
August 20, 2014 10:30 WSPC/S0218-1274 1440004

International Journal of Bifurcation and Chaos, Vol. 24, No. 8 (2014) 1440004 (20 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127414400045

Symbolic Quest into Homoclinic Chaos

Tingli Xing
Department of Mathematics and Statistics,

Georgia State University, Atlanta 30303, USA
txing1@student.gsu.edu

Roberto Barrio
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In Memoriam of Leonid Pavlovich Shilnikov

We explore the multifractal, self-similar organization of heteroclinic and homoclinic bifurcations
of saddle singularities in the parameter space of the Shimizu–Morioka model that exhibits the
Lorenz chaotic attractor. We show that complex transformations that underlie the transitions
from the Lorenz attractor to wildly chaotic dynamics are intensified by Shilnikov saddle-foci.
These transformations are due to the emergence of Shilnikov flames originating from inclination-
switch homoclinic bifurcations of codimension-two. We demonstrate how the original computa-
tional technique, based on the symbolic description and kneading invariants, can disclose the
complexity and universality of parametric structures and their link with nonlocal bifurcations
in this representative model.
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1. Introduction

The iconic shape of the Lorenz attractor has
long been an emblem of Chaos theory as a
new paradigm in nonlinear sciences. This emblem
has been reprinted innumerable times on posters
announcing popular lectures and professional meet-
ings with cross-disciplinary scopes, and/or with

particular emphasis on dynamical systems and
bifurcations. The concept of deterministic chaos
illustrated by snapshots of the Lorenz attractor has
been introduced in all modern textbooks on nonlin-
ear dynamics. Nowadays, its butterfly-shaped image
is stereotypically associated with images of deter-
ministic chaos as a whole.
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The library of publications on systems with the
Lorenz attractor has considerably grown over a half
century, since the celebrated paper [Lorenz, 1963]
came out introducing a basic system of three ordi-
nary differential equations with highly unordinary
trajectory dynamics.

The ideas of this research trend are deeply
rooted in the pioneering studies led by L. P.
Shilnikov in the city of Gorky, USSR [Shilnikov,
1980; Afraimovich et al., 1977, 1983; Bykov, 1980].
He was a creator of the theory of homoclinic bifur-
cation and a founder of the theory of strange
attractors. His extensive knowledge of global bifur-
cations helped to turn chaos theory into a math-
ematical marvel [Shilnikov, 1967b, 1968b, 1981,
1994, 1997, 2002; Afraimovich & Shilnikov, 1983;
Turaev & Shilnikov, 1998]. His contributions to the
theory are pivotal and include the identification and
description of the structures of bifurcation routes
to spiral and screw-like strange attractors emerg-
ing through bifurcations of the famous Shilnikov
saddle-focus [Shilnikov, 1965, 1967a, 1970], which
have been found in a broad range of applications
from nonlinear optics to biology and finance. He
proposed scenarios of the onset of chaos through a
torus breakdown [Afraimovich & Shilnikov, 1974,
1991], the onset of complex dynamics caused by
structurally unstable homoclinics of saddle periodic
orbits [Gavrilov & Shilnikov, 1972, 1973], as well as
that of shift dynamics after the disappearance of
a Shilnikov saddle-node, also called a saddle-saddle
[Shilnikov, 1969; Shilnikov & Shilnikov, 2008]. Con-
cerning the Lorenz attractor, he pointed out the
conditions sufficient for a system to possess the
Lorenz attractor [Afraimovich et al., 1983]. These
conditions were used to verify and to determine the
existence regions of the Lorenz attractor, and to
present computer assisted proofs of chaotic dynam-
ics without stable orbits and homoclinic tangencies
in the canonical Lorenz model [Sinai & Vul, 1981;
Bykov & Shilnikov, 1992; Tucker, 1999].

In his PhD thesis, L. P. Shilnikov proved
the generalizations of homoclinic bifurcations of
a saddle and a saddle-node, which lead to the
emergence of a stable periodic orbit in R

n,
n ≥ 3 [Shilnikov, 1962, 1963]. Having defended it,
his interest wholly switched from systems with
trivial dynamics and their spatial generalizations

to a brand new challenge that he had set for
himself — high-dimensional systems with complex,
structurally unstable dynamics — the precursors of
deterministic chaos. In 1968, L. P. Shilnikov pub-
lished a paper proving the existence and unique-
ness of a saddle periodic orbit emerging through
a homoclinic bifurcation of a saddle in R

