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Abstract Understandingof theonset andgenericmechanismsof transitions between
distinct patterns of activity in realistic models of individual neurons and neural net-
works presents a fundamental challenge for the theory of applied dynamical systems.
We use three examples of slow-fast neural systems to demonstrate a suite of new
computational tools to study diverse neuronal systems.
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1 Introduction

Most neurons demonstrate oscillations of the membrane potential either endoge-
nously or due to external perturbations. Deterministic description of primary oscil-
latory activities, such as tonic spiking and bursting, of neuronal dynamics is based
on models following the Hodgkin-Huxley formalism [1]. Mathematically, such con-
ductance based models belong to a special class of dynamical systems with at least
two distinct time scales, the so-called slow—fast systems [2–8]. Bursting is a mani-
festation of slow–fast dynamics possessing subcomponents operating at distinct time
scales. Neural bursting is a modular activity composed of various limiting branches,
corresponding to oscillatory and equilibrium regimes of the fast subsystem, and
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connected by transients between them. Using the common mathematical we can
better understand the basic onset of bursting oscillations in models of individual
and coupled neurons. The study of mechanisms of bursting and its transformations
requires nonlocal bifurcation analysis, which is based on the derivation and further
examination of Poincaré return maps.

2 Hodgkin-Huxley Type Model of a Leech Heart
Interneuron

Our first example is the “reduced” model of heart interneuron model [9–13] derived
through theHodgkin-Huxley gated variables formalism [1] that not everymathemati-
cian may be familiar with. Its equations do look too detailed and overwhelming:

C
dV

dt
= −INa − IK2 + IL − Iapp − Isyn, (1)

IL = ḡL (V − EL), IK2 = ḡK2 m
2
K2(V − EK),

INa = ḡNa m
3
Na hNa (V − ENa), mNa = m∞

Na(V ),

τNa
dhNa
dt

= h∞
Na(V ) − h, τK2

dmK2

dt
= m∞

K2(V ) − mK2,

where C = 0.5 nF is the membrane capacitance; V is the membrane potential; INa is
the fast voltage gated sodium current with slow inactivation hNa and fast activation
mNa; IK2 is the persistent potassium currentwith activationmK2; IL is leak current and
Iapp is a constant polarization or external applied current. The maximal conductances
are ḡK2 = 30nS, ḡNa = 200nS and gL = 8nS, and the reversal potentials are ENa =
0.045 V, EK = −0.070V and EL = −0.046V. The time constants of gating variables
are τK2 = 0.25 sec and τNa = 0.0405 s. The steady state values of gating variables,
h∞
Na(V ), m∞

Na(V ), m∞
K2(V ), are given by the following sigmoidal functions:

h∞
Na(V ) = [1 + exp(500(0.0333 − V ))]−1

m∞
Na(V ) = [1 + exp(−150(0.0305 − V ))]−1

m∞
K2(V ) = [1 + exp (−83(0.018 − V + Vshift

K2 ))]−1.

(2)

The quantityVshift
K2 is a genuine bifurcation parameter for thismodel: it is the deviation

from experimentally averaged voltage value V1/2 = 0.018 V corresponding to semi-
activated potassium channel, i.e. m∞

K2(0.018) = 1/2. Variations of Vshift
K2 move the

slow nullcline dmK2
dt = 0 in the V -direction in the 3D phase, see Fig. 1. Due to the

disparity of the time constants of the phase variables, the fast-slow system paradigm
is applicable to system (1): its first two differential equations form a fast subsystem,
while the last equation is the slow one. The dynamics of such a system are known
[14] to be determined by, and centered around, attracting pieces of the slow motion
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Fig. 1 Slow motion manifolds and nullclines of the model (1): the 2D spiking manifold Mlc
is foliated by the periodic orbits continued, from the left to the right, as the parameter Vshift

