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Abstract In-depth understanding of the generic mech-
anisms of transitions between distinct patterns of
the activity in realistic models of individual neu-
rons presents a fundamental challenge for the theory
of applied dynamical systems. The knowledge about
likely mechanisms would give valuable insights and
predictions for determining basic principles of the
functioning of neurons both isolated and networked.
We demonstrate a computational suite of the devel-
oped tools based on the qualitative theory of differ-
ential equations that is specifically tailored for slow–
fast neuron models. The toolkit includes the parame-
ter continuation technique for localizing slow-motion
manifolds in a model without need of dissection, the
averaging technique for localizing periodic orbits and
determining their stability and bifurcations, as well as
a reduction apparatus for deriving a family of Poincaré
return mappings for a voltage interval. Such return
mappings allow for detailed examinations of not only
stable fixed points but also unstable limit solutions of
the system, including periodic, homoclinic and hetero-
clinic orbits. Using interval mappings we can compute
various quantitative characteristics such as topological
entropy and kneading invariants for examinations of
global bifurcations in the neuron model.
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1 Introduction

Individual neurons can generate various complex os-
cillations known as bursting, formed by alternating
fast repetitive spiking and quiescent or subthreshold
oscillatory phases. Bursting is a manifestation of com-
posite, multiple timescale dynamics observed in vari-
ous fields of science as diverse as food chain ecosys-
tems, nonlinear optics, medical studies of the human
immune system, and neuroscience. In neuroscience,
bursting is observed, but not limited to, in patholog-
ical brain states [1, 2], particularly, during epileptic
seizures [3, 4].

A single neuron can demonstrate various bursting
patterns endogenously, varying in response to exter-
nal disturbances due to synapses or to intrinsic fac-
tors such as channel noise. The coexistence of bursting
and tonic spiking, as well as several different burst-
ing modes, has been observed in models [5–9] and
experimental studies [10–12]. The role of bursting
is especially important for rhythmic movements de-
termined by Central Pattern Generators (CPGs) [13].
CPGs are small polymorphic neural circuits control-
ling various vital repetitive locomotive functions [14]
such as cardiac beating, respiration and walking of hu-
mans, swimming and crawling of leeches, etc. [15].
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Currently, of very special interest are the bursting
polyrhythmic dynamics in a multifunctional CPG [16]
in which each oscillatory attractor corresponds to a
specific rhythm on a specific timescale associated with
a particular type of the rhythmic behavior of an an-
imal. Such a CPG can drive multiple behaviors and
switch between different neuronal rhythms upon var-
ious conditions [17, 18]. The multistability enhances
the complexity and flexibility of the nervous and lo-
comotive systems [19]. Examples include the Tritonia
swimming types, switching between trot and gallop
in some animals, and switching between crawling and
swimming in leeches.

Deterministic description of endogenous oscilla-
tory activities, such as tonic spiking and bursting, in
neuronal dynamics is based on the examination of
generic properties of various mathematical and realis-
tic models derived through the Hodgkin–Huxley for-
malism. A typical neuronal model falls into a spe-
cial class of dynamical systems with at least two
distinct timescales, i.e. slow–fast systems. Geomet-
ric configurations of neuron models for bursting, pi-
oneered by Rinzel [20], were further developed by Er-
mentrout [22], Bertram et al. [6], Guckenheimer [23]
and by Izhikevich [24, 25]. Dynamics of such mod-
els are determined by and centered around the attract-
ing sections of the slow-motion manifolds, which are
composed of equilibria and limit cycles of the fast
subsystem [26–32]. These manifolds constitute the
backbones of bursting patterns in a neuronal model.
A typical Hodgkin–Huxley model possesses a pair
of such manifolds [20]: quiescent and tonic spiking.
The existing classifications of bursting are based on
codimension-one bifurcations that initiate or terminate
the fast trajectory transitions between slow-motion
manifolds in the 3D phase space of a model. These
classifications single out the classes of bursting by
subdividing neuronal models into the following types:
elliptic or Hopf-fold; square-wave burster, or fold-
homoclinic; parabolic, or circle-circle class describing
top-hat models.

The slow–fast dissection has been proven to work
very well for most low-order models of bursting neu-
rons as long as they stay far from the transitions from
and to bursting. However, it provides less insight into
the bifurcations of bursting which are often due to re-
ciprocal interactions involving both slow and fast dy-
namics and leading to the emergence of novel dynam-
ical phenomena that can only occur in the entire sys-

tem, not in any of its subsystems. Moreover, near tran-
sitions, the bursting behavior becomes rather complex,
and may often exhibit deterministic chaos [33–41].

Analysis of bursting transformations requires the
use of nonlocal bifurcation tools, including Poincaré
return mappings [42–44]. Mappings have been ac-
tively employed in computational neuroscience,
see [38, 45–49] and references therein. A drawback of
mappings constructed from time series is their sparse-
ness as they reflect only dominating attractors of a sys-
tem. A new, computer-assisted method for construct-
ing a complete family of onto mappings for membrane
potentials of Hodgkin–Huxley neuronal models was
proposed in [41, 50, 51] following [52]. Using this
approach we have studied complex bursting bifurca-
tions in a leech heart interneuron model and revealed
that the cause of complexity is homoclinic tangles of
saddle periodic orbits [49].

One goal of this paper is to give a comprehensive
description of bifurcations leading to the emergence
of complex, coexisting bursting patterns in a reduced
model of the leech heart interneuron. The number of
open problems in mathematical neuroscience, includ-
ing global bifurcations in models and networks, re-
mains quite large [23]. The range of bifurcations and
dynamical phenomena giving rise to bursting tran-
scends the existing classification schemes. The list
of bifurcations occurring on the edge of bursting in-
cludes various homoclinic inclination/orbit-flip bifur-
cations of saddle, the blue sky catastrophe, bistabil-
ity of bursting with tonic spiking, and subthreshold
oscillations like MMOs, torus-canard formation and
breakdown, etc. [38, 41, 46, 53–60]. Such bifurca-
tions are frequently observed in many neuronal mod-
els and cannot be explained by the slow–fast dissec-
tion method. For the past decade there was a single
mechanism rigorously examined [33] for square-wave
burster: its key feature is—chaotic dynamics of finite
subshift type. The recent breakthrough in this direc-
tion came with two novel generic mechanisms—both
related to homoclinic bifurcations of saddle-node pe-
riodic orbits. The first mechanism, based on the blue
sky catastrophe [42–44, 58, 61], describes a reversible
and continuous transition between tonic spiking and
bursting. The feature of the other transition mecha-
nism, due to non-central homoclinics [62] to a saddle-
node orbit, is bistability of a neuron such that it can fire
tonic spikes or exhibit bursting, depending on its ini-
tial state. Moreover, bistable neurons at the edge of the
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transition show transient chaos with an unpredictable
number of burst trains followed by regular tonic spik-
ing. This phenomenon is a direct consequence of the
Smale horseshoe dynamics in the system [63]. Nei-
ther transition can be explained in terms of slow–fast
dissections. Further systematic development of dy-
namical neuroscience calls for new bifurcation meth-
ods tailored specifically to multiscale neuronal mod-
els.

2 Reduced leech heart interneuron model

Several reduced models of a leech heart interneu-
ron [5] were introduced in Ref. [64]. The “least”
complex model is given by the following three equa-
tions [39, 50, 58, 64] derived through the Hodgkin–
Huxley gated variables formalism [65]:

C
dV

dt
= −INa − IK2 + IL − Iapp − Isyn,

IL = ḡL (V − EL), IK2 = ḡK2 m2
K2(V − EK),

INa = ḡNa m3
Na hNa (V − ENa),mNa = m∞

Na(V ),

τNa
dhNa

dt
= h∞

Na(V ) − h,

τK2
dmK2

dt
= m∞

K2(V ) − mK2, (1)

where C = 0.5 nF is the membrane capacitance; V is
the membrane potential; INa is the fast voltage gated
sodium current with slow inactivation hNa and fast ac-
tivation mNa; IK2 is the persistent potassium current
with activation mK2; IL is leak current and Iapp is a
constant polarization or external applied current. The
maximal conductances are ḡK2 = 30 nS, ḡNa = 200 nS
and gL = 8 nS, and the reversal potentials are ENa =
0.045 V, EK = −0.070 V and EL = −0.046 V. The
time constants of gating variables are τK2 = 0.25 s and
τNa = 0.0405 s. We would like to point out that the
time constant of the activation of the potassium cur-
rent is lowered to the value τK2 = 0.9 and the applied
current is no longer zero: Iapp = 0.006 nA whenever
we will discuss the occurrence of the blue sky catas-
trophe in the model (Fig. 5).