3 and
higher dimensions [Shilnikov, 1968a]. In this paper,
he introduced the conditions giving rise to the novel
bifurcations of codimension-two termed as orbit-flip
and inclination-switch (Fig. 3).1 This result (as well
as ones above, treated as scientific folklore, i.e. with-
out acknowledging his original papers), along with
the widely-known Shilnikov saddle-focus [Shilnikov,
1965, 1967a, 1970] and a less known Shilnikov
saddle-node [Shilnikov, 1969; Shilnikov & Shilnikov,
2008], constituted his thesis for a degree of Doctor
of Science. The degree was never granted because of
intrigues of his former graduate tutor Y. I. Neimark,
who had managed his network connections within
the Soviet science establishment to obstruct such
an original and independent researcher as L. P.
Shilnikov at 35 years old. That unfortunate episode
did not affect his stellar career of an academician,
so Shilnikov had never considered a reapplication
for that degree. Mid 1970’s and early 80’s were just
the beginning of his new era of qualitative theory
of differential equations and bifurcations with the
emphasis upon complex dynamics, the field that is
known today as the advanced theory of dynamical
systems.

In this paper, we would like to rediscover
the wonder of systems with Lorenz-like attractors,
which are viewed not only through the prism of
the elegant complexity of the trajectories’ behav-
ior in the phase space, but also by disclosing a
plethora of generic fractal-hierarchical organiza-
tions of the parameter space. Our work is aimed
at illustrating the richness of homoclinic bifur-
cations underlying the magic metamorphoses of
chaos in the exemplary Shimizu–Morioka models
and like systems. It is an extension of the ideas
introduced in the earlier paper “Kneadings, Sym-
bolic Dynamics and Painting Lorenz Chaos” by
R. Barrio, A. L. Shilnikov and L. P. Shilnikov
[Barrio et al., 2012]. The original computational
approaches that we have been developing for study-
ing systems with complex dynamics capitalize

1Upon fulfillment of certain conditions these bifurcations can lead to the onset of complex dynamics in Z2-symmetric systems,
specifically, to the appearance of the Lorenz attractor [Shilnikov, 1981].
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on the key property of deterministic chaos — the
sensitive dependence of solutions in such a sys-
tem on variations of bifurcation parameters. In
particular, for the Lorenz-type attractors, chaotic
dynamics are characterized by unpredictable flip-
flop switching between the two spatial wings of the
strange attractor, separated by a saddle singularity
at the origin in the phase space.

2. The Shimizu–Morioka Model

The three-parameter extension of the Shimizu–
Morioka (SM) model [Shimizu & Morioka, 1980;
Shilnikov, 1986, 1989, 1991] is given by

ẋ = y, ẏ = x − λy − xz − Bx3,

ż = −α(z − x2);
(1)

here, {α, λ > 0} are the primary bifurcation param-
eters. Equations (1) are known to be a normal
form for triple-degenerate equilibria and periodic
orbits in a Z2-symmetric central manifold [Shilnikov
et al., 1993; Vladimirov & Volkov, 1993]. More-
over, the Lorenz model can be reduced to Eqs. (1)
with proper parameter and coordinate substitutions
[Petrovskaya & Yudovich, 1980]. We will start with
the classical case B = 0, and later use its varia-
tion to globally unfold the bifurcation structures.
Like the Lorenz equation, this symmetric model,
i.e. (x, y, z) ↔ (−x,−y, z), has three equilibrium
states: two stable-foci at (±√

α, 0, 1) that become
saddle-foci through an Andronov–Hopf bifurcation,
which is supercritical, not sub-, in the given case.
The origin is a saddle of (2,1)-type, i.e. with a couple
of 1D outgoing separatrices. The type of the saddle
is determined by the eigenvalues, s3 < s2 < 0 < s1,
of the linearization matrix at the origin. The sad-
dle index, being a ratio of the leading eigenval-
ues ν = s1/|s2|, determines the stability and the
number of periodic orbits bifurcating from a homo-
clinic loop. If ν > 1, the only stable periodic orbit
can bifurcate from a homoclinic loop [Shilnikov,
1962, 1963]. Though cases with ν < 1 are more
delicate, generally there is a single saddle orbit
bifurcating from a homoclinic loop unless the out-
going separatrix twists along the loop, or returns
to the saddle from the direction due to s3, instead
of leading s2. These bifurcations are referred to as
orbit-flip and inclination-switch in modern litera-
ture. A saddle with ν = 1 is called resonant; this
homoclinic bifurcation gives rise to a saddle-node
periodic orbit. These three primary codimension-
two bifurcations were discovered by L. P. Shilnikov

