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Abstract

Background: Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems
such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It
seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to
possess multistability. The mechanisms supporting multistability of bursting regimes are not well understood or classified.

Methodology/Principal Findings: Our study is focused on determining the bio-physical mechanisms underlying different
types of co-existence of the oscillatory and silent regimes observed in a neuronal model. We develop a low-dimensional
model typifying the dynamics of a single leech heart interneuron. We carry out a bifurcation analysis of the model and show
that it possesses six different types of multistability of dynamical regimes. These types are the co-existence of 1) bursting
and silence, 2) tonic spiking and silence, 3) tonic spiking and subthreshold oscillations, 4) bursting and subthreshold
oscillations, 5) bursting, subthreshold oscillations and silence, and 6) bursting and tonic spiking. These first five types of
multistability occur due to the presence of a separating regime that is either a saddle periodic orbit or a saddle equilibrium.
We found that the parameter range wherein multistability is observed is limited by the parameter values at which the
separating regimes emerge and terminate.

Conclusions: We developed a neuronal model which exhibits a rich variety of different types of multistability. We described
a novel mechanism supporting the bistability of bursting and silence. This neuronal model provides a unique opportunity to
study the dynamics of networks with neurons possessing different types of multistability.
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Introduction

Multistability is a fundamental attribute of the dynamics of

neurons and neuronal networks [1–4]. As a feature it appears

particularly advantageous for neurons which are part of

multifunctional central pattern generators [5–7]. Some mecha-

nisms underlying bistability, like the coexistence of tonic spiking

and silence and the coexistence of tonic spiking and bursting, have

been intensively studied and are well understood [8–12]. Sur-

prisingly, there is a gap in our knowledge of the dynamical

mechanisms supporting the bistability of bursting and hyperpo-

larized silence, bursting and subthreshold oscillations and multi-

stability of bursting, subthreshold oscillations and silence. A

classification of mechanisms supporting the multistability of

oscillatory and silent regimes is yet incomplete, and remains a

fundamental problem for both neuroscience and the theory of

dynamical systems.

Bursting is a neuronal oscillatory activity consisting of groups of

high-frequency spikes, ‘‘bursts’’, separated by intervals of quies-

cence. It is a basic regime of neuronal activity, which for func-

tionally different neurons can signify either a normal or a

pathological state. It is a commonly recorded functional regime

of activity of the neurons in the central pattern generators (CPGs):

oscillatory neuronal networks executing the motor control of

rhythmic movements, like breathing in mammals and the heart-

beat in invertebrates such as the medicinal leech [13–16].

Bursting activity is the result of an interplay of ionic currents

which are voltage-gated on various timescales. We envisage a

neuron as a slow-fast dynamical system. The coexistence of

different attracting regimes of activity, i.e., multistability, is not

uncommon for such systems. The qualitative theory of dynamical

systems provides a rigorous description of scenarios producing

multistability of regimes in the system’s dynamics. Exemplary

studies by Rinzel (1978) and by Guttman, Lewis and Rinzel (1980)

formulated and answered a set of questions which describe a basic

scenario of bistability of tonic spiking and silence. It is based on the

presence of a repelling periodic orbit separating the basin of

attraction of the tonic spiking periodic orbit from the equilibrium

representing the silent regime. The scenario also describes the

modulation of the neuron’s dynamics in response to variations of a

bifurcation parameter. According to this scenario, the unstable

limit cycle emerges through a subcritical Andronov-Hopf bifurca-

tion and disappears through a saddle-node bifurcation for periodic

orbits; both bifurcations define the boundaries for the bistability
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region. This gives rise to hysteresis and catastrophe-like, fast and

non-reversible transitions between silence and tonic spiking as the

bifurcation parameter is varied. Guttman, Lewis and Rinzel (1980)

showed that a switch between these regimes can be executed by a

pulse of current in experiments on the squid giant axon in saline

with low calcium concentration.

This study is precipitated by our keen interest in the dynamics of

the leech oscillator heart interneurons, which constitute the core of

the leech heartbeat timing network. They are found as pairs of

mutually inhibitory neurons located in ganglia 3 and 4 [16]. This

preparation provides a unique opportunity for studying cellular

and network mechanisms of bursting. A leech heart interneuron

can be decoupled from its network with bicuculline [17]; its

endogenous and network activity is well described by the canonical

model [18,19]. This model has been instrumental in predicting

that these neurons have endogenous dynamics supporting bursting

activity in a single cell, and has showed the high sensitivity of the

bursting regime to variations of the leak current. This sensiti-

vity explained why these interneurons show bursting activity

while recorded extracellularly, and tonic spiking while recorded

intracellularly. A rigorous analysis of the canonical model of a

leech heart interneuron is a difficult subject. The model is a system

of 14 ordinary differential equations with the variables operating

on different time scales. We have numerically obtained a two-

parameter bifurcation diagram, mapping oscillatory and stationary

regimes on the plane of the leak current’s parameters, conductance

and the reversal potential of the leak current (gleak,Eleak ). It shows

the borders from silence to bursting and from bursting to silence,

bounding the zone where bursting and silence coexist [19]. To

demonstrate the bistability experimentally in a leech heart inter-

neuron, and to identify the implications of this regime for

operation of the leech heartbeat CPG, first we develop its low

dimensional model and carry out the analysis of this model.