The steady-state values of gating variables, h∞
Na(V ),

m∞
Na(V ), m∞

K2(V ), are given by the following Boltz-

mann equations:

h∞
Na(V ) = [

1 + exp
(
500(0.0333 − V )

)]−1
,

m∞
Na(V ) = [

1 + exp
(−150(0.0305 − V )

)]−1
, (2)

m∞
K2(V ) = [

1 + exp
(−83(0.018 − V + V shift

K2 )
)]−1

.

The quantity V shift
K2 has become a genuine bifurcation

parameter for this model: it is the deviation from ex-
perimentally averaged voltage value V1/2 = 0.018 V
corresponding to semi-activated potassium channel,
i.e. m∞

K2(0.018) = 1/2. Variations of V shift
K2 move the

slow nullcline dmK2
dt

= 0 in the V -direction in the 3D
phase. This delays/speeds the activation of mK2 when
the parameter is moved toward negative/positive, re-
spectively values. Dynamically, this results in the
neuron firing tonically, or becoming hyperpolariz-
ingly quiescent, respectively. The range of V shift

K2 is
[−0.025, 0.0018] V in this study. The upper boundary
of the interval corresponds to the hyperpolarized qui-
escent state of the neuron, whereas it fires tonically at
lower V shift

K2 values. As the parameter is varied within
this interval, the model undergoes multiple transfor-
mations in the bursting activity. We must note here
that responses of dynamics of the model to changes
of V shift

K2 are not totally equivalent to variations of an
applied (or Ipol) current, as the latter affects the topol-
ogy of the slow-motion manifolds of the fast (v, hNa)

subsystem, which remains intact while V shift
K2 is varied.

3 Slow–fast paradigm

To move forward on the analysis of the model, we in-
troduce some basics of the theory of slow–fast sys-
tems.

Consider a slow–fast system

εv̇ = F(v,m),

ṁ = G(v,m,α),
(3)

where v ∈ Rn, n ≥ 2, m ∈ R1 for simplicity, |ε| � 1 is
a small parameter, α is a single bifurcation parameter,
and functions F,G are smooth. Rescaling the time t =
ετ changes (3) to the form

v′ = F(v,m),

m′ = εG(v,m,α),
(4)
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in new time τ . In the singular limit ε = 0, the static
(frozen) variable m becomes a control parameter driv-
ing the dynamics of the fast dynamical subsystem:

v′ = F(v,m). (5)

Starting with an initial point (v0,m0), a trajectory
of (5) converges to an attractor for the given m. Such
an attractor may be a stable equilibrium state, or a sta-
ble periodic orbit when v ∈ R2, or have a more com-
plex structure in the high-dimensional case. When the
equilibrium state or the periodic orbit of the fast sys-
tem is structurally stable (normally hyperbolic), it de-
pends smoothly on m. Hence, by varying m, one can
continue the smooth invariant manifolds of system (5).
The manifold composed of the equilibrium states of
the fast subsystem is a space curve, Meq, in the ex-
tended phase space v⊗m of (4). When the manifold is
made of periodic orbits, it is a cylindrically shaped 2D
surface, Mlc. Locally, a normally hyperbolic section of
the manifold becomes a center manifold for (4), and
hence persists in a close system (4) for small ε. This
implies that solutions of (4) will stay close to such
attracting segments of the manifold, which are made
of stable periodic orbits or stable equilibria of the fast
subsystem.

A trajectory of the system (4) at 0 < ε � 1, traced
down by the phase point starring from an initial point
(v0,m0), will behave in the following way: within a fi-
nite interval of time it converges exponentially fast to
the chosen attracting manifold, either Meq or Mlc, so
that its m-coordinate remains near m0. Once nearby,
the phase point slides along the manifold with the rate
of change in the m-direction of order ε. For system
(3) this corresponds to a rapid jump of the v-variable
toward the invariant manifold followed by a finite
rate evolution in m. Having approached the cylinder-
shaped manifold Mlc(ε) the phase point wraps around
it in the v-space. The direction of slow drift in the m-
variable is determined by the slow equation averaged
over the period of a turn around Mlc(ε).

An equilibrium state of the fast system is given by
the condition F(v,m) = 0, that is, the equation of the
1D quiescent manifold Meq in the (v, m)-extended
phase space. An equilibrium state of the full system
(4) resides at the intersection point of this manifold
with the slow nullcline m′ = 0 given by G = 0. Note
that the coordinates of the equilibrium state do not de-
pend on the small parameter ε, but the stability (i.e.
the characteristic exponents) does depend on ε.

To detect slow-motion manifolds we have actually
used a new and practical way for their localization in
the phase space of a slow–fast neuronal model. The
method capitalizes on the slow–fast dissection as well
as on the parameter continuation technique. Let Meq

be known from the consideration of the system in the
singular limit. Let the screening or sweeping parame-
ter α be introduced (even artificially) in the slow equa-
tion in (4) so that variations of α translate the slow
nullcline m′ = 0 in the phase space of the system.
Then, as α is varied, the equilibrium state of the full
system (4) at ε �= 0 slides along Meq following the
slow nullcline m′ = 0. In the case where Meq is un-
known, we find the manifold without need of the con-
ventional slow–fast dissection. Hence we can iden-
tify a slow-motion quiescent manifold in the phase
space of a model by applying “slow parameter” con-
tinuation technique. This approach is especially valu-
able for neuronal models of higher dimensions where
slow–fast dissections could be problematic because of
the presence of multiple timescales for various ionic
currents involved in the dynamics. Below, we show
that a similar technique can be used to locate the slow-
motion manifolds comprised of periodic orbits as well.

In the first order of ε, the evolution of the m-
component of the phase point along an attracting, nor-
mally hyperbolic branch v = vs

eq(m) (by virtue of the
implicit function theorem for F = 0) of the manifold
Meq in the phase space of (4) is determined by the
equation

m′ = G
(
vs

eq(m),m,α
)
. (6)

A single zero of G is the hyperbolic equilibrium state
of (6). The zero can be an attractor or a repeller, that
corresponds respectively to a stable or saddle equilib-
rium state of the full system. A slow drift of the phase
point along the branch vs

eq(m) is either limited by a
stable point of (6), or the point comes close to a criti-
cal (turning) point given by ∂F/∂m = 0 on the mani-
fold. Recall that at ε = 0, the m-variable is a parameter
in the fast system, and therefore, the critical value of
m corresponds to a codimension-one saddle-node or
fold bifurcation through which a pair of equilibrium
states—stable and saddle—merge and vanish. The bi-
furcation occurs at a minimum (maximum) of m on
Meq, after which m may no longer decrease (increase)
along Meq. So, at the fold the phase point seeks a new
attractor, that is, the ω-limit set of the unstable sepa-
ratrix of the saddle-node equilibrium state of the fast
subsystem.
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The dynamics of trajectories of (4) near an attract-
ing, normally hyperbolic segment of the 2D cylinder-
shaped manifold Mlc is less static for 0 < ε � 1.
Geometrically, the 2D slow nullcline m′ = 0 can cut
transversally through Mlc. So, on the surface of Mlc

below (above) the slow nullcline, the m-component of
the phase point increases (m′ > 0) (respectively, de-
creases as m′ < 0). Let v = vlc(v0,m0; τ) be the equa-
tion of a T (m0)-periodic stable orbit of the fast subsys-
tem (4) at some m0. So, if G(vlc,m,α) > 0 (< 0) on
Mlc over a period T (m) of a single turn, then the phase
point slides along the manifold in the direction of in-
creasing (decreasing) m. If the opposite drifts are can-
celed out after a turn, then the phase point remains on
the same track. This observation is formalized in the
following average slow equation introduced by Pon-
tryagin and Rodygin [27]:

〈m′〉 = 〈
G(m,α)

〉

≡ ε

T (m)

∫ T (m)

0
G

(
vlc(τ ;m),m,α

)
dτ. (7)

This equation yields a first-order approximation for
the slow m-dynamics of the phase point near the (at-
tracting) spiking manifold Mlc. A zero, m∗, of func-
tion 〈G〉 is an equilibrium state of the averaged system.
A hyperbolic equilibrium state of (7) corresponds to a
hyperbolic periodic orbit of the full system (4) on the
considered section of the manifold Mlc. The stability
(instability) of the equilibrium state, as well as that of
the periodic orbit in the m-direction, is determined by
the sign of the partial ∂〈G〉/∂m at the given zero: if
negative, then the periodic orbit is stable. If it is posi-
tive, then the orbit is of the saddle type, with 2D stable
and unstable manifolds. Locally, the unstable manifold
is a section of Mlc.

