
PHYSICAL REVIEW E 83, 056209 (2011)

Order parameter for bursting polyrhythms in multifunctional central pattern generators
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We examine multistability of several coexisting bursting patterns in a central pattern generator network
composed of three Hodgkin-Huxley type cells coupled reciprocally by inhibitory synapses. We establish that
the control of switching between bursting polyrhythms and their bifurcations are determined by the temporal
characteristics, such as the duty cycle, of networked interneurons and the coupling strength asymmetry. A
computationally effective approach to the reduction of dynamics of the nine-dimensional network to two-
dimensional Poincaré return mappings for phase lags between the interneurons is presented.
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A central pattern generator (CPG) is a neural microcircuit
of cells whose synergetic interactions, without sensory input,
rhythmically produce patterns of bursting that determine motor
behaviors such as heartbeat, respiration, and locomotion in
animals and humans [1]. While a dedicated CPG generates a
single pattern robustly, a multifunctional CPG can flexibly pro-
duce distinct rhythms, such as temporarily distinct swimming
versus crawling, and alternation of blood circulation patterns
in leeches [2,3]. Switching between such rhythms is attributed
to input-dependent switching between attractors of the CPG.

Here we analyze multistability and transformations of
rhythmic patterns in a nine-dimensional (9D) model of a CPG
motif (Fig. 1) comprised of three endogenously bursting leech
heart interneurons [4] coupled (reciprocally) by fast inhibitory
chemical synapses [5]. Our use of fast threshold modulation [6]
implies that the post-synaptic current is zero (maximized)
when the voltage of a driving cell is below (above) the synaptic
threshold. This is an inherently bidirectionally asymmetric
form of coupling. Many anatomically and physiologically
diverse CPG circuits involve a three-cell motif [7], including
the spiny lobster pyloric network, the Tritonia swim circuit,
and the Lymnaea respiratory CPGs [8]. We show how rhythms
of the multistable motif are selected by changing the relative
timing of bursts by physiologically plausible perturbations. We
also demonstrate how the set of possible rhythmic outcomes
can be controlled by varying the duty cycle of bursts, and by
varying the coupling around the ring.

We propose a novel computational tool for detailed exam-
ination of polyrhythmic bursting in biophysical CPG models
with coupling asymmetries and arbitrary coupling strength.
The tool reduces the problem of stability and existence of
bursting rhythms in large networks to the bifurcation analysis
of fixed points (FPs) of Poincaré return mappings for phase
lags. Our approach is based on the delayed release of cells
from a suppressed state, and complements the phase resetting
techniques allowing for thorough exploration of network
dynamics with spiking cells [9]. It demonstrates that more
general inhibitory networks possess stable bursting patterns
that do not occur in similar three-oscillator motifs with gap-
junction coupling, which is bidirectionally symmetric [10].

The duty cycle (DC) of bursting, being the fraction of
the burst period in which cells spike, has turned out to
be an order parameter that regulates motif synchronization

properties [5,11]. The DC is sensitive to fluctuations of most
of a cell’s intrinsic parameters, and is affected by applied and
synaptic currents [4,5]. We treat DC implicitly as a bifurcation
parameter that defines short (DC∼20%), medium (DC∼50%),
and long (DC∼80%) bursting motifs. DC is controlled by an
intrinsic parameter of the interneuron that shifts the activation
of the potassium current in the leech heart interneuron.

In this study we consider an adequately “weakly” coupled
motif using the nominal value of a maximal conductance
g̃syn = 5 × 10−4 nS. This coupling strength guaranties rela-
tively slow convergence of transients to phase-locked states
of the motif, and hence permits us to visualize “smooth”
trajectories that expose in detail the structure of phase-lag
return maps, qualitatively resembling time-continuous planer
vector fields in this case. The findings obtained for this case
prepare the basis for understanding more complex patterns
in strongly coupled, nonhomogeneous motifs with the same
technique. The asymmetry of the motif is governed by another
bifurcation parameter g�, which enforces (weakens) counter-
clockwise (clockwise) coupling strengths gcc

c = g̃syn(1 ± g�),
0 � g� � 1, from the nominal value g̃syn.