The reduced model introduced here is based on the fast sodium

current, INa; the slow, low-threshold calcium current, ICaS ; and

the leak current, Ileak. We have the following rationale for the

choice of the currents. ICaS provides the slowest variable of the

14D canonical model of the leech heart interneuron. It has been

suggested for the 14D model that ICaS underlies the bursting

activity [19]. Also, we have demonstrated that ICaS introduced

through dynamic clamp can reinstate the bursting activity of a

tonically spiking leech heart interneuron having all Ca2z-currents

blocked and being isolated from other neurons by the application

of saline containing Mn2z [20]. The significance of this achieve-

ment is apparent in light of past experiments showing that these

neurons are sensitive to the leak current’s parameters, so that we

could not intracellularly record bursting activity of a neuron

pharmacologically singled out from the network. We showed that

an intrinsic mechanism for regulating burst duration might be

based on the kinetics of ICaS inactivation and we further

corroborate that assertion in this study.

The model presented here makes a complementary study to our

previous works on a simplified model since it employs the same fast

subsystem supporting spiking as in Cymbalyuk and Calabrese,

2001, but differs in terms of its slow variable [12,21–25]. That

model represented a leech heart interneuron under a blockade of

Ca2z currents along with a partial block of outward currents. It

included the fast sodium current, INa, and non-inactivating slow

potassium current, IK2, so that it was described by a system

of three differential equations. The inactivation of INa and

membrane potential constituted the fast subsystem; and the

activation of IK2 was the slow variable. The present model allows

us to focus the investigation on the potential roles of ICaS in the

dynamics of a leech heart interneuron.

We construct a simplified model described by the set of ionic

currents and their kinetics ICaS, INa. We sweep the parameters

determining the kinetics of the currents and choose one set which

produces activity with temporal characteristics close to those

recorded experimentally from leech heart interneurons. Fitting the

experimental data is not the primary goal of the article; we bring

the model into the ballpark with the experimental observables

through simple sweeps over parameters’ values. We describe

mechanisms supporting multistability in the model under variation

of parameters of leak current.

Materials and Methods

We present a simplified leech neuron model containing only the

fast sodium (INa) and slow calcium (ICaS ) voltage-dependent

currents and the leak current (Ileak). We refer to it as model {ICaS

INa}, according to the set of voltage-gated ionic currents which it

contains. This model is described by the system of the following

four equations:

CV
0

~ {½�ggNaf 3
?({150,0:028,V)hNa½V{ENa�

z �ggCaSm2
CaShCaS½V{ECaS�

z gleak½V{Eleak��,

h
0
Na ~ ½f?(500,Bh,V){hNa�=0:0405,

m
0
CaS~ ½f?({420,0:0472,V){mCaS�=tmCaS,

h
0
CaS ~ ½f?(360,BhCaS,V){hCaS�=thCaS,

ð1Þ

where maximum conductances and reversal potentials of ICaS

and INa are gCaS = 80 nS, gNa = 250 nS, ECaS = 0.135 V, and

ENa = 0.045 V, correspondingly; conductance, gleak, and reversal

potential, Eleak, of the leak current are used as bifurcation

parameters; C is the membrane capacitance, C = 0.5 nS. Function

f?(A,B,V ) is a steady-state activation (inactivation) function of a

voltage-gated ionic current given by

f?(A,B,V )~1=½1zeA(VzB)�: ð2Þ

Here B is the half-activation (half-inactivation) membrane

potential at which f?~1=2. In the model, the activation of

INa is considered to be instantaneous, so that mNa~m?
Na~

f?({150,0:028,V ). The voltage-dependent time constants for the

activation and inactivation variables of the calcium current are

taken from Hill et al. 2001:

tmCaS ~ 0:005z0:134=½1ze{400(Vz0:0487)�
thCaS ~ 0:2z5:25=½1ze{250(Vz0:043)�

ð3Þ

One can see that the inactivation of the calcium current, hCaS, is

the slowest variable in the model.

The bifurcation analysis was performed using the parameter

continuation software CONTENT (Kuznetsov YA, Levitin VV,

Skovoroda AR (1996) Continuation of stationary solutions to

evolution problems in CONTENT. Report AMR9611. Amster-

dam: Centrum/Voor Wiskunde en Informatica) freely available at

http://www.staff.science.uu.nl/,kouzn101/CONTENT/. The

solutions of this model were obtained using the Runge-Kutta

method of the 4th order and a variable-order method based on

Coexistence of Regimes in a Model of a Neuron
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numerical differentiation formulas, implemented as the ode15 s

solver in Matlab (MathWorks, Inc.). Absolute and relative

tolerances were set to 10{8 and 10{9, respectively.

Because the model is based on a subset of inward currents and

hence lacks all outward currents except for the leak current, the

balance of inward and outward currents has to be restored. It

could be achieved in the sense that we tune up the available

parameters so that the model produces the activity with the

temporal characteristics of the bursting measured experimentally

[19]; the instance of such a model found here we call the canonical

model. We took into account basic temporal characteristics of the

bursting waveforms such as the spike frequency, burst duration,

interburst interval, period, number of spikes and duty cycle. By

spike frequency we mean the average frequency of spikes in a

burst. The burst duration is measured as the time between the first

spike and the last spike in a burst. The interburst interval is the

time between the last spike of a burst and the first spike of the

following burst. The period of bursting is measured as the time

between the first spike of a burst and the first spike of the

consecutive burst, which is the sum of the burst duration and

interburst interval. The duty cycle is the fraction of the period

occupied by the burst duration, i.e. the ration of the burst duration

to the period. To explore the waveforms of the bursting we swept

values of half-inactivation voltages Bh and BhCaS of the two

voltage-gated currents. Then, the parameters determining the leak

current, gleak and Eleak, were used as the bifurcation parameters

following Cymbalyuk et al., 2002.

