 0 . 2

C.3.#40. Prove that for small µ > 0, each root r∗ of the equation

a00(r0) = 0 ,

for which

a′00(r
∗) < 0

corresponds to the stable invariant closed curve r = r∗(µ) = r∗ +O(µ).

Direction: take δ sufficiently small and apply the annulus principle. 2

In the case of irrational ω, the averaged system is given by

ṙ = µa00(r) ,

θ̇ = ω + µb00(r) .
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Here r = 0 is an equilibrium state, while the non-zero roots of a00(r) = 0

correspond to the limit cycles.

C.3.#41. The next problem is almost equivalent to the previous one:

show that for small µ > 0 stable (unstable) limit cycles of the averaged system

correspond to stable (unstable) invariant tori of the original system. 2

Let us return to the resonant case (ω = p/q, q ≥ 1). The corresponding

averaged system can then be recast as

ṙ = µR0(r, θ) ,

θ̇ = µΨ0(r, θ) .

Assume that the system
ṙ = R0(r, θ) ,

θ̇ = Ψ0(r, θ)
(C.3.13)

has a structurally stable periodic orbit L : {r = α(t), θ = β(t)} of period τ ,

and let

λ =

∫ τ

0

[
∂R0

∂τ
(α(t), β(t)) +

∂Ψ0

∂τ
(α(t), β(t))

]
dτ < 0.

This implies that the averaged system has a periodic solution {r = α(µt), θ =

β(µt)} of period τ/µ.

C.3.#42. Prove that the original system has a stable invariant torus for

small µ > 0.

Hint: modify (C.3.13) first. Introduce the normal coordinates (u, ϕ) near

L (see Sec. 3.10). Then the system is written in the form

u̇ = A(ϕ)u+O(u2) ,

ϕ̇ = 1 +O(u) ,

where the right-hand side is a periodic function of period τ0. Note that

λ =

∫ τ

0

A(ϕ)dϕ ,

and therefore

A(ϕ) = λ+A0(ϕ) ,
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where
∫ τ
0
A0(ϕ)dϕ = 0. Having introduced v = ue−

∫
A0(ϕ)dϕ, the system as-

sumes the form

v̇ = λv +O(v2) ,

ϕ̇ = 1 +O(v) .

It follows from here that the averaged system in the new coordinates (v, ϕ) can

be recast as

v̇ = µ[λv +O(v2)] ,

ϕ̇ = µ[1 +O(v)] .

The corresponding shift map over 2πq is given by

v1 = v0 + µ[2πqλv0 +O(v2
0)] +O(µ2) ,

ϕ1 = ϕ0 + 2πqµ+O(µv0) +O(µ2) .

The same form has the 2πq-shift map of the original system (C.3.11). Introduce

v = µw, after which the Poincaré map becomes

w1 = w0 + 2πqµλw0 +O(µ2) ,

ϕ1 = ϕ0 + 2πqµ+O(µ2) .

To complete the solution, apply the annulus principle. 2

C.3.#43. Examine the Mathieu equation written in the following form

ẋ = y, ẏ = −ω2(1 + ε cosω0t)x . (C.3.14)

Show that the instability zones, which correspond to the parametric oscil-

lations, are adjoined to the points ω/ω0 = k/2 (k = 1, 2, . . .) in the plane

(ω/ω0, ε) on the surface ε = 0 [20].

The solution of (C.3.14) starting from an initial point (x0, y0) has the fol-

lowing form at ε = 0:

x(t) =
y0
ω0

sinωt+ x0 cosωt ,

y(t) = y0 cosωt− ωx0 sinωt .
(C.3.15)
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Next we construct the map of the plane (x, y, t = 0) onto the plane (x, y, t =

τ = 2π/ω0). To do this, we substitute t = 2π/ω0 into (C.3.15) and replace

(x(t), y(t)) by (x̄, ȳ), and (x0, y0) by (x, y). The resulting operator (x, y) 7→
(x̄, ȳ) is given by

(
x̄

ȳ

)
=




cos 2π
ω

ω0

1

ω
sin 2π

ω

ω0

−ω sin 2π
ω

ω0
cos 2π

ω

ω0



(
x

y

)
. (C.3.16)

The characteristic equation of (C.3.16) is

ρ2 + p ρ+ q = 0 ,

where

p ≡ tr T = −2 cos 2π ω
ω0

and q ≡ detT = 1 .

This is an area-preserving map. The multipliers of the fixed point O(x = y = 0)

satisfy the relations

ρ1 + ρ2 = −p and ρ1ρ2 = q = 1 .

Therefore, when |p| < 2, the above map is a rotation through the angle 2πω/ω0

such that all of its trajectories are stable.

Find a correction of the first order in ε to formula (C.3.15) (use C.3.#30).

Note that the origin of the perturbed map becomes a saddle when |p| > 2.

Furthermore, it is a saddle (+,+) or a saddle (−,−) if p > 2 and p < −2,
respectively. 2

C.3.#44. [166] Consider the system

ψ̇1 = ω1 ,

ψ̇2 = ω2 ,

where ω1,2 > 0, which can be interpreted as a pair of two non-interacting

harmonic oscillators.

The above system can be reduced to one equation

dψ1

dψ2
=
ω1

ω2
, r .
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We can always assume r < 1. The above system has the solution ψ1 = rψ2+ψ
0
2 .

Introducing the normalized coordinates θ = ψ0
2/2π and θ̄ = (r2π + ψ0

2)/2π,

one obtains the circle map

θ̄ = θ + r, mod 1 , (C.3.17)

which can also be represented by the following map on the interval [0, 1]:

θ̄ =

{
θ + r for 0 ≤ θ ≤ 1− r ,
θ − (1− r) for 1− r ≤ θ ≤ 1 ,

(C.3.18)

where the end points θ = 0 and θ = 1 are identified.

Let r be a rational number, i.e. r = p/q where p and q are some mutually

prime integers. Let us partition the segment [0, 1] into p intervals of length

1/p: [0, 1/p], [1/p, 2/p], . . . , [(p− 1)/p, 1]. Choose an initial point θ0 ∈ [0, 1/p].

The positive semi-trajectory of (C.3.17) starting from θ0 is the sequence of

iterates
(
θ0, θ1 = θ0 +

p

q
(mod 1), θ2 = θ0 +

2p

q
(mod 1), . . . , θi = θ0 +

ip

q
(mod 1), . . .

)
.

The cycle of period n is given by
{
θ0 = θ0 +

np

q
mod 1, θi 6= θ0, i = 1, 2, . . . , n− 1

}
.

Under the above condition imposed on p and q it follows that the minimal

period n = p. Therefore, there is only one point on the cycle on each interval

[(k − 1)/p, k/p], k = 1, . . . , p because the number of points on the cycle and

that of the intervals both equal p. Otherwise n < p, but this is impossible

because two iterates of the cycle cannot belong to the same interval. Since θ0

is an arbitrary point of [0, 1/p], it follows that the segment [0, 1] is filled in by

p-period cycles entirely. Thus, when the rotation number is rational there is a

continuum of coexisting cycles of period p in the system under consideration.

If the number r is irrational, it can be represented as

r = lim
l→∞

ql
pl

such that pl → ∞ as l → ∞. In addition, the number of intervals

[(k − 1)/pl, k/pl] on [0, 1] also increases without bound. Therefore, the length

of each interval decreases, and as l →∞ the whole segment [0, 1] is filled out

by a quasi-periodic covering. 2
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C.3.#45. Examine the circle map:

θ̄ = θ + ω + k sin θ mod (2π) , (C.3.19)

where ω is a frequency and k is some parameter.

Compute numerically the rotation number R(ω):

R =
1

2π
lim

N→+∞

1

N

N−1∑

n=0

(θn+1 − θn)

for ω ∈ [0, 2π].

Hint: compute the iterates of the following two-dimensional mapping

θn+1 = (θn + ω + k sinxn) mod 2π ,

Rn+1 =
1

n+ 1

(
nRn + ω +

θn+1 − θn
2π

)
,

(C.3.20)

as ω varies from 0 to 2π.

As n→ +∞, the iterates of Rn converge to the rotation number R at the

given ω. Next plot the bifurcation diagram of R versus ω as in Fig. C.3.1. 2

Fig. C.3.1. “Devil staircase” in (C.3.20).
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C.4 Derivation of normal forms

In this section, we will discuss some algorithms for constructing normal forms.

Due to the reduction principle, it is sufficient to construct the normal forms

for the system on the center manifold only. Therefore, in order to consider

bifurcations of an equilibrium state with a single zero characteristic root, we

need a one-dimensional normal form. If it has a pair of zero characteristic

exponents, one should examine the corresponding family of two-dimensional

normal forms, and so on.

In certain situations the global properties of the original system must be

taken into account. So, for instance, if the original system restricted to the cen-

ter manifold is symmetric, the associated normal form will inherit this property

as well. In essence, a normal form for a given bifurcation is a parameterized

system of differential or difference equations, depending on what the problem

under consideration is, whose right-hand sides are in the simplest form but

sufficient to describe the main bifurcations in the given family.

In order to study bifurcations near a stability boundary one must introduce

small governing parameters the number of which is at least equal to the order

of degeneracy of the linear problem, or this number may even be greater pro-

vided that there are extra degeneracies due to the nonlinear terms. Since the

unfolding parameters are small, the orbits on the center manifold may stay in a

small neighborhood of the equilibrium state for a rather long time (there is no

fast instability in the center manifold because all characteristic exponents of

the reduced linearized system are nearly zero). Thus, it is reasonable to rescale

the parameters and phase variables so that they assume finite values instead

of asymptotically vanishing ones; the time variable must then be rescaled too.

This approach is a rather general one. Its advantage is that when the rescal-

ing procedure has been carried out, many resonant monomials disappear. The

most trivial example is a saddle-node bifurcation with a single zero eigenvalue.

In this case the center manifold is one-dimensional. The Taylor expansion of

the system near the equilibrium state may be written in the following form

ẋ = µ+ x2 + l3x
3 + · · · ,

where µ is a small governing parameter. The rescaling x→
√
|µ|x, t→ t/

√
|µ|

brings the system to the form

ẋ = ±1 + x2 +O(
√
|µ|) ,

so that the second degree monomial only survives in the limit µ→ 0.
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An analogous algorithm can be applied to the multi-dimensional case. The

limit of the rescaled system as governing parameters tend to zero gives a de-

scription “in the main order” of the behavior of the system near a bifurcation

point. Such a limit system is called an asymptotic normal form.

The asymptotic normal forms that arise in the study of equilibria with

single or double zero eigenvalues are one- or two-dimensional, respectively.

The analysis of such forms is often very comprehensive so most effort is ap-

plied to establishing the rigorous correspondence between the dynamics in the

asymptotic normal form and that in the original system [20, 64]. However, the

analysis of bifurcations in two-dimensional normal forms may already require

consideration of some other global bifurcations, sometimes of codimension two.

Moreover, accounting for the dropped terms of higher order may also destroy

the idealized picture occurring in truncated normal forms. The most vivid

example is the bifurcations of an equilibrium state with exponents (0,±iω)
where the normal form possesses a rotational symmetry. If the original system

does not support this symmetry, the simple dynamics in the shortened normal

form may transform into chaos in the enlarged system.

The situation becomes different when one considers normal forms of higher

dimensions. Three- (and higher) dimensional asymptotic normal forms may

exhibit non-trivial dynamics by themselves. For example, a homoclinic loop

to the saddle-focus was found in the asymptotic normal form

ẋ = y ,

ẏ = z ,

ż = −z − by + ax− x2 ,

corresponding to the bifurcation of triple zero eigenvalues with a complete

Jordan box [163]. Notably, the equations in some asymptotic normal forms

coincide with some well-known models coming from different applications: the

third-order Duffing equation, the Chua’s circuit, the Shimizu-Morioka system

and the Lorenz equation.

C.4.#46. Derive the normal form for the Shimizu-Morioka equation in

the form [187]
ẋ = y ,
ẏ = ax− ky − xz ,
ż = −z + x2 ,

(C.4.1)

near the codimension-two point (k = a = 0).
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First we should determine the characteristic exponents at the origin. It is

easy to see that there is a pair of zero exponents and one equal to −1. The

eigenspace corresponding to the zero pair is given by {z = 0}. The center

invariant manifold, tangent to this plane at the origin, is written as

z = x2 − 2xy + 2y2 + · · ·

where the dots stand for the cubic and higher order terms in (x, y, z, a, k). The

system on the center manifold thus takes the form

ẋ = y ,

ẏ = ax− ky − x3 + 2x2y − 2xy2 + · · · ,
(C.4.2)

where the dots stand for the terms of the fourth order, at least.

Let us next rescale

(x, y, t, k, a)→ (εxnew, ε
2ynew, tnew/ε, εknew, ε

2anew) .

The system recasts as

ẋ = y ,

ẏ = ax+ ky − x3 + 2εx2y +O(ε2) ,
(C.4.3)

where the new parameters knew and anew can now be arbitrary. Observe that

the reflection symmetry (x, y) → (−x,−y) in (C.4.3) is inherited from the

original system (C.4.1). Due to this fact the Taylor expansion of the functions

in the right-hand side does not contain quadratic terms (and other terms of

even order) in (x, y). In contrast to the generic Bogdanov-Takens bifurcation,

which we analyze in Sec. 13.2, the bifurcations in the symmetric system are

somewhat different: the equilibrium state at the origin always exists, and it

undergoes a pitch-fork bifurcation instead of a saddle-node one. The bifurca-

tion unfolding of the symmetric system also contains an additional curve which

corresponds to the double semi-stable periodic orbit with multiplier equal to

+1. The signs of the Lyapunov values on the Andronov-Hopf stability bound-

ary for the origin and for the non-trivial equilibria are determined by the sign

of ε. Note that when ε = 0 and k = 0, the system (C.4.3) becomes integrable

with Hamiltonian

H(x, y) =
y2

2
− x2

2
+
x4

4
. 2
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C.4.#47. Let us consider next the following version of Chua’s circuit

[168]

ẋ = β(g(y − x)− f(x)) ,

ẏ = g(x− y) + z ,

ż = −y ,

where α, β and g are some positive parameters. Here f(x) = αx(x2 − 1) is

the cubic approximation for the nonlinear element, and therefore this system

possesses odd symmetry (x, y, z) → (−x,−y,−z). When g > α, there is a

single equilibrium state O at the origin. When g < α, there also exists a pair

of symmetric equilibrium states O1,2(±
√

1− g/a, 0,∓g
√

1− g/a). On the line

g = α, the characteristic equation at O has a single zero root when β 6= 1/g2,

and two zero roots at β = 1/g2 (the third root is equal to −g in this case).

Like the case of the Shimizu-Morioka system, the structure of the bifurcation

set in a plane transverse to this curve in the parameter space is determined

by the Khorozov-Takens normal form with reflection symmetry. The outline

of the reduction to this normal form on a two-dimensional center manifold is

discussed below.

The Jacobian matrix corresponding to two null roots is given by

D =




0 1 0

0 0 0

0 0 −α


 .

The linear part of the system reduces to the form


ξ̇

η̇

ζ̇


 = D



ξ

η

ζ




at α = g = 1/
√
β by means of the transformation


x

y

z


 = ξ




1

0

−g


+ η




0

g

g2


+ ζ




1

−g2

−g


 .
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It is easy to compute and verify that in these coordinates the system assumes

the form

ξ̇ = η +

(
1− 1

g2

)
F ,

η̇ =
1

g
F ,

ζ̇ =
1

g2
F ,

where

F = γ1ξ + γ2η + (γ1 − gγ2)ζ − βα(ξ + ζ)3 ,

and γ1,2 are small parameters:

γ1 = β(α− g), γ2 = βg2 − 1 .

The center manifold has the form

ζ =
γ1

g3
ξ +

(
γ2

g3
− γ1

g4

)
η + · · · ,

where the dots stand for the cubic and higher order terms with respect to

(ξ, η, γ1, γ2). The system on the center manifold is written as

ξ̇ = η

(
1 +

(
1− 1

g2

)(
γ2 + (γ1 − gγ2)

(
γ2

g3
− γ1

g4

)))

+ ξ

(
1− 1

g2

)(
γ1 + (γ1 − gγ2)

γ1

g3

)
− 1

g

(
1− 1

g2

)
ξ3 + · · · ,

η̇ = η
1

g

(
γ2 + (γ1 − gγ2)

(
γ2

g3
− γ1

g4

))
+ ξ

1

g

(
γ1 + (γ1 − gγ2)

γ1

g3

)

− 1

g2
ξ3 + · · · ,

where the dots denote terms of order higher than three with respect to

(ξ, η, γ1, γ2). Now the last step is to change the variable η so that the first

equation would become ξ̇ = η. The final form of the system is given by

ξ̇ = η ,

η̇ = ε1ξ + ε2η −
1

g2
ξ3 + 3

1− g2

g3
ξ2η + · · · ,
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where

ε1 =
γ1

g

(
1 + γ1

1

g3
+ γ2

(
1− 2

g2

))

and

ε2 = γ1 − (γ1 − gγ2)
g3 + 1

g5
− (γ1 − gγ2)

2 1

g5
. 2

C.4.#48. The equation of Chua’s circuit can be re-parametrized in a way

so that the system is written as

ẋ = a(y + c0x− c1x3) ,

ẏ = x− y + z ,

ż = −by .
(C.4.4)

Then, y becomes a fast variable in the limit (a, b)→ 0, and all the dynamics of

the original system (C.4.4) concentrates on the slow manifold y = x+ z. The

corresponding slow system is given by the following set of equations

ẋ = γ(x+ z + c0x− c1x3) ,

ż = −x− z ,
(C.4.5)

where γ = a/b is a parameter. Let us solve the first equation for z:

z = ẋ/γ − x− c0x+ c1x
3 ,

and substitute this expression into the second equation in (C.4.5)

ż = −ẋ/γ + c0x− c1x3 .

Since

ż = ẍ/γ − (1 + c0 − 3c1x
2))ẋ ,

we obtain

ẍ− (γ(1 + c0 − 3c1x
2)− 1)ẋ+ γ(c0x− c1x3) = 0 .

Letting ẋ = u, we can rewrite this equation in the form

ẋ = u ,

u̇ = c0x+ (γ − 1 + γc0)y − 3γc1x
2y − γc1x3 ,

which can be identified as the Khorozov-Takens normal form. 2
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C.4.#49. Derivation of the normal form for an equilibrium state with

three zero characteristic exponents in the model of a laser with saturable

absorber [191]:

Ė = −E + P1 + P2 ,

Ṗ1 = −δ1P1 − E(m1 +M1) ,

Ṗ2 = −δ2P2 − E(m2 +M2) ,

Ṁ1 = −ρ1M1 + EP1 ,

Ṁ2 = −ρ2M2 + βEP2 .