If (7) has no zeros, then the attracting segment of
the manifold Mlc is transient for the solutions of the
system that coil around Mlc in the direction of increas-
ing or decreasing m, depending on whether 〈G(m,α)〉
is positively or negatively defined. In context of neu-
ronal dynamics the corresponding interneuron model
is ready to burst.

4 Slow manifolds in the interneuron model

The application of the slow parameter continuation
technique to the leech heart interneuron model is

demonstrated in Fig. 1. The quiescent manifold Meq

has a distinguishable Z-shape in the phase space of
this (and many other) Hodgkin–Huxley type models.
The two turning points on Meq, correspond to saddle-
node bifurcations in the fast subsystem where a pair
of equilibrium states coalesce and vanish. In the inter-
val between the folds the fast subsystem (5) has three
equilibria. The middle segment of Meq is comprised
of saddles. The upper and lower branches of the null-
cline Meq correspond to the depolarized and hyperpo-
larized states of the interneuron, respectively. The hy-
perpolarized (solid) branch of Meq is comprised of sta-
ble equilibria of the fast subsystem, and hence of the
full system as well, with the given slow equation (null-
cline), see Fig. 1. Again we stress that by construction,
the slow manifold Meq is sought as a V shift

K2 -parametric
space curve in the phase space of the model.

An approach similar for finding Meq is used to lo-
cate the tonic spiking manifold Mlc comprised of the
periodic orbits. Let there exist a stable, round peri-
odic orbit of the entire model (4) for some α (on the
hypothetically known Mlc). Variations of α, moving
the slow nullcline in the v-direction, make the peri-
odic orbit slide along the sought manifold Mlc. So, by
parametrically continuing the periodic orbit, we can
uncover the manifold Mlc without a prior slow–fast
dissection. Furthermore, this parameter continuation
approach yields the slow manifold for a given small
parameter, not an approximation in the singular limit,
in contrast to the manifold Meq, which is independent
of ε.

4.1 Tonic spiking manifold

To reveal the tonic spiking manifold Mlc, we first find
a stable periodic orbit corresponding to tonic spiking
oscillations of the interneuron. Such as one detected
in the phase space of the model at V shift

K2 = −0.026 V
is on the edge of the sought manifold Mlc in Fig. 2.
Next, as V shift

K2 is increased from −0.026 to 0.0018, we
follow the periodic orbit by using the software pack-
age CONTENT (freely available at http://www.staff.
science.uu.nl/~kouzn101/CONTENT/). Approaching
the latter value, the stable manifold Mlc folds back,
wrapping around the quiescent manifold Meq, and
touches the low hyperpolarized fold. We stress that re-
vealing the topology of the spiking manifold would be
impossible with the slow–fast dissection [40]. Thus,
by construction, the aforementioned center manifold

http://www.staff.science.uu.nl/~kouzn101/CONTENT/
http://www.staff.science.uu.nl/~kouzn101/CONTENT/
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Fig. 1 The equilibrium state of (1) for the given V shift
K2 lies at

an intersection point of the 1D Z-shaped quiescent manifold
Meq comprised of the equilibrium states of the fast subsystem
with the 2D sigmoidal slow nullcline m′

K2 = 0. The position
of the intersection point (i.e. the equilibrium state) depends
on V shift

K2 : as the parameter is varied, the slow nullcline moves

in the V -direction, thus tracing down the manifold Meq. Ap-
plication of the constant external current shifts Meq, instead,
leftwards if Iapp is hyperpolarizing (negative). Three insets de-
pict schematically the characteristic exponents of the typical
equilibria along Meq

Mlc is a parametrically sought two-dimensional sur-
face foliated by a large number of the (spiking) pe-
riodic orbits of the model (1). A solution of (1) re-
peatedly switching between Meq and Mlc represents
bursting activity. The hyperpolarized fold on Meq cor-
responds to the beginning of a burst. The number of
complete revolutions of the solution around Mlc be-
fore it reaches the fold on the spiking manifold is the
number of spikes per burst. We use this winding num-
ber to classify bursting regimes.

Figure 2 shows the parametric slow-motion mani-
folds, tonic spiking Mlc and quiescent Meq in the 3D
phase space of the interneuron model (1) as the bi-
furcation parameter V shift

K2 increases from −0.026 to
0.0018. The bifurcation diagram revealing the depen-
dence of the tonic spiking periodic orbits on the pa-
rameter V shift

K2 is shown in Fig. 3. Figure 3 shows that
within the interval V shift

K2 ∈ [−0.0234; −0.0259], the
tonic spiking branch has a hysteresis, and therefore the
system (1) may exhibit bistability as three periodic or-
bits coexist on Mlc, see Figs. 2 and 3.

4.2 Averaging

To investigate the bistability, we use the combina-
tion of the averaging and parameter continuation tech-
nique. Figure 4 illustrates the results obtained for the
interneuron model (1). Inset A1 of the figure shows
that when the slow nullcline m′ = 0 cuts through the
spiking manifold Mlc at negative values of the bifur-
cation parameter V shift

K2 , the corresponding slow aver-
age equation (7) has a single zero of 〈G〉 (Inset A2)
corresponding to a stable (tonic spiking) periodic orbit
(shown in green). Recall that with the slow nullcline
the phase point is pushed by the flow (slow equation
in (5)) so that its m-coordinate increases, or decreases
otherwise. If the phase point stays on a periodic orbit,
the opposite forces are canceled out on average, over
the period of the orbit. This results in a circular mo-
tion of the phase point around the “center of gravity”
of the periodic orbit. The (v, m)-coordinates of this
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Fig. 2 (Color online) Slow-motion manifolds and nullclines of
the model (1): the 2D spiking manifold Mlc is foliated by the
periodic orbits continued, from the left to the right, as the pa-
rameter V shift

K2 is increased from −0.026 to 0.0018. The space
curves Vmin and 〈V 〉 are made of minimal and average coor-
dinates of the periodic orbits. Mlc glues to the hyperpolarized
fold of the quiescent manifold, Meq, comprised of the equilib-

rium states of (1), where the curve of the averaged values 〈V 〉
terminates. An equilibrium state of (1) is the intersection point
of Meq with the slow (yellow) nullcline ṁK2 = 0 for the given
V shift

K2 . Also shown (in red) is the curve of the v-minimal coor-
dinate values of the periodic orbits making Mlc. This curve is
used to define the Poincaré mapping taking it onto itself after
one revolution around Mlc

center are given by

〈v〉 = 1

T

∫ T

0
vlc(τ ;m)dτ,

〈m〉 = 1

T

∫ T

0
mlc

(
τ ;v,V shift

K2

)
dτ,

(8)

where (vlc mlc) is the equation of the periodic orbit.
The position of the periodic orbit on Mlc and the grav-
ity center depend on where the slow nullcline m′ = 0
cuts through Mlc. By increasing the parameter V shift

K2 ,
the slow nullcline lowers, and the periodic orbit slides
along Mlc in the direction of increasing m. Hence,
while V shift