in the 1960s [Shilnikov, 1968a; Shilnikov et al.,
1998, 2001]. Either bifurcation of the homoclinic
butterfly made simultaneously from two homoclinic
loops in a Z2-system can give rise to the onset of
the Lorenz attractor [Shilnikov, 1981, 1986; Robin-
son, 1989; Rychlik, 1990; Shilnikov, 1993; Shilnikov
et al., 1993; Tigan & Turaev, 2011]. Of special inter-
est here are codimension-two homoclinic bifurca-
tions of two kinds: the resonant saddle, giving rise to
the appearance of the Lorenz attractor and shaping
its existence region in the parameter space together
with the inclination-switch bifurcations terminating
the Lorenz attractor in the SM-model. As we show

(a)

(b)

Fig. 1. (a) The (x, z)-projection of a heteroclinic connection
(red color) between the saddle (at the origin) and the saddle-
foci overlaid with the chaotic attractor (gray color) in the
background in the phase space projection on the SM-model at
the primary T-point. The flip-flopping of the “right” separa-
trix defines the binary entries, {1, 0}, of kneading sequences,
depending on whether it turns around the right or left saddle-
focus, respectively and (b) sensitivity of time progressions of
the separatrix results in kneading sequences with the same
initial episode {1, 0, 1, 1, 1, 0 . . .} due to small variations of
the λ-parameter.
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Fig. 2. Sketch of a partial bifurcation unfolding of a
Bykov T-point (from [Bykov, 1980]) corresponding to a
codimension-two heteroclinic connection between a saddle of
the (2, 1)-type and a saddle-focus of the (1, 2)-type. It fea-
tures the characteristic spirals corresponding to homoclinic
bifurcations of the saddle. Turning points (labeled by M’s)
on the spiral are codimension-two points of inclination-switch
bifurcations giving rise to stable periodic orbits through
saddle-node and period-doubling bifurcations (lm-curves)
and subsequent spiral structures of smaller scales between
spiral’s scrolls.

below, there is another type of codimension-two
points, called Bykov T-points, which are typical for
Lorenz-like systems [Bykov, 1980; Glendinning &
Sparrow, 1986; Bykov, 1993]. Such a point corre-
sponds to a closed heteroclinic connection between

three saddle equilibria [Fig. 1(a)] in Eqs. (1): the
saddle at the origin and two symmetric saddle-foci
of the (1, 2)-type. Such points turn out to cause the
occurrence of self-similar, fractal structures in the
parameter region corresponding to chaotic dynam-
ics in the known systems with the Lorenz attractor
[Barrio et al., 2012; Xing et al., 2014a; Xing et al.,
2014b].

Figure 4 presents a Lyapunov exponent (LE)
based sweep of the parameter space of the model
with its attractors superimposed in the color-coded
regions. The regions are painted as follows: white,
gray and red corresponding to stable equilibrium
states, periodic orbits and chaotic dynamics, respec-
tively, in the model. The borderline between the
first two should be interpreted as an Andronov–
Hopf bifurcation giving rise to stable orbits as
the parameter λ is decreased. The red region of
chaos has sharp borders too, including a cusp-
shaped “beak” with a tip corresponding to a homo-
clinic butterfly bifurcation of a resonant saddle with
the saddle index ν = 1 [Shilnikov, 1986, 1989]. The
existence of the homoclinic butterfly in the SM-
model was proven in [Tigan & Turaev, 2011]. Last
but not least, we note multiple stability islands with
stable periodic orbits that occur within the chaotic
red region, or cut it through from outside. In what
follows we will elaborate, step by step, on the ori-
gin and arrangements of global bifurcations organiz-
ing the region of chaotic dynamics that only looks
homogeneously solid in the LE-sweep(s).

2.1. Bykov T-points

Let us first introduce the principle organization for
the bifurcation unfolding, sketched in Fig. 2, of

(a) (b)

Fig. 3. L. P. Shilnikov’s drawings of an inclination-switch homoclinic bifurcation en route from (a) an orientable to (b) a
non-orientable separatrix loop Γ0 (the median line of a Möbius band) of a saddle O in R

3.
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Fig. 4. Bi-parametric sweep of the SM model using Lyapunov exponents (LE): the white, gray and red colors correspond to the
existence regions of stable equilibria where the largest LE, L1 < 0, stable periodic orbits where L1 = 0, and chaotic dynamics
where L1 > 0. White lines in the gray regions are associated with period-doubling (PD) and pitch-fork (PF) bifurcations at
which the second LE, L2, also reaches zero from below. The borderline between the white and gray regions corresponds to a
supercritical Andronov–Hopf bifurcation. Notice a fractal border between regions of chaotic and simple dynamics.