(C.4.6)

Here E, P1, and P2 are the slow envelopes of electric field and atomic polar-

izations in the active and passive media. M1 and M2 are the deviations of

the population differences in the active and passive medium from their values

m1 < 0 and m2 > 0 in the absence of a laser field. δ1 and δ2 (ρ1 and ρ2) are

transverse (longitudinal) relaxation rates in the active and passive media nor-

malized by the cavity relaxation rate, β is the ratio of the saturation intensities

of the intracavity media.

Linear stability of the trivial steady state

E = P1 = P2 =M1 =M2 = 0

is determined by the eigenvalues of the Jacobian matrix

J =




−1 1 1 0 0

−m1 −δ1 0 0 0

−m2 0 −δ2 0 0

0 0 0 −ρ1 0

0 0 0 0 −ρ2



,

which are the roots of the characteristic equation

(λ3 + a2λ
2 + a1λ+ a0)(λ+ ρ1)(λ+ ρ2) ,

where

a2 = 1 + δ1 + δ2 ,

a1 = m1 +m2 + δ1 + δ2 + δ1 δ2 ,

a0 = m2δ1 +m1δ2 + δ1δ2 .
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Let δ1 − δ2 > 0, then at the codimension-three point given by

m1 = m01 = −δ
2
1(1 + δ2)

δ1 − δ2
< 0 ,

m2 = m02 =
δ22(1 + δ1)

δ1 − δ2
> 0, ρ1 = 0 ,

(C.4.7)

the Jacobian matrix J has a triply degenerate zero eigenvalue with geometric

multiplicity two:

λ1,2,3 = 0, λ4 = ρ2, λ5 = −Λ = −(1 + δ1 + δ2) .

By introducing the linear transformation of the coordinates




x1

x2

x3

x4

x5




= U




E

P1

P2

M1

M2



,

where

U =




1 + δ2
δ1(1 + δ2)− δ2

δ21
1 0 0

δ2
δ2
δ1

1 0 0

0 0 0 1 0

−(1 + δ1)
1 + δ1
1 + δ2

1 0 0

0 0 0 0 1




is such that

UJU−1 =




0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −Λ 0

0 0 0 0 −ρ2



,
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the system (C.4.6) assumes the form

ẋ1 = x2 −
1

Λ2

[
δ1 − δ2(1− δ1)

δ1
2 (x3 + ξ1) + (x5 + ξ2)

]
S(x1, x2, x4) ,

ẋ2 = − 1

Λ2

(
δ2
δ1

(x3 + ξ1) + (x5 + ξ2)

)
S(x1, x2, x4) ,

ẋ3 = −ρ1x3 −
m01

Λ4
[Λx1 − (1 + Λ)x2 + x4]S(x1, x2, x4) ,

ẋ4 = −Λx4 −
1

Λ2

(
1 + δ1
1 + δ2

(x3 + ξ1) + (x5 + ξ2)

)
S(x1, x2, x4) ,

ẋ5 = −ρ2x5 −
β

Λ4

[
m02

δ22
(Λδ1δ2x1 − (Λδ1 − δ2)(1 + δ2)x2)−

δ22m01

δ21
x4

]

× S(x1, x2, x4) .

Here m01 and m02 are defined in (C.4.7), ξ1 = m1 −m01, ξ2 = m2 −m20 and

ρ1 are small parameters, and

S(x1, x2, x4) = δ1Λ(x1 − x2) + (1 + δ2)(x2 − x4) .

After reduction to center manifold (we simply substitute x4 = x5 = 0 into the

first three equations) we obtain (the dots stand for the terms of order 3 and

higher):

ẋ1 = x2 + ax1(x3 + ξ1) + bx2(x3 + ξ1) + ξ2s(x1, x2) + · · · ,

ẋ2 = −cx1(x3 + ξ1) + dx2(x3 + ξ1) + ξ2s(x1, x2) + · · · ,

ẋ3 = −ρ1x3 + ex2
1 + fx1x2 + gx2

2 + · · · ,

where

s(x1, x2) = −
δ1
Λ
x1 −

1 + δ2 − δ1Λ
Λ2

x2, a = −δ1 − (1− δ1)δ2
Λδ1

,

b =
(δ1 − (1− δ1)δ2)(Λδ1 − (1 + δ2))

Λ2δ21
, c =

δ2
Λ
,

d =
δ2(Λδ1 − 1− δ2)

Λ2δ1
, e = −δ1m01

Λ2
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and

f =
m01(δ1(1 + 2Λ)− 1− δ2)

Λ3
, g = −m01(1 + Λ)(Λδ1 − 1− δ2)

Λ4
.

Finally, applying the coordinate transformation

x1 = z1 ,

x2 = z2 − az1(z3 + ξ1)− bz2(z3 + ξ1)− ξ2s(z1, z2) ,

x3 = z3 +
f

2
z2
1 + gz2z1 ,

we obtain
ż1 = z2 + · · · ,
ż2 = ε1z1 + ε2z2 − cz1z3 + d′z2z3 + · · · ,
ż3 = −ρ1z3 + ez2

1 + · · · ,
(C.4.8)

where

c =
δ2
Λ
, e = −δ1m01

Λ2
, d′ = −1 + δ1

Λ2
,

and the small parameters ε1,2 are given by

ε1 = −ξ1δ2 + δ1ξ2
Λ

, ε2 = − (1 + δ1)ξ1 + (1 + δ2)ξ2
Λ2

.

We can rescale the small parameters as follows:

ε1 = ε2 ε2 = µε, ρ1 = ρε .

By neglecting the third order terms and rescaling the variables z1 = xε3/2/
√
ce,

z2 = yε5/2/
√
ce, z3 = zε2/c, we arrive at the following asymptotic normal form

dx

dτ
= y,

dy

dτ
= x+ µy − xz, dz

dτ
= −ρz + x2 (C.4.9)

which coincides with the Shimizu-Morioka model. 2

C.4.#50. Let a Jacobian of the system linearized at the equilibrium state

have three zero eigenvalues. In addition, let the system on the center manifold
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possess the symmetry (x, y, z) → (−x,−y, z), where y, z are the coordinate

projections on the eigenvectors and x is the projection onto the adjoined vector.

Then, generically, the system may be reduced to the following form

ẋ = y ,

ẏ = x[µ̄− az(1 + g(x, y, z))− a1(x
2 + y2)(1 + · · · )]

− y[ᾱ+ a2z(1 + · · · ) + a3(x
2 + y2)(1 + · · · )] ,

ż = −β̄ + z2(1 + · · · ) + b(x2 + y2)(a+ · · · ) ,

(C.4.10)

where ai 6= 0, i = 1, 2, 3 and b 6= 0. Here, µ̄, ᾱ and β̄ are small parameters, and

g and the dots denote the terms which vanish at the origin. Suppose ab > 0.

Let τ2 = µ+ a
√
β̄(1 + g(0, 0,−

√
β)) > 0, β̄ > 0. By scaling the time t→ s/τ ,

changing the variables

x→ x

√
τ3

ab
, y → τy

√
τ3

ab
, z → −

√
β̄ +

τ2

a
z

and defining the new parameters as ᾱ = ατ and β̄ = (βτ/2)2, we obtain the

following system

ẋ = y

ẏ = x(1− z)− αy +O(τ) ,

ż = −βz + x2 +O(τ) ,

(C.4.11)

where α and β are parameters which are no longer small. Dropping the terms

of order τ , we obtain the Shimizu-Morioka model. 2

C.4.#51. In addition to the conditions of the above case, let the sys-

tem be invariant with respect to the involution (x, y, z) → (x, y,−z), i.e. it

possesses two symmetries. The normalized system can then be recast as

ẋ = y ,

ẏ = x[µ̄− az2(1 + g(x, y, z2))− b(x2 + y2)(1 + · · · )]

− y[ᾱ+ a1z
2(1 + · · · ) + b1(x

2 + y2)(1 + · · · )] ,

ż = z(β̄ − cz2(1 + · · · ) + d(x2 + y2)(a+ · · · ) .

(C.4.12)
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Suppose c > 0 and ad > 0. In the parameter region τ 2 = µ̄ − aβ̄c(1 +

g(0, 0, β̄/c)) > 0 and β > 0, let us introduce the renormalization:

t→ s/τ, x→ xτ

√
c

ad
, y → τ2y

√
c

ad
, z →

√
β̄

c
+
τ2

a
z

and ᾱ = τα, β̄ = τβ/2. Denoting B = bc
ad and omitting the terms of order τ

we arrive at the following system

ẋ = y ,

ẏ = x(1− z)− αy +Bx3 ,

ż = −β(z − x2) .

(C.4.13)

The above system is remarkable because the Lorenz equation can be reduced

to it when r > 1. The relations between the parameters of two systems are

given by

β =
b

σ(r − 1)
, α =

1 + σ

σ(r − 1)
, B =

b

2σ − b .

It follows from the above relations that the region of the positive parameters

(r, b, σ) in the Lorenz equation is bounded by the plane β = 0 and the surface
α
β = 1

2 (
1
B + 1), which tends to β = 0 as B → 0.

We should also note that the Shimizu-Morioka system is a particular case

(i.e. B = 0) of the Lorenz system in the form (C.4.13). 2

C.4.#52. The bifurcation of a periodic orbit with three multipliers +1.

On the center manifold we introduce the coordinates (x, y, z, ψ), where ψ is

the angular coordinate and (x, y, z) are the normal coordinates (see Sec. 3.10).

Assuming that the system is invariant under the transformation (x, y) →
(−x,−y), the normal form truncated up to second order terms is given by

ẋ = y ,

ẏ = x(µ̄− az)− y(ᾱ+ a2z) ,

ż = −β̄ + z2 + b(x2 + y2) ,

ψ̇ = 1 ,

(C.4.14)

where the periodic orbit is supposed to be of period 1. Because the first three

equations in the above system are independent of the fourth one, the resulting

normal form is analogous to the Shimizu-Morioka system. 2
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C.4.#53. Below we present (following [185]) a list of asymptotic normal

forms which describe the trajectory behavior of a triply-degenerate equilibrium

state near a stability boundary in systems with discrete symmetry. We say

there is a triple instability when a dynamical system has an equilibrium state

such that the associated linearized problem has a triplet of zero eigenvalues. In

such a case, the analysis is reduced to a three-dimensional system on the center

manifold. Assuming that (x, y, z) are the coordinates in the three-dimensional

center manifold and a bifurcating equilibrium state resides at the origin, we

suppose also that our system is equivariant with respect to the transformation

(x, y, z)↔ (−x,−y, z).
We note that the listed systems have a natural “physical” meaning and do

appear in some realistic applications, see for example the above laser equations.

Thus, this method may be viewed as a recipe for exclusion of irrelevant terms

in the nonlinearity as well as for selection of those nonlinear terms which are

responsible for specific details of such behavior.

In addition to the symmetry assumption, we will also suppose that the

linear part of the system near the origin O restricted to the invariant plane

z = 0 has a complete Jordan block. Then, the system in the restriction to the

center manifold may locally be written in the form





ẋ = y ,

ẏ = x(az + F (x2, xy, y2, z)) + yG(y2, z) ,

ż = H(x2, xy, y2, z) ,

(C.4.15)

where neither H(0, 0, 0, z) nor F (0, 0, 0, z) contain linear terms.

Let us consider a three-parameter perturbation of the system in the form





ẋ = y ,

ẏ = x(µ1 + az + F (x2, xy, y2, z)) + y(−µ2 +G(y2, z)) ,

ż = −µ3z +H(x2, xy, y2, z) ,

(C.4.16)

where µ = (µ1, µ2, µ3) are small parameters, and the functions F , G and H

may also depend on µ.

Let us also suppose that

a 6= 0 . (C.4.17)
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It is then obvious that a change of the z-coordinate reduces (C.4.16) to the

following form (with some new functions G and H)





ẋ = y ,

ẏ = x(µ1 − z) + y(−µ2 +G(y2, z)) ,

ż = −µ3z +H(x2, xy, y2, z) .

(C.4.18)

Let us rescale the variables and time:

x→ δxx, y → δyy, z → δzz, t→ t/τ ,

where δx, δy, δz and τ are some small quantities. We assume µ1 6= 0 and let

δy = τδx, δz = τ2 = |µ1| .

Then (C.4.18) assumes the form





ẋ = y ,

ẏ = x(±1− z)− λy +O(τ) ,

ż = −αz +H(δ2x x
2, τδ2x xy, τ

2δ2x y
2, τ2z)/τ3 ,

(C.4.19)

where α and λ are new rescaled parameters, which are no longer small:

α = µ3/
√
|µ1|, λ = µ2/

√
|µ1| .

The asymptotic normal form is a finite limit of the system (C.4.19) as

µ → 0. Note that different choices of proportion between the scaling factors

δx and τ yield different normal forms.

In the last equation of (C.4.19), the terms which contain z2, y3 and yz, tend

to zero as τ → 0. Thus, by cutting out small terms, we transform (C.4.19) to





ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + δ2xx

2H1(δ
2
xx

2)/τ3 + δ2xxyH2(δ
2
xx

2)/τ2

+ δ2xy
2H3(δ

2
xx

2)/τ + δ2xzx
2H4(δ

2
xx

2)/τ .

(C.4.20)

The right-hand side in (C.4.20) is to be finite, i.e. if the Taylor expansions of

the functionsHi begin with x2mi for zero values of the perturbation parameters
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µ1, µ2, and µ3, then the following inequalities must hold

δ2(m1+1)
x /τ3 <∞ ,

δ2(m2+1)
x /τ2 <∞ ,

δ2(m3+1)
x /τ <∞ ,

δ2(m4+1)
x /τ <∞ .

Therefore, we can choose τ so that

τ ∼ δβx , (C.4.21)

where

β = min

{
2

3
(m1 + 1), m2 + 1, 2(m3 + 1), 2(m4 + 1)

}
. (C.4.22)

For example, in the most generic case where Hi(0) 6= 0 (i = 1, . . . , 4), the

exponent β = 2/3 in (C.4.21) and (C.4.22). Then, system (C.4.20) reduces to

the form 



ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2H1(0) +O(τ) .

(C.4.23)

In the limit τ → 0, this system becomes the Shimizu-Marioka model, where

the parameters α and λ may take arbitrary finite values.

Let us now consider an extra degeneracy: H1(0) = 0 and H ′1(0) 6= 0. In

order to study bifurcations in this case one should introduce a new independent

governing parameter which is the constant term of the Taylor expansion of H1.

If we set β = 1 according to relation (C.4.22), then system (C.4.20) reduces to

the following asymptotic form:





ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2h̃10 +H2(0)xy .

(C.4.24)

This is equivalent to the Lorenz equations. Here, h̃10 = H1(0)/τ is the third

rescaled governing parameter which may take arbitrary finite values.
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The next degeneracy H2(0) = 0, H ′2(0) 6= 0 modifies the third equation in

(C.4.24) in the following way:

ż = −αz + x2h̃10 + h̃20xy +H ′1(0)x
4 , (C.4.25)

where h̃10 = H1(0)/τ
3/2 and h̃20 = H2(0)/τ

1/2. Here, β = 4/3.

By repeating this procedure we can get a hierarchy of the asymptotic nor-

mal forms. Let us denote

Hi(x
2) =

∞∑

j

Hijx
2j .

We assume that at the moment of bifurcation the values of Hij for j =

0, . . . ,mi − 1 vanish. As before, we can treat these non-zero Hij as additional

independent small parameters.

It is obvious that in the rescaled system (C.4.20) there are non-zero co-

efficients in front of those terms which correspond to such mi for which the

minimum in (C.4.22) is achieved; all terms of higher order vanish in the limit

τ → 0. The terms of degree less then 2mi, which appear in Hi for non-zero

parameter values, also survive after the rescaling; their normalized coefficients

appear as the independent parameters that may assume arbitrary finite values.

Thus, if we get rid of all asymptotically vanishing terms, system (C.4.20)

takes the form




ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2H̃1(x

2) + xyH̃2(x
2) + y2H̃3(x

2) + zx2H̃4(x
2) ,

(C.4.26)

where H̃i’s are polynomials of degree ni such that

max

{
2

3
(n1 + 1), n2 + 1, 2(n3 + 1), 2(n4 + 1)

}

=
1

β
< min

{
2

3
(n1 + 2), n2 + 2, 2(n3 + 2), 2(n4 + 2)

}
(C.4.27)

(if some H̃i vanish identically, then we let ni = −1). The coefficients of H̃ij

are defined as follows:

h̃ij = Hij/τ
si− 2(j+1)

β ,

where s1 = 3, s2 = 2, s3 = s4 = 1.
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It follows immediately from (C.4.27) that n3 = n4, i.e. the degrees of H̃3

and H̃4 are always equal. Hence, the list of asymptotic normal forms which

are given by (C.4.26) and (C.4.27) can be ordered as the common degree n(=

n3 = n4) increases.

The first in the list are the systems given by (C.4.23), (C.4.24) and (C.4.25),

which correspond to n = −1. For each of the greater values of n there are four

sub-cases below. Each consecutive case corresponds to additional degeneracies.

This is a cyclic list: after the fourth case, we return to the beginning with

n = n+ 1 and so forth.

(1) n1 = 3n + 2, n2 = 2n + 1; at the moment of bifurcation the first

(n− 1) coefficients vanish in both H3 and H4, the first 2n and (3n+1)

coefficients vanish in H2 and H1, respectively.

(2) n1 = 3n + 3, n2 = 2n + 1; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 1) and (3n + 2)

coefficients vanish in H2 and H1, respectively.

(3) n1 = 3n + 3, n2 = 2n + 2; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 1) and (3n + 3)

coefficients vanish in H2 and H1, respectively.

(4) n1 = 3n + 4, n2 = 2n + 2; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 2) and (3n + 3)

coefficients vanish in H2 and H1, respectively. 2

C.5 Behavior on stability boundaries

C.5.#54. A stable limit cycle bifurcates from infinity in the system

ẋ = x− y − a(x2 + y2)x ,

ẏ = x+ y − a(x2 + y2)y ,
(C.5.1)

at a = 0. At this value, the system becomes linear

ẋ = x− y ,
ẏ = x+ y ,

(C.5.2)

and it has an unstable focus at the origin. One can compose the Lyapunov

function V (x, y) = x2 + y2 and verify that all the orbits diverge to infinity

(i.e. the infinity is stable) since the time derivative of the Lyapunov function



874 Appendix C

(a) (b)

Fig. C.5.1. Limit cycle in (C.5.3) for a > 0 (b) and at a = 0 (a).

V̇ (x, y) = 2(x2 + y2) is positive, and hence each level (x2 + y2) = C is a curve

without contact and every trajectory must flow outside of every such curve C

as time increases.