K2 is varied, the gravity center traces down
a space curve, denoted by 〈V 〉 in the figures depicting
the phase space of the interneuron model, of the av-
erage coordinates of all periodic orbits forming Mlc.
A fold of the curve 〈V 〉 (Fig. 3) corresponds to a
saddle-node bifurcation of periodic orbits; there are
two such bifurcations occurring at V shift

K2 = −0.0234
and −0.0259 (Fig. 3). Note that in order to accu-

rately describe the evolution of periodic orbit one has
to work with the averaged branches, as 2D projec-
tions may be misleading. For example, we can see
from Fig. 3 that it is the average branch 〈v〉 that glues
to the hyperpolarized fold on the quiescent manifold
Meq at V shift

K2 = 0.002471. This corresponds to a ho-
moclinic saddle-node or SNIC bifurcation: the closer
the periodic orbit approaches the equilibrium state,
the longer the phase point lingers near the “ghost” of
the saddle-node equilibrium state. This makes the pe-
riod of the orbit greater, which implies that 〈v〉 gets
closer to the v-coordinate of the bifurcating equilib-
rium state (fold point). Observe another peculiar fea-
ture of the 〈v〉 branch: its inflection point (labeled PD)
at V shift

K2 = −0.0249 corresponds to a period-doubling
bifurcation.

Figure 4(B1) shows that while increasing the pa-
rameter V shift

K2 makes the slow nullcline lower, the
graph of 〈G〉 elevates, touching the horizonal axis.
This (concave down) tangency implies a double zero
of 〈G〉 that corresponds to a saddle-node bifurcation



312 A. Shilnikov

Fig. 3 Dependence of the v-coordinates of the equilibrium
states (Meq) and the periodic orbits (average 〈V 〉 and mini-
mal Vmin branches) of the model on the bifurcation parameter
V shift

K2 (given in millivolts here). The solid and dashed segments
of Meq correspond to stable and unstable equilibria. The av-
erage branch 〈V 〉 terminates at the fold, SNhom on Meq, cor-

responding to a homoclinic saddle-node (SNIC) bifurcation at
V shift

K2 = −0.002471. Saddle-node bifurcations of periodic or-
bits occur at V shift

K2 = −0.0234 and −0.0259; they are associated
with two folds, SN, on 〈V 〉 and Vmin branches. The inflection
point PD at −0.0149 corresponds to a period-doubling bifurca-
tion

in the average slow equation. Decoupling the double
zero at a further increase of the parameter gives rise
to the appearance of two more periodic orbits on Mlc:
stable (black) and saddle (red). In the parameter in-
terval between −0.0259 and −0.0234 there are three
periodic orbits, enough for bistability of tonic spik-
ing oscillations in the interneuron, provided that the
newborn large amplitude periodic orbit remains stable.
Note that loss of the stability of the newborn periodic
orbit initiates the cascade of period-doubling bifurca-
tions in the model. The orbit will regain its stability
further through a reverse period-doubling bifurcation
at V shift

K2 = −0.0149. The spiking manifold Mlc contin-
ued by this large amplitude periodic orbit terminates,
after it touches the hyperpolarized knee point on Meq

through the homoclinic saddle-node bifurcation.
As V shift

K2 is increased further, the initially stable
(green) and saddle (red) periodic orbits come closer
and merge through the saddle-node bifurcation at
V shift

K2 = −0.0234 when 〈G〉 becomes quadratically
tangent (concave up) to the horizontal axis again; see
insets C1 and C2. After the annihilation of the stable
(tonic spiking) periodic orbit, the interneuron model
is ready for bursting because the attracting section of

the manifold Mlc is free of a transient solution for the
whole range of the mK2-variable.

In contrast to equilibrium states, the position of a
periodic orbit on Mlc is determined by the slow null-
cline only implicitly. The reason is that the slow equa-
tion in (1) is not linear in v; see the Boltzmann func-
tions ((2)) on the right-hand side of the model (1).
Because of that the intersection point of 1D average
branch 〈v〉 with the 2D slow nullcline surface m′ = 0
is not the gravity center of the periodic orbit at the
given V shift

K2 . To find its exact location on 〈v〉 graphi-
cally (likewise the case of equilibrium states), we pro-
posed a new concept of the average nullclines [39, 58].
For the model under consideration, we introduce the
average slow nullcline as follows: define

〈
m∞

K2

〉 = 1

T

∫ T

0
m∞

K2

(
vlc(τ ; v)

)
dτ, (9)

by averaging the corresponding Boltzmann function
on the periodic orbit over its period at the given V shift

K2
on Mlc. As vlc depends on V shift

K2 , by varying the pa-
rameter we find the whole range of 〈m∞

K2〉 on the peri-
odic orbits. Observe that

〈G〉 ∼ 〈
m∞

K2

〉 − 〈mK2〉.



Complete dynamical analysis of a neuron model 313

The graph of the average nullcline given by (〈f ∞
mK2

〉,
〈v〉) is a 2D cylindrical surface (blue color), la-
beled by 〈m′〉 = 0 in Fig. 2. An intersection point
of this V shift

K2 -parametric surface with the 1D V shift
K2 -

parametric branch 〈v〉 = 0 is the gravity center of the
sought periodic orbit only provided that the point cor-
responds to the same value of V shift

K2 . By the construc-
tion of both 〈m′〉 = 0 and 〈v〉 = 0, this point is a zero
of 〈G〉 = 0, see Fig. 4. Thus, the geometry and mutual
location of the average nullclines let one determine the
number of periodic orbits, if any, on the tonic spiking
manifold and saddle-node bifurcations, too; see Fig. 5

To conclude this section, we point out that the av-
eraging method based on (7) allows for easy local-
ization of periodic solutions around Mlc, as well as
it determines their stability, and predicts some local
bifurcations. The limitations of the method are obvi-
ous too: these findings provide little information about
the global behavior of orbits like bursting ones. Be-
sides, consideration of a single average equation ex-
cludes, by default, all other bifurcations, that orbits
may undergo, such as period-doubling, homoclinic, as
well as other complex bifurcations which underlie var-
ious routes to chaos. To overcome this obstacle, fur-
ther explorations of global dynamics of the interneu-
ron model should be continued by employing Poincaré
return mappings for the slow changing variable mK2

and for an entire interval of the fast varying voltage.

5 Poincaré mapping for slow variable

A 1D Poincaré return mapping for the slow m-variable
can be defined on a 2D cross section that cuts trans-
versely the spiking manifold Mlc in a line llc. On it, the
mapping defined over periods T (m,α) of revolutions
around the 2D cylinder-shaped manifold Mlc assumes
the form [42–44]:

mn+1 = mn + εT (m,α)
〈
G(m,α)

〉
. (10)

In essence, (10) is a discrete version of the averaged
equation (6). Properties of (10) are determined by the
product T (m,α)〈G(m,α)〉, scaled with ε, provided
that the mapping is not considered near the homoclinic
saddle-node bifurcation (SNIC) where the revolution
period around Mlc grows with no bound. Indeed, it is
〈G〉 that dictates the dynamics of the mapping.

Note that in case of the square-wave bursters where
the spiking manifold is terminated by a homoclinic bi-
furcation of the saddle of the fast subsystem, the pe-
riod T (m,α) grows logarithmically fast, so the shape
of the slow mapping is due to T (m,α). This results
in the slow mapping assuming a unimodal shape that
gives rise to a quick cascade of period-doubling bifur-
cations at the transition from tonic spiking into burst-
ing [34, 35, 45, 47, 59].

To get the slow mapping for the interneuron model
one needs 〈G〉 (known), the period T of the orbit as
the parameter V shift

K2 is varied and ε = 1/τmK2 . The lat-
ter is just a scaling factor which we will drop for the
sake of visualization. The transformations of 〈G〉 are
depicted in Fig. 4. In short, to create the slow map-
ping, one scales and then rotates the graph 〈G〉 through
π/4 counterclockwise. The 1D mapping for the slow
gating m-variable defined through the expression (10)
is shown in Fig. 6. Observe that the mapping is not
single-valued, because the spiking manifold Mlc in the
projection onto the m-coordinate folds back, which
gives two branches for the mapping graph. So, its
upper branch characterizes the dynamics of the slow
mK2-variable before the fold on the manifold Mlc,
while the lower branch corresponds to the segment of
Mlc after it turns from inside out or folds back.

