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Homoclinic chaos and its organization in a nonlinear optics model
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We developed a powerful computational approach to elaborate on the onset mechanisms of deterministic chaos
due to complex homoclinic bifurcations in diverse systems. Its core is the reduction of phase space dynamics
to symbolic binary representations that lets one detect regions of simple and complex dynamics as well as fine
organization structures of the latter in parameter space. Massively parallel simulations shorten the computational
time to disclose highly detailed bifurcation diagrams to a few seconds.
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Dyson states that “new directions in science are launched
by new tools much more often than by new concepts” [1].
A breakthrough discovery of deterministic chaos in (infrared
gas) lasers in nonlinear optics was established and pioneered
both theoretically and experimentally a long time ago [2–6].
Recent developments in semiconductor lasers and nano-optics
have stimulated the latest advances in optical synchronization
and photonic integrated circuits for the needs of cryptogra-
phy [7–12].

Nowadays, a real advance in deterministic nonlinear sci-
ence stimulating the progress of cutting-edge engineering is
hardly possible without significantly deepening the knowl-
edge and beneficial usage of complex elements borrowed from
dynamical systems theory. This in turn is hardly possible
without the development and incorporation of new mathemat-
ical and computational tools, including for parallel graphics
processing unit (GPU) based platforms.

In this Rapid Communication we demonstrate how our
toolkit, called “deterministic chaos prospector (DCP),” along
with the bifurcation-parameter continuation technique, lets
one quickly and fully disclose and elaborate on the origin of
complex chaotic dynamics in a six-dimensional (6D) model of
a resonant three-level optically pumped laser (OPL) [13,14].
In addition to the simple dynamics associated with stable
equilibria and periodic orbits, it reveals a broad range of
bifurcation structures that are typical for many ordinary dif-
ferential equation (ODE) models from nonlinear optics and
other diverse applications [15–21]. These include homoclinic
orbits and heteroclinic connections between saddle equilibria
that are the key building blocks of deterministic chaos in most
systems. Their bifurcation curves with characteristic spirals
around the terminal (T ) points along with other codimension-
2 points are the organizing centers that shape the regions
of complex and simple dynamics in the parameter space of
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such systems. The detection of these bifurcations has long
remained the state of the art involving a meticulous and time-
consuming parameter continuation technique to disclose a few
sparse elements of the otherwise rich and fine organization
of the bifurcation set. We note that while the brute-force
approach based on the evaluation of Lyapunov exponents
can effectively locate stability windows within regions of
chaos [22,23], it fails to disclose these essential structures that
are imperative for the exhaustive understanding of complex
dynamics and their origin. We will demonstrate how our
approach, exploiting the sensitivity of deterministic chaos and
its symbolic representation using binary sequences combined
with Lempel-Ziv complexity algorithms [24], can effectively
reveal regions of complex, structurally unstable, and simple
stable dynamics in this and other systems.

The three-level optically pumped laser model [13,14] is
given by

β̇ = −σβ + 50p23,

ṗ21 = −p21 − βp31 + aD21,

ṗ23 = −p23 + βD23 − ap31,
(1)

ṗ31 = −p31 + βp21 + ap23,

Ḋ21 = −b
(
D21 − D0

21

) − 4ap21 − 2βp23,

Ḋ23 = −b
(
D23 − D0

23

) − 2ap21 − 4βp23,

with parameters a, β, and σ = {1.5; 10} being the Rabi
flopping quantities representing the electric field amplitudes
at pump and emission frequencies, and the cavity loss
parameter, respectively; b is the ratio of population to
polarization decay rates; pij is the normalized density matrix
element corresponding to the transitions between levels i

and j , while Dij is the population difference between the
ith and j th levels. Note that Eqs. (1) are Z2 symmetric
under the involution (β, p21, p23, p31,D21,D23) ↔
(−β, p21,−p23,−p31,D21,D23), which is typical for
Lorenz-like systems [17,25]. Depending on the (a, b) values,
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FIG. 1. (a) (β,−D23) phase space projection showing the
primary homoclinic orbit (red, coded as {1}) splitting left-
ward/rightward (green/blue, {10 . . .} or {11 . . .}) when the separatrix
�1 misses the saddle O (black dot) after completing a single turn
around the saddle focus C+, with the Lorenz attractor (in gray) in the
background. (b) Chaotic transient of �1 generating a binary sequence
starting with {10100101 . . .}. (c) Time evolutions of the β coordinate
of �1 [in (b)] and of a close trajectory (red), and their binary codes,
before they diverge. (d) Two stable symmetric POs coded as {01}
and {0011}. (e) Heteroclinic connections (red {101}, blue symmetric
counterpart) at the T1 point (Fig. 2). (f) Samples (Pj ) of the primary
homoclinic orbit morphing to a double loop after the inclination flip
IF1 on the curve H0 in the (a, b)-parameter plane in Fig. 2; here,
σ = 1.5.