Since the period of network oscillations can fluctuate in
time, we define delays between the onset of bursting in cell
2 (green) and cell 3 (red) relative to that in the reference
cell 1 (blue) at the instances when the voltages Vi increase
through a threshold of �th = −40 mV (Fig. 1). Initial delays
are controlled by the timely release of cells 2 and 3 from
inhibition (Fig. 2). The subsequent delays normalized over the
period of the cell 1 define a sequence or forward trajectory
{�φ

(n)
21 ,�φ

(n)
31 } of phase-lag return maps on a torus [0,1) ×

[0,1) with �φi1 mod 1. The maps are tabulated on a 40 × 40
(or more) grid of initial points. The iterates are connected
in Figs. 3–5 to preserve order. We then study the dynamical
properties of the maps, locate fixed points and evaluate their
stability, detect periodic and heteroclinic orbits, and identify
the underlying bifurcations as the parameters DC and g� are
varied.

Figure 3(a) shows the (�φ31,�φ21) phase-lag map for the
S3-symmetric, medium bursting motif. The map has five stable
FPs corresponding to the coexisting phase-locked rhythms:
the (red) FP at (�φ31 ≈ 1

2 ,�φ21 ≈ 0), the (green) FP (0, 1
2 ),

the (blue) FP ( 1
2 , 1

2 ), the (black) FP ( 2
3 , 1

3 ), and the (purple)
FP ( 1

3 , 2
3 ). The attraction basins of the FPs are divided by
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FIG. 1. (Color online) (a) Three-cell motif with asymmetric
clockwise vs counterclockwise connection strengths. (b) Voltage
traces: the phase (mod 1) of reference cell 1 (blue) is reset when
V1 reaches threshold �th = −40 mV. The time delays between the
burst onset in the reference cell 1 and the burst onset in cells 2 (green)
and 3 (red), normalized over the recurrent time of cell 1, define a
sequence of phase lags {�φ

(n)
21 ,�φ

(n)
31 }.

separatrices (incoming and outgoing sets) of six saddles (small
grey dots in the phase diagrams). The neighborhood of (0,0)
has a complex structure at high magnification (not shown), but
is effectively repelling. Locations of the FPs do not correspond
to exact fractions due to overlap and interaction between bursts
and a slight ambiguity in the measurement and definition of
momentary phases.

The coordinates of the FPs determine the phase-locked
states within bursting rhythms of the motif that are de-
noted symbolically as follows: (1≺2≺3) and (1≺3≺2) for
clockwise and counterclockwise traveling waves of bursting,
respectively, around the ring [episodes (ii) and (iii) of the
voltage trace in Fig. 2] corresponding to the FPs located near
( 1

3 , 2
3 ) and ( 2

3 , 1
3 ), respectively.

Besides these rhythms (whose stability is unknown a priori)
in a symmetric motif, the three other FPs correspond to the
rhythms where one cell fires in antiphase (�φ ∼ 1

2 , or ⊥)
against two cells bursting simultaneously in-phase (�φ = 0,
or ‖). The stable FP at ( 1

2 , 1
2 ) corresponds to the (1⊥{2‖3})

pattern [episode (i) of Fig. 2]; FP (0, 1
2 ) corresponds to the

(2⊥{1‖3}) pattern [episode (iv)]; and FP ( 1
2 ,0) corresponds

to the (3⊥{1‖2}) pattern [episode (v)]. We note that such
antiphase patterns are recorded at switches between peristaltic

and synchronous rhythms in the leech heartbeat CPG [3] and
in the Tritonia CPG during escape swimming [8].

The selection of rhythmic outcome in a multifunctional
motif depends on the initial phase distributions of the cells.
Evaluation of the FP attraction basins in Fig. 3(a) suggests
that when the cells are simultaneously released from external
inhibition, e.g., with initial phases reset, the medium bursting
motif can generate one of five robust rhythms with nearly equal
odds. The geometry of the phase-lag map also informs us as
to how to switch the motif to a specific rhythm by perturbing
it in a certain phase direction, i.e. advancing or delaying cells.
A biophysically plausible way to control switching is to apply
an appropriately timed hyperpolarizing pulse to temporarily
suppress a targeted cell(s). Figure 2 demonstrates the approach
for the symmetric, medium bursting motif.