a Bykov T-point corresponding to a closed hete-
roclinic connection between a saddle-focus and a
saddle [Bykov, 1980]. Its characteristic feature is a
bifurcation curve spiraling onto the T-point. This
curve corresponds to a homoclinic loop of the sad-
dle such that the number of turns of the separa-
trix around the saddle-focus increases by one with
each turn of the spiral approaching the T-point.
The line, l1, originating from the T-point corre-
sponds to homoclinics of the saddle-focus satisfy-
ing the Shilnikov condition [Shilnikov, 1965, 1970;
Shilnikov & Shilnikov, 2007], and hence leading
to the existence of a denumerable set of saddle
periodic orbits nearby [Shilnikov, 1967a]. Turning
points (labeled by M’s) on the primary spiral corre-
spond to inclination-switch homoclinic bifurcations
of the saddle [Shilnikov et al., 1993, 1998, 2001].
Each such homoclinic bifurcation point gives rise to
the occurrence of saddle-node and period-doubling
bifurcations of periodic orbits of the same sym-
bolic representation. The central T-point gives rise
to countably many subsequent T-points with sim-
ilar bifurcation structures on smaller scales in the

parameter plane. In addition to the indicated curves
in the unfolding of a generic T-point, the unfolding
of a T-point in a Z2-symmetric system has other
bifurcation curves, for example, corresponding to
heteroclinic connections between both saddle-foci
[Bykov, 1980; Glendinning & Sparrow, 1986; Bykov,
1993].

3. Symbolic Description
via Kneadings

A hallmark of a Lorenz-like system is a strange
attractor in the emblematic butterfly shape
[Fig. 1(a)]. The eyes of the butterfly wings demar-
cate the location of stable foci or saddle-foci.
The strange attractor of the Lorenz type is
structurally unstable [Guckenheimer & Williams,
1979; Afraimovich et al., 1983] as the separatrices
of the saddle at the origin bifurcate constantly as
the parameters are varied. These separatrices are
the primary cause of structural and dynamic insta-
bility of chaos in the Lorenz equations and similar
models. We say that the Lorenz attractor undergoes
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a homoclinic bifurcation when either separatrix of
the saddle changes a flip-flop pattern of switching
between the butterfly wings centered around the
saddle-foci. At such a bifurcation, the separatrices
come back to the saddle, thereby causing a homo-
clinic explosion in phase space [Afraimovich et al.,
1977; Kaplan & Yorke, 1979]. The time progression
of either separatrix of the origin can be described
symbolically and categorized in terms of the num-
ber of turns around two symmetric saddle-foci in
the 3D phase space [Fig. 1(a)]. Alternatively, the
problem can be reduced to the time progression
of the x-coordinate of the separatrix [Fig. 1(b)].
In symbolic terms the progression of the separa-
trix can be described through a binary (e.g. 1, 0)
alphabet per se. Namely, each turn of the separa-
trix around the right or left saddle-focus, is associ-
ated with either 1 or 0, respectively. For example,
the time series shown in Fig. 1(b) generates the
kneading sequences starting with {1, 0, 1, 1, 1, 0 . . .}
at close parameter values. Thus, to differentiate
between complex dynamics near a point of interest,
one may want to skip an initial episode of knead-
ing sequences to focus on their tails. Clearly, the
sequences corresponding to chaotic dynamics will
fluctuate unpredictably as the parameters vary.

The core of the computational toolkit is the
binary {0, 1} representation of a single solution —
the outgoing separatrix of the saddle as it fills
out the two spatiality symmetric wings of the
Lorenz attractor at different parameter values. Such
patterns can persist or change with variations of
the parameters of the system. Realistically, and
numerically, we can assess and differentiate between
only appropriately long episodes of patterns, ini-
tial or intermediate, due to resolution limits. A
positive quantity, called the kneading [Milnor &
Thurston, 1988], bearing information about the pat-
tern, allows one to quantify the dynamics of the
system. By sweeping bi-parametrically, we create a
map of the kneadings. Knowing the range of the
kneading, we color-map the dynamics of the system
in question onto the parameter plane. Whenever
particular kneading quantity persists with varia-
tions of control parameters, then the flip-flop pat-
tern does not change, thus indicating that dynamics
can be robust (structurally stable) and simple. The
straight forward application of this approach never-
theless fails to detect bifurcations, such as period-
doubling and pitch-fork of periodic orbits. While
this can still be remedied, these bifurcations are not

a prime focus of this study elaborating on homo-
clinic bifurcations and how they can transform the
Lorenz attractor.