K2 is
increased from −0.026 through 0.0018. The space curves Vmin and 〈V〉 are made of minimal and
average coordinates of the periodic orbits. Mlc glues to the hyperpolarized fold of the quiescent
manifold, Meq, comprised of the equilibrium states of (2), where the curve of the averaged values
〈V〉 terminates. An equilibrium state of Eqs. (2) is the intersection point of Meq with the slow
(yellow) nullcline ṁK2 = 0 for given Vshift

K2 . Also shown (in red) is the curve of the v-minimal
coordinate values of the periodic orbits making Mlc. This curve is used to define the Poincaré map
taking it onto itself after one revolution around Mlc

manifolds that constitute a skeleton of activity patterns. These manifolds are formed
by the limit sets, such as equilibria and limit cycles, of the fast subsystem where the
slow variable becomes a parameter in the singular limit.

A typical Hodgkin-Huxley model possesses a pair of such manifolds [15]: qui-
escent and tonic spiking, denoted by Meq and Mlc, correspondingly. A solution of
(2) that repeatedly switches between the low, hyperpolarized branch of Meq and
the spiking manifold Mlc represents a busting activity in the model. Whenever
the spiking manifold Mlc is transient for the solutions of (1), like those winding
around it in Figs. 2, the models exhibits regular or chaotic bursting. Otherwise, the
model (1) has a spiking periodic orbit that has emerged on Mlc through the saddle-
node bifurcation thereby terminating the bursting activity [16] or both regimes may
co-exist as in [17, 18].

To determine what makes the spiking and bursting attractors change their shapes
and stability,we construct numerically aVshift

K2 - parameter family of 1DPoincarémaps
taking an interval ofmembrane potentials onto itself. This interval is comprised of the
minimal values, denoted by (V0), of the membrane potential on the found periodic
orbits foliating densely the spiking manifold Mlc, see Fig. 1. Then, for some Vshift

K2 -
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Fig. 2 (Top-left) Four v-minimums of the stable spiking periodic orbit spiking at Vshift
K2 = 0.0255

corresponding to the period-4 orbit of the Poincaré map. Insets (C) and (D) show the voltage
waveforms.(Top-right) Chaotic spiking of the model and in the map at Vshift

K2 = −0.0254. (Bottom)
Chaotic bursting at the spike adding transition becomes more regularized with a large number of
spikes per burst

values, we integrate numerically the outgoing solutions of (2) starting from the initial
conditions corresponding to each (V0) to find the consecutive minimum (V1) in the
voltage time series. All found pairs (V0, V1) constitute the graph of the Poincaré
map for given Vshift

K2 .
Figure 2 is a showcase of such 1D unimodal maps with the distinctive U-shape.

A fixed point of map would correspond to a single V-minimum on the periodic orbit
on the 2D tonic spiking manifold, while period-2 orbit of the map corresponds to the
periodic orbit of the model and so forth. A bursting orbit with multiple turns around
Mlc and switching to and back from Mlc is represented by a more complex orbit
of a longer period. Moreover, the bursting orbit may become even chaotic at spike
adding transition, and as the map reveals that is caused by a homoclinic orbit (red
trajectory) of an unstable fixed point corresponding to a saddle periodic orbit of the
neural model (1). The shape of the 1D return map infers that as it becomes steeper
with a characteristic cusp shape the model would move into the chaotic regime.

3 FitzHugh-Nagumo-Rinzel Model

Our next example is the FitzHugh-Nagumo-Rinzel (FNR) model which is a mathe-
matical model of an elliptic burster (see Fig. 3B); its equations given by [19]:
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Fig. 3 (A) Topology of the tonic spiking, Mlc, and quiescent, Meq, manifolds. The fold on Mlc,
corresponds to a saddle-node bifurcation where the stable (outer) and saddle (inner) branches,
comprised of periodic orbits, merge. The vertex, where the unstable branch of Mlc collapses at
Meq, corresponds to a subcritical Andronov-Hopf bifurcation. Space curves, labeled by V∗