When a 6= 0, we have

d (x2 + y2)

dt
= 2(x2 + y2)(1− a(x2 + y2)) .

It is apparent that V̇ (x, y) < 0 if x2 + y2 > 1/a, and V̇ (x, y) > 0 when

V < 1/a. Thus, x2 + y2 = 1/a is a stable invariant curve (a limit cycle), and

all trajectories (except for the equilibrium state at the origin) tend to it as

t→ +∞.

C.5.#55. [25] Explain how the stable limit cycle in Fig. C.5.1 of the

system
ẋ = y − x(ax2 + y2 − 1) ,

ẏ = −ay − y(ax2 + y2 − 1)
(C.5.3)

evolves as a→ +0. 2

C.5.#56. Find a Lyapunov function for Khorozov-Takens normal form

ẋ = y ,

ẏ = −x3 − x2y .
2
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C.5.#57. Reveal the role of the cubed y in making the following system

asymptotically stable: find a proper Lyapunov function.

ẋ = y ,

ẏ = ay + x− x3 − by3 .

Here a and b are some control parameters. 2

C.5.#58. Prove the global asymptotic stability of solutions of the Lorenz

equation
ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ż = −bz + xy ,

(C.5.4)

when r < 1, σ > 0 and b > 0.

The following function

V0(x, y, z) =
1

2
(x2 + σy2 + σz2)

is a Lyapunov function, since its time derivative

V̇0 = −σ(x2 − (1− r)xy + y2 + bz2)

is a negatively defined quadratic form. 2

C.5.#59. Prove that the infinity is unstable in the Lorenz system.

Solution. The time derivative of the function

V (x, y, z) =
x2

2
+
y2

2
+ (z − r − σ)2

is given by

V̇ (x, y, z) = xẋ+yẏ+(z−σ− r)ż = −σx2−y2− b
(
z − r + σ

2

)2

+
b

4
(r+σ)2 .

The condition V̇ = 0 determines an ellipsoid outside of which the derivative is

negative. Therefore, all “outer” positive semi-trajectories of the Lorenz system

flow inside the surface

σx2 + y2 + b

(
z − r + σ

2

)2

=
b

4
(r + σ)2 . 2
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C.5.#60. Prove that infinity is unstable in a Chua’s circuit modeled by

ẋ = a(y + x/6− x3/6) ,

ẏ = x− y + z ,

ż = −by .
(C.5.5)

Use the Lyapunov function

V0(x, y, z) =
x2

2a
+
y2

2
+
z2

2b
,

and analyze its time-derivative

V̇0 =
xẋ

a
+ yẏ +

zż

b
=

1

6
(x2 − x4) + 2xy − y2

for large x and y. 2

C.5.#61. Consider the following perturbation of the Bogdanov-Takens

normal form:

ẋ = y ,

ẏ = µy − ε2x+ a20x
2 + a11xy + a02y

2 +Q(x, y) ,
(C.5.6)

where µ and ε are small, and Q(x, y) starts with cubic terms. One can see

that the origin O(0, 0) is a weak focus for the above system at µ = 0 and

small ε 6= 0: the characteristic roots are ±iε. To determine the stability of the

weak focus, let us rescale first the variables x 7→ ε2x, y 7→ ε3y, and the time

t 7→ ε−1t. The system will take the form

ẋ = y ,

ẏ = −x+ a20x
2 + εa11xy +O(ε2) .

(C.5.7)

The following normalizing coordinate transformation

xnew = x− a20

3
(x2 + 2y2) +

ε

3
a11xy, ynew = ẋnew

brings the system to the form

ẋ = y ,

ẏ = −x+ 2a2
20

(
x3 − 4

3
xy2

)
+ εa20a11

(
5x2y − 4

3
y3

)
+O(ε2) + · · · ,
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where the dots stand for the terms of order higher than three. So, we eliminate

all quadratic terms (up to O(ε2)-terms) and now the first Lyapunov value

can be immediately computed. Thus, let us introduce the complex variable

z = x+ iy so that the system will recast as

ż = −iz +
(
ε

8
a20a11 + i

5

12
a2
20 +O(ε2)

)
z2z∗ + · · · ,

where the dots stand for negligible cubic and higher order terms. The first

Lyapunov value is the real part of the coefficient of z2z∗, i.e. it is equal to

L1 =
ε

8
[a20a11 +O(ε)] .

It follows that the weak focus is stable when a20a11 < 0, and unstable for

a20a11 > 0 for small ε. At ε 6= 0, only one limit cycle is born from the weak

focus, provided a20a11 6= 0. 2

C.5.#62. Let us give a general formula for the first Lyapunov value at a

weak focus of the three-dimensional system
...
ξ + P ξ̈ +Qξ̇ +Rξ = f(ξ, ξ̇, ξ̈)

where f is a nonlinearity, i.e. its Taylor expansion at the origin begins with

quadratic terms, and the coefficients P,Q,R satisfy the relation

PQ = R, Q > 0 .

Denoting y ≡ (y1, y2, y3) = (ξ, ξ̇, ξ̈) we can rewrite the above equation as

ẏ = Ay + f(y) ·




0

0

1


 ,

where

A =




0 1 0

0 0 1

−R −Q −P


 .

The eigenvalues of the matrix A are −P and ±iω, with ω2 = Q. The corre-

sponding eigenvectors are



1

−P
P 2


 ,




1

iω

−Q


 , and




1

−iω
−Q


 ,
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and the eigenvectors of the adjoint matrix are respectively given by


Q

0

1


 ,




Pω

ω − iP
−i


 , and




Pω

ω + iP

i


 .

Thus, we can introduce the new variables u ∈ R1 and z ∈ C1 as follows:

y = u




1

−P
P 2


+ z




1

iω

−Q


+ z∗




1

−iω
−Q


 .

The derivatives u̇ and ż are computed by the following rule

u̇ =
1

Q+ P 2
(Qẏ1 + ẏ3), ż =

1

2Pω
(Pωẏ1 + (ω − iP )ẏ2 − iẏ3) ,

so that we arrive at the system whose linear part is already diagonal

u̇ = −Pu+ α1z
2 + α2zz

∗ + · · · ,
ż = iωz + β1z

2 + β2zz
∗ − β∗1z∗2 + γuz − γ∗uz∗ + δz2z∗ + · · · ,

(C.5.8)

where the dots stand for the nonlinear terms which are negligible for the com-

putation of the first Lyapunov value. If we expand the nonlinearity up to the

third order in y:

f(y) =
∑

ckjyjyk +
∑

dkjlykyjyl + · · · , (C.5.9)

then the coefficients α, β, γ, δ in (C.5.8) are found as follows:

(Q+ P 2)α1 = 2iPωβ1 =
∑
ckj(iω)

k+j−2 ,

(Q+ P 2)α2 = 2iPωβ2 = −∑((−1)k + (−1)j)ckj(iω)k+j−2 ,

γ =
1

2

∑
ckj((−P )k−2(iω)j−2 + (−P )j−2(iω)k−2) ,

δ = − 1

2PQ2

∑
dkjl(iω)

k+j+l((−1)k + (−1)j + (−1)l) .

(C.5.10)

System (C.5.8) has a center manifold given by

u =
α1

P + iω
z2 +

α2

P
zz∗ + · · · .
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On the center manifold the system assumes the form

ż = iωz+β1z
2+β2zz

∗−β∗1z∗2+
(
γ
α2

P
− γ∗ α1

P + iω
+ δ

)
z2z∗+· · · . (C.5.11)

The normalizing transformation

znew = z + i
β1

ω
z2 − iβ2

ω
zz∗ + i

β∗1
3ω
z∗2

kills all quadratic terms, so that the system on the center manifold takes the

form

ż = iωz + (L1 + iΩ1)z
2z∗ + · · · ,

where

L1 + iΩ1 =
i

ω

(
β1β2 − |β1|2 −

2

3
|β2|2

)
+ γ

α2

P
− γ∗ α1

P + iω
+ δ . (C.5.12)

By definition, L1 is the first Lyapunov value. 2

C.5.#63. Let us apply the above algorithm to determine the stability of

the structurally unstable equilibria O1,2 in the Lorenz model, see Sec. C.2. To

find whether the corresponding Andronov-Hopf bifurcation is sub- or super-

critical on the stability boundary of these equilibria we will compute the ana-

lytical expression for the first Lyapunov value L1.

Following [165, 186], let us first bring the original system

ẋ = −σ(x− y) ,

ẏ = rx− y − xz ,

ż = −bz + xy

to a single third-order differential equation

...
x+(σ+b+1)ẍ+b(1+σ)ẋ+bσ(1−r)x =

(1 + σ)ẋ2

x
+
ẋẍ

x
−x2ẋ−σx3 . (C.5.13)

Then, we introduce the new variable ξ = x − x0, where x0 = ±
√
b(r − 1)

for O1,2, respectively. We stress that only quadratic and cubic terms in the

nonlinearity are needed and hence the first order terms of the expansion of
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(x0 + ξ)−1 are sufficient in order to find the first Lyapunov value. Taking into

account the needed terms, the equation (C.5.13) can be rewritten as follows
...
ξ + (σ + b+ 1)ξ̈ + [b(1 + σ) + x2

0]ξ̇ + [bσ(1− r) + 3σx2
0]ξ

= −3σx0ξ
2 − 2x0ξξ̇ +

1 + σ

x0
ξ̇2 +

1

x0
ξ̇ξ̈ − σξ3 − ξ2ξ̇

− 1 + σ

x2
0

ξξ̇2 − 1

x2
0

ξξ̇ξ̈ + · · · . (C.5.14)

The stability boundary for both O1 and O2 is given by

r = σ(σ + b+ 3)(σ − b− 1)−1 .

The first Lyapunov value computed by the above algorithm is

L1 = b[p3q(p2 + q)(p2 + 4q)(σ − b− 1)]−1B , (C.5.15)

where

B = [9σ4 + (20− 18b)σ3 + (20b2 + 2b+ 10)σ2

− (2b3 − 12b2 − 10b+ 4)σ − b4 − 6b3 − 12b2 − 10b− 3] .

On the stability boundary, the inequality σ > b+1 is fulfilled. Upon substitut-

ing σ = σ∗+b+1, the expression for B becomes a polynomial of σ∗ and b with

positive coefficients. Hence, if σ∗ > 0 and b > 0, then L1 > 0. Thus, both equi-

libria O1,2 are unstable (saddle-foci) on the stability boundary. The boundary

itself is dangerous in the sense of the definition suggested in Chap. 14. There-

fore, the corresponding Andronov-Hopf bifurcation of O1,2 is sub-critical. 2

C.5.#64. Compute the first Lyapunov value in the Chua’s circuit (C.5.5).

Verify that for c1 = c3 = 1/6 it vanishes at the point (a ' 1.72886,

b ' 1.816786), labeled by L1 = 0 on the Andronov-Hopf curve in Fig. C.2.1.

This is the point of codimension two from which a curve of saddle-node periodic

orbit originates. 2

C.5.#65. Find the expression for the first Lyapunov value in the Shimizu-

Marioka system (C.2.25) reduced to the following third order differential equa-

tion
...
x + (a+ b)ẍ+ abẋ− bx+ x3 − a

x
ẋ2 − ẋẍ

x
= 0 . (C.5.16)

Show that it is negative (positive) to the right (left) of the point (a ' 1.359, b '
0.1123) on the Andronov-Hopf bifurcation curve given by (a+ b)a− 2 = 0. 2
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C.6 Bifurcations of fixed points and periodic orbits

C.6.#66. Consider the logistic map

x̄ = ax(1− x) ≡ f(x) ,

with 0 < a < 4 and x ∈ I = [0, 1]. When 0 < a < 1, the origin is a unique

stable fixed point. It is semi-stable at a = 1 since f ′(0) = 1. It becomes

unstable as a increases, and another fixed point O1(x1 = (a− 1)/a) bifurcates

from the origin (hence we have a transcritical bifurcation here). The point

O1 is stable when 1 < a ≤ a1 = 3 [see Fig. C.6.1(a)]. It flip-bifurcates when

f ′(O1) = a − 2ax1 = −1 at a = 3. The first Lyapunov value at this point

is equal to − 1
6 (f

′′′(O1) +
3
2f
′′(O1)

2) = − 2
3a1 = −2. Since it is negative, the

point is asymptotically stable at a = 3. Thus, a stable cycle C2 of period 2

bifurcates from O1 as a exceeds 3, as shown in Fig. C.6.1(b).

The cycle of period two consists of a pair of period-two points

x
(1,2)
2 =

a+ 1±
√
a2 − 2a− 3

2a
,

which are the roots of the equation x = f 2(x) other than those corresponding

to O and O1. The direct computation of the multiplier of the cycle, which is

given by f ′(x
(1)
2 ) · f ′(x(2)

2 ), reveals that it is stable when 3 < a < 1 +
√
6.

Moreover, the multiplier is positive when 3 < a < 1 +
√
5, and negative

when 1 +
√
5 < a, but still less than 1 in absolute value. This cycle becomes

repelling when a > 1+
√
6, and its stability switches to the cycle C4 of period

4, shown in Fig. C.6.1(c). When this cycle goes through the flip bifurcation

at a = a3 ' 3.54, then a stable period-8 cycle is born, and so forth [see

Fig. C.6.2(d)–(f)].

Note that the first Lyapunov value is always negative for a flip-bifurcation

of any periodic orbit in the logistic map. Indeed, the Schwarzian derivative:

S(f)(x) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

is negative everywhere within the interval [0, 1] where the map is defined. It is

easy to check that if for some map S(f) < 0 everywhere, then S(f◦f◦· · ·◦f) < 0

everywhere too, i.e. it is negative for every power of the map. It remains to

note that 1
6S(f) coincides with the first Lyapunov value at the fixed point at

the moment of flip-bifurcation (when f ′(x) = −1).
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(a) (b)

(c) (d)

(e) (f)

Fig. C.6.1. Period doubling in the logistic map.
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(g) (h)

(i)

Fig. C.6.1. (Continued)

This sequence of period-doubling bifurcations ends up at approximately a '
3.569, after which the logistic map exhibits chaotic behavior, see Fig. C.6.1(g)

and (i).

Feigenbaum [170] noticed that the bifurcation values of an, n = 1, 2, . . .

increase asymptotically in geometrical progression with the multiplier

δ = lim
n→∞

an − an−1

an+1 − an
' 4.66920 . 2

C.6.#67. Find the critical value of a that corresponds to the situation

depicted in Fig. C.6.1(h). Can this map have stable orbits at this moment?

To answer this question reduce it first to a piece-wise linear map.
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Fig. C.6.2. (x versus a) bifurcation diagram of the logistic map in the period-doubling

process.

Evaluate the values of an that correspond to the flip bifurcations of the

orbits of period 16, 32, respectively. Find the corresponding maximal x-

coordinates of these cycles and plot them on Fig. C.6.2. 2

C.6.#68. Examine the map

x̄ = x+ x(a(1− x)− b(1− x)2) = f(x) ,

where a and b are some positive parameters. Find its fixed points, and detect

the corresponding stability boundaries. Determine the asymptotic stability of

the fixed points and period-2 cycle at critical cases. 2

C.6.#69. Examine the maps x̄ = µ1 +Ax1+µ2 and x̄ = µ1−µ2x
ν +x2ν ,

where 0 < ν < 1, and |µ1| ¿ 1. Consider the subcases 0 < ν < 1/2 and

1/2 < ν separately. What happens at ν = 1/2? Analyze bifurcations of

symmetric periodic points in the two maps x̄ = (µ1 + A|x|1+µ2) sign(x) and

x̄ = (µ1 − µ2|x|ν + |x|2ν) sign(x), |µ1,2| ¿ 1. Such maps appear in the study

of homoclinic bifurcations of codimension two (see Sec. 13). 2

C.6.#70. Consider the Hénon map:

x̄ = y , ȳ = a− bx− y2 .
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(a)

(b)

Fig. C.6.3. Horseshoe in the Hénon map for a = 2 and b = 0.4 and in its inverse.

This map is a canonical example illustrating the chaotic behavior. For certain

parameter values the Hénon map models the mechanism of the creation of the

Smale horseshoe as illustrated in Fig. C.6.3, for the map and for its inverse:

y = x̄ ,

x = (a− ȳ − x̄2)/b ,

defined for b 6= 0.
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The Jacobian of the Hénon map is constant and equal to b. Therefore, when

b > 0, the Hénon map preserves orientation in the plane, whereas orientation is

reversed when b < 0. Note also that if |b| < 1, the map contracts areas, so the

product of the multipliers of any of its fixed or periodic points is less than 1 in

absolute value. Hence, in this case the map cannot have completely unstable

periodic orbit (only stable and saddle ones). On the contrary, when |b| > 1, no

stable orbits can exist. When |b| = 1, the map becomes conservative. At b = 0,

the Hénon map degenerates into the above logistic map, and therefore one

should expect some similar bifurcations of the fixed points when b is sufficiently

small.

Next, let us find the fixed points in the Hénon map and analyze how they

bifurcate as the parameters a and b vary. The bifurcation portrait is shown

in Fig. C.6.4. It contains three bifurcation curves: SN : a = − 1
4 (1 + b)2, PD:

a = 3
4 (1 + b)2, and AH: b = 1,−1 < a < 3. For (a, b) ∈ SN the map has a

fixed point with one multiplier +1; when |b| < 1, this point is a saddle-node

with an attracting sector, while when |b| > 1, this is a saddle-node with a

repelling zone. For (a, b) ∈ PD the map has a fixed point with multiplier −1;
when |b| < 1, the other multiplier is less than 1 in absolute value and the first

Lyapunov value is negative, so the bifurcating point is stable. For |b| > 1,

Fig. C.6.4. Bifurcation portrait of the fixed points in the Hénon map.
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the other multiplier is greater than 1 in absolute value and the first Lyapunov

value is positive, so the bifurcating point is completely unstable. (Check the

equations for the bifurcation curves and compute the Lyapunov values.)

In the region D1 there are two fixed points, one of which is a saddle, and the

other one is stable for (a, b) ∈ Ds
1, and repelling when (a, b) ∈ Du

1 . Transition

from D1 to D2 is accompanied with the period-doubling bifurcations of the

fixed point, correspondingly, stable on the route Ds
1 → Ds

2, and repelling on

the route Du
1 → Du

2 . Meanwhile the point becomes a saddle (−), and in its

neighborhood a stable cycle of period two bifurcates from it when (a, b) ∈ Ds
2;

in the region Du
2 , this period-two cycle is repelling.

When b = 1, the Hénon map becomes conservative, as its Jacobian equals

+1. At b = 1 and a = −1, it has an unstable parabolic fixed point with two

multipliers +1; at b = 1 and a = 3, it is a stable parabolic fixed point with

two multipliers −1. In between these points, for −1 < a < 3 (i.e. (a, b) ∈ T ),
the map has a fixed point with multipliers e±iψ where cosψ = 1 −

√
a+ 1.