In the parameter region of the Lorenz attractor,
the flip-flop patterns change constantly and unpre-
dictably. Nevertheless, a kneading value remains
the same along a level curve. Such a curve corre-
sponds to a homoclinic bifurcation of two separa-
trix loops of some configuration symbolically and
uniquely described by the binary alphabet. No such
bifurcation curves may cross or merge unless at
a singular point corresponding to some homo- or
heteroclinic bifurcation of codimension-two in the
parameter plane of the model. As such, by foliating
the parameter plane with such multicolored lines,
one can reveal the bifurcation structures and iden-
tify organizing centers — the singular points.

The kneading invariant was originally intro-
duced to uniquely quantify the complex dynam-
ics described by two symbols in a system, such as,
for example, 1D logistic or skew-tent maps with
increasing and decreasing branches separated by a
critical point. Such maps emerge in a large number
of dissipative systems including ones with Lorenz-
like attractors. Moreover, such systems can be topo-
logically conjugated if they bear the same kneading
invariant [Rand, 1978; Malkin, 1991; Tresser &
Williams, 1993]. Without finding 1D maps, a knead-
ing sequence {κn} can be directly generated by time
progressions of, say, the right separatrix, Γ+, of the
saddle, using the following rule:

κn =

{
1, when Γ+ turns around Oright,

0, when Γ+ turns around Oleft.
(2)

The kneading invariant is defined in the form of a
formal power series

K(q, µ) =
∞∑

n=0

κnqn, (3)

convergent for 0 < q < 1. The kneading sequence
{κn} comprised of only 1’s corresponds to the right
separatrix, Γ+ converging to an equilibrium state or
an orbit with x(t) > 0. The corresponding kneading
invariant is maximized at {Kmax(q)} = 1/(1 − q).
When the separatrix converges to an ω-limit set
with x(t) < 0, then the kneading sequence begins
with the very first 1 followed only by 0s. Skipping
the very first “1”, yields the range, [0, q/(1− q)], of
the kneading invariant values; at q = 1/2, it is [0, 1].
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For each model, one has to figure an optimal value
of q: setting it too small makes the convergence too
fast so that the tail of the series would have lit-
tle significance and hence would not differentiate
fine dynamics of the system on longer time scales.
Note that q = 1/2 is the largest value that guar-
antees the one-to-one correspondence between the
time progression of the separatrix and the value of
kneading invariant, K.

Given the range and the length of the knead-
ing sequence, a colormap of a preset resolution is
defined to provide the conversion of a numeric value
of the kneading invariant into a unique color. In
this study, the colormap includes 100 different col-
ors chosen so that any two close kneadings are
represented by contrasting hues. Specifically, the
colormap is given by a 100× 3 matrix, the columns
of which correspond to [RGB] values standing for
the red, green, and blue colors represented by {100},
{010} and {001}, respectively. The R-column of
the colormap matrix has entries linearly decreas-
ing from 1.0 to 0.0, the B-column has entries lin-
early increasing from 0.0 to 1.0, while any entry
of the G-column alternates between 0 and 1 to
produce color diversities. So, by construction, the
blue color represents kneading invariants in the
{0.99, 1.0} range, the red color on the opposite side
of the spectrum corresponds to kneading invari-
ants in the {0, 0.01} range, and all other 98 colors
fill the spectrum in between. A borderline between
two colors corresponds to a homoclinic bifurcation
of the saddle through which the kneading invari-
ant changes its value. Due to resolution, the col-
ormap is sensitive only to variations of the first
two decimals of the kneading value. For this rea-
son we only consider kneading sequences of length
10, with the maximal contribution of the tail about
0.511/(1 − 0.5) = 0.510 ≈ 10−3 to the kneading
value. To obtain finer structures of the bifurcation
diagram foliated by longer homoclinic loops, one
should skip a number of initial kneadings to keep
episodes 10 entries long or so: {3–12}, {22–31}, and
so forth. Such a sweep can reveal up to 210 distinct
homoclinic bifurcations. A word of caution: hav-
ing information in excess, i.e. overwhelmingly many
bifurcation curves of random colors, will make the
bifurcation diagram look noisy on the large scale
even though the number of mesh points is large
enough. Producing clear and informative diagrams
for the given system takes time and some amount
of experimental work.