max (in
green) and 〈Vs,u〉 (in blue and red, respectively), correspond to the V-maximal and the averaged,
over the period, coordinates of the periodic orbits composing Mlc. The plane, y′ = 0, is the slow
nullcline, above (below) which the y-component of a solution of the model increases (decreases).
The plane is elevated/lowered as the c-parameter is increased/decreased. (right) The “continuously”
reshaping family of the 1D Poincaré return maps T : Vn → Vn+1 for the FHN-model at μ =
0.002 as c increases from c = −1 through c = −0.55. Lower graphs correspond to quiescence
and subthreshold oscillations in the model; upper graphs correspond to tonic spiking dynamics,
while the middle graphs describe bifurcations of bursting. An intersection point of a graph with the
bisectrix is a fixed point of the map. The stability of the fixed point is determined by the slope of
the graph, i.e. it is stable if |T ′| < 1

v′ = v − v3/3 − w + y + I,
w′ = δ(0.7 + v − 0.8w),

y′ = μ(c − y − v).

(3)

Here, δ = 0.08, I = 0.3125 is an “external current”, and we set μ = 0.002 deter-
mining the pace of the slow variable y; the bifurcation parameter of the model is c.

The slow variable y becomes frozen when μ = 0. The first two fast equations
in (3) compose the FitzHugh-Nagumo fast subsystem model describing a relaxation
oscillator, provided δ is small. This subsystem exhibits either tonic spiking on a stable
limit cycle, or quiescence on a stable equilibrium state for some fixed values of y.
Stability loss of the equilibrium state in the fast subsystem gives rise to a stable limit
cycle through a sub-critical Andronov-Hopf bifurcation when an unstable limit cycle
collapses into the equilibrium state. The stable and unstable limit cycle emerge in the
FNR-model through a saddle-node bifurcation. Both bifurcations, Andronov-Hopf
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and saddle-node, are key to the description of an elliptic burster. Using a traditional
slow-fast dissection, one can locate the corresponding branches of the limit cycle
and equilibrium states by varying the frozen y-variable in the extended phase space
of the fast subsystem. The topology of the tonic spiking, Mlc, and quiescent, Meq, in
the phase space the FNR-model is revealed in Fig. 3.

4 1D Voltage Maps

Recall that a feature of a slow-fast system is that its solutions are constrained to stay
near the slow-motion manifolds, composed of equilibria and periodic obits of the
fast subsystem. If both manifolds are transient for the solutions of the corresponding
neuron model, it exhibits a bursting behavior, which is a repetitive alternation of
tonic spiking and quiescent periods. Otherwise, the model demonstrates the tonic
spiking activity if there is a stable periodic orbit on the tonic spiking manifold, or
it shows no oscillations when solutions are attracted to a stable equilibrium state on
the quiescent manifold.

The core of the methods is a reduction to, and a derivation of, a low dimen-
sional Poincaré return map, with an accompanying analysis of the limit solutions:
fixed, periodic and homoclinic orbits, representing various oscillations in the orig-
inal model. Maps have been actively employed in computational neuroscience, see
[20–23] and referenced therein. It is customary that such a map is sampled from
voltage traces, for example by singling out successive voltage maxima or minima, or
interspike intervals. A drawback of a map generated by time series is a sparseness,
as the construction algorithm reveals only a single periodic attractor of a model,
unless the latter demonstrates chaotic or mixing dynamics producing a large variety
of densely wandering points.

A new, computer assisted method for constructing a complete family of Poincaré
maps for an interval of membrane potentials for slow-fast Hodgkin-Huxley models
of neurons was proposed in [12] following [24], see above. Having such maps we
are able to elaborate on bifurcations in the question of tonic spiking and bursting,
detect bistability, as well examine unstable sets, which are the organizing centers
of complex dynamics in any model. Using this approach we have studied complex
bursting transformations in a leech heart interneuron model and revealed that the
cause of complex behaviors at transitions is homoclinic tangles of saddle periodic
orbits which can be drastically amplified by small noise [11, 25]. Examination of the
maps will help us make qualitative predictions about transitions before they actually
occur in the models.

