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David vs. Goliath: When Weak Inhibition Synchronizes Strongly Desynchronizing
Networks of Bursting Neurons

Igor Belykh and Andrey Shilnikov
Department of Mathematics and Statistics, Georgia State University, 30 Pryor Street, Atlanta, GA 30303, USA

(Dated: June 16, 2008)

We show that weak common inhibition applied to a network of bursting neurons with strong
desynchronizing connections can induce burst and complete synchronization. We demonstrate that
the weak inhibition coming from the same pacemaker neuron can win the �David vs. Goliath�
struggle in synchronizing the network, provided that the neuron's duty cycle is su�ciently long.
We also gain insights into how the changes in burst duty cycles can trigger unexpected clusters of
synchrony in bursting networks.

PACS numbers: 05.45.Xt, 87.19.La

Neurons can generate a complex oscillatory rhythm
known as bursting, consisting of a rapid sequence of
spikes followed by a quiescent state. There has been
much work on mechanisms that generate such bursting
[1�4]. Interacting bursting neurons may exhibit di�erent
forms of synchrony; including synchronization of individ-
ual spikes, burst synchronization when only the envelopes
of the spikes become synchronized, and complete syn-
chrony [5, 6]. The emergence of the synchronous rhythms
in a neuronal network is closely related to the proper-
ties of the individual bursting neurons, type of synap-
tic coupling, and network topology [5�12]. In particu-
lar, inhibitory connections, slow or fast, have been shown
to play multiple roles in promoting synchrony or foster-
ing asynchronous activities in bursting networks [7�11].
More precisely, it has been found that a slow decay of in-
hibition, or a time-delay, is needed to established a syn-
chrony in the network [8]. The underlying architecture of
an inhibitory network also plays an important role in syn-
chronizing/desynchronizing the network. For example,
synchronization in an inhibitory network of two bursting
neurons, interconnected via fast non-delayed synapses is
typically unstable. Here, the desynchronizing inhibition
can lead to asynchronous or antisynchronous behavior [7].
This carries over to larger interconnected inhibitory net-
works [10]. At the same time, a common fast inhibition
of a neuronal network received from one or several pace-
maker neurons were shown to favor synchronization [11].
Central pattern generators (CPGs) and other neural cir-
cuits are often composed of pairs of mutually inhibiting
cells, driven by a common bursting pacemaker [13, 14].
Understanding the emergence of di�erent anti-phase and
synchronous rhythms in such networks requires an in-
depth knowledge of the interplay among mutual internal
inhibition, common external driving, and temporal char-
acteristics of neurons composing the network.

In this Letter, we report our counterintuitive result
that weak common inhibition applied to a network of
neurons with strong desynchronizing connections can in-
duce its synchronization. More precisely, we consider an
inhibitory network of bursting neurons that are all driven

by the same pacemaker neuron(s). The desynchronizing
inhibitory coupling within the network is much (e.g., a
hundred times) stronger than the common, external inhi-
bition. We show that the weak synchronizing inhibition
can overcome the contribution of the strongly desynchro-
nizing coupling, provided that the pacemaker's duty cy-
cle, the fraction of the period during which the neuron
bursts, is su�ciently long. We reveal the general mecha-
nism that induces synchronization and therefore allows a
weaker common inhibition to win the �David vs. Goliath�
struggle. Using a similar argument, we show how neu-
rons' duty cycles are used to induce clusters of synchrony
in larger inhibitory networks of bursting neurons.

We consider a heterogeneous network of bursting in-
terneurons [3] with fast inhibitory connections modeled,
within the Hodgkin-Huxley framework, by the following
equations:

C V ′
i = F (Vi, hi,mi)− (Vi − Es)