4. Symbolic Sweeping: Swirls
and Saddles

The bi-parametric, (α, λ)-scan of Eqs. (1) at B = 0
using the {5–15} kneading range is presented in
Fig. 5. This high-resolution diagram is made of 40
panels, each with 103 × 103 mesh points. A region
of a solid color corresponds to a constant knead-
ing invariant, i.e. to structurally stable and sim-
ple dynamics in the system. In such regions, trivial
attractors, such as stable equilibria or stable peri-
odic orbits, dominate the dynamics of the model.
The red, blue and light blue colors correspond to
constant values of the kneading invariants: 0, 1
and 2/3 generated, respectively, by sequences {0}∞,
{1}∞ and {10}∞. Note that the kneading approach
does not distinguish between symmetric and asym-
metric periodic orbits, for instance, of the figure-
eight shape generating the same sequence {10}∞.
As such it does not detect pitch-fork and period-
doubling bifurcations.

A borderline between two solid-color regions
corresponds to a homoclinic bifurcation at which
the kneading invariant becomes discontinuous and
experiences a sudden jump in its value. So, the
border between the blue (the kneading invariant
K = 1) and the red (K = 0) regions corresponds
to the bifurcation curve, HB, of the primary homo-
clinic butterfly. The same curve is continued as a
borderline between the blue and light blue regions.
The point where all three regions come together on
the bifurcation curve corresponds to the resonant
saddle with ν = s1/|s2| = 1, or with zero saddle
value: σ = s2 + s1 = 0. To the right of it, the homo-
clinic bifurcation with σ < 0 “glues” two stable
periodic orbits, emerging from stable foci through a
supercritical Andronov–Hopf curve, AH, into a sin-
gle orbit (x, y)-projected as a figure-eight (Fig. 5).
To the left, the codimension-two point, σ = 0
(ν = 1) originates a loci (bundle) of bifurcation
curves that determine the dynamics of the Lorenz
attractor and shape its existence region. The bun-
dle is bordered by two curves: LA, bounding the red
region from below, corresponds to the formation
of the Lorenz attractor. The other curve, 2HB, on
the border between the light-blue region and mul-
ticolored region of chaos, corresponds to a double
pulsed homoclinic loop [Shilnikov, 1993; Shilnikov
et al., 1993]. The inclination-switch bifurcation of
this loop plays a critical role in the transforma-
tion of the Lorenz attractor with no stable periodic
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(a) (b)

(c)

Fig. 5. (a) (α, λ)-sweep of the SM model using the {5–15}-kneading range. Solid-color regions, associated with constant values
of the kneading invariant, correspond to simple dynamics dominated by stable equilibria (blue and red) or stable periodic
orbits (light blue). The borderline between blue and red/light blue region corresponds to the bifurcation curve, HB, of the
homoclinic butterfly. The merger point corresponding to a resonant saddle of codimension-two gives rise to loci of bifurcation
curves bounding and foliating the region of the Lorenz attractor. This region contains a variety of swirls of various scales
centered around Bykov T-points for heteroclinic connections as well as the saddles separating them. The line, 2HB, represents
a bifurcation curve of a double-pulsed [10] homoclinic loop with codimension-two inclination-switch point, A = 0, on it.
(b) Note saddles bounding codimension-two points in the diagram. High-resolution sweep of {12–22}-kneading range revealing
fine foliation of the chaos region by homoclinic curves before the primary T-point at (0.3903, 0.7805). Complex organization
of multifractal swirls only appears noisy due to superabundant color variations in the given range. (c) Magnification depicting
a plethora of embedded homoclinic swirls around T-points of various scales.

orbits into a quasi-hyperbolic one with stable orbits
(in stability windows).

This diagram is a demonstration of this new
computational approach. A feature of complex,
structurally unstable dynamics is a dense occur-
rence of homoclinic bifurcations, which are repre-
sented by curves of various colors that foliate the
chaotic region in the bi-parametric scan. We stress
that given the depth (10 kneadings) of the scanning
and the resolution of the colormap, the diagram
can potentially reveal up to 210 distinct bifurca-
tion curves of homoclinic trajectories up to the indi-
cated length. The top right picture in Fig. 5 presents
a bi-parametric sweep of the same region, using a
longer tail, {12–20}, of the kneading sequence. The
sweep reveals fine organization structures foliating

the existence region of the Lorenz attractors with
bifurcation bundles, as well as two pronounced sad-
dles separating the loci that converge to the primary
T-point. They also show a “turbulent plume” made
of swirling bifurcation structures originating from
the primary T-point. The plume appears noisy due
to color alternations and excess low-scale details.
In what follows, we will focus on the complex self-
similar organization and interconnection of such
bifurcation structures centered around subsequent
T-points.