The construction of the voltage interval maps is a two stage routine. First, we need
to accurately single out the slow motion manifold Mlc in the neuronal model using
the parameter continuation technique. The manifold is formed by the tonic-spiking
periodic orbits as a control parameter in the slow equation is varied. Recall, that its
variations, raising or lowering the slow nullcline in the phase space of the model,
do not alter the fast subsystem and hence do keep the manifold intact. Next a space
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curve V∗
max on Mlc is detected, which corresponds to maximal voltage values of the

membrane potentials Vn found on all periodic orbits constituting the tonic spiking
manifold, see Fig. 3.

We use this data to further amend the set {Vn}, by integrating the solutions of the
model in the vicinity of each maxima to find the exact locations of the turning points,
determined by the condition V′

max = 0. Next, the points defining {Vn} are employed
as the initial conditions to compute outgoing solutions of (3) that will stay on or
close to Mlc. The integration is stopped when a successive maximal value {Vn+1}
of the voltage is reached in the voltage trace. Figure 4 demonstrates how the shape
of the 1D maps changes in a complex predictable way as the c-parameter is varied.
One can see from the end points, that the map has initially a stable fixed point at
the top-right corner that corresponds to the stable tonic spiking orbit on the outer
surface of the 2D manifold Mlc in Fig. 3(left). One can also foresee from the map
at the bottom-right corner in Fig. 3(right) the neural model will undergo a cascade
of period-doubling bifurcations of sub-threshold oscillations followed by complex
mixed-mode oscillations involving sub-threshold ones and bursting. Our predictions
are illustrated and confirmed by Fig. 4 that samples four characteristic 1D Poincaré
return maps out of Fig. 3. In it the shape of the 1D Poincaré return maps reveals
the underlying cause of chaotic mixed mode oscillations (MMOs) at the transition
from tonic spiking to bursting in the in the FNR-model (3) that next become periodic
MMOs, and further transition to chaotic and regular sub-threshold oscillations en a
route to the quiescent phase in generic elliptic bursters.

5 Example 3: 2D Recurrent Maps in Multifunctional 3-Cell
Networks

Many rhythmic motor behaviors such as respiration, chewing, locomotion on land
and in water, and heartbeat (in leeches) are produced by networks of cells called
central pattern generators (CPGs). A CPG is a neural microcircuit of cells whose
synergetic, nonlinear interactions can autonomously generate an array of multicom-
ponent/polyrhythmic bursting patterns of activity that determine motor behaviors in
animals, including humans [26–32]. Modeling studies, phenomenologically math-
ematical and exhaustively computational, have proven useful to gain insights into
operational principles of CPGs [33–40]. Although variousmodels, reduced and feasi-
ble, of specific CPGs, have been developed, it remains unclear how the CPGs achieve
the level of robustness and stability observed in nature [41–45]. Understanding the
key universal mechanisms of the functional evolution of neural connectivity, bifur-
cation mechanisms underlying transitions between different neural activities, and
accurate modeling of these processes presents opportunity and challenge for applied
mathematics in particular and for all computational sciences in general.

Whereas a dedicated CPG generates a single pattern robustly, a multifunctional
or polymorphic CPG can flexibly produce distinct rhythms, such as temporally dis-
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Fig. 4 (A1/2) The shape of the 1D Poincaré return map reveals the underlying cause of chaotic
mixed mode oscillations (MMOs) at the transition from tonic spiking to bursting in the in the
FNR-model (3) that become periodic MMOs with a single burst followed by nine sub-threshold
oscillations (B1/2). (C1/2) The unimodal map corresponding to chaotic and period-4 sub-threshold
oscillations (D1/2)
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tinct swimming versus crawling locomotions, and alternation of directions of blood
circulation in leeches [46–48]. Switching between various attractors of a CPG net-
work causes switching between locomotion behaviors. Each attractor is associated
with a definite rhythm running on a specific time scale with well-defined and robust
phase lags among the constituting neurons. The emergence of synchronous rhythms
in neural networks is closely related to temporal characteristics of coupled neurons
due to intrinsic properties and types of synaptic coupling, which can be inhibitory,
excitatory and electrical, fast and slow [49–53].