Nevertheless, with some limitation we can still in-
terpret some of its basic properties. First is that fixed
points of mapping (10), located at the zeros of 〈G〉,
correspond to the same periodic orbits of the model.
For example, for V shift

K2 < −0.0026, the mapping has a
single stable fixed point (green) in inset A correspond-
ing to the stable (tonic spiking) periodic orbit centered
around the depolarized level of the interneuron, see
Fig. 4A. As the parameter is increased, the mapping
graph touches first the bisectrix and gains two more
fixed points, unstable (red) and stable (black) through
the saddle-node bifurcation. The unstable point serves
as a threshold dividing the basins of two attractors.
Further increase of V shift

K2 to −0.0234 makes the tonic
spiking and unstable (middle) fixed points merge and
vanish through the secondary saddle-node bifurcation.

The use of the 1D slow mapping lets us over-
come one major limit of the single average equa-
tion (6), namely, besides geometrically evident tangent
or saddle-node bifurcations, we can predict where the
period orbit starts a period-doubling cascade. This oc-
curs when the slope of the mapping at the fixed point
(black corresponding to a large amplitude periodic or-
bit in Fig. 4(C1)) becomes smaller than −1. To avoid
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Fig. 4 (A1–D1): (v,mK2)-projections of the V shift
K2 -parametric

manifolds Meq and Mlc comprised of equilibria and peri-
odic orbits of the interneuron model (1). (A2–D2): Numer-
ically found graphs of 〈G〉 (defined in (7)) for V shift

K2 =
{−0.0255, −0.0245, −0.02468, −0.0207}: a zero of 〈G〉 cor-
responds to a periodic orbit of the model. Sign of 〈G〉mK2 de-

termines the stability of an equilibrium state (periodic orbit (in
same color)) in mK2. Variations of V shift

K2 make the zeros of 〈G〉
translate, as well as the periodic orbits slide along Mlc. A tan-
gency of 〈G〉 (in B2) corresponds to a saddle-node bifurcation,
where two corresponding periodic orbits merge and then anni-
hilate
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Fig. 5 (Color online) Neuron model (1) at the blue sky catas-
trophe at the moment of the disappearance of the stable tonic
spiking periodic orbit with a saddle one on the manifold MLC
in the (mK2,V )-projection at V shift

K2 = −0.02452. The blue z-
shaped line, Meq, consists of the equilibrium states of the fast
subsystem (dotted and solid segments represent unstable and
stable ones). The point of its intersection with the slow nullcline
m′

K2 = 0 in is a single equilibrium state. The cylinder-shaped
surface MLC = Ms

LC ∪ Mu
LC is comprised of the tonic spiking

periodic orbits of the model. The (green) curve 〈V 〉 shows the
dependence of the v-coordinate of the periodic orbits, averaged
over the period, on mK2. The dashed (blue) curve is the aver-
age nullcline 〈m′

K2〉 = 0. The contact point between 〈V 〉 and
〈m′

K2〉 = 0 corresponds to the saddle-node periodic orbit, Lbs.
A section of Ms

LC on the right from the saddle-node periodic or-
bit Lbs is locally its unstable manifold, Wu. Shown in red is a
trajectory homoclinic to Lbs that becomes a stable orbit bursting
as after Lbs disappears

repetitions, we finish a rather limited consideration of
the bi-valued return mapping for the slow dynamics
of the interneuron model (1) and turn our attention to
a more informative mapping for the fast voltage. Such
fast mappings are more natural for neuroscience appli-
cations, as the membrane potential v is truly the only
variable that is directly measured in experimental stud-
ies.

Let us conclude this section with the following
remarks concerning the Poincaré return mapping for
slow variables in neuron models:

• Pros: the mapping is simply evaluated from (10)
provided that its right-hand side is known a priori.
The mapping allows for easy detecting a tangent or
saddle-node bifurcation, and is helpful for identify-
ing period-doubling bifurcations.

• Cons: The slow mapping is no single-valued one for
the model in question, and also for many models

with folded tonic spiking manifolds, like in elliptic
bursters. Because of that, a proper interpretation of
the mapping and bifurcations of fixed points can be
problematic. The major concern is that the imple-
mentation and realization of such mappings for slow
gating variables, which seem so natural and doable
in numerical studies, are hard to compare to or jus-
tify in experimental studies where the voltage re-
mains the only measurable variable, excluding mod-
els with slowly varying calcium concentrations.

6 Poincaré map for fast membrane potential

One may wonder about the conditions under which
the neuron starts to burst, and how this bursting ac-
tivity evolves into tonic spiking activity as the con-
trol parameter is varied. An evident observation that
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Fig. 6 (Color online)
Bifurcation stages of the 1D
Poincaré mapping for the
slow mK2-variable as V shift

K2
is increased from −0.0255
to −0.0018. The mapping is
not single-valued one due to
the fold on the tonic spiking
manifold Mlc. Fixed points
correspond to periodic
orbits (shown in same color
in Fig. 4) of the interneuron
model (1): the stable
(green) fixed one
corresponds to periodic
tonic spiking activity. The
fixed points emerge and
vanish through the tangent
or saddle-node bifurcations

both tonic spiking and bursting activities have oscil-
latory character lets one take full advantage of the
technique of Poincaré return mappings to reveal the
hidden mechanisms governing transitions between ac-
tivities. To do this in a straightforward manner, one
needs a long trace to identify a sequence of succes-
sive, local minimal values of V in it. Then, a one-
dimensional point-wise mapping, T , can be defined as
follows: T : Vn → Vn+1, where (Vn,Vn+1) is a pair of
the consecutive minimums in the trace. All such pairs

will then form the graph of the mapping. Clearly the
more such distinct pairs in the trace, the more “contin-
uous” and informative the mapping will be. A draw-
back of mappings constructed from time series is their
sparseness, as they reflect only dominating attractors
of a system.

In this section, we discuss the numerical algo-
rithm for constructing a one-parameter family of 1D
Poincaré return mappings taking a voltage interval into
itself in Hodgkin–Huxley neuronal models. The ap-
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Fig. 7 Space curve V ∗
min on the bottom of the tonic spiking

manifold Mlc is employed as initial data to generate the out-
going trajectories that define the Poincaré mapping taking V ∗

min
into itself after a single revolution around Mlc. An initial point
returning to itself after a single or several turns around Mlc, is a

fixed point (labeled by spheres UP2 and SP), or forms a periodic
bursting orbit (three gray spheres) of the mapping, respectively.
The set {V0} is made of the V -minimal coordinates (on V ∗

min) of
the periodic orbits foliating Mlc

proach was first proposed for the model under con-
sideration in [41, 49, 50] and enhanced for elliptic
bursters in [51]. Such mappings let us find and ex-
amine not only stable, but unstable solutions of the
system as well. Using the onto mappings we can con-
duct a thorough study of bursting and its bifurcations
en route to tonic spiking in the interneuron model (1).
This approach is broadly applicable to most slow–fast
neuronal models as it capitalizes on the fact that the so-
lutions of such system linger around the slow-motion
manifold of low dimensions.

The first stage in the mapping construction begins
with the localization of the tonic spiking manifold Mlc,
such as those shown in Figs. 1 and 7. Next we single
out a space curve, Vmin on the manifold, that corre-
sponds to minimal (maximal) voltage values (denoted
by V0) for all periodic orbits constituting Mlc. The re-
turn mapping is defined to take this curve onto itself
after a single turn around Mlc. Practically, the points
{V0} are used as the initial conditions for the numer-
ically integrated outgoing solutions of the model (1).
The integration of every such solution is stopped when
it reaches the successive minimal value V1. The found
pairs, (V0, V1), constitute the graph of the Poincaré
mapping for selected values of the control parameter,
V shift

K2 shown in Fig. 7.