5. Self-Similarity of Homoclinic
Swirls

The bi-parametric sweep in Fig. 6 explores a frac-
tal self-similar organization of bifurcation swirls,
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Fig. 6. (a) Bi-parametric sweep of {6–20}-kneading range revealing fractal structures of homoclinic bifurcation swirls parented
by the primary T-point, T1(0.3903, 0.7805) with superimposed white bifurcation curves of separatrix loops obtained by the
parameter continuation. Compare its self-similar structure with Bykov’s unfolding in Fig. 2. (b) Self-similarity in the kneading
dependence along the T-point pathway secluded between the curves SF1 and SF2 standing for homoclinic and heteroclinic
connections of the saddle-foci. Critical and discontinuity points correspond to T-points and homoclinic bifurcations of the
saddles shown in the side panels. (c) Various heteroclinic and homoclinic connections corresponding to the bifurcations selected
in the bi-parametric sweeps shown in Fig. 5 and in the left panel: T1 — the primary T-point of {1, 0∞}-type; SF1 and SF2 —
homoclinic and heteroclinic saddle-foci; T1k , k = 1, 2, . . . parented by T1 and nested between SF1 and SF2; T2 — secondary
T-point of {1, 0, 1∞}-type and its subsidiaries.
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which are centered around subsequent T-points.
These points, including the secondary one, T2 at
(0.2784, 0.5543), are parented by the primary one,
T1(0.3903, 0.7805), located at right-top corner of
the left panel. One can see that the diagrams
disclose all details of the bifurcation structures
of the Bykov T-points [Bykov, 1980]. Fine struc-
tures of the bi-parametric scan can be enhanced
further by examining longer tails of the knead-
ing sequences. This allows for the detection of
smaller-scale swirling structures within the homo-
clinic scrolls, as predicted by theory (Fig. 2). From
it we know that the subsidiary/peripheral points,
T1k, parented by the primary one, T1, must nest
within an ultra thin wedge bordered by the bifurca-
tion curves corresponding to an initial homoclinic
loop of either saddle-focus and a heteroclinic con-
nection between both saddle-foci. To figure out a
fractal hierarchy for the embedded swirls, we take
a one-parameter sweep of the kneading invariant
along a T-point pathway. The result is shown in
the bottom panel in Fig. 6. The right end point at
α = 0.3903 in the diagram corresponds to the pri-
mary T-point. In it, local maxima and minima are
associated to subsidiary T-points, while discontin-
uous points mark homoclinic bifurcations at which
the kneading abruptly jumps in value. This diagram
allows one to evaluate a renormalization factor of
the fractal line. We can conjecture that the turbu-
lent transition of homoclinic swirls is imperative for
homoclinic bifurcation curves, which cannot cross
each other, to embed into the compact region of
chaotic dynamics in the SM model. In this region,
chaotic dynamics in the SM model due to the
Lorenz attractor are additionally amplified by spi-
ral chaos due to Shilnikov’s saddle-foci. Such chaos
in the parameter space caused by the abundance of
T-points, and due to interaction of the homoclinics
of the saddle and saddle-foci, and contrasts vividly
to a well parameterized foliation of the existence
region of the Lorenz attractor above the primary
T-point. Next we will analyze the way the folia-
tion breaks down on a boundary below which the
Lorenz attractor transforms into a quasi-chaotic
attractor coexisting with stable periodic orbits with
narrow attraction basins. Note that alternation
of stability windows with stable periodic orbits
and chaos is a feature of systems with saddle-foci
and sign constant divergence like the model under
consideration.

6. Inclination-Switch Bifurcations

In [Shilnikov, 1968a], L. P. Shilnikov introdu-
ced the conditions giving rise to bifurcations
of codimension-two termed as orbit-flip and
inclination-switch (Fig. 3) that can only occur in
3D+ systems. Besides that, the inclination-switch
bifurcation even in the case of an expanding sad-
dle with the saddle index satisfying the condition
1/2 < ν < 1 can also lead to the onset of sta-
ble orbits in the phase space of systems. As such,
the occurrence of such a bifurcation is an alarm-
ing sign for the Lorenz attractor in the SM-model.
Below we will outline the essence of the inclination-
switch bifurcation. Its in-depth analysis is given in
[Shilnikov et al., 1998, 2001].