Comparison of the maps for the symmetric motifs in the
cases of medium [Figs. 3 and 5(b)], short (Fig. 4), and long
[Fig. 5(a)] bursting demonstrates that DC is a physiologically
plausible parameter that determines the dominant observable
rhythms. That is, short bursting makes it impossible for
both clockwise (1≺2≺3) and counterclockwise (1≺3≺2)
traveling wave patterns to occur in the symmetric motif,
because the corresponding FPs are unstable initially. In
contrast, the symmetric long bursting motif is unlikely to
generate antiphase rhythms, because the corresponding FPs
have narrow attraction basins, divided equally between the
FPs corresponding to the traveling waves.

We examine next the bifurcations of FPs of the phase-lag
map as the motif becomes Z3-rotationally (a)symmetric by
increasing g�, which enforces counterclockwise and weakens
clockwise-directed synapses. The limit g� → 1 makes the
motif unidirectionally coupled with only the (1≺2≺3) rhythm
observable. Here, the FP at ( 2

3 , 1
3 ) expands its attraction basin

over the entire phase range. Intermediate stages of structural
transformation of the phase-lag map for the medium bursting
motif are demonstrated in Figs. 3 and 5(b). First, as g�
increases to 0.154, the three saddles move away from the FP
at ( 2

3 , 1
3 ), thereby increasing its attraction basin, and approach

the stable FPs corresponding to antiphase bursting rhythms.
Meanwhile, the other three saddles move toward the FP at
( 1

3 , 2
3 ) corresponding to the (1≺3≺2) rhythm, narrowing its

basin. As g� is increased further, the attractors and saddles in

V1

V2
7 s

V3

(i) (ii) (iii) (iv) (v)

FIG. 2. (Color online) Five polyrhythms in the medium bursting motif at gsyn = 5 × 10−3 (increased to secure short transients for the
purpose of illustration). Inhibitory pulses (horizontal bars) suppress the targeted cells, thus causing switching between co-existing rhythms:
(1⊥{2‖3}) in episode (i), traveling waves (1≺2≺3) in (ii) and (1≺3≺2) in (iii), followed by (2⊥{1‖3}) led by cell 2 in (iv). Having released
cells 1 and 2 simultaneously, cell 3 leads the motif in the (3⊥{1‖2}) rhythm in the last episode.
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(a)

(b)

FIG. 3. (Color online) (a) Phase-lag map for the symmetric,
medium bursting motif showing five stable FPs: (red) dot at
∼ ( 1

2 ,0), (green) (0, 1
2 ), (blue) ( 1

2 , 1
2 ), (black) ( 2

3 , 1
3 ), and (purple) ( 1

3 , 2
3 ),

corresponding to the antiphase (3⊥{1‖2}), (2⊥{1‖3}), (1⊥{2‖3})
bursts, and traveling clockwise (1≺2≺3) and counterclockwise
(1≺3≺2) waves; the attraction basins are divided by “separatrices”
(stable sets) of six saddles (small grey dots). Arrows indicate the
forward iterate direction in the phase plane. (b) Asymmetric motif
at g� = 0.154 near the saddle-node bifurcations annihilating three
stable FPs for antiphase bursting rhythms.

the bottom right of the unit square merge and vanish through
saddle-node (SN) bifurcations. Increasing g� makes the FP
( 2

3 , 1
3 ) for the (1≺2≺3) rhythm globally dominant [Fig. 5(b)]

after the three nearby saddles collapse onto the FP at ( 1
3 , 2

3 ).
Bifurcations in the long bursting motif are similar, except that
the SN bifurcation occurs at smaller g� values.

(a)

(b)

FIG. 4. (Color online) (a) Phase-lag map for the symmetric, short
bursting motif showing only three stable FPs [blue dot at ( 1

2 , 1
2 ), red dot

at ( 1
2 ,0), and green dot at (0, 1

2 )] corresponding to antiphase rhythms
where one cell bursts followed by synchronized bursts in the other
two cells. Unstable FPs at ( 2

3 , 1
3 ) and ( 1

3 , 2
3 ) exclude the clockwise

(1≺2≺3) and counterclockwise (1≺3≺2) traveling waves from the
repertoire of the short bursting motif. (b) Map for the asymmetric
motif (g� = 0.2) depicting a stable invariant curve near a three-saddle
connection around the FP at ( 2

3 , 1
3 ).