This is a generic elliptic point for ψ 6∈ {π/2, 2π/3, arccos(−1/4)} [167]. Since

the Hénon map is conservative when b = 1, the Lyapunov values are all zero.

When we cross the curve AH, the Jacobian becomes different from 1, hence the

map either attracts or expands areas which, obviously, prohibits the existence

of invariant closed curves. Thus, no invariant curve is born upon crossing the

curve AH. 2

C.6.#71. Let us consider the following map

x̄ = y + αy2 ,

ȳ = a− bx− y2 + βxy
(C.6.1)

with small α and β. This map can therefore be treated as a slight pertur-

bation of the Hénon map. We may wonder what bifurcations occur in some

bounded subregion in the (x, y)-plane which remains of finite size as both α

and β tend to zero. This question is typical in the study of bifurcations of

a quadratic homoclinic tangency between the stable and unstable manifolds

of a neutral saddle fixed point (with the multipliers |ν| < 1 < |γ| such that

|νγ| = 1) [175].

Let us derive the equations of the bifurcation curves S̃N , P̃D and ÃH

for (C.6.1) for small α and β; these curves correspond to the saddle-node,

period-doubling and torus creation, respectively.
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Consider the characteristic equation for (C.6.1)

det

(
−λ 1 + 2αy

−b+ βy −2y + βx− λ

)
= 0 .

Since x = y + αy2 at a fixed point, this equation recasts as

λ2 + λ(2y − βy − αβy2) + b+ y(2bα− β)− 2αβy2 = 0 . (C.6.2)

The equation for the coordinate y of a fixed point of (C.6.1) is given by

a− y(1 + b)− y2(1 + bα− β) + αβy3 = 0 . (C.6.3)

Let us derive the equation of the curve S̃N of saddle-node fixed points.

Since one of the eigenvalues of such points equals 1, plugging λ = 1 into

(C.6.2) yields

1 + b+ 2y(1 + bα− β)− 3αβy2 = 0 . (C.6.4)

This equation has only one solution in any fixed finite region, provided that

α and β are sufficiently small:

y = − 1 + b

2(1 + bα− β) +O(αβ) .

Substituting this in (C.6.3) gives the following equation for S̃N

a = − (1 + b)2

4
(1− bα+ β) +O(α2 + β2) . (C.6.5)

Analogously, the equation of the curve P̃D corresponding to a period-

doubling bifurcation is given by

a =
3

4
(1 + b)2

(
1 +

4

3
bα− β

3

)
+O(α2 + β2) . (C.6.6)

Note that the curves S̃N and P̃D are close to the curves SN and PD of the

original Hénon map.

Let us derive next the equation for the curve ÃH which corresponds to

the creation of an invariant curve (the Andronov-Hopf bifurcation for maps).

Since eigenvalues of such a point are λ1,2 = e±iϕ, it follows that the Jacobian
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of the map at the fixed point equals 1 and the trace of the Jacobian matrix

equals 2 cosϕ. This yields the following system for solving y and b:

2y − βy − αβy2 = −2 cosϕ
b+ y(2bα− β)− 2αβy2 = 1 .

(C.6.7)

We obtain from the first equation that

y = − cosϕ

1− β/2 +O(αβ) , (C.6.8)

and from the second one that

b = 1− (β − 2α) cosϕ+O(α2 + β2) . (C.6.9)

Finally, we find from (C.6.3) that

a = cos2 ϕ[1 + β − α]− 2 cosϕ[1 + β/2] +O(α2 + β2) . (C.6.10)

The curve ÃH is given by (C.6.9)–(C.6.10). Since the Jacobian of the

map (C.6.1) is no longer constant, one should expect that the corresponding

bifurcation of the birth of the invariant curve will be non-degenerate at the

fixed point. To make sure, let us compute the first Lyapunov value L1.

Let (a, b) ∈ ÃH. Then b = −1+O(α, β) and−1+O(α, β) < a < 3+O(α, β).

The bifurcating fixed point with multipliers e±iϕ has coordinates

x = − cosϕ(1 + β/2) + α cos2 ϕ+O(α2 + β2) ,

y = − cosϕ(1 + β/2) +O(α2 + β2) .
(C.6.11)

Let us translate the origin to the fixed point. The map (C.6.1) then assumes

the form

x̄ = y(1 + ρ) + αy2 + · · · ,

ȳ = −x/(1 + ρ) + 2y cosϕ− y2 + βxy + · · · .

where ρ = 2α cosϕ + O(α2 + β2) and the dots stand for nonlinear terms of

order O(α2 + β2). By rescaling the x-variable to (1 + ρ), the map is brought

to the form
x̄ = y + αy2 + · · · ,
ȳ = −x+ 2y cosϕ− y2 + βxy + · · · .

(C.6.12)
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Now, make a linear transformation x = ξ and y = (cosϕ)ξ − (sinϕ)η after

which the linear part of the map becomes a rotation through an angle ϕ:

ξ̄ = ξ cosϕ− η sinϕ+ α(ξ cosϕ− η sinϕ)2 + · · · ,

η̄ = ξ sinϕ+ η cosϕ+
1

sinϕ
(ξ cosϕ− η sinϕ)2(1 + α cosϕ)

− β

sinϕ
ξ(ξ cosϕ− η sinϕ) + · · · . (C.6.13)

Denoting z = ξ + iη, we obtain

z̄ = zeiϕ + c20z
2 + c11zz

∗ + c02(z
∗)2 + · · · , (C.6.14)

where z∗ is complex-conjugate to z and the coefficients cij are given by

c20 =
1

4
[−2 cosϕ− α+ β] +

i

4

[
cos 2ϕ

sinϕ
+

cosϕ

sinϕ
(α− β)

]
,

c11 =
α

2
+
i

2

[
1

sinϕ
+

cosϕ

sinϕ
(α− β)

]
,

c02 =
1

4
[2 cosϕ+ α(3 cos2 ϕ− sin2 ϕ)− β]

+
i

4

[
cos 2ϕ

sinϕ
+ α

cosϕ

sinϕ
(cos2 ϕ− 3 sin2 ϕ)− β cosϕ

sinϕ

]
.

(C.6.15)

According to Sec. 3.13, the quadratic terms are eliminated by the following

normalizing transformation (when ϕ 6= 2π/3):

znew = z − c20
e2iϕ − eiϕ z

2 − c11
1− eiϕ zz

∗ − c02
e−2iϕ − eiϕ (z

∗)2 + · · · . (C.6.16)

This transformation does not change the linear part and it is known to elimi-

nate all quadratic terms. Thus, we need only to collect the coefficients in front

of the cubic term z2z∗. This gives

z̄new = eiϕznew + eiϕz2
newz

∗
new(L+ iΩ) +O3(z) , (C.6.17)

where O3(z) stands for the remaining cubic and higher order terms, and

L+ iΩ = −c20c11e−2iϕ 1− 2eiϕ

1− eiϕ − |c11|
2 1

1− eiϕ − |c02|
2 2

1− e3iϕ . (C.6.18)
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Taking the real part of the right-hand side we arrive at the following formula

for the first Lyapunov value L1 [184]

L1 = Re(c20c11)
cos 3ϕ− 3 cos 2ϕ+ 2 cosϕ

2(1− cosϕ)

+ Im(c20c11)
sin 3ϕ− 3 sin 2ϕ+ 2 sinϕ

2(1− cosϕ)
− |c02|2 −

1

2
|c11|2 . (C.6.19)

When we plug (C.6.15) into the above formula, we finally obtain the following

expression:

L1 =
1

16(1− cosϕ)
[β − 2α] +O(α2 + β2) . (C.6.20)

Observe that L1 vanishes at α = β = 0 as it is to be identically zero in the

Hénon map.

Thus, when α and β are small, the sign of the first Lyapunov value equals

the sign of the difference (β−2α). If it is negative, the stable invariant curve is

born through the super-critical Andronov-Hopf bifurcation when crossing the

curve ÃH towards larger β. 2

C.6.#72. Using a computer, trace the evolution of the invariant curve

as b grows (choose α = β = 0.001).

Let us first discuss the case L1 < 0. In the region to the left of ÃH the point

O is stable, see Fig. C.6.5. The point O becomes unstable to the right of the

Andronov-Hopf bifurcation curve ÃH, and a stable invariant curve bifurcates

from it. The stable curve evolves in the following way: as the parameter

increases further, it “glues” to a homoclinic loop to the saddle fixed point O1.

By the term “gluing” we mean that the stable invariant curve becomes a part

of the non-wandering set of the complex homoclinic structure existing due to

intersections of the stable and unstable manifolds of the saddle fixed point O1.

As the parameters vary further, this non-wandering set vanishes as the result

of the homoclinic tangency.

Such a scenario of stability loss is often referred to in the literature as “soft”

(see Chap. 14). In the case L1 > 0, the loss of stability develops in a dangerous

way: the point O is stable initially; meanwhile an unstable invariant curve

“materializes” from the homoclinic tangles of O1, and shrinks to the origin as

the curve ÃH is reached. The fixed point at the origin becomes unstable upon

crossing ÃH, and all nearby trajectories escape from its neighborhood. 2
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Fig. C.6.5. Bifurcation portrait of the perturbed Hénon map.

C.6.#73. Examine the following map

x̄ = y ,

ȳ = µ1 + µ2y + dy3 − bx ,

where µ1, µ2, b are control parameters, and d = ±1. Such maps appear in

the study of the Lorenz attractor, as well as in modeling the behavior of the

periodic forced equations with cubic nonlinearity, like the Duffing system [176,

184].

The Jacobian of the map is equal to b, and therefore, when b 6= 0, it is a

diffeomorphism. The inverse is given by

ȳ = x ,

x̄ =
1

b
(µ1 + µ2x+ dx3 − y) .

One can easily see from the above formula that the cases |b| > 1 and |b| < 1 are

symmetric. When b = 0, the original map becomes “one-dimensional” in the
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sense that it has an invariant curve y = dx3+µ2x+µ1 to which any point of the

plane is mapped onto after one iteration. It should be noticed that the map is

invariant with respect to the transformation (x, y, µ1, µ2)→ (−x,−y,−µ1, µ2),

and hence bifurcations curves in the (µ1, µ2)-parameter plane are symmetric

with respect to the µ2-axis. 2

C.6.#74. Find analytically the equations of the basic bifurcation curves

of the fixed points and period-2 cycles of these maps.

Partial solution: the curve SN corresponding to a fixed point with multi-

plier +1 is given by

µ1 = ±2

3

(−1 + b− µ2

3d

) 1
2

;

that with multiplier −1 is given by

µ1 = ±2

3

(−1 + b− µ2

3d

) 1
2

(2 + 2b− µ2) .

The bifurcation curves of the period-2 cycle with multiplier +1 are given by

µ1 = ± 2

3
√
3
(−µ2 − 2(b+ 1))

3
2 , at d = +1 ,

µ1 = ± 2

3
√
3
(µ2 + 2b− 1)

3
2 , µ2 > −

2

3
(b+ 1), at d = −1 ,

Those corresponding to period-4 doubling are given by

µ2
1 =

1

216d
(b(b+ 1) + µ2 ± q)2(−5µ2 − 6(b+ 1)± q) ,

where q =
√

(3µ2 + 2b+ 2)2 − 8(b2 + 1). 2

C.6.#75. The following system is an asymptotic normal form for the

bifurcation of an equilibrium state with triple zero characteristic exponent

[162, 163]

ẋ = y ,

ẏ = z ,

ż = ax− x2 − by − z ,

in the case of complete Jordan block (continued from Sec. C.2). Here a and b

are control parameters. A fragment of the bifurcation diagram of this system
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Fig. C.6.6. A part of the bifurcation diagram. AH labels the Andronov-Hopf bifurcation

of the non-trivial equilibrium state O1; PD labels a flip-bifurcation of the stable periodic

orbits that generates from O1.

is shown in Fig. C.6.6. For a, b ≥ 0, this system has two equilibrium states:

O(0, 0, 0) and O1(a, 0, 0). The origin a = b = 0 corresponds to the Bogdanov-

Takens bifurcation of codimension two (see Sec. 13.4).

Let us describe the essential bifurcations in this system on the path b = 2 as

µ increases. On the left of the curve AH, the equilibrium state O1 is stable. It

undergoes the super-critical Andronov-Hopf bifurcation on the curve AH. The

stable periodic orbit becomes a saddle through the period-doubling bifurcation

that occurs on the curve PD. Figure C.6.7 shows the unstable manifold of

the saddle periodic orbit homeomorphic to a Möbius band. As a increases

further, the saddle periodic orbit becomes the homoclinic loop to the saddle

point O(0, 0, 0, ) at a ' 5.545. What can one say about the multipliers of

the periodic orbit as it gets closer do the loop? Can the saddle periodic orbit

shown in this figure get “pulled apart” from the double stable orbit after the

flip bifurcation? In other words, in what ways are such paired orbits linked in

R3, in R4? 2

C.6.#76. Using a computer detect the bifurcation curve in the (a, b)-

parameter plane that corresponds to the pitch-fork bifurcation of a symmetric
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Fig. C.6.7. Shown is a piece of the stable manifold of the saddle periodic orbit (dark circle)

at a = 3.2; courtesy of H. Osinga and B. Krauskopf [181].

periodic orbit in the Shimizu-Morioka model [191]:

ẋ = y ,

ẏ = x− xz − ay ,
ż = −bz + x2 ,

(C.6.21)

at a ' 0.4 and b ' 0.45. Can a symmetric limit cycle go through a period-

doubling bifurcation in this system? In the Lorenz equation? In a Chua

circuit? What makes the difference? 2

C.6.#77. Let us consider an example of a system with torus bifurcation.

Our example here is the following model coming from meteorology [128, 183]

ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z .
(C.6.22)

It follows from the linear stability analysis (see Sec. C.2) that the (a, b)-

parameter plane has a codimension-two point corresponding to an equilibrium

state with characteristic exponents (0,±iω). Therefore, the dimension of the

center manifold in such a case must be equal to 3 at least. For the complete

account on this bifurcation the reader is referred to [51, 64]. Below, we will

give its brief outline.

Observe that at such a codimension-two point the Andronov-Hopf and

saddle-node bifurcations occur simultaneously. Let µ1 and µ2 be the same
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parameters that govern these bifurcations in each versal family, respectively:

{
ṙ = r(µ1 + L1r

2) + · · · ,
ϕ̇ = ω(µ1) + Ω(µ1)r

2 + · · · ,
ż = µ2 − z2 + · · · ,

where ω(0) 6= 0, Ω(0) 6= 0, and L1 denotes a Lyapunov value. Taking the

interaction into account, the resulting normal form can be written as

ṙ = r(µ̃1 + L1r
2 + az + z2) +O(|(r, z)|4) ,

ż = µ̃2 + z2 + br2 +O(|(r, z)|4) ,

ϕ̇ = ω + cz +O(|(r, z)|2)) ,

where a, b may be set ±1. Note that if we drop the O(|(r, z)|4)-terms, the

system becomes invariant with respect to rotation around the z-axis, so its

trajectories lie on integral surfaces determined by trajectories of the planar

system consisting of the first two equations, which are decoupled from the

third one. In this planar system, equilibrium states with r = 0 correspond to

equilibrium states of the three-dimensional normal form, those with r 6= 0 cor-

respond to periodic orbits, and a structurally stable limit cycle will correspond

to an invariant torus. Depending on the signs of a and b, there may be four

essentially different cases. We will focus on the case a = −1 and b = 1 only

where the torus-bifurcation takes place, and leave the other ones for exercises

on linear stability analysis. The corresponding bifurcation diagram is shown

in Fig. C.6.8. Let us describe next the corresponding bifurcations in terms

relevant to the original three-dimensional system (C.6.22).

The point O1 is repelling in the region to the right of AH. On the left of AH

it becomes a saddle-focus (2,1) and a repelling periodic orbits generates from

it. This periodic orbit is the edge of the stable manifold of O1 (Fig. C.6.9(a)).

This periodic orbit becomes stable upon crossing TB, and a repelling two-

dimensional invariant torus bifurcates from it (see Fig. C.6.9(b)). This torus

becomes the heteroclinic connection between both saddle-foci (Fig. C.6.9(c))

on the curve H in Fig. C.6.8.

The bifurcations described above are subject to the condition of invariance

with respect to rotation around the z-axis. The straight-line r = 0 is then

an integral curve, and in the case where O1 and O2 are both saddles, this is
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Fig. C.6.8. Unfolding of the planar system with a = −1 and b = 1.

their common one-dimensional separatrix. Moreover, in such symmetrical sys-

tems, both two-dimensional stable and unstable invariant manifolds of these

saddles may either coalesce or have no common points. In generic systems

which are not rotationally invariant, one-dimensional separatrices of the sad-

dles may coincide at particular (codimension-two) parameter values, whereas

two-dimensional manifolds of the saddles may cross transversely each other

along some trajectories for an open set of parameters. Taking into account the

terms destroying the rotational symmetry may significantly change the struc-

ture of the heteroclinic connection, namely it may split. If this is the case, the

situation is likely where a one-dimensional separatrix becomes bi-asymptotic

to either saddle-focus shown in Fig. C.6.9(d). Moreover, if the saddle value is

positive at either saddle-focus, the separatrix loop will give rise to a homoclinic

explosion when the neighborhood is filled by infinitely many saddle periodic

orbits (see Sec. 13). 2

C.6.#78. The Medvedev’s construction of the blue-sky catastrophe on

the torus [95] is illustrated by Fig. C.6.11. It is supposed that there exists a pair
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(a) (b)

(c) (d)

Fig. C.6.9. Phase portraits of system (C.6.22): (a) (F = 1.77, G = 1.8); (b) (F = 1.8, G =

1.65); (c) (F = 1.8, G = 1.5); (d) (F ' 1.416, G ' 2.195).

of saddle-node cycles C1 and C2 on the torus at some µ = 0. By introducing

the direction of the motion of the torus, one can assign that one cycle rotates in

the clockwise direction whereas the other one spins in the opposite direction.

Discuss the way on how the blue-sky catastrophe may flow in. How many

cycles of what stability can appear through this bifurcation? Let n1(µ) and

n2(µ), µ > 0 be the number of gyrations which a closed trajectory on the torus

makes near the ghosts of C1,2. What is limµ→+0 n1,2(µ)? 2

C.6.#79. Challenge: following the underlying idea on the development

of the blue-sky catastrophe in a two time scales system which is discussed in
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Fig. C.6.10. Part of the bifurcation diagram of the system (C.6.22).

Fig. C.6.11. Blue-sky catastrophe on a torus.