Canonical parameters
A considerable concern about the usability of this model was

whether we could adjust it to produce bursting with characteristics

close to experimentally recorded ones [19]. The targeted

characteristics were: the burst duration was to be between 3.2

and 6.0 sec, the interburst interval was to be within 1.5 and

3.0 sec, the duty cycle was to be between 65.8 and 75.5%, the

spike frequency was to be between 6.6 and 14.7 Hz. The model

parameters supporting bursting with characteristics in the ballpark

with these conditions were easily attained in three steps.

First, we varied the maximum conductances, and the inactiva-

tion kinetics for INa and ICaS . Relative to the 14D model, we set

larger values for �ggNa~250 nS, and �ggCaS~80 nS to make the

corresponding currents more accentuated. Tuning the kinetic

parameters Bh and BhCaS was motivated by the notion of the

window mode of a voltage-gated ionic current [21,26]. In this

mode an inactivating current exhibits the properties of a persistent,

non-inactivating current in the interval of membrane potentials

where the steady-state activation and inactivation curves overlap.

In the 4D model, the ‘‘window’’ mode of INa could play a role

similar to that of the sodium persistent current, which supports

burst duration in the canonical 14D model [18,19]. A similar role

would be played by the ‘‘window’’ mode of ICaS .

From the studies of the 14D model we can infer that in the 4D

model the activation of ICaS would be responsible for the inception

of a burst, while the inactivation of ICaS would control the burst

termination. This mechanism of burst termination is similar to the

one shown for the dynamics of a half-center oscillator assembled

from two heart interneurons [18,20].

Second, we examined the activity of the model in response to

variations of the half-inactivation voltage of INa, Bh, in the

function h?Na:f?(500,Bh,V)~1=½1ze500(VzBh)�. As Bh is in-

creased, the curve h?Na shifts towards the more hyperpolarized

values, closing the window voltage interval. This manipulation of

Bh directly affects the steady-state conductance g?
Na, which

produces the window current supporting the burst phase of the

bursting activity. The overall decrease of g?
Na decreases the period,

the burst duration and the duty cycle of the model (Fig. 1). The

bursting activity occurs within the range of Bh [0.02888 0.03692]

V (Fig. 1). For some range of values of Bh smaller than 0.02888 V,

the model shows the tonic spiking activity. In the range of Bh

between 0.03692 V and 0.03790 V, the model exhibits the stable

subthreshold oscillations; and it is silent for Bhw0.03790 V.

The parameters, gleak = 15.7 nS, Eleak = 20.0505 V and BhCaS =

0.06 V fixed for this sweep, were chosen so that the model exhibits

coexistence of bursting and silence. This sweep of Bh allowed us to

adjust the burst duration so that it falls within the experimentally

measured range, marked by the grey rectangle in Fig. 1 A, while

the interburst interval and spike frequency were not attained. The

discontinuity of the graphs of the interburst interval (Fig. 1 B) and

the spike frequency (Fig. 1 C) near Bh = 0.36 V is due to the

integer-number difference in the number of spikes.

Third, to adjust the interburst interval, we swept the half-

inactivation voltage of ICaS , BhCaS . The increase of BhCaS prolongs

the interburst interval of the bursting activity. The interburst

interval grows monotonically from 0.53 sec to 3.77 sec as BhCaS is

swept from 0.048 V to 0.06 V (Figs. 2 and 3). The graph also

shows the effect of variation of BhCaS on the spike frequency within

a burst (Fig. 3).

Figure 1. Dependence of temporal characteristics of bursting
on half-inactivation voltage of INa. The variation of half-inactivation
voltage of the fast sodium current, Bh, changes: (A) Burst duration, (B)
interburst interval, and (C) spike frequency. This sweep of Bh allowed us
to adjust the burst duration so that it falls within the experimentally
measured range, marked by the grey rectangle in A. The leak current
parameters are gleak = 15.7 nS and Eleak = 20.0505 V.
doi:10.1371/journal.pone.0021782.g001

Coexistence of Regimes in a Model of a Neuron
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Our parameter sweeps of the model were concluded with the

following parameters Bh = 0.031 V, BhCaS = 0.06 V. This adjust-

ed model exhibits bursting activity with the burst duration of

4.5 sec, the interburst interval of 3.8 sec, the period 8.3 sec, and

the duty cycle around 54.6%; the number of spikes per burst is

26, the spike frequency is 5.59 Hz (Fig. 2D). Leak current para-

meters are gleak = 15.7 nS and Eleak = 20.0505 V. We further

tuned the model by setting gleak = 15.2 nS, so that the temporal

characteristics of bursting activity fit well to the experimental data

(Fig. 4).