The bifurcation sequence in the short bursting motif is qual-
itatively different: the SN bifurcations occur at a higher degree
of asymmetry (g� ≈ 0.48), delayed by another bifurcation
that makes the clockwise traveling pattern the global attractor
of the motif. To become stable, the corresponding FP at ( 2

3 , 1
3 )

undergoes a secondary supercritical Andronov-Hopf or torus
bifurcation. Figure 4(b) depicts the map at g� = 0.2 showing a
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(a)

(b)

FIG. 5. (Color online) (a) Phase-lag map for the symmetric, long
bursting motif revealing two equally dominant attractors: ( 2

3 , 1
3 ) and

( 1
3 , 2

3 ) for (1≺2≺3) and (1≺3≺2) traveling rhythms. (b) Map for
the asymmetric (g� = 0.3) medium bursting motif depicting two
persistent attractors: the one for the clockwise (1≺2≺3) rhythms
prevails over the attractor for the counterclockwise (1≺3≺2) rhythm.
Further increase in g� leads to the only observable (1≺2≺3) rhythm,
after FP at ( 1

3 , 2
3 ) merges with three nearby saddles.

stable invariant curve near the heteroclinic connections
between the three saddles around the given FP. The invariant
curve is associated with the appearance of slow phase jitters
within the (1≺2≺3) rhythm in voltage traces. Once it
collapses onto the FP at ( 2

3 , 1
3 ) the asymmetric motif gains a

new robust (1≺2≺3) rhythm, making four possible bursting
outcomes.

The stability of the FPs in the phase-lag maps is de
facto proof of the observability of the matching rhythmic

outcomes generated by a motif, symmetric or not. While the
existence of some rhythms, such as generic (1≺2≺3) and
(1≺3≺2), in a three-cell motif can hypothetically be deduced
using symmetry arguments, the robustness and observability
of the rhythms must be justified by accurate computational
verification, since their stability strongly correlates with the
temporal properties of the bursting cells. Using the proposed
computational technique for the reduction of dynamics of the
9D three-cell motif to the analysis of the equationless 2D
mappings for the phase lags between the bursting cells, we have
demonstrated that a reciprocally inhibitory (non)homogeneous
network can be multistable, i.e., it can generate several distinct
polyrhythmic bursting patterns. It is shown that the observable
rhythms of the three-cell motif are determined not only by its
(a)symmetry, but also by the duty cycle serving the role of the
order parameter for bursting networks. This knowledge of the
existence, stability, and possible bifurcations of polyrhythms
in this 9D motif composed of the interneuron models is vital
for derivations of reduced, phenomenologically accurate phase
models for nonhomogeneous biological CPGs with mixed,
inhibitory, and excitatory synapses. See the Appendix for
details of equations and numerical algorithms.
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APPENDIX

Model. A reduced model of the leech heart interneuron
is given by the following set of three nonlinear coupled
differential equations:

C
dV

dt
= −INa − IK2 + IL − Iapp − Isyn,

IL = ḡL (V − EL),

IK2 = ḡK2 m2
K2(V − EK),

INa = ḡNa m3
Na hNa (V − ENa),

mNa = m∞
Na(V ),

τNa
dhNa

dt
= h∞

Na(V ) − h,

τK2
dmK2

dt
= m∞

K2(V ) − mK2.

Here, C = 0.5 nF is the membrane capacitance; V is the
membrane potential in V; INa is the sodium current with slow
inactivation hNa and fast activation mNa; IK2 is the slow persis-
tent potassium current with activation mK2; IL is the leak cur-
rent, and Iapp = 0.006 nA is an applied current. The values of
maximal conductances are set as ḡK2 = 30 nS, ḡNa = 200 nS,
and gL = 8 nS. The reversal potentials are ENa = 0.045 V,
EK = −0.07 V, and EL = −0.046 V. The time constants
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of gating variables are τK2 = 0.9 s and τNa = 0.0405 s.
The steady-state values of gating variables, h∞

Na(V ), m∞
Na(V ),

m∞
K2(V ), are given by the following Boltzmann equations:

h∞
Na(V ) = {1 + exp[500(V + 0.0325)]}−1,

m∞
Na(V ) = {1 + exp[−150(V + 0.0305)]}−1,

m∞
K2(V ) = {

1 + exp
[ − 83

(
V + 0.018 + V shift

K2

)]}−1
.