Sec. 12.4, find the blue-sky catastrophe in the modified Hindmarsh-Rose model

of neuronal activity

ẋ = y − z − x3 + 3x2 + 5 ,

ẏ = −y − 2− 5x2 ,

ż = ε(2(x+ 2.1)− z)− A

(z − 1.93)2 + 0.003
,

(C.6.23)

where A and ε are two control parameters. Figure C.6.12 represents the bifur-

cation diagram of the slow system. Prove the stability of the resulting periodic
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Fig. C.6.12. Plot of the x-coordinate of the equilibrium state versus z at ε = 0. The
symbols xmin, xmax and 〈x〉 denote, respectively, the maximal, minimal and averaged values

of the x-coordinates of the stable limit cycle which bifurcates from a stable focus at AH

and terminates in the separatrix loop to the saddle O (see the next figure) at the point H:

z ' 2.086.

Fig. C.6.13. A separatrix loop to the saddle O at z ' 2.086 and ε = 0.
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(a) (b)

Fig. C.6.14. Shift map over 2π/ω: ideal bifurcation puzzle (a) and numeric result (b) for

a = 0.4, ω = 0.893, and at β = 0.0, 0.37, 0.37409, 0.375, 0.376, 0.3761. Both figures are

courtesy of B. Krauskopf and H. Osinga [180].

orbit. How can you explain the delayed loss of stability of the equilibrium

state O1: contrast the corresponding diagram at zero and small nonzero ε.

The curious reader is advised to consult [21] for more details concerning this

phenomenon. 2

C.6.#80. Study a mechanism of the appearance and breakdown of an

invariant torus in the periodically forced Van der Pol equation

ẋ = y ,

ẏ = −x− a(x2 − 1)y + β cosωt ,

ṫ = ω ,

(C.6.24)

as β increases from zero; Start with the Andronov-Hopf bifurcation of the

origin in the unperturbed equation. What occurs with the limit cycle at a =

2? The phenomenological scenario of the evolution of the torus is shown in

Fig. C.6.14. What bifurcations precede its breakdown, and when does it lose

its smoothness? Attention should be drawn to the behavior of the separatrices

of the saddle near the stable resonant cycle. 2

C.7 Homoclinic bifurcations

Homoclinic bifurcations are a priori not a local problem. The detection of a

homoclinic bifurcation in a specific set of ODE’s is an art in itself. Besides,
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it often requires performing rather sophisticated numerical computations.

However, as we have seen in our study of the Bogdanov-Takens normal form,

in some specific cases one can prove analytically the existence of a homoclinic

loop. This concerns systems close to integrable ones. Another instance is that

of systems with piece-wise linear right hand sides, as well as by two time scales

systems with slow and fast variables. Nevertheless, these examples are excep-

tions. As for generic nonlinear dissipative systems are concerned, the situation

is quite non-trivial, especially if the saddle in question has unstable and sta-

ble manifolds of dimensions equal or exceeding two (so far, the known regular

numerical methods are applied well to saddles with one-dimensional stable or

unstable separatrices). What really simplifies the problem is that there are

not so many bifurcation scenarios that usually precede the appearance of the

homoclinic loop. We will illustrate some of them below. However, this list is

undoubtedly incomplete, and we hope that the lucky reader will run into novel

bifurcations in further research.

A homoclinic bifurcation is a composite construction. Its first stage is based

on the local stability analysis for determining whether the equilibrium state is

a saddle or a saddle-focus, as well as what the first and second saddle values

are, and so on. On top of that, one deals with the evolution of ω-limit sets

of separatrices as parameters of the system change. A special consideration

should also be given to the dimension of the invariant manifolds of saddle

periodic trajectories bifurcating from a homoclinic loop. It directly correlates

with the ratio of the local expansion versus contraction near the saddle point,

i.e. it depends on the signs of the saddle values.

C.7.#81. Following the same steps as in the study of the generic

Bogdanov-Takens normal form, analyze the structure of the bifurcation set

near the origin µ1 = µ2 = 0 in the Khorozov-Takens normal form with reflec-

tion symmetry:

ẋ = y ,

ẏ = µ1x+ µ2y ± x3 − x2y .

The rescaling

x→ εu, y → ε2v, |µ1| → ε2, µ2 → ε2ν, t→ t/ε
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gives

u̇ = v ,

v̇ = γu+ νv ± u3 − εu2v ,

where γ = sign µ1 = ±1. Then, at ε = 0, the system becomes a Hamiltonian

one

u̇ = −∂H
∂v

,

v̇ =
∂H

∂u
,

with the first integral

H =
v2

2
+ γ

u2

2
± u4

4
.

The most interesting case is when the sign of γ is opposite to the sign of the

coefficient of the fourth-order term in H, so let us assume further

H =
v2

2
+ γ

u2

2
− γ u

4

4
.

This integrable system has three equilibrium states O(0, 0) and O1,2(±1, 0).
When γ = 1, the origin is a center while O1,2 are the saddles [see Fig. C.7.1(a)].

The saddles have a closed symmetric heteroclinic connection at the level

H = 1/4. The equations of the trajectories connecting the saddles can be

found explicitly, and for the upper one it is given (verify this) by

u =
e
√

2t − 1

e
√

2t + 1
, v =

2
√
2e
√

2t

(e
√

2t + 1)2
.

In the case γ = −1, the origin becomes a saddle and O1,2 are centers [see

Fig. C.7.1(b)]. The distinguishable figure-of-eight lies at the zero level of the

associated Hamiltonian. The equation of its right lobe is given by

u(t) =
2
√
2et

1 + e2t
, v(t) =

2
√
2et(1− e2t)
(1 + e2t)2

.

The heteroclinic connection or the homoclinic-8 in a perturbed system persists

on the curve µ2 = νµ1 +O(µ2
1), where ν is found from the condition

∫ +∞

−∞

∂

∂ε

d

dt
H(u(t), v(t))dt

∣∣∣∣
ε=0

= 0 .
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(a) (b)

Fig. C.7.1. Integral curves of the Hamiltonian systems: cases γ = 1(a) and γ = −1(b).

The latter can be rewritten as

ν =

∫ +∞
−∞ u2(t)v(t)dt
∫ +∞
−∞ v(t)dt

,

which gives

ν =
1

5
, and

4

5
,

respectively, for each case. Compute the saddle value on the curve H8 in the

case γ = −1. Show that the stable symmetric limit cycle cannot terminate

in the homoclinic-8 on this curve. See the complete bifurcation diagrams in

Fig. C.7.2.

C.7.#82. Apply the Shilnikov theorem and explain what kind of behavior

one should anticipate in the Rössler system [172, 188]

ẋ = −y − z ,

ẏ = x+ ay ,

ż = 0.3x− cz + xz ,

near the homoclinic loops of the saddle-foci O shown in Fig. C.7.3. Determine

the corresponding characteristic exponents, and evaluate the saddle values.
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(a)

(b)

Fig. C.7.2. Bifurcation diagrams of the Khorozov-Takens normal form.
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(a) (b)

Fig. C.7.3. Homoclinic loops to the saddle-foci O and O1 in the Rössler model for

(a = 0.380, c = 4.820) and (a = 0.4853, c = 4.50), respectively. Initial conditions are

chosen on the unstable manifolds at a distance of about 0.47 from O on the plane y = 0,

and about 0.14 from O1, respectively.

Direct computation reveals that for the given parameters the saddle-focus

O has the exponents λ1,2 ' 0.1597 ± i0.9815 and λ3 ' −4.7594. Since the

complex exponents λ1,2 are nearest to the imaginany axis, the homoclinic loop

implies the emergence of infinitely many saddle periodic orbits. Moreover,

since the second saddle value σ2 = λ3 + 2Reλ1,2 is negative (here it is equal

to the divergence of the vector field at O), it follows that near the homoclinic

loop there may also exist stable periodic orbits along with saddle ones. These

stable orbits have long periods and weak attraction basins, and therefore they

are practically invisible in numerical experiments.

In the second case, the equilibrium stateO2 has the characteristic exponents

(−0.0428 ± 3.1994, 0.4253). In contrast to the first case, there are no stable

periodic ordits in a small neighborhood of the loop, because the divergence of

the vector field at O2 is positive. 2

C.7.#83. Consider the following Z2-symmetric Chua’s circuit with cubic

nonlinearity [179]:

ẋ = a

(
y − x

6
+
x3

6

)
,

ẏ = x− y + z ,

ż = −by ,

(C.7.1)
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Fig. C.7.4. Bifurcation diagram for the Chua’s circuit.

where a ≥ 0 and b ≥ 0 are control parameters. When a = b = 0, the bifur-

cation unfolding of (C.7.1) is the same as that of the Khorozov-Takens nor-

mal form. In particular, it includes the bifurcation of a homoclinic-8. Thus,

the corresponding bifurcation curve, labeled H8, starts from the origin in the

(a, b)-parameter plane in Fig. C.7.4. Of special consideration here are the four

codimension-two points on this curve at which the following resonant condi-

tions hold (after Sec. C.2):

(1) NS (a ' 1.13515, b ' 1.07379) corresponds to the saddle (at the origin)

with zero saddle value σ. Below this point, σ is positive.



908 Appendix C

(2) The point S → SF (a ' 1.20245, b ' 1.14678) corresponds to the

transition from a saddle to a saddle-focus (2,1). It is important that

σ < 0 at this point.

(3) The abbreviation NSF stands for the neutral saddle-focus at which

the saddle value σ vanishes.

(4) Introduce the second saddle value σ2 as the sum of the three leading

characteristic exponents at the saddle-focus. In the three-dimensional

case, it is the divergence of the vector field at the origin. Here, the

curve σ2 = 0, given by the equation a = 6, intersects H8 at (a = 6, b =

7.19137). Above this point, σ2 > 0.

These points break the bifurcation curve H8 into the four segments the tra-

jectory behaviour on which is described next.

Segment (0, NS):

On this interval, the homoclinic-8 bifurcates in the same way as in the

Khorozov-Takens normal form. Both loops, which form the homoclinic-8 are

orientable. The dimension of the center homoclinic manifold is equal to 2. The

third dimension does not yet play a significant role. Therefore, it follows from

the results in Sec. 13.7 that on the right of H8, there are two unstable cycles

(cycles 1 and 2 in Fig. 13.7.9). To the left of H8, a symmetric saddle periodic

orbit (cycle 12) bifurcates from the homoclinic-8 (see also Fig. C.7.5).

The point NS. This point is of codimension two as σ = 0 here. The

behavior of trajectories near the homoclinic-8, as well as the structure of the

bifurcation set near such a point depends on the separatrix value A (see formula

(13.3.8)). Moreover, they do not depend only on whether A is positive (the

loops are orientable) or negative (the loops are twisted), but it counts also

whether |A| is smaller or larger than 1. If |A| < 1, the homoclinic-8 is “stable”,

and unstable otherwise. To find out which case is ours, one can choose an

initial point close sufficiently to the homoclinic-8 and follow numerically the

trajectory that originates from it. If the figure-eight repels it (and this is the

case in Chua’s circuit), then |A| > 1. Observe that a curve of double cycles with

multiplier +1 must originate from the point NS by virtue of Theorem 13.5.

On the segment between NS and NSF , the saddle value is negative, i.e.,

σ < 0. Moving up along H8, we go through the point above which the ori-

gin becomes a saddle-focus. By virtue of Theorem 13.11, in either case (i.e.,

when the origin is a saddle, or a saddle focus with σ < 0), only two stable

cycles, or a single symmetric stable cycle bifurcate from the homoclinic-8 on
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Fig. C.7.5. Period T of the periodic orbit born through a sub-critical Andronov-Hopf bifur-

cation versus the parameter a (b = 1), as the cycle approaches the homoclinic loop. The

origin is a saddle with σ > 0.

the opposite sides from H8. Therefore, the point S → SF is not a bifurcation

point. However, by introducing a small perturbation, that breaks down the

symmetry of Chua’s circuit, one can make the resulting bifurcation unfolding

essentially different (see the contrast in Figs. 13.7.5 and 13.7.9). It should

be merely noted that the transition from saddle to saddle-focus would cause

dramatical changes in the dynamics of the system if σ were positive at such a

point. Taking into consideration one homoclinic loop only, this would cause a

homoclinic explosion from a single saddle periodic orbit in the case of a saddle

to infinitely many ones in the case of a saddle-focus (see Theorems 13.7–10

and [29]).

The point NSF : σ = 0 corresponds to a neutral saddle-focus. At this

codimension-two point the dynamics of the trajectories near the homoclinic

loops to the saddle-focus becomes chaotic. This bifurcation indeed preceeds

the origin of the chaotic double scroll attractor in Chua’s circuit. In the general

case, this bifurcation was first considered in [29]. The complete unfolding of
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Fig. C.7.6. Dependence of period T of the periodic orbit generating via a super-critical

Andronov-Hopf bifurcation on the parameter a (b = 6) as the cycle approaches the homoclinic

loop to a saddle-focus with σ > 0.

such bifurcation is unknown. The brief outline of [29] is as follows: there is

an infinite series of codimension-1 bifurcation curves that accumulate to the

curve H8 above the point NSF . These curves correspond to subsequent ho-

moclinic bifurcations, saddle-node and period doubling bifurcations of periodic

orbits close to the primary homoclinic one. To understand this phenomena

(homoclinic explosion) one may examine a simplified picture of the evolution

of the one-dimensional map with the saddle index ν > 1 (corresponding to

σ < 0), and ν < 1 (σ > 0) shown in Fig. C.7.6. Recall that in the case

under consideration, ν = |Reλ∗|/λ1, where λ1 > 0 and λ∗ is the real part of

the complex-conjugate pair of the exponents at the saddle-focus. One can see

from this figure that the period of the periodic orbit tends to infinity as the

parameter converges to the critical value. In the saddle-focus case with ν < 1,

it has a distinctive oscillatory component. Every turning point, corresponds

to the saddle-node bifurcation which is followed by a period-doubling bifur-

cation. Therefore, there takes place an infinite sequence of such bifurcations

accumulating to the homoclinic one [173].



C.7. Homoclinic bifurcations 911

Thus, in a neighborhood of the homoclinic loop to the saddle-focus with

ν < 1, there may exist structurally unstable periodic orbits, in particular

saddle-nodes. This gives rise to the question: does the saddle-node bifurcations

of periodic orbits result in the appearance of stable ones?

To answer it, one must examine the two-dimensional Poincaré map instead

of the one-dimensional one, and evaluate the Jacobian of the former map. If

its absolute value is larger than one, the map has no stable periodic points,

and hence there are no stable orbits in a neighborhood of the homoclinic tra-

jectory because the product of the multipliers of the fixed point is equal to

the determinant of the Jacobian matrix of the map. One can see from formula

(13.4.2) that the value of the Jacobian is directly related to whether 2ν−1 > 0

or 2ν − 1 < 0, or, equivalently, ν > 1/2 or ν < 1/2. Rephrasing in terms of

the characteristic exponents of the saddle-focus, the above condition translates

into whether the second saddle value σ2 = λ1 + 2Reλ∗ is positive or negative.

It can be shown [100] that if σ > 0 but σ2 < 0 (a < 6 in Fig. C.7.4), there

may be stable periodic orbits near the loop, along with saddle ones. However,

when σ2 > 0 (σ > 0, automatically), totally unstable periodic orbits emerge

from the saddle-node bifurcations.

The last comment on the Chua circuit concerns the bifurcations along the

path b = 6 (see Fig. C.7.4). Notice that this sequence is very typical for

many symmetric systems with saddle equilibrium states. We follow the stable

periodic orbit starting from the super-critical Andronov-Hopf bifurcation of the

non-trivial equilibrium states at a ' 3.908. As a increases, both separatrices

tend to the stable periodic orbits. The last ones go through the pitch-fork

bifurcations at a ' 4.496 and change into saddle type. Their size increases and

at a ' 5.111, they merge with the homoclinic-8. This, as well as subsequent

bifurcations, lead to the appearance of the strange attractor known as the

double-scroll Chua’s attractor in the Chua circuit. 2

C.7.#84. Homoclinic bifurcations in the Shimizu-Morioka model [127]:

ẋ = y ,

ẏ = x− ay − xz ,
ż = −bz + x2 .

(C.7.2)

We will be seeking homoclinic bifurcations by starting from the Andronov-Hopf

bifurcation at the non-trivial equilibria O1,2 that takes place on the curve AH:

b = (2−a2)
a (see Sec. C.2). This bifurcation can be super-critical — the first
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Lyapunov value is negative to the right of the point GH, and it is subcritical to

the right of the point GH. Let us consider next the evolution of the behavior of

the separatrices of the saddle O at the origin as the parameter a decreases while

keeping b = 0.9 fixed. Above AH the separatrices tend to the stable equilibria

O1,2 which looses stability via an Andronov-Hopf bifurcation at a ' 1.0341.

In the region between AH and HB the separatrices are attracted to the new-

born stable periodic orbits. As a decreases further, the amplitude of the stable

orbits increases, and they both merge with the origin at a ' 0.8865, thereby

forming a homoclinic butterfly. Such a symmetric homoclinic bifurcation with

σ < 0 is often called a gluing bifurcation regardless of the geometry the ho-

moclinic configuration which can be a butterfly or a figure-eight. One can see

that the leading direction at the saddle in the given parameter values is the

z-axis corresponding to the eigenvalue λ2 = −b. Therefore, in our classification

we are dealing with a homoclinic butterfly: both separatrices enter the sad-

dle touching each other. The homoclinic butterfly transforms into a figure-8

when the separatrices enter the saddle from the opposite direction given by

the eigenvector of the other negative eigenvalue which becomes leading when

λ2 < λ3 = −a/2 −
√
a2/4 + 1 on HB. In both cases, upon exiting from the

homoclinic bifurcation a stable symmetric periodic orbit appears. Thus, the

results of the homoclinic metamorphosis is always the same if σ < 0. This is

not the case when σ > 0 where the geometry of the homoclinics is a key factor.

The more important resonant condition on HB takes place at (a ' 1.044,

b ' 0.608) where the saddle value σ vanishes (see Sec. 13.6). Near such a point

the local consideration reduces to the corresponding truncated“normal form”

— a one-dimensional Poincaré map

x̄ = (−µ+A|x|1+σ) sign(x) , (C.7.3)

where ‖µ, σ‖ ¿ 1, A is a separatrix value. In our interpretation, the fixed

point at the origin at µ = 0 corresponds to the homoclinic butterfly. It fol-

lows from Sec. 13.6 that the structure of the bifurcation unfolding near such a

codimension-two point counts strongly on the magnitude and the sign of A. We

have earlier emphasized the role of A, but it is worth repeating that the sign

of A determines the orientation of homoclinic loops. Moreover, in the “linear

case” (i.e. at σ = 0), the value of A also determines the stability of the homo-

clinic butterfly. There is almost no way to find the value of A in the specific

set of ODE’s without computer simulations. The simplest way to do that is to

carry out a numerical experiment analogous to that we have already used in the
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Fig. C.7.7. Fragment of bifurcation diagram of the Shimizu-Morioka model.

analysis of the Chua’s circuit. The separatrix value will satisfy |A| < 1 if the

separatrices of the saddle remain in a small neighborhood of the homoclinic

butterfly after it splits. The other issue is how to determine the “orientation”

condition, i.e., to find whether A is positive or negative; and we will return to

this question later.