We developed a computational toolkit for oscillatory networks that reduces the
problem of the occurrence of bursting and spiking rhythms generated by a CPG net-
work to the bifurcation analysis of attractors in the corresponding Poincaré return
maps for the phase lags between oscillatory neurons. The structure of the phase space
of themap is an individual signature of theCPGas it discloses all characteristics of the
functional space of the network. Recurrence of rhythms generated by the CPG (rep-
resented by a system of coupled Hodgkin-Huxley type neurons [54]) lets us employ
Poincaré returnmaps defined for phase lags between spike/burst initiations in the con-

stituent neurons (Fig. 5) [41, 49–51, 55]. Forward trajectories
{
φ(n)
21 ,φ(n)

31

}
of phase

pointsMn =
(
φ(n)
21 ,φ(n)

31

)
of the Poincaré mapΠ : Mn → Mn+1 are defined through

the time delays Δφ(n)
j1 = τ (n+1)

j1 − τ (n)
j1

τ (n+1)
1 − τ (n)

1

(on mod 1) between the burst initiations in

each cycle normalized over the network period, can converge to several co-existing
stable fixed points, thus indicating the given network is multistable, or a single stable
invariant circle wrapping around the torus that corresponds to a unique rhythmic out-
comewith periodically varying phase lags. These are attractors, single or multiple, of
the return map on a 2D torus, which are associated with multifunctional or dedicated
neural circuits, respectively (Fig. 5). The 2D return map, Π : Mn → Mn+1, for the
phase lags can be written as follows:

φ(n+1)
21 = φ(n)

21 + μ1 f1
(
φ(n)
21 ,φ(n)

31

)
, φ(n+1)

31 = φ(n)
31 + μ2 f2

(
φ(n)
21 ,φ(n)

31

)
(4)

withμi representing the coupling strength, and fi being some undetermined coupling
functions such that f1 = f2 = 0 corresponds to its fixed points: φ∗

j1 = φ(n+1)
j1 = φ(n)

j1 .
These functions, similar to phase-resetting curves, can be assessed from the simu-

lated data collected for known all trajectories
{
φ(n)
21 ,φ(n)

31

}
. By treating fi as par-

tials ∂F/∂φi j , we can restore a “phase potential” F (φ21 ,φ31) = C that determines
the dynamics of the coupled neurons, find its critical points associated with FPs—
attractors, repellers and saddles of the map, and by scaling fi predict their bifurca-
tions due to loss of stability, and hence transformations of rhythmic outcomes of the
network as a whole.

With such return maps, we can predict and identify the set of robust outcomes in
a CPG with mixed, inhibitory and excitatory, slow or/and fast synapses, which are
differentiated by phase-locked or periodically varying lags corresponding, respec-
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Fig. 5 GPU-based interactive motif-toolbox [56, 57] for computational studies of rhythmogenesis
in 3-cell circuits comprised of synaptically coupled FitzhHugh-Nagumo, Hodgkin-Huxley, and 2�-
neurons, which can generate up to 6 (3 in this figure) robust patterns corresponding to the stable
fixed points in the 2D Poincaré return map for the phase lags between constituent cells.

tively, to stable fixed points and invariant circles of the return map. The toolkit lets us
predict bifurcations and transformations of rhythmic outcomes before they actually
occur in the network. The approach also reveals the capacity of the network and the
dependence of its outcomes on coupling strength, wiring circuitry, and synapses,
thereby letting one quantitatively and qualitatively identify necessary and sufficient
conditions for rhythmic outcomes to occur. Using graphics processor units (GPUs)
for parallel simulations of multistable neural networks using multiple initial condi-
tions (as depicted in Fig. 5) can drastically speed up the bifurcation analysis and
reduce a simulation time to merely few seconds.
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