Results

Equilibria and oscillatory regimes: the (gleakEleak)-
parameter bifurcation diagram

Parameters of the leak current are remarkable targets for

modulation of neuronal excitability. For small values of the leak

conductance the neuron stays silent at the depolarized equilibri-

um. This regime of depolarized silence describes a neuron in

depolarization block. On the other hand, for large values of the

conductance the neuron stays silent at the hyperpolarized

equilibrium. The regime of hyperpolarized silence describes a

neuron at a hyperpolarized rest state, or in hyperpolarization

block. For different intermediate values of the conductance, it

exhibits a plethora of oscillatory regimes such as various bursting,

tonic spiking, and subthreshold oscillations. These regimes

represent different levels of excitability. To inventory this rich

variety of the neuronal dynamics, we created a two-parameter

(gleak,Eleak) bifurcation diagram for equilibria and oscillatory

regimes, which is shown in Fig. 5. On the diagram we map the

areas of the hyperpolarized and depolarized silence (equilibria),

the areas of tonic spiking (a stable periodic orbit), bursting activity,

and various types of multistability. These areas are determined by

these four types of codimension-one bifurcations: the Andronov-

Hopf, the saddle-node and homoclinic bifurcations of equilibria,

and the saddle-node bifurcations of periodic orbits.

The stable depolarized equilibrium loses stability through the

supercritical Andronov-Hopf bifurcation. At the critical value, it

gives rise to the stable periodic oscillations, see Figs. 5, 6, 7 and 8.

This periodic orbit represents the tonic spiking activity of the

neuron. The bifurcation occurs at the curve labeled AH1 in the

(gleak,Eleak) diagram in Fig. 5. At the bifurcation, the periodic

orbit is born with zero magnitude and a non-zero frequency v,

determined by the imaginary part of the characteristic exponents

of the equilibrium state. The sign of first Lyapunov coefficient

determines the stability of the new-born periodic orbit [27,28]. It is

negative for the supercritical Andronov-Hopf bifurcation. The

corresponding bifurcation curve corresponds to the transition from

depolarized silence into tonic spiking activity.

A large area in the middle of the bifurcation diagram

corresponds to the tonic spiking regime of the model. As the

parameter gleak is increased from the bifurcation value, the

magnitude of the stable periodic orbit increases. The orbit loses its

stability through a period-doubling bifurcation on the curve PD in

Fig. 5. With gleak increased further, the unstable orbit disappears

through the homoclinic bifurcation. At this value the orbit

becomes a homoclinic loop of the saddle equilibrium. The

bifurcation occurs with critical values of gH
leak and EH

leak which

are marked by the curve H1 on the diagram (Fig. 5). More

precisely, to obtain this curve we exploited the fact that the period

of the orbit grows as {lnjgleak{gH
leakj near the homoclinic

bifurcation, thus it can be arbitrarily large in the vicinity of the

bifurcation [27,28]. The curve H1 marks the parameters’ values

corresponding to tonic spiking with a 25 second period. The area

between the curves AH1 and PD supports the periodic tonic

spiking in the model. Depending on the level, i.e., the value of the

other parameter Eleak, a further increase of gleak beyond the

border H1 rightward leads to a transition from tonic spiking into

either hyperpolarized silence or bursting (Fig. 5).

At a large value of gleak the neuron stays silent at the

hyperpolarized equilibrium, which is a stable focus. Lowering

gleak makes it unstable through another Andronov-Hopf bifurca-

tion defining the curve AH2 in the parameter plane in Fig. 5. For

the most part, the bifurcation is a subcritical one which means that

it gives rise to an unstable, subthreshold periodic orbit of a saddle

Figure 2. Transition from tonic spiking into bursting and the
evolution of the bursting waveforms. The increase of the half-
inactivation voltage of the slow calcium current, BhCaS shifts h?CaS

towards more hyperpolarized values of VM changing the activity
from tonic spiking (A) to bursting (B–D). (A) For BhCaS = 0.047 V the
model exhibits a periodic tonic spiking activity. (B–D) The increase
of BhCaS up to 0.048 V shifts h?CaS towards the hyperpolarized value
of VM thus changing the activity from tonic spiking to bursting.
(C) The increase of BhCaS to 0.056 V expands the interburst interval.
(D) BhCaS = 0.06 V brings the value of the interburst interval close
to the targeted value. The leak current parameters are the same as
in Fig. 1. Bh was 0.031 V for A and D. Panels (B)–(D) have the same
time scale.
doi:10.1371/journal.pone.0021782.g002

Coexistence of Regimes in a Model of a Neuron
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type. However, the segment on the curve AH2 bounded by the

points labeled AHG1 and AHG2 corresponds to a supercritical

Andronov-Hopf bifurcation, giving rise to the stable subthreshold

oscillations. At these two points the first Lyapunov coefficient is

zero. Each point locates a Bautin bifurcation, which locates the

birth of the saddle-node periodic orbit with zero amplitude and

non-zero frequency and has codimension 2. The feature of such a

bifurcation is that its unfolding includes a bifurcation curve of

saddle-node periodic orbits, that originates from the codimension

2 point. These two points lay on the intersection of the Andronov-

Hopf bifurcation AH2 and the saddle-node bifurcation for

periodic orbits SNo1 (Fig. 5 and Fig. 6). On the curve SNo1, two

Figure 3. Dependence of temporal characteristics of bursting
on the half-inactivation of IhCaS. Dependencies of (A) the burst
duration, (B) interburst interval and (C) spike frequency of the bursting
activity on BhCaS are shown. The shaded areas limit the values of BhCaS

corresponding to the temporal characteristics of the activity measured
experimentally. There are two ranges of values of BhCaS, where the
interburst interval falls within the scopes measured experimentally (the
two gray rectangles in (A)). Other parameters are Bh = 0.031 V,
gleak = 15.7 nS, Eleak = 20.0505 V.
doi:10.1371/journal.pone.0021782.g003

