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ABSTRACT
We compare multistability in central pattern genera-

tor (CPG) motifs comprised either of biologically plausible
Hodgkin-Huxley models of bursting leech heart interneurons or
of phenomenologically reduced phase models. We propose a
novel computational tool for detailed examination of polyrhyth-
mic bursting in biophysical CPG models with coupling asymme-
tries and arbitrary coupling strength. We carry out the compar-
ison of the 3-cell motifs with reciprocally inhibitory asymmetric
connections by reducing the consideration to the examination of
the qualitative geometric structure of two-dimensional maps for
phase lag between the bursting cells.

3-CELL MOTIFS
The ability of distinct neural anatomical circuits, such as

central pattern generators (CPG), to generate multiple bursting
patterns determining motor behaviors such as heartbeat, respira-
tion, and locomotion is widespread in animals and humans [1,2].
While a dedicated CPG generates a single pattern robustly, a
multifunctional CPG can flexibly produce distinct rhythms, such
as temporarily distinct swimming versus crawling, and alterna-
tion of blood circulation patterns in leeches, for example [3].
Multistability enhances the flexibility of nervous systems and has
far reaching implications for motor control, dynamic memory,
information processing, and decision making in humans and ani-
mals. Switching between locomotive behaviors can be attributed
to switching between various attractors of a CPG network [4].
Each attractor is associated with a definite rhythm on a specific
time scale. The emergence of synchronous rhythms in neural net-
works is closely related to temporal characteristics of the coupled
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neurons due to both their intrinsic properties and types of synap-
tic coupling (inhibitory and excitatory) [5]. When the individual
neuron is close to the transition from bursting into tonic spiking,
the dynamics of the network become sensitive to small changes
in synaptic coupling strengths.

Figure 1. (A) 3-cell bursting motif with unbalanced clockwise and
counter-clockwise connection strengths. (B) Voltage clockwise rhythm
generated by the motif of the leech heart interneurons: the phase of ref-
erence cell 1 (blue) is reset when V1 reaches threshold Θth. The time
delays between the burst onset in the reference cell 1 and the burst onset
in cells 2 (green) and 3 (red), normalized over the recurrent time of cell 1,

define a sequence of phase lags {∆φ
(n)
21 ,∆φ

(n)
31 } (defined on mod 1).

Elemental circuit configurations for CPG models are often
reduced to 3-cell motifs comprised of anatomically and physio-
logically diverse neurons. Many CPG circuits involve a 3-cell
motif, including the spiny lobster pyloric network, the Tritonia
swim circuit, and the Lymnaea respiratory CPGs [2]. The 3-cell
motif can be treated as a universal building block for larger, re-



alistic multifunctional CPGs. We propose a novel computational
tool for detailed examination of polyrhythmic bursting in bio-
physical CPG models with coupling asymmetries and arbitrary
coupling strength. The tool reduces the problem of stability and
existence of bursting rhythms in large networks to the bifurca-
tion analysis of fixed points (FP) of Poincaré return mappings for
phase lags. We demonstrate that a 3-cell motif made of bursting
interneuron models and phenomenological phase models can ro-
bustly generate similar multistable rhythmic patterns. We show
how rhythms of the multistable motif are selected by changing
the relative timing of bursts by physiologically plausible pertur-
bations and that the set of possible rhythmic outcomes can be
controlled by varying the coupling around the motif.

PHASE-LAG MAPPING FOR BURSTING INTERNEU-
RONS

First we consider a CPG motif comprised of endogenously
bursting neurons from the leech heart [6] that are coupled in a
reciprocally inhibitory ring using fast synapses described by the
fast threshold modulation (FTM) [4]. FTM implies that the post-
synaptic current is zero (resp., maximized) when the voltage of
a driving cell is below (resp., above) a synaptic threshold. The
duty cycle (DC) of bursting oscillations, which is the fraction of
the burst period in which the cell is spiking, is known to affect
the synchronization properties of coupled bursters [5, 7]. Many
physiological parameters, including intrinsic and external cur-
rents, can continuously affect the DC of a cell, especially when
the latter is close to a transition to tonic spiking (DC=1) or hyper-
polarized quiescence (DC=0).