The V shift
K2 -parameter family of the Poincaré map-

pings for a voltage interval is shown in Fig. 8; here,
we set τK2 = 0.25 and Ipol = 0. The mappings are
called unimodal because of a single critical point [66].
Such non-invertible mappings have several peculiar
features, including, for example, homoclinic orbits to
repelling fixed points [67] which give rise to the on-
set of chaotic dynamics in a system. The “continu-
ity” (6000 points forming the graph) of the mappings
allow for the detection of fixed and periodic attrac-
tors and repellers. Such unstable orbits, including ho-
moclinic and heteroclinic, are the hidden organizing
centers globally governing the dynamics of a model.
Using the voltage mappings we can analyze all lo-
cal and global bifurcations of periodic and aperiodic
orbits, including saddle-node and period-doubling bi-
furcations, spike adding, inner crisis within bursting,
etc. Chaotic dynamics can now be explored by means
of the symbolic description based on the theory of
kneading invariants [68, 69], and the topological en-
tropy as a quantitative measure of bursting complexity
in the model. Besides. we can examine the boundaries
of multistability in the model where bursting coexists
with other oscillatory types of neural activity.
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Fig. 8 V shift
K2 -parameter family of onto unimodal Poincaré map-

pings for the membrane potential v. A crossing point of the
graph of the mapping with a 45◦-line, is a fixed point corre-
sponding to a single V -minimum of a (round) periodic orbit on
the manifold Mlc in the phase space of the model. When the
shape of the mapping graph (lower-left section) changes from
concave-down to concave-up, the fixed point at the inflection
point changes stability, undergoing a period-doubling bifurca-
tion when its multiplier becomes less then −1. A tangency of
the graph with the 45◦-line corresponds a saddle-node bifurca-
tion through which two fixed points merge and vanish

7 Period doubling to bursting

A cascade of period-doubling or flip bifurcations is
one of typical routes to deterministic chaos in dissi-
pative systems. Neuronal models are no exceptions.
Period-doubling bifurcations have been reported fre-
quently in neurodynamics, especially near transitions
from tonic spiking to bursting in square-wave and el-
liptic bursters, see [35, 36, 40, 51, 57, 59, 70] and ref-
erences therein. In this section we will demonstrate
how the period-doubling cascade shapes the bistable
dynamics of the leech heart interneuron [39, 40].

At this point, we return to the bifurcation diagram
in Fig. 3 and the phase portraits in Fig. 4, where
the periodic orbits emerge and vanish as double ze-
ros of the average equation illustrated in inset (A2–
D2). Two folds on the branch of the periodic orbits
plotted against the parameter, which form a hysteresis,
indicate that the model can have two coexisting peri-
odic orbits. This situation is reflected in the occurrence
of two tangent, saddle-node bifurcations involving the
upper branches of the voltage mappings in Fig. 8.

In what follows below, we will concentrate our con-
sideration of the evolution of the large amplitude pe-
riodic orbit near the fold of the tonic spiking mani-
fold, through the examination of bifurcations of the
corresponding fixed point at low-value of the voltage
(−40 mV). The stable periodic orbit and the mapping
at V shift

K2 = −0.0257 are shown in Fig. 9. Recall that,
by construction, the mapping describes the temporal
evolutions of the minimal values of the membrane po-
tential. Therefore, a single v-minimum of the stable
periodic orbit of the model corresponds to a stable
fixed point of the mapping.

This fixed point becomes unstable when the slope
of the mapping graph becomes less than −1 at the
fixed point on the bisectrix. This flip bifurcation gives
rise to the emergence of a new period-2 orbit of the
mapping, see Fig. 10. The two points of the orbit cor-
respond to the two v-minimums of the periodic orbit
of the doubled period in the phase space of the in-
terneuron model. The voltage trace starts showing the
onset of spiking duplets. The bifurcation originates a
forward period-doubling cascade that leads to bursting
oscillations as the parameter V shift

K2 is increased. As the
parameter is increased further, the period-doubling bi-
furcations occur more often and the model starts gen-
erating first spiking quadruplets of period-4 (Fig. 11),
then octuplets and so forth.

Since following the successive periodic doubling
bifurcations of the more complex periodic orbits in
the phase space of the model is a graphically chal-
lenging task, we can now turn to the voltage inter-
val Poincaré mappings to examine the evolution of
dynamics, and underlying bifurcations. The next two
steps in the period-doubling cascade that tonic spik-
ing undergoes en route toward bursting, are shown in
Fig. 12 depicting the period-8 and period 16 attractors.

We skip the intermediate steps of the period-
doubling cascade and show a terminal phase when
the model demonstrate a chaotic tonic spiking activ-
ity, Fig. 13. We use “spiking” here as the solutions of
the model have not reached the hyperpolarized branch
of the slow-motion manifold Meq. Below it will be
shown that this chaotic spiking coexists with another
periodic tonic spiking that is represented by a stable
periodic orbit at some inactivated values of the potas-
sium current mK2, see Fig. 4.

To conclude the examination of the period-doubling
cascade, we present two bifurcation diagrams in
Fig. 14. While the upper panel shows the dependence
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Fig. 9 A single
v-minimum of the stable
tonic spiking periodic orbit
in (A) on the tonic spiking
manifold Mlc at
V shift

K2 = −0.0257
corresponding to a stable
fixed point of the Poncaré
voltage mapping in (B).
(C) and (D) show the
voltage trace of the model
and the magnification of the
voltage (constant)
minimums plotted versus
time

Fig. 10 (A) Stable
duplet-spiking orbit at
V shift

K2 = −0.02555
corresponding to the stable
period-2 cycle of the
mapping. Insets (C) and (D)
show the voltage
waveforms

Fig. 11 Four v-minimums
of the stable spiking
periodic orbit spiking at
V shift

K2 = 0.0255
corresponding to the
period-4 orbit of the
Poincaré mapping. Insets
(C) and (D) show the
voltage waveforms

of the interspike interval in the voltage traces of the

leech heart interneuron model (1), the bottom panel

shows the dependence of the v-coordinate of attrac-

tors of the Poincaré mapping on the parameter V shift
K2 .

One can see that both diagrams agree exceptionally

well. It is evident that even though constructing such

return mappings is computationally expensive, nev-

ertheless the interval mappings provide high resolu-

tion details for bifurcation mechanisms underlying the

transitions between various kinds of oscillatory activ-

ity in the model.

The examination of the mappings allows for mak-

ing predictions about transitions that have not yet oc-

curred in the flow. For example, it is seen from both



320 A. Shilnikov

Fig. 12 Period-8 and
period-16 spiking obits of
the voltage interval
mapping at
V shift

K2 = −0.025495 and
V shift

K2 = −0.0254948,
respectively

Fig. 13 Chaotic spiking of
the model and in the
mapping at
V shift

K2 = −0.0254. Inset (C)
show that durations of burst
trains and the spike number
per a train vary irregularly
in the voltage trace

Fig. 14 (Top) Dependence
of the interspike interval of
the spiking solutions of the
model (1) on V shift

K2 .
(Bottom) The V -coordinate
of the attractors of the
Poincaré mapping is plotted
against the parameter V shift

K2

bifurcation diagrams that the model and the mapping
demonstrate that within chaos there is the stability
window, around V shift

K2 = −0.02545, with a stable pe-
riodic orbit inside corresponding to spiking triplets.
Such a triplet corresponds to a period-3 orbit in the
mapping. Use of the computationally dense mappings
of the voltage interval lets one identify such an orbit as

it is made of the three fixed points of the correspond-
ing mapping T 3 of degree-3, shown in Fig. 15. It is
well known from the theory of one-dimensional map-
pings that such a period-three orbit is an indicator of
chaotic dynamics, or “period-3 implies chaos” by Li
and Yorke [71]. Moreover, in virtue of Sharkovsky or-
dering that if mapping has a period-3 orbit, then it has



Complete dynamical analysis of a neuron model 321

Fig. 15 (Color online) Points of the period-3 spiking orbit in
the mapping (light curve) at V shift

K2 = −0.025435 are the fixed
points of the mapping (superimposed light blue graph) of de-
gree-3

possessed all admissible orbits of all other periods as
well [66].