n∑
j=1

gijΓ(Vj −Θsyn),

h′i = [f(500, 0.0325, Vi)− hi]/τNa,
m′

i = [f(−83, 0.018 + V shift
i , Vi)−mi]/τK2, i, j = 1, n,

(1)
where F (Vi, hi,mi) = −[30m2

i (Vi + 0.07) + 8(Vi +
0.046)+160hi(Vi− 0.045){f(−150, 0.0305, Vi)}3 +0.006]
and f(a, b, Vi) = 1/(1 + ea(Vi+b)). Here, the ith neu-
ron variables Vi, hi, and mi are the membrane poten-
tial, opening probabilities of the sodium and potassium
channels, respectively. Due to the disparity of the time
constants τNa = 0.0405 and τK2 = 0.9, the system (1)
possesses two characteristic time scales: the voltage and
the sodium current are the fast variables, while the potas-
sium current is a slow one. It is known that the dynam-
ics of the individual slow-fast system composing the net-
work is centered around stable manifolds formed by the
limit sets of the fast subsystem. The model possesses
two such manifolds constituting a skeleton of bursting
activity: 2D spiking and 1D quiescent, Meq, manifolds,
composed of limit cycles and equilibria of the fast sys-
tem. The individual model exhibits square-wave burst-
ing; the bursting solution traverses along and repeatedly
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jumps between these manifolds (see Fig. 1). In it, the
solid blue S-shape curve Meq and the dark yellow surface
m′ = 0 are two nullclines of the fast and slow systems,
respectively. They are often called fast and slow null-
clines. By construction, a point of intersection of Meq

with the slow nullcline, m′ = 0, is an equilibrium state
of the corresponding neuron. Further details on the dy-
namics of uncoupled equations (1) can be found in [3].
Here, V shift

i is the intrinsic, bifurcation parameter gov-
erning the temporal characteristics of bursting cells. In
network (1), the synapses are fast and non-delayed [6].
The reversal potential Es = −0.0625 is set to make all
synapses inhibitory. The parameter gij is the strength
of the synaptic coupling from neuron i to neuron j. The
synaptic coupling is modeled using the sigmoidal func-
tion [10], Γ(Vj −Θsyn) = 1/[1+ exp{−1000(Vj −Θsyn)}],
where Θsyn = −0.03 is the synaptic threshold.
I. Two-neuron network: a half-center oscillator. Con-
sider �rst a pair of bursting neurons (1) with reciprocally
inhibitory couplings. This network, called a half-center
oscillator, is a principal building block of various CPGs
[13] that produces anti-phase oscillations [10]. By geom-
etry of the nullclines, each uncoupled cell has a single,
unstable equilibrium state located away from the stable,
hyperpolarized branch of Meq. The e�ect of inhibition
from one cell to the other is to shift the S-shape null-
cline Meq towards the slow nullcline m′ = 0 in the phase
space of the inhibited cell. If inhibition is su�cient, this
creates a new stable equilibrium around the lower knee
of Meq through a saddle-node bifurcation (Fig. 1). We
will refer to this stable equilibrium state as a lock-down
state. Cutting inhibition o� makes this equilibrium state
disappear through the reverse saddle-node bifurcation.
This bifurcation has a remarkable feature of the bifurca-
tion memory, revealed through a speci�c, scalable delay
of the �ight time of the phase point passing throughout
a vicinity of the disappeared saddle-node. While spik-
ing, the active cell keeps oscillating around the synaptic
threshold Θsyn, rapidly switching inhibition of the inac-
tive cell on and o�. Therefore, the inhibiting current
emerges periodically for a period shorter than the char-
acteristic escape time of the inactive cell. Hence, the
latter is trapped and oscillates around the lower knee of
the inhibited nullcline, depicted by the dotted blue line
in Fig. 1. The active cell eventually reaches the end of
the spiking manifold and falls down to Meq. This changes
the governing nullcline for the other cell and releases it
from inhibition. Therefore, the released cell jumps up
and turns inhibition of the other cell on. This process
of switching between active and inactive states of the
two cells is cyclic and results in the onset of anti-phase
bursting. A similar hold-then-release mechanism of the
anti-phase behavior of spiking cells is often referred to
as "synaptic release" [7, 10], causing post-inhibitory re-
bound [15]. Below we show that the synaptic release
mechanism along with a long duty cycle of driving neu-
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FIG. 1: (color online). Half-center oscillator composed of
inhibitory neurons (1). The neurons are identical (V shift

1,2 =
−0.02); the inhibitory connections are strong (g12 = g21 ≡
gG = 2.) (Top) The uncoupled and inhibited nullclines are
depicted by solid and dotted blue lines, respectively. Color-
matching balls represent the instant phase points of the cells
on the bursting orbit. The dark gray trajectory corresponds
to the anti-phase solution, while the light one is the reference
trajectory of the uncoupled cell. As soon as the active (green)
cell is above the threshold Θsyn, the nulcline Meq is shifted
towards the slow nullcline m′ = 0 to generate a stable equi-
librium state near the lower knee through the saddle-node
bifurcation. The inactive (blue) cell is trapped at it until
the active cell falls down to Meq. (Bottom) Time-series of
the established anti-phase dynamics. Note the delayed post-
inhibition �ring of the inactive cell due to the slow passage
throughout the vicinity of the disappeared saddle-node.