Figure 4. Bursting waveform with temporal characteristics
close to experimental data. Bursting activity of the canonical 4D
m o d e l a t BhCaS = 0 . 0 6 V , Bh = 0 . 0 3 1 V , gleak = 1 5 . 2 n S a n d
Eleak = 20.0505 V. The burst duration is 6.0 sec, teh interburst interval
is 3.0 sec, the duty cycle is 66.4%, the number of spikes is 35, the
frequency is 5.7 Hz.
doi:10.1371/journal.pone.0021782.g004

Figure 5. Two-parameter (gleak,Eleak) bifurcation diagram of the
oscillatory and stationary regimes. The dark blue curve AH1 marks
the supercritical Androvov-Hopf (A-H) bifurcation of the depolarized
equilibrium. To the left of AH1, the equilibrium is stable. To the right, it
becomes unstable, giving rise to stable tonic spiking. The orbit of
spiking loses stability at the period doubling bifurcation, the green
curve PD. Followed further, the tonic spiking periodic orbit disappears
through a homoclinic bifurcation of an equilibrium marked by the red
curve H1. The A-H bifurcation curve (AH2) for hyperpolarized
equilibrium is shown in light blue. On this curve, the two points
AHG1 and AHG2 mark the Bautin bifurcations (‘^’). They bound the
section of the curve where the A-H bifurcation is supercritical and gives
rise to the stable subthreshold oscillations. The outer sections, above
AHG1 and below AHG2, mark the subcritical A-H bifurcation, giving rise
to the saddle orbit. The range where the saddle orbit exists is bounded
by the homoclinic bifurcation of the saddle equilibrium, the light brown
curve H2. Passage through the supercritical section leads to the onset
of stable subthreshold oscillations. These oscillations vanish through a
saddle-node bifurcation of periodic orbits on the dashed black curve
SNo2 (Fig. 6). The area supporting bursting is obtained numerically
(mapped in orange, light blue, and partially in pink) and its border is
marked by ‘+’s. This border is bounded by the curves PD and H2. In the
pink zone there coexist bursting and stable subthreshold oscillations
(Fig. 8). The bright blue patch corresponds to the bistability of bursting
and silence; it is bounded by the curves AH2, H2 and H1. The yellow
area between the curves AH2 and PD corresponds to the coexistence of
tonic spiking and the hyperpolarized silent regime. The dotted lines
indicate the four levels of Eleak used in the diagrams: 20.048 V (1, Fig. 7-
1), 20.04938 V (2, Fig. 7-2), 20.04958 V (3, Fig. 8-3), and 20.0505 V (4,
Fig. 8-4). The dark brown curve, SNe , corresponds to the saddle-node
bifurcation at which the hyperpolarized equilibria disappear (Figs. 7 and
8). The green ‘?’ locates a point of tri-stability (gleak = 15.4 nS,
Eleak = 20.0502 V), illustrated in Fig. 10. The red ‘?’ locates a point of
bistability (gleak = 15.70 nS, Eleak = 20.0505 V), shown in Fig. 11.
doi:10.1371/journal.pone.0021782.g005

Coexistence of Regimes in a Model of a Neuron

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21782



subthreshold periodic orbits, stable and saddle, coalesce and

vanish.

Outside the interval between AHG1 and AHG2, the periodic

orbit emerges unstable through the subcritical Andronov-Hopf

bifurcation at AH2. With gleak increased, it terminates at the

homoclinic orbit of the saddle equilibrium. This event defines the

curve H2 (Fig. 5, Fig. 6).

The bursting activity is observed in the model for quite a large

range of the leak current parameter values. This range is bounded

by ‘+’ in Fig. 5 and the boundaries of the area are special interest

here. The onset of bursting appears to be in association with a

rapid period doubling cascade leading to chaos in the model [29].

The final event of the scenario involves a homoclinic bifurcation of

an unstable periodic orbit becoming the homoclinic loop of the

saddle equilibrium. The reduced 4D model also demonstrates the

coexistence of long-period, irregular bursting with chaotic tonic

spiking oscillations. This bistability is observed in the narrow stripe

bounded by the curves PD and H1. This type of transition has

been described for the Hindmarsh-Rose model [30].

The model shows six types of multistability: (1) tonic spiking and

the hyperpolarized silent regime; (2) tonic spiking and subthresh-

old oscillations; (3) tonic spiking and bursting; (4) bursting and

subthreshold oscillations; (5) bursting and the hyperpolarized silent

regime; (6) bursting, subthreshold oscillations, and silence.

To expand:

(1) The basin of tonic spiking and the hyperpolarized silent state

are separated by the stable manifold of the saddle equilibrium.

In the diagram the zone of this bistability is bounded by the

subcritical Andronov-Hopf bifurcation curve AH2, and the

period-doubling bifurcation curve PD (Fig. 5, Fig. 7.1 for

Eleak = 20.048 V).

(2) The tonic spiking and subthreshold oscillations are separated

by the stable manifold of the saddle equilibrium. This

bistability area is determined by the range of parameter

values supporting the stable subthreshold oscillations, i.e. it is

limited by the saddle-node bifurcation curve for the periodic

orbits,SNo2 and the supercritical Andronov-Hopf bifurcation

curve AH2 (Fig. 6, Fig. 7.2 for Eleak = 20.04938 V).

(3) The tonic spiking and bursting coexist near the transition

border between them (Fig. 5, Fig. 9 C–D). The mechanism

underlying this type of multistability has been previously

investigated in the Hindmarsh-Rose model [30].