In this study we consider a weakly coupled motif by us-
ing an adequately chosen value of maximal conductance for
the synapses coupling the cells [4]. Such weak coupling guar-
anties relatively slow convergence of transients to phase-locked
states of the motif, and permits us to visualize “smooth” trajecto-
ries that expose in detail the structure of phase-lag return maps,
qualitatively resembling time-continuous planar vector fields in
this case. The findings obtained for the weak coupling case
prepare the basis for understanding more complex patterns in
strongly coupled, non-homogeneous motifs with the same tech-
nique. Asymmetry in the motif is controlled by another bi-
furcation parameter, which proportionally enforces (weakens)
counter-clockwise (resp., clockwise) coupling strengths.

As the period of oscillations generated by the coupled cell
can fluctuate in time, we define delays between the onset of burst-
ing in cell 2 (green) and cell 3 (red) relative to that in the refer-
ence cell 1 (blue) at the instances the voltages Vi increase through
a threshold (Fig. 1). The subsequent delays normalized over the
period of the cell 1 define a forward trajectory

{
∆φ

(n)
21 , ∆φ

(n)
31

}
of

phase-lag return maps on a torus [0,1)× [0,1) with ∆φi1 mod 1.
The maps are tabulated on a 40× 40 (or more) grid of initial
points [8]. We can then study the dynamical properties of the
maps, locate fixed points and evaluate their stability, detect pe-
riodic and heteroclinic orbits, and identify the underlying bi-
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Figure 2. ((∆φ31,∆φ21) phase lag map for the highly asymmetric
(g� = 0.8) medium bursting motif depicting two attractors: the one for
the clockwise (1≺ 2≺ 3) rhythms prevails over the attractor for the
counter-clockwise (1≺3≺2) rhythm.

furcations as the control parameters of the network are varied.
Figure 2 shows the (∆φ31,∆φ21) phase-lag map for the asym-
metric long bursting motif with an 80% duty cycle. The map
possesses two stable fixed points corresponding to the coexist-
ing phase-locked bursting patterns: black (∆φ31 ≈ 2

3 ,∆φ21 ≈ 1
3 )

and purple ( 1
3 ,

2
3 ). The attraction basins of these points are di-

vided by separatrices (incoming and outgoing sets) of three sad-
dle points (grey dots). While the existence of the (1≺ 2≺ 3)
and (1≺3≺2) rhythms in a 3-cell motif can hypothetically be
deduced using symmetry arguments, the robustness and observ-
ability of the rhythms must be justified by accurate computation.

2Θ PHASE MODEL
The knowledge of the existence, stability and bifurcations of

the polyrhythms in the motif of the interneuron is vital for accu-
rate derivations of reduced phenomenological phase models for
CPGs. Below, we propose a “2Θ"-model for repetitive bursting
with two slow-pace states: “on" and "off" corresponding to tonic
spiking, at Θ = π, and hyperpolarized quiescence, at Θ = 0, on
a unit circle. The 2Θ-model of the 3-cell motif (i = {1,2,3}) is
given by

θ
′
i = ω− cos2θi −

− H(cosθi)(1+2sinθi)

[
g,(i, i−1)
1+ ecosθi−1

+
g(i,i+1)

1+ ecosθi+1

]
,



Figure 3. (top) 2D mapping for the angle differences between phase
bursters at ω = 1.5 showing two fixed points corresponding to unstable
(1≺ 2≺ 3) and stable (1≺ 3≺ 2) rhythms due to asymmetry in the
motif: gi j = 0.02 and gi j = 0.0088. The attraction basins, black (of the
stable fixed point) and purple (of the stable invariant curve) in the mapping
are divided by stable sets of three saddles (gray dots).

where H is the Heaviside function, g(i,i+1) and g(i,i−1) are max-
imal conductances of the FTM-based clockwise and counter-
clockwise oriented synapses across the motif; another control
parameter ω determines the frequency of the 2Θ motif.