rons play the crucial role in inducing synchronization in
larger networks.
II. Three-neuron network: "David vs. Goliath." Inspired
by the circuitry of a heart leech CPG [13] and a tritonia
CPG governing locomotion [14], we consider their prin-
cipal subnetwork shown in the left inset of Fig. 2. In
this network, code-named �David vs. Goliath,� neurons
1 and 2 form a half-center pair, receiving common inhi-
bition from neuron 3. The reciprocal inhibition within
the pair is strong, and the pair bursts in anti-phase in
the absence of inhibition from neuron 3. Neuron 3 is as-
sumed to have much weaker unidirectional connections
with the pair. In what follows, neuron 3, �David,� shall
attempt to make the half-center pair, �Goliath,� burst
synchronously, �ghting against a much stronger desyn-
chronizing force within the �Goliath� network. It is worth
noticing that the �David vs. Goliath� ratio of the cou-
plings is particularly pronounced in the tritonia CPG
[14]. Let us consider two distinct outcomes of this �David
vs. Goliath� struggle, depending on the duty cycle of the
�David� neuron. To better isolate the key e�ect, we will
only change the duty cycle of the �David� neuron while
keeping the duty cycle of the �Goliath� neurons constant
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around 50%.
We set the �David� neuron relatively close to the tran-

sition from bursting into tonic spiking which is due to
either the blue sky bifurcation [3] or the bi-stability sce-
nario [4]. In either case, the duty cycle grows fast as
V shift

3 approaches the transition value [3]. This allows the
�David� neuron to maintain long burst durations with-
out changing the interburst interval. In other words, it
spends more time on the spiking manifold than on the
lower branch of the nullcline Meq. We start with the
duty cycle of 80% which lies in a biologically plausible
interval [13]. Recall that due to the antiphase dynamics,
either cell of the �Goliath� network is always inactive, be-
ing locked down near the lower knee of Meq. While the
phase state of the �David� neuron is on the spiking mani-
fold and above the threshold, it also inhibits the inactive
cell of �Goliath,� extending its lock-down state further.
Note that in the 3D phase space of each individual sys-
tem, the gap between the S-shape nullcline Meq and the
slow nullcline m′ = 0 is initially small so that a weak
inhibition originating from the �David� neuron is su�-
cient to close it and hence to lock the inactive �Goliath�
neuron down. This small gap between the fast and slow
nullclines is not a peculiarity of the neuron model (1),
but is typical for many other Hodgkin-Huxley-type mod-
els, including Sherman and a modi�ed Morris-Lecar ones
[2]. Figure 2 shows that the duty cycle of the driving
neuron 3 is long enough to put both neurons 1 and 2 into
the lock-down state and therefore synchronize them. For
the given synaptic threshold Θsyn, this results in com-
plete synchronization. It is important to emphasize that
weak common inhibition is unable to establish burst or
complete synchronization within the �Goliath� network
if the duty cycle of the driving neuron 3 is short, typi-
cally shorter than 50%. In this case, neuron 2 does not
have enough time to catch up with neuron 1. Released
from inhibition, neuron 1 is free to �re a �rst action po-
tential in a burst, while neuron 2 remains yet inactive.
After jumping up, the phase point of neuron 1 crosses the
synaptic threshold and turns the strong inhibition within
�Goliath� network on. It makes neuron 2 locked down un-
til neuron 1 is out of its active phase. This leads to the
anti-phase behavior of the �Goliath� network, described
in Fig. 1. Thus, an e�ort of the driving neuron 3 to break
down the anti-phase �ring rhythm of the �Goliath� net-
work fails. Figure 3 shows that the "David" neuron with
a duty cycle shorter than about 50% cannot synchro-
nize the given "Goliath" neurons, even if the strength
of common inhibition exceeds that of reciprocal inhibi-
tion within the "Goliath" network. It clearly reveals two
key components of the mechanism, underlying the on-
set of induced synchronization in the "Goliath" network.
These are: (i) the hold-then-release synaptic property,
allowing the "David" neuron to lock down the "Goliath"
neurons, and (ii) a long duty cycle of the "David" neu-
ron. Consequently, the synchronization mechanism is not

restricted to square-wave bursting, but is applicable to
other types of bursters, allowing for the synaptic release
mechanism and therefore, forming a half-center oscilla-
tor. Fig. 3 shows a wide horizontal plateau in the duty