(4) The bursting and subthreshold oscillations are separated by

the stable manifold of the unstable subthreshold oscillations.

Similarly to (2), the area of this bistability is determined by the

range of parameter values supporting the stable subthreshold

oscillations, and hence is bounded by the saddle-node

bifurcations’ curves for the periodic orbits,SNo2 and SNo1

(Fig. 6, Fig. 8.3 for Eleak = 20.04958 V, Fig. 9 A–B).

(5) The bursting and the hyperpolarized silent regime are

separated by the stable manifold of the unstable subthreshold

periodic orbit similar to (4). The corresponding zone is

bounded by the range of parameters’ values supporting the

unstable subthreshold oscillations, i.e. the area is bounded by

the subcritical Andronov-Hopf bifurcation curve AH2, and

the homoclinic bifurcation curve H2 (Fig. 6, Fig. 8.4 for

Eleak = 20.0505 V, Fig. 11).

Figure 6. Inset from the (gleakEleak) bifurcation diagram. The
notations are the same as in Fig. 5.
doi:10.1371/journal.pone.0021782.g006

Figure 7. The one-parameter (gleak) bifurcation diagrams
corresponding to the levels 1 and 2 in Figure 5. (1) The diagram
is constructed for Eleak~{0:048 V and (2) for Eleak~{0:04938 V. The
solid green and dashed red curves represent the membrane potential at
the equilibria, stable and unstable, correspondingly. Upper and lower
branches correspond to the depolarized and hyperpolarized states of
the interneuron. The branches are bridged by the middle saddle
equilibrium, bounded by two folds corresponding to the saddle-node
bifurcations. The tonic spiking emerges through a supercritical
Andronov-Hopf bifurcation, AH1, that makes the depolarized branch
unstable (dashed). Solid violet branches depict the minimum and
maximum membrane potential values of the tonic spiking oscillations.
The solid brown curve between them corresponds to the average
membrane potential of the tonic spiking oscillations. The tonic spiking
oscillations double their period after the period doubling bifurcation,
PD (vertical green line), and disappear though the homoclinic
bifurcation, H1. The hyperpolarized equilibrium loses stability though
the Andronov-Hopf bifurcation (AH2): subcritical in (1) and supercritical
in (2). (1): Unstable periodic orbit increases and terminates through a
homoclinic bifurcation (H2). (2): The magnitude of stable oscillations
increases as gleak is decreased up to the saddle-node bifurcation, SNo2.
After the fold, the branch of unstable subthreshold oscillations is
continued as gleak is increased until a homoclinic bifurcation (H2) where
it terminates. The pair of dashed blue curves depicts the minimal and
maximal values of the membrane potential of the unstable subthresh-
old oscillations. In both (1) and (2), the yellow rectangle indicates the
range of bistability of tonic spiking and hyperpolarized quiescence. In
(2) SNo2 and AH2 bound the range of bistability of tonic spiking and
the stable subthreshold oscillations (pink area).
doi:10.1371/journal.pone.0021782.g007
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(6) The bursting, subthreshold oscillations and silence are

separated by the stable manifolds of the two saddle orbits.

One saddle orbit appears through the subcritical Andronov-

Hopf bifurcation and disappears through a saddle-node

bifurcation for orbits SNo1. At SNo1 the stable subthreshold

oscillations appear (the stable periodic orbit). In turn they

disappear at a saddle node bifurcation SNo2, for a smaller

value of the bifurcation parameter, where the second saddle

orbit appears, which creates the barrier between the bursting

and the stable subthreshold oscillations. The second unstable

orbit disappears at the homoclinic bifurcation. Thus the tri-

stability is bounded by either the Andronov-Hopf bifurcation

or the second saddle-node bifurcation SNo2 on one side and

by the first saddle-node bifurcation on the other side SNo1.

We illustrated the three regimes by switching neuron’s activity

from the subthreshold oscillations in either bursting or silent

regimes (Fig. 10).

Switching between bursting and silent regimes by a
pulse of current

In the previous section, we applied the bifurcation analysis to

find the range of parameters’ values where bursting and silent

regimes co-exist. The analysis predicts that a model with

parameters taken from this range starting with different initial

conditions would demonstrate one regime or the other. These

results alone leave a concern as to whether these regimes would be

observable. It might be difficult to demonstrate both regimes if the

basin of attraction of one of them is too small. For example, for

Eleak = 20.0505 V, the coexistence is determined for gleak

between 15.466 nS and 15.776 nS. If gleak is picked in the vicinity

of the Andronov-Hopf bifurcation, the basin of attraction to the

equilibrium is small, and it is hard to achieve the switch from

bursting into the silent regime. If gleak is picked close to the

homoclinic bifurcation, then the situation reverses and it is harder

to switch from the silent regime into bursting. With the following

Figure 8. The one-parameter (gleak) bifurcation diagrams
corresponding to levels 3 and 4 in Figure 5. The diagrams show
the evolution of equilibria and oscillatory regimes for two values of the
leak reversal potential: Eleak~{0:04958V (3) and Eleak~{0:0505V (4)
plotted against the bifurcation parameter gleak. Labeling is the same as
in Fig. 7. Numbers 3 and 4 correspond to the dashed lines 3 and 4 in
Fig. 5. Here, the blue rectangles determine the range of bistability of the
bursting and hyperpolarized equilibrium. In (3) the pink rectangle marks
the range of the coexistence of bursting and the stable subthreshold
oscillations. The critical values for the Andronov-Hopf bifurcation (AH2)
and the saddle-node bifurcation SNo1 are very close to each other and
marked by the single vertical line AH2jSNo1.
doi:10.1371/journal.pone.0021782.g008