It is not hard to conclude from numerical experiments, which reveal the

manner in which the separatrices converge to the homoclinic butterfly that A

must be within the range (0,1). In this case, when σ < 0, everything is

simple: the homoclinic butterfly splits into either two stable periodic orbits

(Fig. C.7.8(g)), or just one stable symmetric periodic orbit (Fig. C.7.8(i)).

It follows from Sec. 13.6 that when σ > 0, two bifurcation curves originate

from this codimension-two point. They correspond to the saddle-node bifur-

cation (Fig. C.7.8(d)) and to the double homoclinic loop (Fig. C.7.8(f)). The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. C.7.8. Bifurcations in one-dimensional map near the codimension-two point σ = 0;

(a)–(f) corresponds to the case σ > 0, whereas (g)–(i) correspond to σ < 0.

symmetry adds to the problem a plethora of other bifurcation phenomena. Of

very special interest is the bifurcation shown in Fig. C.7.8(c). It leads to the

formation of the closed interval which is mapped onto itself. Furthermore,

since the derivative of the map is larger than 1 on this integral, it contains no

stable periodic points but infinitely many unstable ones. This is the moment

of the appearance of the invariant attractive set without stable trajectories —

a Lorenz-like attractor. In terms of the flow, this bifurcation occurs when the

one-dimensional separatrices of the saddle at the origin lie on two-dimensional
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Fig. C.7.9. The Lorenz-like attractor in the Shimizu-Morioka model near the point σ = 0.

Fig. C.7.10. The Lorenz attractor does not appear if A < 0 on the curve LA.

stable manifolds of the saddle periodic orbits that have earlier bifurcated from

each loop (see an analogous bifurcation for the Lorenz equation shown in

Fig. C.7.14). Since A > 0, these manifolds are homeomorphic to a cylinder.

This bifurcation occurs on the curve LA in Fig. C.7.7. Near the codimension-

two point σ = 0, the Lorenz attractor is very thin, and looks like a stable

periodic orbit (see Fig. C.7.9). Note that one should verify that the separatrix

value A does not vanish anywhere on the curve LA. If so, there may arise the

situation sketched in Fig. C.7.10 which shows schematically how the primary

bifurcation of the Lorenz attractor can be ruined when the separatrix value A

becomes negative. We will discuss this possibility below.

So far an important conclusion: since there is a homoclinic butterfly with

|A| < 1, the region of the existence of the Lorenz attractor adjoins to the

codimension-two point in the parameter space. The interested reader is ad-

vised to consult [127, 129, 187] on the bifurcations of Lorenz attractor in the
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Fig. C.7.11. Twisted (A < 0) and orientable (A > 0) double homoclinic loops. The two-

dimensional Poincaré map has a distinctive hook-like shape after the separatrix value A

becomes negative.

Shimizu-Morioka model, and [114, 115, 117, 161] for the original Lorenz and

some other Lorenz-like equations. 2

C.7.#85. Consider the bifurcations of the symmetric cycle as σ evolves

from positive to negative values. Can it undergo a period-doubling bifurcation?

saddle-node one? Exploit the symmetry of the problem. For the map (C.7.3),

find the analytical expression for the principal bifurcation curves. Does the

saddle-node bifurcation here precede the appearance of the Lorenz attractor

(i.e. can chaos “emerge through the intermittence”)? Vary A from positive to

negative values. Examine the piece-wise linear map with A > 1, and determine

the critical value of A, after which the Lorenz attractor emerges. 2

Another codimension-two homoclinic bifurcation in the Shimizu-Morioka

model occurs at (a ' 0.605, b ' 0.549) on the curve H2 corresponding to

the double homoclinic loops. At this point, the separatrix value A vanishes

and the loops become twisted, i.e. we run into inclination-flip bifurcation [see

Figs. 13.4.8 and C.7.11]. The geometry of the local two-dimensional Poincaré

map is shown in Fig. 13.4.5 and 13.4.6. To find out what our case corresponds

to in terms of the classification in Sec. 13.6, we need also to determine the

saddle index ν at this point. Again, as in the case of a homoclinic loop to the

saddle-focus, it is very crucial to determine whether ν < 1/2 or ν > 1/2. Simple

calculation shows that ν > 1/2 for the given parameter values. Therefore,
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the bifurcation unfolding for each of the homoclinic loops in the butterfly

is the same as in Sec. 13.6. The following four bifurcation curves originate

from such a point. They correspond to a saddle-node bifurcation (labeled

“+1” in Fig. C.7.7), the period doubling (“−1”), and to two curves of the

doubled separatrix loops (these curves end up spiraling to T -points in the

(a, b)-plane). The dashed curve in the (a, b)-plane corresponds to the A = 0-

axis in the bifurcation diagram in Fig. 13.6.4. Above this curve all homoclinic

loops of the origin are orientable, and they are twisted below it. At each

point of intersection of the curve A = 0 and a homoclinic bifurcation curve the

structures of the bifurcation sets are similar, unless ν < 1/2. The importance

of this ratio becomes evident upon studying the one-dimensional Poincaré map

x̄ = (µ+A|x|ν + |x|γ) sign(x) , (C.7.4)

where |µ,A| ¿ 1, ν = |λ2|/λ1, and γ = |max{2λ2, λ3}|/λ1; here λ1,2 are,

respectively, the leading unstable and stable characteristic exponents at the

saddle, and λ3 is a non-leading stable characteristic exponent.

When A = 0, the stability of the trajectories of the above map is determined

by the third term. It is clear that depending on γ, the map for the parameter

values on the curve A = 0 may be either a contraction if γ > 1, or an expansion

if γ < 1. Assuming 2λ2 > λ3, the condition on γ reduces to either ν < 1/2 or

ν > 1/2. Thus, it is not hard to see that the map may have the form shown

in Fig. C.7.8(a) at ν < 1/2 and in Fig. C.7.8(h) at ν > 1/2. If ν < 1/2, there

can be no stable points for zero values of A.

The structure of the bifurcation set of the truncated map (without the

term |x|γ) with 1/2 < ν < 1 and A > 0 is the same as in the above resonant

case ν = 1. The case A < 0 is presented in Fig. C.7.12(a)–(c). The reader is

challenged to examine the bifurcations in this map. The feature of the case

A < 0 is that the map may have an invariant attracting interval, which is

mapped onto itself (Fig. C.7.12(c)). We can identify the chaotic behavior on

this interval with a “non-orientable Lorenz attractor” [127, 129].

In terms of the flow, this means that for the parameter values from an

exponentially narrow region in the parameter space, which adjoins to the point

A = 0 on H8 from the side of A < 0, there exists a Lorenz-like attractor

containing infinitely many saddle periodic orbits whose stable and unstable

manifolds are homeomorphic to a Möbius band.

The one-dimensional map (C.7.4) has, when A < 0, a parabola-like graph

shown in Fig. C.7.12(d)–(f). Obviously, one should foresee the period-doubling
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(a) (b) (c)

(d) (e) (f)

Fig. C.7.12. Transformations of the map (C.7.4) near A ≤ 0.

Fig. C.7.13. Homoclinic doubling cascade in the Shimizu-Morioka model, as the parameter a

varies (b = 0.40). Using the shooting approach, find the corresponding values of parameter a.
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cascades (Figs. C.7.12(c) and C.7.11(e)) similar to those that appear in the

study of the purely quadratic map in Sec. C.11. The contrast is the infinite

derivative at the discontinuity point that guarantees strong expansion near the

origin.

The period-doubling cascade is closely related here to the homoclinic dou-

bling cascade [71, 120, 126], see Fig. C.7.13.

The two-dimensional map has the shape of a distinguishable “hook” for

the parameter values along the curve H8 in the region A < 0, as shown in

Fig. C.7.10. In fact, this observation suggests the simplest recipe for computing

the orientation of the homoclinic loop; namely, having chosen a point on the

cross-section close to the stable manifold and computing the corresponding

trajectory, one verifies if the initial and the final points of the trajectory lie on

the same side from W s on the cross-section. If this is the case, then A > 0,

and A < 0 otherwise. The initial point should be reasonably close to W s

because when A changes its sign one more time and becomes positive again,

the loop becomes twice twisted and so forth. Figure C.7.7 shows two such

secondary bifurcation curves which originate from the point A = 0 and end

up spiraling to two T -points in the (a, b)-parameter plane (examine the fine

structure of T -point in [35, 174]). Such codimension-two point (approximately

a ' 0.781, b ' 0.39 in Fig. C.7.7) corresponds to a heteroclinic cycle involving

the saddle at the origin and the non-trivial saddle-foci. It follows from [35]

that near the primary T -point there is an accumulating series of similar ones

that lie within a sector bounded by the bifurcation curves corresponding to

homoclinics and heteroclinics to these saddle-foci. This, in part, explains why

the separatrix value A alters its sign here, and as a result, the loops change

orientation (remember the 2D Poincaré map near a saddle-focus).

C.7.#86. Assume there is a homoclinic loop to a saddle-focus in the

Shimizu-Morioka model (like a T -point). Without computing the characteristic

exponent of the saddle-focus, what can we say about the local structure: is it

trivial (one periodic orbit), or complex (infinitely many periodic orbits)? 2

The classical Lorenz equation

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,

ż = −8

3
z + xy .

(C.7.5)
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Fig. C.7.14. Famous path to the Lorenz attractor. The T -point is located at (r ' 30.4,

σ ' 10.2, b = 8/3).

A fragment of its (r, σ) bifurcation diagram is shown in Fig. C.7.14. Detect

the points where the path σ = 10 intersect the curve HB of the homoclinic

butterfly and the curve LA on which the one-dimensional separatrices of the

saddle tend to the saddle periodic orbits. Find the point on the curve LA

above which the Lorenz attractor does not arise upon crossing LA towards

larger values of r. The dashed line passing through the T -point in Fig. C.7.14

corresponds to the moment of the creation of the hooks in the two-dimensional

Poincaré map when the separatrix value varishes: A = 0 (see discussion on the

Shimizu-Morioka model). 2

We have seen that homoclinic bifurcations in symmetric systems have much

in common. Let us describe next the universal scenario of the formation of

a homoclinic loop to a saddle-focus in a “typical” system. In particular, this

mechanism works adequately in the Rössler model, in the new Lorenz models,

in the normal form (C.2.27), and many others.



C.7. Homoclinic bifurcations 921

Fig. C.7.15. An attracting whirlpool.

The first step on the route to such a homoclinic bifurcation is a super-critical

Andronov-Hopf bifurcation: the stable equilibrium states losses its stability

and becomes a saddle-focus. The edge of its two-dimensional unstable mani-

fold is the new-born stable periodic orbit. Next, let a real leading multiplier of

the stable periodic orbit coalesce with the other one after which they become

a complex conjugate pair remaining inside the unit circle. Then, the unstable

manifold of the saddle-focus starts winding to the stable periodic orbit thereby

forming an attractive “cup” or “a whirl-pool”, as shown in Fig. C.7.15. As a

parameter of the system varies further, the sizes of the scrolls increase, and

eventually the unstable manifold of the saddle-focus touches its stable mani-

fold. Usually, this homoclinic bifurcation follows the preceding stability-loss

bifurcations of the periodic orbit via either a flip- or a torus-bifurcation. More-

over, if the saddle value is positive at the saddle-focus, then the whirlpool will

contain an attracting set of non-trivial structure.

Let us visualize these steps using the example of the new Lorenz model [128]

ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z ,
(C.7.6)

where (F,G) are control parameters and (a = 1/4, b = 4.0) (see Fig. C.7.16).

The new Lorenz model is very rich in the sense of bifurcations. One of them

is a non-transverse homoclinic saddle-node bifurcation. In Sec. C.2, we have
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Fig. C.7.16. Creation of a whirlpool in the new Lorenz system.

already found the regular saddle-node bifurcation curve SN . Figure C.7.17

is the enlargement of the bifurcation diagram of the system near the upper

branch of SN , compare with Figs. C.6.10 and C.2.4. This branch corresponds

to a structurally unstable equilibrium state with one zero characteristic expo-

nent, the other two have a negative real part. To the left of SN , this critical

equilibrium disappears, whereas to the right of SN it splits into two: a stable

one and and a saddle-focus (2,1). The curve H1 corresponds to the homoclinic

loop of the saddle-focus. The points where H1 merges with SN correspond

to the non-transverse homoclinic saddle-node bifurcations of codimension two.
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Fig. C.7.17. Enlargement of the bifurcation diagram in Fig. C.6.10. The marked points

correspond to the non-transverse homoclinic saddle-node bifurcation.

At such a point the unstable manifold of the saddle-node returns to the equi-

librium state along the strongly stable manifold. The rest of the curve SN is

a bifurcation surface of codimension-one broken by these points into alternat-

ing intervals of two types. Bifurcation sequences on the route from the right

to the left over these intervals differ significantly. In the first case, this is a

plain saddle-node bifurcation: two equilibrium states coalesce and vanish. A

point on the second type segments corresponds to the saddle-node equilibrium

state with a homoclinic orbit which becomes an attractive limit cycle after

the saddle-node point disappears on the left of SN . It is curious to note that

this bifurcation sequence is reversible: having crossed over SN from the left to

the right, the stability of the periodic orbit returns to the attractive equilib-

rium state. In this connection, see the discussion on “safe” and “dangerous”

bifurcations in Chap. 14. 2

Let us complete this section by an illustration corresponding to the homo-

clinic butterfly of the saddle-focus in the four-dimensional case. Let us consider
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Fig. C.7.18. Homoclinic explosion caused by a homoclinic butterfly to a saddle-focus in

system (C.7.7) at a = 2, b = 0.5, µ = 1.2.

a four-dimensional perturbation of the Lorenz equation

ẋ = −10(x− y) ,

ẏ = rx− y − xz ,

ż = −8

3
z + µw + xy ,

ẇ = −8

3
w − µz ,

and that of the Shimizu-Morioka model

ẋ = y ,

ẏ = −ay + x− xz ,
ż = w ,

ẇ = −bw − µz + x2 ,

(C.7.7)

where a new parameter µ ≥ 0 is introduced so that the saddle equilibrium

state at the origin restricted to the (z, w)-subspace becomes a stable focus.
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C.7.#87. Find the stable, strongly stable and unstable linear subspaces

of the equilibria at the origin. Detect numerically the primary homoclinic

loops to the origin (µ = 0 is a good initial guess). Classify them in terms of a

homoclinic butterfly or a figure-eight. What are the first and the second saddle

values at homoclinic bifurcations? What can you say about the dimensions of

the stable and unstable manifolds of the periodic orbits that appear through

a homoclinic explosion in both models? Construct the Poincaré maps. 2
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bifurcation of the heteroclinic cycle,
765

bifurcation of the homoclinic-8, 765,
768

bifurcation parameter value, 444

bifurcation point, 557

bifurcation set, 444, 536, 557, 596,
771, 773

bifurcation surface of codimension-k,
536

bifurcation surface, 535, 536, 556,
587

bifurcation theory, 325

bifurcation unfolding, 607, 608, 619,
753

big lobe condition, 662, 663, 672

bi-infinite trajectory, 8

binary tree, 767
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Birkhoff’s theorem, 6, 10, 403, 413

birth of invariant torus, 611, 618, 623,
633, 803

birth of periodic orbit, 631, 720, 721,
731, 733, 868

blue sky catastrophe, 273, 475, 637,
669, 670, 680, 802, 804, 809,
897, 899

Bogdanov-Takens bifurcation, 894

Bogdanov-Takens normal form, 876,
902

Bogdanov-Takens point, 710

border saddle equilibrium state, 649

Borel lemma, 103

boundary system, 438

boundary value problem, 86, 91, 154,
155, 184, 185, 286, 289, 293,
339

Brauer’s criterion, 238

breaking point, 633

canonical normal form, 696

Cantor pencil, 773

Cantor set, 16, 407, 408

cascade, 7

cell, 18

center, 59, 402, 403, 404, 472, 474,
518, 611

center manifold, 269, 282, 325, 326,
348, 446, 452, 458, 462, 472,
488, 531, 560, 599, 651, 861,
879

center manifold theorem, 271, 275, 276

center stable, 282

center stable manifold, 281, 282, 330,
331

center unstable manifold, 282, 284,
330, 333, 350

center unstable manifold theorem, 281

chain, 423, 426

chain rule, 796

change of time, 5

change of variables, 103, 137, 211,
276

chaos, 422, 430, 633, 634, 662
chaotic behavior, 673, 883, 885
characteristic equation, 23, 195, 270
characteristic exponents, 23, 38, 197,

199, 202, 204, 270, 331, 352,
538, 598

characteristic roots, 195
Cherry flow, 769, 770
Chua’s circuit, 24, 824, 826, 831, 833,

856, 858, 860, 862, 874, 876,
878, 893, 904-907, 909, 911

circle diffeomorphisms, 264
circle map, 632, 855, 856
classification of center motions, 404
clockwise-right angled spiral, 118
closed convex set, 225, 228
closed convex subset, 252
closed invariant curve, 651
closing lemma, 411
codimension one, 435, 440, 446, 538,

597, 662
codimension two, 535, 688
completely degenerate fixed point,

466, 488, 492
completely unstable, 205, 458, 516,

525
completely unstable equilibrium state,

83, 102, 525
completely unstable fixed point, 127
completely unstable periodic trajec-

tory, 205
complex, 483, 497
complex (degenerate) saddle, 485
complex dynamics, 412, 422, 427, 437,

439, 736, 742, 750
complex saddle-focus, 470, 472, 485
complex stable (weak) focus, 497
complex-conjugate multipliers, 611
complex-conjugate, 598
concentric circumferences, 59
contraction map, 242
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contraction mapping principle, 683
contraction mappings, 223
conventionally stable invariant mani-

fold, 322
conventionally stable manifold, 310,

313, 317
conventionally stable or γ-stable, 303
conventionally unstable invariant

manifold, 322
conventionally unstable manifold, 313
convex hull, 101
counter-clockwise concentric circle, 60
counter-clockwise spiral, 28, 31
coupled map, 241
covering, 264
criterion of chaos, 422
critical case, 270, 451, 452, 458, 465,