(A1)

The synaptic current is modeled through the fast threshold
modulation paradigm as follows:

Isyn =
n∑

j=1

g̃syn(1 ± g�)
(
Einh

syn − Vi

)
�(Vj − �syn). (A2)

The reversal potential Einh
syn = −0.0625 is set to be smaller

than Vi(t), i.e., the synapse is inhibitory. The synaptic coupling
function is modeled by the sigmoidal function �(Vj ) = 1/{1 +
exp[−1000(Vj − �syn)]}. The threshold �syn = −0.03 V is
chosen so that every spike within a burst reaches it. This
implies that the synaptic current from the presynaptic j th
neuron is initiated as soon as this neuron becomes active after
its membrane potential exceeds the synaptic threshold.

The intrinsic bifurcation parameter V shift
K2 of the model

is a deviation from V1/2 = 0.018 V corresponding to the
half-activated potassium channel at m∞

K2 = 1/2. In Eq. (A1),
decreasing the V shift

K2 delays the activation of mK2. The
bursting range of the bifurcation parameter of the given
interneuron model is [−0.024235, − 0.01862]; for smaller
values of V shift

K2 the model enters the tonic spiking mode, or
becomes hyperpolarizedly quiescent at the upper values. By
varying V shift

K2 (or alternatively Iapp) we can change the duty
cycle of bursting (ratio [burst duration]/[burst period]) from
1 through 0. In this study, we use the values of V shift

K2 =
−0.01895 V, V shift

K2 = −0.021 V and V shift
K2 = −0.0225 V,

corresponding to short (∼20%), medium (∼50%), and long
(∼80%) bursting, respectively. Further details about the
bifurcation underlying the transition between bursting and
tonic spiking through the blue sky catastrophe, and the
regulation of temporal characteristics of the bursting activity
in this leech heart interneuron model can be found in
Ref. [10].

Numerical methods. All numerical simulations and phase
analysis were performed using the PYDSTOOL dynamical sys-
tems software environment (version 0.88) [12]. The software

is freely available. Specific instructions and auxiliary files for
the network in this study will be provided upon request.

The algorithm for constructing the 2D phase mappings
from the 9D network model is based on the observation
that two solutions x(t) = ψ(x0; t) and x(t) = ψ(x0; t + τ ) of
an individual model can be considered as the same solution
passing through the initial x0 on the T-periodic bursting orbit
at different initial times. By releasing the solutions from x0 at
different delays τ , (0 < τ < T ) we can generate a dense set of
initial points which present a good first-order approximation
for the solutions of the network in the case of sufficiently weak
coupling.

Each sequence of phase lags {�φ
(n)
31 ,�φ

(n)
21 } plotted in

Figs. 3–5 begins from an initial lag (�φ
(0)
31 ,�φ

(0)
21 ), which is the

difference in phases measured relative to the recurrence time
of cell 1 every time its voltage increases to a threshold �th =
−40 mV. �th marks the beginning of the spiking segment of
a burst. As that recurrence time is unknown a priori due to
interactions of the cells, we estimate it, up to first order, as
a fraction of the period Tsynch of the synchronous solution by
selecting guess values (�φ�

31,�φ�
21). The synchronous solution

corresponds to �φ31 = �φ21 = 0. By identifying t = 0 at the
moment when V1 = �th with φ = 0, we can parametrize this
solution by time (0 � t < Tsynch) or by the phase lag (0 �
�φ < 1). For weak coupling and small lags, the recurrence
time is close to Tsynch, and (�φ�

31,�φ�
21) ≈ (�φ

(0)
31 ,�φ

(0)
21 ).

We use the following algorithm to distribute the true initial
lags uniformly on a 40 × 40 square grid covering the phase
portrait.

We initialize the state of cell 1 at t = 0 from the point
(V 0,n0,h0) of the synchronous solution when V1 = �th. Then,
we create the initial phase-lagged state in the simulation by
suppressing cells 2 and 3 for durations t = �φ0

21Tsynch and
�φ0

31Tsynch, respectively. On release, cells 2 and 3 are initial-
ized from the initial point (V 0,n0,h0). We begin recording
the sequence of phase lags between cells 2 and 3 and the
reference cell 1 on the second cycle after coupling has adjusted
the network period away from Tsynch. In the case of stronger
coupling (increased asymmetry via g�) where the gap between
Tsynch and the first recurrence time for cell 1 widens, we
retroactively adjust initial phases using a “shooting” algorithm
to make the initial phase lags sufficiently close to uniformly
distributed positions on the square grid.
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