Figure 9. Examples of bistabilities of different oscillatory
regimes. A–B) Voltage traces of coexistent bursting and subthreshold
oscillations for gleak = 12.96 nS and Eleak = 20.04958 V. C–D) Voltage
traces of coexistent bursting and tonic spiking for gleak = 12.13195 nS
and Eleak = 20.0505 V.
doi:10.1371/journal.pone.0021782.g009

Figure 10. Multistability of three observable regimes. Stable
subthreshold oscillations coexist with bursting and silent attractors, and
by a pulse of current one can switch the activity from the subthreshold
oscillations into either of the coexisting regimes. The parameters are
gleak = 15.4 nS and Eleak = 20.0502 V (marked by the green ‘?’ on Figs. 5
and 6). Initial conditions leading to the stable subthreshold oscillations
presented are [V mCaS hCaS hNa] = [20.04671933 0.5275212 0.01250879
0.9996319]. The pulses were delivered at 38.9 sec with the amplitudes
20.07 nA (A) and 20.047 nA (B).
doi:10.1371/journal.pone.0021782.g010

Coexistence of Regimes in a Model of a Neuron

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21782



few numerical experiments we seek to test whether it is feasible to

demonstrate both regimes. For this section, we have chosen a

somewhat intermediate parameter value for the leak conductance

gleak = 15.7 nS, with Eleak = 20.0505 V.

The question is, how to test for multistability? Although we

address this question using a rather abstract model, we have a

preference for those perturbations which can be easily imple-

mented in an experimental set up, so that the predictions made

could be tested in living neurons. A procedure of this sort has been

utilized by Guttman, Lewis & Rinzel (1980). Following their

approach, we used perturbations of the model made by

‘‘injection’’ of a square pulse of current into the neuron. We

tested whether such perturbation could be used to switch from one

regime to the other. The duration of the pulses was set to 0.03 sec,

which is close to the effective width of a synaptic current pulse in

the leech heart interneuron. We tried different amplitudes of the

pulse. To switch from the silent regime into bursting, one needs to

provide a pulse of current with a sufficiently large amplitude. The

pulse can be either depolarizing or hyperpolarizing. For each

polarity the critical value of the pulse which is just sufficient for the

switch is different. Thus, there are two thresholds for the switch

from silence into bursting. The description is more complicated for

the switch from bursting into silence; and one more parameter of

stimulation has to be taken into account. It is a phase within the

period of bursting. Interestingly enough, for the parameters chosen

one could switch from bursting into silence again by either a

hyperpolarizing or depolarizing pulse of current (Fig. 11).

An important question for experimental testing is whether the

unstable oscillations responsible for the bistability of bursting and

silent regimes could be recorded. The model study predicts that it

might be possible. A projection of a trajectory onto (mCaS, hCaS)-

plane before and after a pulse was injected into the neuron showed

that the phase point oscillated in the vicinity of the unstable

subthreshold orbit sufficiently long to trace a few cycles of the

unstable oscillations (Fig. 12). Here, the green dot represents the

stable hyperpolarized equilibrium, whose basin of attraction is

bounded by the stable manifold of the unstable periodic orbit. The

orbit is shown in red. Application of a hyperpolarizing

Iinj = 20.029 nA disturbs the neuron but the state is still in the

basin of attraction of the equilibrium. However, application of a

pulse of a larger magnitude Iinj = 20.03 nA moves the model

outside of the basin of the silent attractor away into bursting

(Fig. 12). These two values specify a threshold in terms of the

critical amplitude of the hyperpolarizing pulse of current.

Discussion

Either a single neuron or neuronal networks can exhibit

bistability as demonstrated in a number of theoretical and

Figure 11. Bistability of bursting and silence. Examples of
switches between bursting and silence produced by square pulses of
injected current: switches from silence to bursting shown in panels (A,B)
and switches from bursting to silence shown in panels (C,D).
Stimulation of the neuron in the silent regime by a pulse of either
depolarizing current, Iinj = 0.61 nA (A), or hyperpolarizing current,
Iinj = 20.42 nA (B), switched the regimes. For this parameter regime,
application of either a depolarizing (Iinj = 0.05 nA) (C) or hyperpolarizing
pulse (Iinj = 20.05 nA) (D) of the current could produce a switch from
bursting into silence. The parameters of the model are BhCaS = 0.06 V,
Bh = 0.031 V, gleak = 15.7 nS, Eleak = 20.0505 V. The two red dashed
lines mark maximal and minimal membrane potentials of the
subthreshold oscillations.
doi:10.1371/journal.pone.0021782.g011

Figure 12. Numerical recording of unstable subthreshold
oscillations. A pulse of current with a critical value of amplitude
applied to a neuron in the silent regime allows recording oscillations in
the close vicinity of the saddle periodic orbit. The parameters are the
same as in Fig. 11 except for gleak = 15.55 nS. The green dot represents
the stable equilibrium point. The red dotted curve marks the unstable
periodic orbit. Shown on the right are the corresponding traces after
the pulses of magnitudes Iinj = 20.029 nA and Iinj = 20.03 nA. The
vertical dashed lines mark the time interval where the frequency of the
unstable subthreshold oscillations and resonant frequency of the rest
state are approximately the same, 1.97 rad/sec.
doi:10.1371/journal.pone.0021782.g012
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experimental studies. The coexistence of neuronal activity regimes

- silence, subthreshold oscillations, tonic spiking and bursting -

with each other has been observed in experimental studies

[1,9,13,31,32]. Multistability has clear implications for dynamical

memory and information processing in a neuron [3,4,31,33–35].