the laser model (1) has either a single nonlasing steady state
O or an extra pair of equilibria C± [Fig. 1(a)], emerging as
O loses stability through a pitchfork (PF) bifurcation and
becomes a saddle. All three steady states can independently
undergo supercritical Andronov-Hopf (AH) bifurcations
[curves labeled with AH0 and AH1,2 in the (a, b)-parameter
plane in Fig. 2] giving rise to stable periodic orbits (POs) in
the phase space of the laser model (1). Both structural and
dynamical instability in the model are due to an abundance
of homoclinic bifurcations (HB) of the saddle O, whose one-
dimensional (1D) unstable separatrix �1 (and the symmetric
counterpart �2) densely fills out the two spatially symmetric
wings of the butterfly-shaped strange attractor [Figs. 1(a)
and 1(e)] [25]. As parameters are varied, �1 constantly and
unpredictably changes its flip-flop switching patterns within
the Lorenz attractor. These patterns change whenever �1

comes back to O to undergo a homoclinic bifurcation. This
observation is the core for the proposed symbolic approach
that converts chaotic and periodic patterns of �1 around the
equilibria C± into binary sequences {kn} as follows:

kn =
{

1, when the separatrix �1 turns around C+,

0, when the separatrix �1 turns around C−.

As such, the periodic sequence {111 . . . }, or {1}, corresponds
to �1 converging to the equilibrium state C+ or a peri-
odic orbit emerging from it through AH bifurcation, while
the sequence {100 . . . } or {10} corresponds to �1 converg-
ing to C− and so forth. Wherever small parameter varia-
tions do not change �1 progressions and hence their binary

FIG. 2. (a, b)-parameter sweep of [5–12] length reveals an abun-
dance of homoclinic bifurcations emerging from two cod-2 points,
IF1 and IF2, on H0, that correspond to the primary homoclinic butter-
fly of saddle O, along with self-similar characteristic spirals around
the T points, labeled T0,1,2, corresponding to distinct heteroclinic
cycles between O and saddle foci C±. Cod-2 Bogdanov-Takens (BT)
unfolding includes Andronov-Hopf AH0, AH1,2 and pitchfork PF
bifurcation curves for O and C±, respectively; here, σ = 1.5.

representations, the system demonstrates structurally stable
dynamics, which can be due to stable equilibria or periodic
orbits (POs), such as the symmetric POs turning once (figure-
8 shaped) or twice around C− and C+ in Fig. 1(d), with corre-
sponding binary sequences {01} and {0011}, respectively. An
aperiodic binary sequence is associated with chaotic dynamics
that is characterized by the sensitive dependence on small
parameter variations that change �1 progressions and the
corresponding symbolic sequences [Fig. 1(c)]. Changes occur
at homoclinic bifurcations when �1 comes back to saddle O.
The primary homoclinic orbit [shown in Figs. 1(a) and 1(f)]
coded with a finite sequence {1} separates periodic patterns
coded as {1} and {10}. It occurs on the bifurcation curve H0

in the (a, b)-parameter plane in Fig. 2. There are two special
points labeled as IF1 and IF2 on H0 that correspond to the so-
called inclination-flip (IF) bifurcation of codimension-2 [26].
Its feature is that it gives rise to instant homoclinic chaos in the
phase space and complex bifurcation structures in the param-
eter space of the system. With our computational-symbolic
toolkit we can clearly and quickly identify such bifurcations
and their fine organizations in the parameter space along with
regions of chaotic and regular dynamics. First, we define a
formal power series P (N ) for a finite binary sequence {kn}
of length N , after omitting the first j symbols for initial tran-
sients of the separatrix �1 or any other trajectory, as follows,

P (N ) =
j+N∑

n=j+1

kn

2(N+j+1)−n
. (2)
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By construction, the range of P (N ) is [0, 1], including
the sequences {0} and {1} (in the limit as N → ∞). For
example, P (8) for the aperiodic sequence {10100101}
generated by �1 in Fig. 1(b), with j = 0 and N = 8, is given
by P (8) = 1/28 + 0/27 + 1/26 + 0/25 + 0/24 + 1/23 +
0/22 + 1/21 = 0.644 531 25.