Figure 3 represents the 2D mapping for the angle differences
between phase bursters in the counter-clockwise, asymmetrically
biased 3-cell motif. By comparing it with Fig. 2 one can ob-
serve that the 2Θ motif qualitatively mimics the bistability prop-
erties of the realistic motif comprised of the Hodgkin-Huxley
interneuron models. A feature of the mapping for the asymmet-
ric 2Θ motif is the occurrence of a stable invariant curve which
is associated with the appearance of slow phase jitters within the
(1≺2≺3) rhythm in voltage traces. The closed curve emerges
from the fixed point through a secondary supercritical Andronov-
Hopf (torus) bifurcation as the motif becomes less symmetric.

CONCLUSIONS
We presented a comparison of two 3-cell motifs: one is

biophysically plausible and the other is phenomenologically re-
duced. Both motifs are multistable, i.e. is able to generate
polyrhythms that are selected by initial conditions of the individ-
ual cells. We characterized the essential properties of each motif
by measuring two phase lags between the three oscillators. By

systematic variation of the initial conditions, the computational
exploration of the possible rhythmic outcomes led to a reduction
of the original systems to a graphical and equationless represen-
tation of the 2D mapping for the phase lags. The geometric prop-
erties of the mappings, and how they change as control parame-
ters of the network are varied, can be understood through stan-
dard qualitative techniques of dynamical systems theory. Thus,
the phase locked rhythmic patterns of the motif correspond to
stable fixed points of the maps; the basins of attraction for the
rhythms are separated by phase thresholds known as saddles. As
parameters are varied, bifurcations of the fixed point attractors
determine changes in the rhythmic pattern outcomes.

Future investigations will explore asymmetric motifs and
stronger coupling regimes, and will consider the addition of sim-
ple contextual circuits to the CPG such as proprioceptive feed-
back from motor control systems. Our approach also naturally
generalizes to other regulatory networks involving reciprocal in-
hibition, which is a form of feedback found in a diversity of bi-
ological networks. We believe our approach is applicable to im-
proved understanding of various phenomena featuring multista-
bility such as memory formation, decision making, and enhanc-
ing synthetic approaches for generating motor behavior from ar-
tificial circuits.

ACKNOWLEDGMENT
We acknowledge support from NSF Grants CISE/CCF-

0829742 (to R.C.), and DMS-1009591, RFFI Grant 08-01-00083
and MESRF 14.740.11.0919 (to A.S.), as well as the GSU Brains
& Behavior program.

REFERENCES
[1] Marder E and Calabrese RL (1996) “Principles of rhythmic

motor pattern generation." Physiol Rev 76: pp. 687-717.
[2] Model Neural Networks and Behavior, ed. A Selverston

(1985).
[3] Briggman KL and Kristan WB (2008) Multifunctional pat-

tern generating circuits. Annu Rev Neurosci 31:271-294.
[4] Wojcik J, Clewley R and Shilnikov A (2011) “Order pa-

rameter for bursting polyrhythms in multifunctional central
pattern generators." Phys Rev E 83: 056209-6.

[5] Shilnikov A, Gordon R and Belykh I (2008) “Polyrhyth-
mic synchronization in bursting network motif." Chaos
18:037120-13.

[6] Shilnikov A and Cymbalyuk G (2005) Transition between
tonic-spiking and bursting in a neuron model via the blue-
sky catastrophe. Phys Rev Lett 94:048101-4.

[7] Belykh I and Shilnikov A (2008) “When weak inhibition
synchronizes strongly desynchronizing networks of burst-
ing neurons." Phys Rev Lett 101:078102-4.

[8] Clewley RH, Sherwood WE, LaMar MD, Guckenheimer
JM (2006) http://pydstool.sourceforge.net.