In the area of motor control it could be a major mechanism of

operation of multifunctional central pattern generators [5–7,36].

Multistability can be classified according to regimes which coexist:

coexistence of two silent regimes [1], coexistence of tonic spiking

and silence [1,2,4,8–10,37], coexistence of bursting and silence

[19], coexistence of bursting and subthreshold oscillations [38],

coexistence of different tonic spiking regimes [22], coexistence of

different bursting regimes [19,39,40], and coexistence of bursting

activity and tonic spiking [11,12,19,32,39]. One of the most

studied types of bistability is the coexistence of tonic spiking and

silence [8,9]. In contrast, the coexistence of bursting and silence

has not been the focus of any theoretical or experimental study of

dynamics of a single neuron. Here we filled this gap in part by

describing multiple scenarios of such coexistence in the dynamics

of a low-dimensional model.

One of the first and most extensively studied types of bistability

is the coexistence of tonic spiking and silence. The work by Rinzel

(1978) set the standard for the investigation of bistability. It found

the bistable properties of the Hodgkin-Huxley model of a squid

giant axon. In this work, Rinzel formulated a set of questions

which have to be answered in order to describe the mechanisms of

bistability. What is the unstable, hyperbolic regime which

separates the two observable, attracting regimes? How does this

unstable regime appear and disappear as controlling bifurcation

parameters are changed? Rinzel demonstrated that the unstable

subthreshold oscillations are the regime which separates the tonic

spiking periodic orbit from the equilibrium representing silence.

The unstable oscillations are born through the Andronov-Hopf

bifurcation and terminate at the saddle-node bifurcation for

periodic orbits, where the stable orbit is the one corresponding to

the tonic spiking. These two bifurcations define the range of the

bistability in terms of the controlling parameter. Guttman et al.

(1980) confirmed experimentally that the squid giant axon exhibits

this type of bistability under low Ca2z bath concentration.

Repetitive firing and silence regimes can co-exist; and perturbation

by a pulse of current can be used to switch between two regimes

(Guttman et al., 1980). Bistability is of particular interest for motor

control, since the coexistence of tonic spiking and silence has been

shown in cerebellar Purkinje cells [4,37] and has been induced by

application of serotonin in spinal motoneurons from different

species including the cat, rat, and mouse [1,2].

In our previous studies, a 3D reduced model of the leech heart

interneuron exhibited four types of bistability under different

parameter regimes: (1) tonic spiking and bursting; (2) two different

tonic spiking regimes; (3) tonic spiking and hyperpolarized silence;

(4) bursting and depolarized silence [12,22,24]. In all four types,

the regimes of activity are separated in the 3D phase space by the

2D stable manifold of the saddle type regime, either periodic orbit

or equilibrium state. The topology of the manifold determines the

threshold between the co-existing regimes.

Here, we developed a low dimensional, 4D model, which

exhibits temporal characteristics close to those recorded from leech

heart interneurons. Although the model is simple, it maintains a

number of biophysical correspondences to the living counterpart.

With this model we explored and accentuated the role of the low

threshold slowly inactivating calcium current, as one sufficient to

support a plethora of different mechanisms supporting the

coexistence of different regimes of activity. It shows six types of

multistability: (1) tonic spiking and the hyperpolarized silent

regime; (2) tonic spiking and subthreshold oscillations; (3) tonic

spiking and bursting; (4) bursting and subthreshold oscillations; (5)

bursting and the hyperpolarized silent regime; and (6) bursting,

subthreshold oscillations, and silence. We illustrated some of these

mechanisms by a series of numerical experiments to show that

they are sufficiently robust to be observed. We showed that

switching between bursting activity and silence can be controlled

by a pulse of current.

If we compare the lists of the mechanisms described for the two

models, 3D and 4D, we observe one mechanism in common, the

one underlying the co-existence of tonic spiking and hyperpolar-

ized silent regimes which is based on a saddle equilibrium. We

hypothesize that under different parameter regimes the two lists

would record more mechanisms in common. The mechanisms of

multistability described for these two models are generic and could

be found in a variety of models under different parameter regimes.

Rhythmic motions of animals like swimming, crawling, walking,

scratching, heart beating, and ingestion or rejection of food are

controlled by specialized oscillatory neural networks, CPGs. It is a

fundamental question whether each of these types of motion is

controlled by a separate pattern generator. For a number of

circuits it has been shown that some interneurons participate in

multiple tasks, being part of a multifunctional central pattern

generator [5–7,41]. This solution appeals as much more

parsimonious, and thus evolutionarily advantageous, compared

to the one recruiting specialized circuits for each type of behavior.

On the other hand, it is also appealing for mathematical modeling

from the perspective of the theory of dynamical systems since the

behavior of oscillatory neural networks, especially with heterog-

enous membrane and synaptic properties, is not well understood

[24,36]. Bistability as a membrane property of single neurons

appears to be a natural feature of building blocks for such CPGs.

In the future we plan to use this new model to explore the

advantages and disadvantages of different types of multistability in

small cental pattern generator circuits.
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