The P quantities are used as invariants to discriminate
or conjugate finite progressions of the separatrix �1 of the
saddle against each other to identify and trace down corre-
sponding bifurcation curves in the parameter space. Moreover,
the quantities generated from long periodic and aperiodic
binary sequences let us efficiently detect regions of regular
and chaotic dynamics, respectively. Keeping σ fixed at 1.5
or 10, we (1) vary a and b to get a biparametric sweep
on a 2000 × 2000 grid, (2) to follow �1 progressions, (3)
generating binary sequences {kn} that (4) result in P (N )
quantities. Next, (5) we color map all found P (N ) values
onto the parameter plane, where regions are identified by
their equivalent colors, and the borderlines between adjacent
regions correspond to homoclinic bifurcation curves. The
color map differentiates between P (N ) values grouped into
224 bins with preset RGB-color values. Such sweeps can be
massively parallelized by running separate threads on a GPU.
For example, the sweep of [5–12] length, i.e., with the first
five symbols omitted, shown in Fig. 2 takes about 8 s to run
on a Tesla K40 GPU by Nvidia. It is superimposed with the
curves, obtained by parametric continuation, corresponding
to pitchfork (PF), Andronov-Hopf (AH0 and AH1,2 for O

and C±), and the primary homoclinic (H0) bifurcations all
originating from the codimension-2 Bogdanov-Takens point
(BT) [26]. Figure 1(f) shows how the primary homoclinic
loop transmutes into a double loop along the curve H0. The
sweep reveals the way the inclination-flip IF1 and IF2 points
give rise to jets of homoclinic bifurcation curves spiraling to
various self-similar cod-2 Bykov terminal T points, including
T0 and T1, that correspond to heteroclinic connections linking
the saddle O with saddle foci C+, C− and generating periodic
sequences {10}, {101} [Fig. 1(e)], respectively.

Figure 3(a) shows that with longer sequences we can obtain
more detailed sweeps disclosing multiple T points of smaller
scales near the saddle point S that are not seen in Fig. 2.
These spiral structures around the T points (identical to T 1

2
and T 2

2 in Fig. 4) morph into closed loops [as those shown in
Fig. 3(c)] after collapsing into the saddle as the σ parameter is
varied (shown in movie 1 in the Supplemental Material [27].)
Figures 3(b) and 3(d) present a sweep of [100–123] length,
i.e., after skipping the first 100 transient symbols. Here, re-
gions with solid colors of constant P (23) values represent the
stability windows corresponding to simple (periodic) Morse-
Smale dynamics, whereas multicolored noisy regions refer to
structurally unstable chaotic dynamics, as described later.

The (a, b) sweep of [2–9] length in Fig. 4 demonstrates
the intrinsic rearrangement of the bifurcation constituents of
complexity for a different cut at σ = 10. Here, the secondary
inclination-flip point (IF2) gives rise to loci of outgoing ho-
moclinic curves that are redirected by a saddle point (S), and
spiral onto multiple T points. The heteroclinic connections at
the T points T0–T3 are given by {10}, {101}, {110}, and {1},
respectively. The T points T 1

2 and T 2
2 , separated by the saddle

FIG. 3. (a) Short [8–15] and (b), (d) long [100–123] length (a, b)
sweeps reveal fine self-similar organization of homo- and hetero-
clinic bifurcations underlying the regions of chaotic and regular
dynamics of model (1) for σ = 1.5. A small area (white box) in (a)
is magnified with a longer [15–22] sweep in (c). (b) and (d) reveal
stability windows (solid colors) within “noisy” regions of structurally
unstable chaos; white lines demarcate boundaries of some stability
windows.

S, correspond to the same heteroclinic connection {110}.
Note that here the primary homoclinic curve spirals onto the
primary T point T0. The T point T3 belongs to the stability
window dominated by the symmetric figure-8 periodic orbit
[Fig. 1(d)] in the long run. The semiannular structures around
C are, in fact, the remnants of the spirals around T3, where
the other halves of the spirals are disintegrated by the stable
periodic orbit existing near T3. With small σ variations, T3

crosses over the stability boundary near C, so that both
ends of the semiannular structures merge to complete spirals
around T3 (as demonstrated in movie 2 in the Supplemental
Material [27].) Meanwhile, T points T 1

2 and T 2
2 merge with

the saddle S to transform into concentric cycles. These struc-
tures in the 2D sweeps are the contour curves of the corre-
sponding surfaces in the 3D (a, b, σ )-parameter space of the
model (1). Figure 5 demonstrates this saddle as the critical
point of the 3D surface shaped as a hyperbolic paraboloid,
constructed using 8 × 109 trajectories in the parameter space.
Depending on the particular σ cuts, the contour lines of the
bent scroll-shaped surfaces may resemble spirals or closed
concentric circles in the projections in Figs. 2–4.