477, 531, 804
critical equilibrium state, 452, 456,

532
critical fixed point, 478, 485, 515, 527
critical periodic orbit, 532
critical saddle, 486
cross form, 227, 228, 243, 252, 422
cross-section, 5, 112, 241
curvilinear triangle, 49
cusp, 550, 556, 557, 633, 835, 836
cusp bifurcation, 550, 633
cusp edge, 556, 557, 835, 836
cycle, 7, 14, 423
cyclic variable, 236

dangerous boundaries, 799, 804, 808,
810, 812, 880

dangerous point on the stability
boundary, 805

dangerous stability boundary, 811,
812

degeneracy, 873
degenerate, 452, 462, 464
degenerate case, 124
degenerate equilibria, 452, 483
degenerate fixed point, 483

degenerate map, 123, 124
degenerate saddle-node, 649
Denjoy theorem, 265
dense diffeomorphism, 266
dense rough diffeomorfism, 398
devil staircase, 267, 856
devil’s wheel, 817
dicritical node, 26
diffeomorphic, 413
diffeomorphism, 7, 115, 129, 211, 236,

242 , 398, 417, 422, 438, 478,
597, 666, 702, 739

dimension of manifold, 65
discrete dynamical system, 7
dissipative system, 403
double circuit separatrix loop, 787
double cycle, 607
double homoclinic loop, 759, 762, 775,

916
double limit cycles, 717
double separatrix loop, 718, 719, 787
double-scroll attractor, 24
double-scroll Chua’s attractor, 909,

911
Duffing equation, 236
Dulac form, 103, 106
Dulac sequence, 699, 713
Dulac theorem, 101, 102
dwelling time, 643
dynamical systems, 6
Dynamically definite boundaries, 811,

812, 814, 816
dynamically indefinite boundary, 814

eigen-direction, 327, 328
eigenspace, 328
eigen-subspace, 73
eigenvalues, 23, 38, 115, 125, 126, 199,

270, 328, 414, 418, 432, 537,
579, 598

elliptic sectors, 528, 529
embedded map into the flow, 681, 682
embedding, 685
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empirical chaotic character, 406
entire trajectory, 4, 6
equilibria, 429, 548
equilibrium point, 426, 430
equilibrium state of the saddle type,

45
equilibrium state, 3, 14, 21, 44, 56, 78,

270, 272, 280, 315, 395, 404,
416, 446, 454, 458, 464, 524,
598, 607, 633, 637, 677, 708,
808

equimorphism, 264
equivalent trajectory, 18
essential map, 656, 658, 663, 804
Euclidean norm, 42
Euclidean space, 231
exponential, 37
exponentially asymptotically stable

equilibrium state, 44
exponentially completely unstable

equilibrium state, 45, 78
exponentially completely unstable

fixed point, 141
exponentially stable equilibrium state,

69
exponentially stable fixed point, 119
exponentially stable solution, 202
exponentially unstable, 45
exponents, 598
extended, 128
extended phase space, 2
extended stable eigenspace, 330, 352
extended stable eigen-subspace, 154
extended stable invariant subspace,

46, 128
extended stable manifold, 84, 154,

329, 330, 746
extended stable subspace, 56
extended unstable eigen-subspace, 154
extended unstable invariant subspace,

46, 128
extended unstable manifold, 84, 154,

331, 332

extended unstable subspace, 49, 50, 56
extra degeneracy, 871

families, 534
family of maps, 611
Farey tree, 767
fast periodic orbit, 678
fast system, 677
fast-slow system, 680
Feigenbaum multiplier, 883
figure-eight, 350
finitely-smooth change of variables,

103
finite-parameter family, 105, 106, 214,

216
first critical case, 458, 480
first Lyapunov value, 538, 587, 618,

763, 877, 879, 891
first separatrix value, 695
first type stability boundary, 803
fixed point, 114, 115, 125, 245, 418,

422, 478, 497, 519, 541, 610,
620

flight time, 659, 682, 684, 691
Floquet multipliers, 195
Floquet theorem, 198
foci, 838
focus equilibrium state, 74, 76
focus fixed point, 140, 238
focus, 74, 140, 825
fold bifurcation, 801, 803, 813
foliation of neighbourhood, 446
foliation, 279, 282, 453
formal change of variables, 218
formal series, 101
Fourier series, 407
fractal, 407
Franklin-Markov theorem, 409
frequency regime, 633
frequency spectrum, 634
fundamental matrix, 195

Gavrilov-Guckenheimer bifurcation,
835
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general, 328
general case theorem, 284
general position, 532, 535, 539, 546
global, 325
global bifurcation, 325, 637
global map, 335, 641, 646, 689, 694,

702, 739, 760
global phase portrait, 526
global saddle-node bifurcation, 658
global stable, 79
global stable invariant manifold, 79
global unstable, 79
global unstable invariant manifold, 79
global unstable manifold, 651
globally dichotomic system, 287, 288,

302, 315, 509
gluing bifurcation, 912
gluing term, 770, 891
governing parameter, 533
Grobman-Hartman theorem, 61, 79,

95, 129, 132
group property, 2

Hadamard’s theorem, 142
half-plane, 413
helicoids form, 740
Henon map, 884, 887
heteroclinic 397, 415, 424, 496, 520
heteroclinic connection, 778, 787, 896
heteroclinic contour, 348
heteroclinic cycle, 325, 348, 352, 437,

519, 777, 786, 789
heteroclinic point, 426
heteroclinic trajectory, 348, 416
hierarchy of non-leading manifolds,

73, 140
high-dimensional linear maps, 125
high-dimensional, 37
Hilbert’s 16-th problem, 112
Hindmarsh-Rose model, 839, 899
holomorphic integral, 472
homeomorphic, 264, 411, 414, 485, 500
homeomorphic to a Möbius band, 811

homeomorphism, 6, 17, 59, 129, 207,
395, 411

homoclinic, 415
homoclinic bifurcations, 637, 688, 901,

911
homoclinic butterfly, 350, 351, 750,

773, 924
homoclinic cycles, 325
homoclinic doubling cascade, 918
homoclinic figure-eight, 350, 351, 355
homoclinic loop Γ(ε), 801
homoclinic loop to a saddle focus, 736
homoclinic loops, 104, 325–327, 330,

334, 355, 397, 446, 475, 637,
646, 687, 720, 734, 760, 766,
906

homoclinic orbit, 413
homoclinic tangency, 438
homoclinic to saddle foci, 107
homoclinic to saddle, 107
homoclinic trajectory, 9, 214, 327,

330, 416, 424, 634, 638
homoclinic-8, 766, 767, 903
homoclinic-8 connection, 766, 767, 903
homoclinic-8 connection of a saddle-

focus, 772
Homogeneous polynomial, 96, 97, 209
Homogeneous system, 222
horizontal strip, 420

identity map, 124, 259
inclination-flip bifurcation, 749, 753
infinite set of resonances, 108
infinitely degenerate equilibrium

state, 465
infinitely degenerate fixed point, 488,

492
integral curve, 2, 238
integrating a system, 13
internal bifurcation, 438
intersect transversely, 416, 419
invariance of a set, 8
invariance of the manifold, 137
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invariant, 9, 282, 747
invariant center local manifold, 274
invariant center manifold, 271, 282
invariant center stable manifold, 281,

284
invariant circle, 123
invariant curve, 260, 614, 618, 621,

623, 629, 634, 644, 661, 888,
893

invariant extended stable manifold,
328

invariant foliation, 271, 278, 302, 310
invariant leading manifold, 77
invariant manifold, 64, 79, 135, 142,

147, 154, 248, 280, 413, 415,
453, 464, 483, 500, 510, 521,
653, 677

invariant non-leading manifold, 69
invariant set, 9, 12, 402
invariant stable, 584
invariant subspace, 44, 126
invariant surface, 611
invariant tori, 235
invariant torus, 236, 239, 242, 243,

256, 258, 263, 406, 449, 611,
618, 623, 633, 649, 801, 809,
852

inverse map, 171, 253
irregular case, 822
isolated equilibrium state, 21

Jacobian matrix, 21, 117, 189, 216,
829, 831

Jordan basis, 39, 138, 456
Jordan block, 40
Jordan form, 104, 125, 199, 641
jumping direction, 170

Khorozov-Takens normal form, 860,
862, 874, 902, 905

Klein bottle, 258, 637, 653, 655, 666,
668

k-parameter family, 536
Kroneker-Capelli theorem, 842

Lagrange method, 842
Lagrangian equation, 429
Lamerey diagram, 116, 480, 490, 561,

578, 581, 588, 705, 756
Lamerey spiral, 116, 118, 491, 583
Lamerey stair, 116, 117, 130
Landau-Hopf scenario, 633
leading axis, 118
leading characteristic exponents, 74
leading coordinates, 83
leading direction, 25, 31, 120, 137
leading eigenvalues, 168, 183, 275
leading invariant, 126
leading invariant manifold, 141
leading invariant subspace, 44, 128
leading local manifold, 77
leading manifold, 65
leading multipliers, 126, 140
leading plane, 32
leading saddle invariant subspace, 128
leading saddle submanifold, 154
leading saddle subspace, 46, 126
leading stable invariant submanifold,

154
leading stable, 84
leading subspace, 45, 73
leading unstable eigen-space, 84
leading unstable invariant

submanifold, 154
leaf of the foliation, 279
leaf of the strong stable foliation, 354
Leontovich theorem, 713
Leontovich, 105, 106, 325
Leontovich-Mayer theorem, 435
lifting, 264
limit cycle, 16, 111, 396, 435, 473, 484,

521, 607, 700, 712, 714, 771,
874

limit-quasiperiodic, 404, 407
linear form, 101, 103, 212
linear map, 115, 116, 134, 229
linear systems, 24, 37
linearized map, 114



950 Index

linearized system, 21, 22, 24
Lipschitz condition, 142, 232, 245
Lipschitz curve, 624
Lipschitz function, 245, 248
Lipschitz invariant manifold, 248
local bifurcations, 271, 445, 531, 641
local case, 269
local center manifold, 276, 284
local extended stable manifold, 337
local instability, 483
local invariant manifold, 317
local map, 335, 337, 641, 646, 689,

698, 702, 738, 760
local stable invariant manifold, 509
local stable manifold, 64, 80, 132
local theory, 19
local unstable manifold, 64, 80, 132,

483
locally invariant set, 70
locally reduced system, 283, 285
locally straightened center manifold,

653
locally topologically equivalent

periodic trajectory, 135
locally topologically equivalent

system, 63, 65
logarithmic spirals, 53, 123
logistic map, 881, 884
loops, 325
Lorenz attractor, 24, 752, 915, 920
Lorenz equation, 750, 826, 831, 868,

919
lose of cycle’s skin, 808, 809
lose of smoothness, 534, 617, 634
lose of stability, 452, 584, 594, 609,

816, 912
Lyapunov (focal) value, 800
Lyapunov exponents, 104, 197, 199
Lyapunov function, 455, 475, 479, 496,

512, 519, 524, 622, 874
Lyapunov stable, 410, 454, 455, 472,

479
Lyapunov surfaces, 203

Lyapunov theorem, 199, 202
Lyapunov value, 431, 433, 452, 459,

469, 480, 490, 496, 497, 538,
599, 608, 632, 718, 763

Maier theorem, 266
main stability boundary, 802
manifold, 71, 747
map, 170, 182, 641
Markov theorem, 410
Mathieu equation, 853
maximal chain, 424
maximal open set, 270
maximal rank, 535
Mayer’s theorem, 398
Medvedev’s construction, 897
Medvedev’s example, 669
metric, 398
m-fan, 500
minimal set, 10, 14, 241, 265, 405
Möbius band, 207, 414, 490, 584, 707,

719, 808
Möbius manifold, 414
Möbius strip, 587
moduli, 440, 442
Morse-Smale class, 438, 445, 767
Morse-Smale diffeomorfism, 417, 426,

439
Morse-Smale flows, 417, 427
Morse-Smale systems, 413, 417, 419,

422, 437
motions, 404
multi-dimensional system, 437
multiple limit cycle, 609
multiplier +1, 559
multiplier -1, 578, 595, 604
multipliers (complex-conjugate), 476
multipliers, 112, 115, 125, 127, 204,

219, 261, 414, 476, 602
mutual intersection, 449

natural code, 767
negative Poisson stable point, 9, 401
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negative semi-trajectory, 6, 64
Newhouse regions, 489
nil-manifold, 409
node (−), 140
node (+), 140
node, 825
node equilibria, 911
node equilibrium state, 74
node fixed point, 140
node point, 629
node region, 62, 649
non-autonomous system, 236, 310,

504, 509, 522, 587
non-degeneracy assumptions, 725,

760, 788
non-degenerate bifurcation, 763
non-degenerate homoclinic loop,

761
non-homogeneous boundary value

problem, 93
non-homogeneous system, 93
non-homotopic diffeomorphism, 256
non-leading axis, 119
non-leading direction, 25, 32, 56
non-leading invariant manifold, 137
non-leading invariant subspace, 76,

126, 128
non-leading local manifold, 77
non-leading manifold, 65, 69, 70, 74,

76, 82, 137, 316, 638
non-leading multipliers, 126
non-leading plane, 31
non-leading stable invariant manifold,

154
non-leading subspace, 45, 73
non-leading unstable invariant mani-

fold, 154
non-leading unstable sub-manifold,

327
non-leading, 44, 84, 126
non-local, 325
non-local center manifold, 325
non-orientable case, 707, 708

non-orientable circle map, 258
non-orientable homoclinic butterfly,

775
non-orientable homoclinic loop, 783
non-orientable homoclinic-8, 776
non-orientable Lorenz attractor, 917
non-orientable separatrix loop, 707
non-orientable surface, 717
non-periodic trajectory, 124
non-quasiperiodic motion, 404
non-resonant, 432, 436, 496, 499, 515,

579, 612
non-resonant case, 496
non-resonant eigenvalues, 101
non-resonant function, 106, 215
non-rigorous methods, 444
non-rough equilibrium state, 544
non-rough system, 397, 412, 429, 446,

451
non-roughness system, 429, 439
non-singular Jacobian matrix, 117
non-singular map, 132
non-smooth Klein bottle, 669
non-smooth unstable manifold, 352
non-transverse homoclinic orbit, 439
non-transverse intersection, 446
non-trivial attractor, 449
non-trivial equilibrium state, 602, 894
non-trivial fixed point, 602
non-trivial Jordan block, 25
non-trivial motions, 404
non-unique leading manifold, 79
non-uniqueness, 272
non-wandering orbit, 423
non-wandering point, 9, 399, 400, 402,

411, 417
non-wandering set, 265, 449
normal coordinates, 186, 188, 192, 201
normal form for the second critical

case, 468, 469
normal form method, 276, 531
normal forms, 103, 857, 866, 912
not topologically equivalent system, 60



952 Index

on-edge bifurcation, 646
on-edge homoclinic loop, 645, 646
one-dimensional Poincaré map, 744,

762
one-parameter family, 539, 604, 613,

623, 672
one-side stability, 688, 690
open region, 412
orbit superhomoclinic, 735
orbital normal form, 469, 470
orbital stability, 204
orbitally stable periodic trajectory,

204
orbit-flip bifurcation, 750, 753
orbit-flip homoclinic bifurcation, 759,

760
order of the resonance, 96, 209
ordinal number, 402
ordinary differential equations, 1
orientable case, 708
orientable circle diffeomorphism, 265
orientable curve, 6
orientable homoclinic-8, 777
oriented graph, 424
oscillatory regimes, 394
Ovsyannikov-Shilnikov theorem, 108

pair of complex-conjugate multipliers,
623

Palis and Smale theorem, 419
partial order, 100
period, 7, 111
period-doubling bifurcation (flip

bifurcation), 801, 803, 808,
881, 894

period-doubling bifurcation, 587, 607,
668, 717, 759, 787, 803, 882

period-doubling cascade, 438, 884, 919
period-doubling of a fixed point, 757
periodic fixed point, 119
periodic orbits, 111, 396, 404, 416,

422, 475, 484, 498, 521, 621,
637, 720

periodic point, 111, 238
periodic regime, 629
periodic solutions, 111
periodic trajectory, 3, 4, 14, 111, 115,

135, 192, 195, 205, 272, 284,
475, 477

periodically forced self-oscillating sys-
tems, 235

persistence, 258
phase diagram, 424
phase portrait, 465, 517, 523, 528
phase space, 6, 401, 610
phase trajectory, 2,6
pitch-fork bifurcation, 462, 558, 859,

894
planar bifurcation, 542
Poincaré form, 103
Poincaré map, 112, 114, 119, 134, 172,

175, 262, 310, 334, 432, 475,
489, 584, 604, 618, 658, 667,
689, 807

Poincaré region, 101
Poincaré return time, 10, 14, 189
Poincaré rotation number, 265, 266
Poincaré rotation number, 265, 266,

442, 618, 624, 629, 653, 661,
768

Poincaré theorem, 101, 265
Poincaré, 101, 265
Poincaré-Bendixson theory, 397, 404
Poincaré-Dulac theorem, 212
Poisson stability, 411
Poisson-stable point, 401, 404
Poisson-stable trajectories, 9, 397,

401, 403, 410, 767
Poisson-stable, 9
polynomial change, 96, 100
positive Poisson-stable point, 9
positive semi-trajectory, 6, 64, 400
positively stable, 401
properly periodic motion, 404
pseudo-projection, 47
p-trajectory, 10, 401, 410, 413
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Pugh theorem, 411
Pugh’s closing lemma, 411

quadratic tangency, 441
qualitative integration, 12
qualitative investigation, 24
quasiminimal attractors, 770, 775
quasi-minimal set, 10, 14, 405, 767,

769
quasiperiodic, 618
quasiperiodic attractors, 770, 774
quasi-periodic flow, 11, 770
quasi-periodic function, 239
quasiperiodic motion, 404
quasiperiodic orbit, 618
quasiperiodic regime, 624, 629
quasi-periodic solution, 241
quasi-periodic trajectory, 11

real Jordan form, 125
recurrent trajectory, 10, 405
reduction principle, 658, 660, 682
reduction theorem, 277, 278, 531
regime, 430
regular case, 821
repelling, 458, 484, 487, 566, 620, 674,

747
repelling equilibrium state, 458, 532,

541
repelling fixed point, 482, 620
repelling periodic trajectory, 205
repelling zone, 886, 896
representative point, 4
rescaling of time, 5, 186, 187
resonance relation, 95, 96, 209
resonances, 696
resonant (hyper) plane, 101
resonant case, 497
resonant fixed point, 503, 511, 528
resonant periodic orbits, 536, 618,

623
resonant polynomial, 104
resonant relations, 494

resonant set, 96
resonant torus, 626
resonant wedges, 625, 629
resonant zone, 624, 629, 634, 661
reverse period-doubling bifurcation,