7.1 Symbolic description: kneadings and entropy

The period-doubling cascade ends up with the on-
set of spiking chaotic dynamics in the model around
V shift

K2 = −0.025475. One way of knowing that the
period-doubling cascade is over and that the chaotic
dynamics being observed in the mapping and in the
model is due to other contributing factors, is to identify
homoclinic bifurcations which involve the fixed point
initiating the cascade. The detection of homoclinic or-
bits of saddle periodic orbits in the phase space of
even a 3D system is the state of the art. The use of
the voltage mappings simplifies the search drastically
as capitalizes on a particular property of the unimodal
mapping [66, 67]. Namely, such an orbit can be de-
tected by following a finite number of forward iter-
ates of the only critical point. This critical point makes
the mapping non-invertible because some of the map-
ping points have two pre-images, i.e., one pre-image
on each monotonic segments of the mapping graph.
In restriction to the left (decreasing) segment of the
mapping graph the unstable fixed point UP1 will be at-
tracted for backward iterates of the critical point which
converge exponentially fast to it as time increases. On

the other hand, since the fixed point is unstable, some
finite forward iterates of the critical point can only
jump onto the fixed point. This number defines the or-
dering number for the primary homoclinic orbit. The
occurrence of a homoclinic orbit gives rise to the abun-
dance of other homoclinics [63]. This phenomenon,
known as a homoclinic explosion [42, 43], leads to de-
terministic chaotic dynamics in a system.

In order to quantify the degree of chaos in an 1D
mapping vn+1 = f (vn), one can evaluate the Lya-
punov exponent given by

λ = lim
n→+∞

1

n
log

∣∣∣∣
df n(vc)

dv

∣∣∣∣,

where f n(vc) stands for the nth iterate of the critical
point, or any other initial point. The Lyapunov expo-
nent for the homoclinic chaotic dynamics shown at
V shift

K2 = −0.025475 depicted in Fig. 16 is λ = 0.22,
compared to λ = 0.18 corresponding to chaos at the
terminal phase of the period-doubling cascade (not
shown). The fact that the system has homoclinic orbits
implies a positiveness of the topological entropy. The
topological entropy for 1D unimodal mappings can be
estimated by means of a symbolic description with the
employment of kneading invariants [68, 69].

The forward iterates of the critical point vc of the
mapping define the unsigned kneadings as follows:

κ̃j

(
f j (vc)

) =
{−1 if v < vc,

+1 if v > vc,
(11)

i.e. basically whether the j th iterate of the critical
point lands on the descending (−1) or ascending seg-
ment of the mapping graph. The kneading invariant is
introduced as a sequence {κn}, where κn is the signed
kneadings such as

κn =
n∏

j=1

κ̃j , or κn = κ̃n κn−1, (12)

i.e. κn depends on the iterate number n as well. Next
define a formal power series

P(s) =
∞∑

n=0

kns
n. (13)

A smallest zero smin of Pn(s) on s ∈ (0, 1), if any,
yields the typological entropy h = | log(smin)|.

Consider the mapping at V shift
K2 = −0.02542 shown

in Fig. 16. The first 10 signed kneadings {−1,+1,+1,
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Fig. 16 (Color online) (Top) Chaos in the mapping near the pri-
mary homoclinic bifurcation at V shift

K2 = −0.2547 that involved
the original fixed point that initiated the period-doubling cas-
cade in the non-invertible mapping. Shown in red are the for-

ward iterates (connected) of the critical point ending at the
repeller after two steps. (Bottom) Chaotic spiking at V shift

K2 =
−0.025375. Iterates (red) of the critical point define the knead-
ing invariants for the symbolic description of the mapping

Fig. 17 (Color online) Graphs (blue and red) of the
kneading invariant polynomials P10 for the mappings at
V shift

K2 = −0.025375 and −0.025475, respectively

+1,+1,+1,−1, + 1,+1,+1,+1} give the polyno-
mial P10, the graph of which is shown in Fig. 17. The
only zero of the polynomial gives the topological en-
tropy h = 0.32, whereas the Lyapunov exponent for
the same mappings is about λ = 0.34; h = 0.19 for
the mapping with the primary homoclinics at V shift

K2 =
−0.025475.

8 Bistability

In this section we discuss the kinds of bistability that
the reduced leech heart interneuron model can exhibit.
Use of the onto mapping makes the explanation of the

bistability especially clear. This is illustrated in Fig. 18
showing the coexisting spiking and bursting orbits (A)
along with corresponding Poincaré mapping (B) and
voltage traces (C, D). Decreasing V shift

K2 elevates the
slow nullcline ṁK2 = 0 thereby bringing it closer to
the spiking manifold Mlc. This results in that the mK2-
component of the phase point slows down so that it
can make extra turns around the spiking manifold Mlc.
Moreover, a further elevation of the slow nullcline can
make the middle section of the spiking manifold Mlc

non-transitive for solutions of the model. The cause
for that is the saddle-node bifurcation leading to emer-
gence of two more periodic orbits (stable and saddle)
on the spiking manifold. The saddle-node bifurcation,
also called the tangent bifurcation for one-dimensional
mappings, occurs when the graph of the mapping be-
comes tangent to the 45◦ line. The newly formed un-
stable fixed point separates the basins of attraction of
bursting and tonic spiking that coexist in the model.

Since bursting is a two-times scale phenomenon
due to the alternation of fast tonic spiking and slow
quiescent phases, the period of bursting is the sum of
the burst duration τbd and the interburst interval τii.
These times can be controlled independently. Clearly
the duration (as well the number of spikes) of bursting
is the longer, the closer the slow nullcline m′ = 0 is
to the corresponding tonic spiking Mlc. On the other
hand, the interburst interval is the longer, the closer
slow nullcline m′ = 0 is to the hyperpolarized fold of
the quiescent manifold Meq. In other words, by vary-
ing the bifurcation parameter between two critical val-
ues corresponding to the saddle-node bifurcations for
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Fig. 18 (Color online) Seven-spike bursting orbit (black) co-
existing with the tonic spiking orbit (blue) in the phase space
of the model (1) at V shift

K2 = −0.024 and τK2 = 0.25 (panel A).
Shown in red are the saddle periodic orbits corresponding to
fixed points UP1 and UP2 that separated the basin of attraction
of the tonic spiking and bursting orbits. Panels C and D show
7 action potential bursting and tonic spiking voltage traces, the

minimums of which form the periodic orbit and the stable fixed
point (SP) in the corresponding Poincaré mapping (panel B).
The stable fixed point SP emerges through a saddle-node bifur-
cation on the spiking manifold Mlc along with another unstable
fixed point, UP2, that separates the basin of attraction of tonic
spiking and bursting

periodic orbits and equilibria, respectively, we can bal-
ance out both τbd and τii to set a particular value for the
duty cycle of bursting: DC = τbd/(τbd + τii). So, if the
interneuron is too depolarized, it will likely produce
the tonic spiking activity at the lower V shift

K2 -values,
while at larger values it will go into the hyperpolar-
ized quiescent state. While V shift

K2 is an intrinsic bifur-
cation parameter of the model, we can treat an external
applied current Iapp in (1) as the external second pa-
rameter. In the essence, Iapp moves the slow-motion
manifolds horizontally in the (mK2,v)-projection of
the phase space of the model because it is introduced
in the fast voltage equation, in contrast to variations
V shift

K2 that keep the manifolds intact but translate the
slow nullcline, m′

K2 = 0, in the v-direction.
Figure 19 shows the (V shift

K2 , Iapp)-bifurcation dia-
gram of the model. In this parameter space we have
singled out the zones of activity of the interneuron:
bursting, quiescence, and tonic spiking. It follows
from this diagram that the interneuron is locked down
at the hyperpolarized quiescent state when V shift