While a detailed sweep for short-term transient dynamics
lets us reveal the underlying homoclinic bifurcations, longer
sweeps omitting initial transients are designed to localize
stability windows corresponding to regular dynamics and
regions of chaotic dynamics in the parameter space. We im-
plemented two algorithms into our computational DCP toolkit

040202-3



KRISHNA PUSULURI AND ANDREY SHILNIKOV PHYSICAL REVIEW E 98, 040202(R) (2018)

FIG. 4. [2–9] length sweep discloses organization of
homo/heteroclinic bifurcations originating from cod-2 inclination
flip IF2 and multiple T points: Primary T0 coded as {10}, secondary
T1 as {101}, and a pair T 1

2 − T 2
2 with code {110} separated by a

saddle (S) in the (a, b)-parameter plane; here, σ = 10. Inset (a)
shows a larger (a, b) sweep of [1–7] length; (b) [16–23]-long sweep
depicts dense loci of homoclinic bifurcation curves originating
from IF2.

to classify such regions depending on whether or not the
corresponding binary sequences of the solutions are periodic
for the given parameter values. The first algorithm based on
Eq. (2) includes periodicity correction (PC) to identify the

FIG. 5. Fragment of the 3D (a, b, σ )-parameter space (based on
a 2000 × 2000 × 2000 grid) depicting various nested elliptic and hy-
perbolic paraboloids whose contour curves appear as spirals around
T points, and/or concentric circles near saddles in the biparametric
sweeps in Figs. 2–4.

FIG. 6. Long [1000–1999]-length sweeps to detect a multiplicity
of stability windows [solid colors; dark red due to stable PO {0011}
in Fig. 1(d)] within noisy/multi-color regions of chaos adjacent to
IF1 and IF2 points in the (a, b)-parameter plane using PC algorithm
in (a) and (c), and LZ-complexity in (b) and (d). Sweeps at σ = 1.5
(a,b) and σ = 10 (c,d) to compare with Fig. 2 and 4.

periodic structure within a binary sequence and to normalize
it to its smallest valued circular permutation. For example, the
symmetric figure-8 periodic orbit in Fig. 1(d) is coded with
{01} not with {10}. The second algorithm utilizes the Lempel-
Ziv-76 (LZ) compression [24], to determine the normalized
complexity (the number of words in vocabulary per sequence
length) of the binary sequence. The LZ compression algorithm
scans a sequence from left to right and adds a new word to the
vocabulary every time a previously unencountered substring
is detected. Since all circular permutations of a periodic
orbit have the same complexity, with this approach we can
also detect stability windows amidst structurally unstable
chaotic regions. This approach requiring only one solution
per parameter set complements more expensive computational
approaches based on the evaluations of the largest or several
Lyapunov exponents.

Figure 6 represents the biparametric [1000–1999]-long
sweeps to identify regions of simple and complex dynamics
in model (1); here, insets (a)/(c) and (b)/(d) represent the
PC- and LZ-algorithm-based sweeps, respectively. Regions
of solid monotone colors correspond to the stability windows
with stable equilibrium states and periodic orbits, while multi-
colored noisy regions indicate that the dynamics is structurally
unstable and chaotic. The sweeps in Figs. 6(a) and 6(b) (at
σ = 1.5) are superimposed with the primary and secondary
inclination-flip points IF1 and IF2 along with the primary T

point T0 located next to the boundary between the regions of
chaotic and stable periodic dynamics. They reveal multiple
stability windows adjacent to IF1 and IF2 (magnified insets),
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including the wide one (in dark red) corresponding to a stable
periodic orbit {0011} [shown in Fig. 1(d)]. This approach
can clearly identify distinct periodic orbits and their stability
windows mapped by different colors. Note that the same
stability windows (indicated with the same colors) emerge
near both IF1 and IF2 in reversed order. The sweeps in
Figs. 6(c) and 6(d) (at σ = 10) depict the primary T point T0

located inside the region of chaotic dynamics, and the stability
windows accumulating to IF2. We note that the PC algorithm
lets one detect and identify a variety of stable periodic orbits
efficiently even with short symbolic sequences [see Figs. 3(b)
and 3(d)] compared to quite long sequences required by the
LZ algorithm that is better suited for the detection of chaotic
regions. This observation suggests the order to analyze the
given sequence is to first run it through the PC algorithm to
detect periodic orbits, and next through the LZ algorithm to
detect the complexity of aperiodic strings on a GPU. Other

future enhancements of the DCP toolkit are to include the
search algorithms for bifurcations of equilibrium states and
periodic orbits such as period doubling.

In conclusion, we have demonstrated the proficiency of this
symbolic toolkit for computational studies of both transient
and long-term solutions to analyze the bifurcation mecha-
nisms underlying the onset of chaotic and regular dynamics
in the phase and parameter spaces of the given OPL model
and similar deterministic systems.
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