759
reversion of time, 34, 281
Riemannian surface, 270
rigid generation, 603
rigid loss of stability, 600, 615, 804,

806
Rössler system, 838, 904
rotation number, 265, 769
rotation of the vector field, 396
rough, 24, 115
rough cycle, 394
rough diffeomorfism, 398
rough equilibria, 438, 554
rough equilibrium states, 395, 826
rough fixed point, 578
rough focus, 603
rough periodic trajectory, 115
rough saddle, 458, 486
rough stability, 454, 469, 485
rough stable periodic orbit, 660
rough systems, 394, 398, 419, 429
rough unstable cycle, 485
roughness/structural stability, 395,

398, 399, 412
route to the blue sky catastrophe,

676
Routh-Hurwitz criterion, 23, 24, 820,

829
Routh-Hurwitz determinant, 451, 477,

802
Routh-Hurwitz matrix, 821

saddle, 28, 34, 46, 78, 119, 128, 395,
413, 426, 507, 514, 584, 637,
745, 770, 823

saddle equilibrium state, 24, 28, 34,
46, 57, 79, 357

saddle equilibrium, 687, 788
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saddle fixed point, 119, 121, 122, 128,
141, 142, 153, 154, 168, 439,
517, 519, 522

saddle in the first case, 745

saddle index, 105, 691, 706

saddle map, 160, 169, 228, 230, 420,
729

saddle periodic orbit, 604, 663, 748

saddle periodic trajectories, 111, 201,
207, 208, 516

saddle point, 526

saddle region, 62

saddle type, 45

saddle value, 105, 690, 696, 712, 717,
825

saddle with 2m separatrices, 500

saddle-foci, 169, 447, 781, 830

saddle-focus (1,2), 46

saddle-focus (2,1), 46

saddle-focus (2,2), 46

saddle-focus, 437, 443, 446, 498, 603,
618, 674, 687, 736, 745, 770,
841

saddle-focus equilibrium state, 34, 35,
46, 53, 58, 84, 104

saddle-focus fixed point, 128

saddle-focus in the second case, 745

saddle-node, 61, 431, 460, 483, 525,
542, 564, 588, 629, 637, 639,
651, 759, 802

saddle-node bifurcation of a fixed
point, 757, 763, 812

saddle-node bifurcation of periodic or-
bit, 567

saddle-node equilibrium state, 61, 73,
638, 647, 674

saddle-node fixed point, 650, 673, 763,
888

saddle-node periodic orbit, 655, 666,
681, 801

safe boundary, 804, 810

safe point on the stability boundary,
804

safe stability boundary, 802, 807, 816
safe, 799
schematic portrait, 18
scheme, 18, 396, 430, 439
Schwarzian derivative, 881
second critical case, 465, 471, 489
second Lyapunov value, 619
self oscillations, 394, 430, 603
self-limit, 410, 413
self-limited trajectory, 14
self-limiting manifold, 740
semi-orientable homoclinic butterfly,

774
semi-orientable homoclinic-8, 776
semi-stable, 433, 434, 484, 548, 590,

607, 881
semi-stable curve, 622
semi-stable cycle, 566, 674, 685
semi-stable equilibrium state, 556
semi-trajectories, 14, 399, 480, 497
separatrices, 396, 431, 500, 516, 525,

645, 761
separatrix, 18, 29, 396, 431, 500, 516,

525, 645, 761
separatrix loop, 105, 435, 688, 694,

700, 712, 761, 900
separatrix value, 771
set(minimal), 10, 14, 241, 245, 405
shape of a roulette, 54
shift map, 853, 901
Shilnikov condition, 742
Shilnikov theorem, 721, 748
Shimizu-Morioka model, 826, 837,

840, 858, 866, 895, 911
shortened normal form, 110
Siegel region, 101, 102, 103
simple dynamics, 412, 437, 736, 742
simple equilibrium state, 808
simple homoclinic loop, 762
simple leading eigenvalues, 183, 184
simple saddle-node, 431, 460, 651,

671, 681, 709, 716
single valued inverse map, 253



Index 955

single-circuit homoclinic loop, 758
singularly perturbed system, 675
sink, 64
skeleton, 18
Smale horseshoe, 741, 885
small denominators problem, 102
small lobe condition, 662, 669
smooth annulus map, 631
smooth attractive invariant curve, 762
smooth attractive invariant manifold,

677, 762
smooth conjugacy theorem, 276
smooth diffeomorphism, 114
smooth dynamical system, 8
smooth foliation, 280, 453
smooth invariant closed curve, 239
smooth invariant curve, 616, 620, 631
smooth invariant foliation, 282
smooth invariant manifold, 79, 84
smooth leading saddle manifold, 84
smooth manifold, 419, 653
smooth torus, 665
soft birth of an invariant torus, 809
soft generation of an invariant cycle,

614
soft loss of stability, 600, 803, 805
solid torus, 407, 662
solution, 1
special trajectory, 17, 769
spectrum, 142
spiral attractor, 24
S-property, 409
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33, 45, 74, 76
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standard form, 453
stationary regime, 633
Sternberg theorem, 103, 212
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time-reverse system, 5
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topological invariant, 430, 441
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trajectory, 7
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transverse curve, 534
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triple instability, 869
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two degeneracy regime, 645
two-dimensional invariant torus, 258
two-dimensional Poincaré map, 119
two-parameter family, 604, 633, 672
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unique invariant manifold, 73, 253
unique solution, 155, 245, 289
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unstable complex focus, 469, 499
unstable direction, 121
unstable eigen-subspace, 148
unstable equilibrium state, 558
unstable fixed point, 116, 614, 620
unstable focus, 709
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unstable focus fixed point, 123, 128
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unstable node fixed point, 119, 128
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state, 64
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rium state, 64
van der Pol equation, 236, 267, 630,

643, 820, 849, 901
variational equation, 2, 91, 92, 194
velocity field, 7
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vertical strip, 420

wandering point, 8, 399, 400, 405
wandering trajectory, 399
weak focus, 432, 470, 516, 801
weak resonance, 104, 493, 499, 515,
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weak saddle-focus, 497
weak, 406, 497
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Weierstrass’s method, 270
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Wronsky formula, 197
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diffeomorphismes R2,” Comptes Rendus Acad. Sci. 292, Ser. 1, 507–510.

[38] Chow, S.-N., Deng, B. and Fiedler, B. [1990] “Homoclinic bifurcations
of resonant eigenvalues,” J. Dyn. Diff. Eq. 2(2), 177–245.

[39] * Chow, S.-N. and Hale, J. [1982] Methods of Bifurcation Theory
(Springer-Verlag: New York).

[40] * Chow, S.-N., Li, C. and Wang, D. [1994] Normal Forms and Bifurca-
tions of Planar Vector Fields (Cambridge University Press: Cambridge).

[41] Chua, L. O. [1998] CNN: A Paradigm for Complexity (World Scientific:
Singapore).

[42] de Melo, W. [1980] “Moduli of stability of two-dimensional diffeomor-
phisms,” Topology 19, 9–21.

[43] de Melo, W. and van Streen, S. J. [1987] “Diffeomorphisms on surfaces
with finite number of moduli,” Erg. Theory Dynam. Systems 7,
415–462.

[44] Deng, B. [1993] “Homoclinic twisting bifurcations and cusp horseshoe
maps,” J. Dyn. Diff. Eq. 5, 417–467.



Bibliography 931

[45] Diaz, L., Rocha, J. and Viana, M. [1996] “Strange attractors in saddle-
node cycles: prevalence and globality,” Invent. Math. 125, 37–74.

[46] Doedel, E. [1997] “Nonlinear numerics,” Int. J. Bif. Chaos 7(9–10),
2127–2143.

[47] Dulac, H. [1923] “Sur les cycles limites,” Bull. Soc. Math. France 51,
45–188.

[48] Fenichel, N. [1971] “Persistence and smoothness of invariant manifolds
for flows,” Indiana Univ. Math. J. 21, 193–226.

[49] Fink, A. M. [1974] Almost Periodic Differential Equations, Lecture Notes
in Mathematics 377 (Springer-Verlag: Berlin, New York).

[50] Gambaudo, J. M., Glendinning, P. and Tresser, C. [1988] “The gluing
bifurcation. I: Symbolic dynamics of the closed curves,” Nonlinearity
1(1), 203–214.

[51] Gavrilov, N. K. [1978] “On some bifurcations of an equilibrium state with
one zero and a pair of purely imaginary roots,” in Methods of Qualitative
Theory of Differential Equations (Gorky State University: Gorky); [1987]
“On bifurcations of equilibrium with one zero and pair of pure imaginary
eigenvalues and additional degeneracy,” ibid. 43–51.

[52] Gavrilov, N. K. and Roshchin, N. V. [1983] “On the stability of an
equilibrium with one zero and a pair of pure imaginary eigenvalues,”
in Methods of Qualitative Theory of Differential Equations Leontovich–
Andronova, ed., (Gorky State University: Gorky), 41–49.

[53] Gavrilov, N. K. and Shilnikov, A. L. [1996] “On a blue sky catastro-
phe model,” Proc. Int. Conf. Comtemp. Problems of Dynamical Sys-
tems Theory, ed. Lerman, L. (Nizhny Novgorod State University: Nizhny
Novgorod). [1999] “An Example of blue sky catastrophe,” in Ams Transl.
Series II. “Methods of qualitative theory of differential equations and re-
lated topics.” (AMS, Providence, Rhode Island).

[54] Gavrilov, N. K. and Shilnikov, L. P. [1972] “On three-dimensional dy-
namical systems close to systems with a structurally unstable homoclinic
curve I,” Math. USSR Sbornik 88(44), 467–485.

[55] Gavrilov, N. K. and Shilnikov, L. P. [1973] “On three-dimensional dy-
namical systems close to systems with a structurally unstable homoclinic
curve II,” ibid. 90(1), 139–156.



932 Bibliography

[56] * Golubitsky, M. and Schaeffer, D. [1985] Singularities and Groups in
Bifurcation Theory I (Springer-Verlag: New York).

[57] * Golubitsky, M., Stewart, I. and Schaeffer, D. [1988] Singularities and
Groups in Bifurcation Theory II (Springer-Verlag: New York).

[58] Gonchenko, S. V. and Shilnikov, L. P. [1990] “Invariants of Ω-conjugacy
of diffeomorphisms with a structurally unstable homoclinic trajectory,”
Ukrainian Math. J. 42(2), 134–140.

[59] Gonchenko, S. V. and Shilnikov, L. P. [1993] “On moduli of systems with
a structurally unstable homoclinic Poincaré curve,” Russian Acad. Sci.
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ble homoclinic Poincaré curve,” Russian Acad. Sci. Dokl. Math. 47(3),
410–415.

[62] Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V. [1996] “Dynamical
phenomena in systems with structurally unstable Poincaré homoclinic
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[110] Poincaré, H. [1903] Figures d’equilibre d’une masse fluide (Paris).
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Henri Poincaré, Phys. Theor. 40, 441–461.

[148] Turaev, D. V. [1984] “On a case of bifurcations of a contour composed
by two homoclinic curves of a saddle,” in Methods of Qualitative Theory
of Differential Equations (Gorky State University), 162–175.

[149] Turaev, D. V. [1991] “On bifurcations of dynamical systems with two
homoclinic curves of the saddle,” Ph.D. Thesis, Nizhny Novgorod State
University.



Bibliography 939

[150] Turaev, D. V. [1996] “On dimension of nonlocal bifurcational problems,”
Int. J. Bif. Chaos 2(4), 911–914.

[151] Turaev, D. V. and Shilnikov, L. P. [1987] “On bifurcations of a homoclinic
“figure-eight” for a saddle with a negative saddle value,” Soviet Math.
Dokl. 44(2), 422–426.

[152] Turaev, D. V. and Shilnikov, L. P. [1995] “On a blue sky catastrophe,”
Soviet Math. Dokl. 342(5), 596–599.

[153] Turaev, D. V. and Shilnikov, L. P. [1998] “An example of a wild strange
attractor,” Sbornik. Math. 189(2), 291–314.

[154] van der Pol, B. [1927] “Forced oscillations in a circuit with nonlinear
resistance (receptance with reactive triode),” London, Edinburgh and
Dublin Phil. Mag. 3, 65–80 (Reprinted in Bellman and Kakaba [1964]).

[155] Van Strien, S. J. [1982] On Parameter Families of Vector Fields. Bifur-
cations Near Saddle-connections, Ph.D. Thesis, Utrecht University.

[156] * Wiggins, S. [1988] Global Bifurcations and Chaos (Springer-Verlag:
New York).

[157] Eleonsky, V. M., Kulagin, N. E., Turaev, D. V. and Shilnikov, L. P. [1988]
“On the classification of self-localized states of the electromagnetic field
within nonlinear medium,” DAN SSSR 309(9) 898–852.

[158] Shashkov, M. [1999] “Impossibility of complete bifurcation description
for some classes of systems with simple dynamics”, Abstracts of Int.
Conference, Equadiff 99 (Berlin), 22.

[159] Shilnikov, L. P., Turaev, D. V. [1997] “Superhomoclinic orbits and multi-
pulse homoclinic loops in Hamiltonion systems with discrete symme-
tries”, Regular and Chaotic Dynamics 2(3/4) 126–138.

[160] ∗ Ilyashenno, Y. Li, Weigu [1999] Nonlocal bifurcations. Math. Surveys
and Monographs 66 (AMS, Rhode Island, Providence).

[161] Afraimovich, V., Bykov, V. V. and Shilnikov L. P. [1983] “On attract-
ing structurally unstable sets of Lorenz attrcator type”, Trans. Moscow.
Math. Soc. 44, 150–213.

[162] Arneodo, A. Couller, P. H. and Spiegel, E. A. [1985] “The dynamics of
triple convection”, Geophys. Astrophys. Fluid Dynamics 31, 1–48.



940 Bibliography

[163] Arneodo, A. Couller, P. H., Spiegel, E. A. and Tresser, C. [1985] “Asymp-
totic chaos”, Physica 14D, 327–347.

[164] Back, A., Guckenheimer, J., Myers, M. R., Wicklin, F. J. and
P. A. Worfolk [1992] “DsTool: Computer assisted exploration of
dynamical systems”, Notices Amer. Math. Soc. 39(4), 303–309;
ftp://cam.cornell.edu/pub/dstool/.

[165] Bautin, N. N. [1984] Behavior of Dynamical Systems near the Boundaries
of Stability Regions (Nauka: Moscow).

[166] Belykh, V. N. [1980] Qualitative methods of the theory of nonlinear oscil-
lations of concentrated systems, Gorky State Univerosity press: Gorky.

[167] Byragov, V. S. [1987] “Bifurcations in a two-parameter family of con-
servative mappings that are close to the Henon mapping”, in Methods
of the Qualitative Theory of Differential Equations (Gorky: Gorky State
Univ. Press), 10–24.

[168] Bykov, V. V. [1998] “On bifurcations leading to chaos in Chua’s circuit”,
Int. J. Bifurcation & Chaos 8(4), 685–699.

[169] Bykov, V. V. and Shilnikov, A. L. [1992] “On boundaries of the re-
gion of existence of the Lorenz attractor”, Selecta Math. Sovietica 11(4),
375–382.

[170] Feigenbaum, M. [1978] “Quantative universality for a class of nonlinear
transformations”, J. Statist. Phys. 19, 25–52.

[171] Gaspard, P. [1993] “Local birth of homoclinic chaos”, Physica D62,
94–122.

[172] Gaspard, P. and Nicolis, G. [1983] “What can we learn from homoclinic
orbits in chaotic dynamics?” J. Stat. Phys. 27(1), 499–518.

[173] Glendenning, P. and Sparrow, C. [1984] “Local and global behavior near
homoclinic orbits”, J. Stat. Phys. 35, 645–696.

[174] Glendenning, P. and Sparrow, C. [1985] “T-point: a codimension-two
heteroclinic bifurcation”, J. Stat. Phys. 43, 479–488.

[175] Gonchenko, S. V. and Gonchenko, V. S. [2000] “On Andronov-Hopf bifur-
cations of two-dimensional diffeomorphisms with homoclinic tangencies”,
Preprint No. 556, WIAS, Berlin.



Bibliography 941

[176] Gonchenko, S. V. and Komlev, Yu. A [1988] “Bifurcations and chaos in
a cubic map of the plane”, in Methods of Qualitative Theory of Diff.
Equations (Gorky University Press: Gorky), 33–39.

[177] Hindmarsh, J. L. and Rose, R. M. [1984] “A model of neuronal burst-
ing using three cioupled first order differential equations”, Proc. R. Soc.
Lond. B221, 87–102.

[178] Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V. and Nikolaev, E. V.
[1993] “Continuation techniques and interactive software for bifurcation
analysis of ODEs and iterated maps”, Physica 62D, 360–371.

[179] Khibnik, A. I., Roose, D. and Chua, L. O. [1993] “On periodic orbits and
homoclinic bifurcations in Chua’s circuit with smooth nonlinearity”, Int.
J. Bifurcation & Chaos 3(2), 363–384.

[180] Krauskopf, B. and Osinga H. M. [1999] “Investigating torus bifurcations
in the forced Van der Pol oscillator”, in Numerical Methods for Bifur-
cation Problems and Large-Scale Dynamical Systems eds. E. J. Doedel,
L. S. Tuckerman, IMA Volumes in Mathematics and its Applications
119, Springer-Verlag, to appear.

[181] Osinga H. M. [1999] “Non-orientable manifolds of periodic orbits”, Pro-
ceedings of Equadiff 99, Berlin, to appear.

[182] Kuznetsov, Yu. A. [1998] “CONTENT — integrated environment
for analysis of dynamical systems Tutorial”, Ecole Normale Su-
perieure de Lyon, Rapport de Recherche UPMA-98-224; ftp://ftp.cwi.nl/
pub/CONTENT.

[183] Lorenz, E. N. [1984] “Irregularity: A fundumental property of the ath-
mosphere”, Tellus A36, 98–110.

[184] Mira, C. [1987] Chaotic Dynamics: From the One-dimensional Endo-
morphism to the Two-Dimensional Diffeomorphism. (World Scientific:
Singapore-New Jersey-Hong Kong).

[185] Pisarevskii, V., Shilnikov, A. L. and Turaev, D. V. [1998] “Asymptotic
normal forms for equilibria with a triplet of zero charactersitic exponents
in systems with symmetry”, Regular and Chaotic Dynamics 3(1), 19–27.

[186] Roschin, N. V. [1978] “Unsafe stability boundaries of the Lorenz model”,
J. Appl. Math. Mech. 42(5), 1038–1041.



942 Bibliography

[187] Rucklidge, A. M. [1994] “Chaos in magnetoconvection”, Nonlinearity 7,
1565–1591.
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