FIG. 2: (color online). Dynamics of the �David vs. Goliath�
network (left inset) with weak g31 = g32 ≡ gD = 0.02 and
strong coupling gG = 2 for a long duty cycle. The control
parameters are V shift

1,2 = −0.02 and V shift
3 = −0.024. Longer

burst duration of the driving neuron allows the driven neurons
1 and 2 to get together at the lock-down state near the lower
knee of the inhibited nullcline Meq. Neuron 1 (blue ball) is
locked by the driving neuron 3, while the phase point of neu-
ron 2 (green ball) moves along Meq towards its lower knee
and eventually catches up with the phase state of neuron 1.
Having become inactive, the driving neuron 3 releases neu-
rons 1 and 2 from inhibition simultaneously. Jumping up to
the spiking manifold, they achieve complete synchronization,
shown by the time-series of the established regimes. Thus,
�David� beats �Goliath.� Note that, when synchronized, neu-
rons 1 and 2 shorten their natural duty cycle.
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FIG. 3: Dependence of the threshold coupling strength gD,
inducing synchronization in the "Goliath" network, on the
duty cycle of the "David" neuron. Other parameters are the
same as in Fig. 2. Values of V shift

3 correspond to the indicated
duty cycles.

cycle-dependence curve of the synchronization threshold
coupling. This con�rms that the strength of common
inhibition, that is supposed to be the third important
component, plays no essential role in inducing synchro-
nization, provided that it is su�cient to close the gap be-
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tween the nullclines. The induced burst synchronization
persists even when the driven neurons are mismatched
due to both intrinsic properties of the cells and asym-
metries of the network. In particular, it persists even
under a 200% mismatch between coupling strengths, like
g12 = 1 and g21 = 3. Moreover, the inhibitory connec-
tions from neuron 3 do not have to be unidirectional; for
example, symmetric synaptic couplings g13 = g31 = 0.02
and g23 = g32 = 0.02 also induce synchronization in the
"Goliath" network.
III. Larger networks. Our results carry over to larger net-
works of bursting neurons (1), where subnetworks (clus-
ters) of neurons with strong desynchronizing connections
receive a common input from the same driving neurons.
Examples of networks with the above properties are de-
picted in Fig. 4.
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FIG. 4: (color online). Examples of the networks satisfy-
ing the assumed synchronization conditions. The neurons of
same color form a cluster. The width of the links may be
thought of as the coupling strength. Note strong uniform
couplings within the cluster and weak connections from the
driving neuron/neurons. (Left) Ring network driven by the
central pacemaker. Reciprocal inhibitory connections, gr = 1,
among neurons within the ring are depicted by links without
arrows. Directional connections from the central pacemaker
cell to the ring are uniform and weak, gd = 0.02. Two back-
ward connections, gb = 0.02, from the ring are introduced
to make the network asymmetric. (Right) Network with an
irregular structure. The coupling strength are set as follows:
g12 = g21 = 2, all other gij = 0.02. For V shift

i = −0.02,
i = 1, 7, no synchronization within the clusters of both net-
works is induced. The longer duty cycle of the driving neu-
ron/neurons arising at V shift

center = −0.024 (left network) and
V shift

3,4 = −0.024 (right network) puts the neurons within the
clusters in synchronization.

In summary, the duty cycle of neurons driving an in-
hibitory network is shown to be the critical character-
istic, explicitly determining synchronization properties
of the network. We have shown that a bursting net-
work with strong desynchronizing connections can be
synchronized by a weak common inhibitory input from
an external pacemaker neuron whose duty cycle is suf-
�ciently long. In strongly heterogeneous networks, the
ratio of the duty cycles becomes the imperative order pa-
rameter that controls the dynamics of the network and
designates its pacemaker by the intrinsic properties, or

by the network structure. Thus, the pacemaker being
the longest bursting cell makes other strongly uncorre-
lated neurons synchronized and determines the network's
paces and rhythms. The discovered mechanism of in-
duced synchronization is generic and applicable to other
Hodgkin-Huxley-type neurons, capable of forming a half-
center oscillator. It demonstrates how neurons with dif-
ferent duty cycles can be employed as building elements
for constructing complex neuronal networks with pre-
scribed cooperative behaviors. This work was supported
by the GSU Brains and Behavior program and RFFI No
050100558.
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