K2 is too
large; this corresponds to the blocked potassium cur-
rent, i.e. mK2 is close to 0. When the interneuron is
locked down, there is a stable equilibrium state on the
hyperpolarized branch of the 1D quiescent manifold
Meq at an intersection point with the 2D slow null-

cline m′
K2 = 0. It is evident that the external inhibitory

current facilitates this state as well. In contrast, a pos-
itive excitatory current releases the interneuron from
the locked depolarized state. The central part of the bi-
furcation diagram is occupied by bursting. The bifur-
cation curve SNeq, corresponding to the saddle-node
bifurcation, separates the bursting and hyperpolarized
quiescence zones. Near the boundary, the interburst in-
terval is long, while the burst duration is short, i.e. the
duty cycle is small. This is a universal feature of the
saddle-node bifurcation near which the dwelling time
(read the interburst interval) throughout the phantom
of the vanished saddle-node equilibrium state is scaled
as 1/

√
α, where α is the distance to the bifurcation

curve SNeq in the bursting zone (Fig. 19).
The boundary between bursting and tonic spik-

ing is composite consisting of two branches labeled
by BSC and HBlc. The first one is due to the blue
sky catastrophe that describes a homoclinic bifur-
cation of a saddle-node periodic orbit; for details
see [42–44, 58, 72]. This bifurcation, taking place on
the bifurcation curve SNlc, leads to the emergence of
the two periodic orbits, saddle and stable, on the tonic
spiking manifold, Mlc. The homoclinic structure of the
blue sky catastrophe is due to re-injection of the phase
point back into the spiking phase after it has com-
pleted a slow drifting along the hyperpolarized branch
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Fig. 19 (V shift
K2 , 〈Isyn〉)-bifurcation plane showing the zones of

activity of the model (1). Above the boundary SNeq the interneu-
ron is locked down at the hyperpolarized state. Bursting takes
place between the bifurcation curves BSC ∪ HBlc and SNeq.
To the left of SNlc, the interneuron fires tonically. The spik-
ing zone is bounded below by the boundary AH, underneath

which the neuron is constantly depolarized. At a codimension-
two Bautin bifurcation the Andronov–Hopf bifurcation changes
from super- to sub-critical. The wedge between SNlc, HBlc and
AHsuper corresponds to the coexistence of bursting and tonic
spiking (Fig. 18), or the depolarized quiescence. The model is a
monoactively tonic spiking state on the left from HBlc

of the quiescent manifold, Meq. Likewise all saddle-
node bifurcations, because of the slow passage of the
phase point throughout the “phantom” of the vanished
saddle-node orbit, the number of spikes within the
burst can be arbitrarily large near this boundary. This
makes the burst duration, as well as the period of the
bursting orbit, arbitrarily long (Fig. 20).

While the blue sky catastrophe describes a con-
tinuous and reversible mechanism of the transition
between bursting and tonic spiking, the transition
through the other section BSC of the boundary HBlc

gives rise to the onset of the bistability in the model,
which was described above in this section. Within the
wedge bounded by these curves, the tonic spiking and
the bursting attractors coexist. Their basins of attrac-
tion are separated by the stable manifold of the sad-
dle periodic orbit, which has emerged, along with the
stable periodic orbit, to the left from SNlc after the
saddle-node bifurcation. The burst period, or more
exactly the duration τbd of bursting, becomes longer
the closer the bursting orbit approaches this separating
saddle periodic orbit. As in all homoclinic cases, the
burst duration obeys the scaling law τbd ∼ | log(α)|,
where α is the parameter deviation from the homo-
clinic bifurcation.

Next, we show how the temporary characteristics,
the number of spikes, burst duration, duty cycle, etc.,
of bursting can be employed to create bifurcation dia-
grams like the one shown in Fig. 19. Figure 21 is such
a diagram showing the number of spikes (action po-
tentials) per burst as a function of the parameters of
the model. The color scale of the right is the number
running from 0 (blue), i.e. quiescence, to 15 (red), cor-
responding to long bursting. One can see the perfect
agreement between the bifurcation diagram in Fig. 18
and this neuroscience plausive diagram. Moreover, the
latter clearly indicates the boundaries of the spike-
adding sequence in the model [49].

Thus, the reduced interneuron model demonstrates
three types of bistability: (A) bursting and depolarized
quiescence, (B) tonic spiking and bursting, and (C)
tonic spiking and hyperpolarized quiescence. What
makes the bistability observable is that we can se-
lectively choose any specific activity type, as well as
robustly switch between the activity types by apply-
ing an external pulse, positive or negative, to the in-
terneuron. This approach is demonstrated in action in
Fig. 22.
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Fig. 20 Temporal
characteristics of bursting
plotted against the
bifurcation parameter
V shift

K2 . The burst period
increases alone with either
the increase of the interburst
interval due the homoclinic
saddle-node bifurcation at
the hyperpolarized fold near
the boundary SNeq, or the
increase of the burst
duration due to the blue sky
catastrophe, or through the
homoclinic bifurcation of
the saddle periodic orbit
near the boundary SNlc

Fig. 21 (Color online) In addition to the activity zones for spik-
ing, quiescence and bursting, (V shift

K2 , Iapp)-biparametric screen-
ing plane reveals clearly the stages of the spike-adding cas-
cade [50] and singles out regions of resistantly constant spike
numbers within bursts in the model. The color bar on the right
for the spike numbers per burst is scaled from 0 (blue) to 15
(red) [73]

9 Conclusions

This paper compliments the findings in this dynami-
cally rich interneuron model that have been reported
by the author and his co-authors in the series of the
earlier papers on the blue sky catastrophe, bistability
of two types of tonic spiking, the coexistence of qui-
escence, tonic spiking and bursting, the spike-adding
cascade toward bursting, and the sensitivity of burst-
ing patterns to ionic channel noise, as well as mod-

eling studies of polyrhythmic networking motifs for
multifunction central pattern generators comprised of
the interneurons.

Here, we have demonstrated several computational
techniques, developed by the author, which had been
employed to give a thorough examination of the leech
heart interneuron model. We would like to point out
that all the methods are not model-specific and hence
can be applied for a broad class of slow–fast neuronal
models that are capable of tonic spiking and bursting
generation. The methods include:

• The parameter continuation technique for localiza-
tion of the slow-motion manifolds, quiescent and
tonic spiking, in the phase space of the model with-
out a need of the conventional slow–fast dissection.
This method becomes of a particularly applicable
value for the examination of such manifolds in mod-
els with several timescales; for example, such as the
14D canonical leech interneuron model [41], vari-
ous elliptic bursters [51] including the original 4D
Hodgkin–Huxley model, the 5–6D Terman–Rubin
models for cells in basal ganglia, as well a 12D
model of a sensory hair cell [74].

• The averaging approach has been enhanced for the
detection of saddle-node bifurcations of periodic or-
bit in slow–fast models such as that of the leech
heart interneuron.

• The apparatus of Poincaré return mappings for a
voltage interval has been developed to study in de-
tail all bifurcations, including nonlocal homoclinic,
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Fig. 22 Three types of
bistability in the leech heart
interneuron: (A) bursting
and depolarized quiescence,
(B) tonic spiking and
bursting and (C) tonic
spiking and hyperpolarized
quiescence. Switching
between the activity pair is
achieved by applying a
negative or positive pulse to
the targeted state

of tonic spiking and bursting, transitions between
the oscillatory activity types, bistability and sepa-
rating orbits, as well as various metric properties
of the mappings such as the Lyapunov exponents,
and topological entropy evaluated using the sym-
bolic representation of the dynamics through the
kneading invariants on this and other models, in-
cluding the FitzHugh–Nagumo–Rinzel model for
elliptic bursters [51].

• We have employed two, phenomenologically dis-
tinct, approaches to build the biparametric bifurca-
tion diagrams of models [75]. While first numeri-
cal approach is “bifurcationally” native, the other,
calculus-free approach, utilizes neuroscience plau-
sible instruments for on-fly examination of temporal
characteristics of the activity, which are extracted
directly from voltage traces.

• We showed that the bistability is a robust, genuine
phenomenon of this model, and that the dynamical
states of the interneuron can be switched system-
atically by applying external pulses, hyper- or de-
polarizing.
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