Figure 7 illustrates the concept of an
inclination-switch bifurcation, which gives rise to
the emergence of a stable orbit. The setup is the
following: the 1D separatrix Γ+ of the saddle of
type (2, 1) comes back to the saddle along the [ver-
tical] leading direction. We explore the global map
that takes a cross-section, Π, transverse to the sta-
ble manifold, W s, onto itself along the homoclinic
loop. Typically, the local map near the saddle is an
expansion for ν < 1, i.e. it must stretch a square or
a volume. Figure 7 sketches how the local map takes
a small interval d1 � 1 on Π into d2 ∼ dν

1 > d1. Let
us picture an evolution, along the separatrix loop,
of a piece, M, of a leading manifold, being defined
locally and tangent to a span of the eigenvectors
corresponding to the leading stable and unstable
characteristic exponents, s2 < 0 < s1, respectively,
of the saddle. As M is dragged away from the sad-
dle by the outgoing separatrix, it starts curving so
that it hits the cross-section, Π, with a transver-
sally squeezed hook due to the strongly stable expo-
nent, s3 < s2. Because of bending, the image of d2

becomes shorter than the original, d1, i.e. T d1 < d1

which was not the case prior to the bifurcation when
the overall map was a stretching one. In the after-
math of bending, the global map T becomes a con-
traction after it overcomes the persistent stretching
effect of the local map near the saddle. This map
makes the image TΠ1 of the right (relative to the
stable manifold, W s, of the saddle) portion, Π, of
the cross-section stretch and bend, so that it looks
like a hook or a Smale horseshoe. As such, the map
may gain stable fixed points coexisting along with
saddle periodic ones.

The 2D return map near the primary homo-
clinic butterfly of two separatrix loops of a saddle is
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(a)

(b)

(c)

Fig. 7. (a) Geometry of an inclination-switch homoclinic bifurcation causing the emergence of stable orbits near the saddle
with a saddle index ν < 1. Its core element is local expansion (d1 < d2 ∼ dν

1) of an area, M between a 1D outgoing separatrix
Γ+ and a close trajectory. This is further followed by bending such that the global return map T takes a cross-section Π,
transverse to a 2D stable manifold of the saddle, becomes a contraction with stable fixed points, rather than an expansion
generating saddle fixed points. (b) 1D discontinuous Lorenz map (4) without and with bending, respectively, prior to and
after the inclination-switch bifurcation. Progressive bending gives rise to a saddle-node bifurcation, followed by a cascade of
period-doubling bifurcations, followed by a secondary homoclinics as soon as the graph, TΠ1 lowers below the ξn-axis. (c) The
evolution of the cusp-shaped graph of the 1D-map generated by critical points of the z-coordinate of a chaotic trajectory
on the Lorenz attractor in the SM-model above and below the boundary A = 0, (Fig. 8) resulting in the formation of the
characteristic hook (bend).

a core of the geometric model of the Lorenz attrac-
tor proposed in [Afraimovich et al., 1983]. The map
is supposed to meet a few analytical conditions
guaranteeing that a system in question possesses
a genuine chaotic attractor without stable orbits
and homoclinic tangencies. A violation of the con-
ditions occurs on a boundary of its existence region.
Near the aforementioned codimension-two bifurca-
tions the 2D map can be further reduced to a simpli-
fied 1D map (Fig. 7) in the following form [Shilnikov
et al., 1998, 2001]:

ξn+1 = [µ + A|ξn|ν + o(|ξn|2ν)] · sign(ξn), (4)

here 1/2 < ν = |λ2|/λ1 < 1 is the saddle index,
locally µ controls the distance between a separa-
trix, Γ+, and the stable manifold, W s of the sad-
dle at the origin, and A is the separatrix value
[Shilnikov, 1993]. The term o(|ξn|2ν) is no longer
negligible whenever |A| � 1 near the inclination-
switch bifurcations. The top right panels in Fig. 7

illustrate the geometry of the map for positive
and negative A. One can figure from the geom-
etry of the hooked map that the unfolding an
inclination-switch bifurcation must include saddle-
node (tangent) and period-doubling bifurcations of
fixed points, as well as double homoclinics. Say,
if the inclination-switch occurs at the homoclinic
loop with the [10] kneading, there will be a cou-
ple of bifurcation curves of double homoclinics,
[10.10] and [10.01] emerging from the codimension-
two points. An alternative, though expensive, solu-
tion for locating the curve A = 0 in the parameter
space is by detecting the hooks in the return map
generated by successive minima of the z-variable.
Two such maps above and below the curve A = 0
at two locations, α = 0.39, and λ = 0.79 and
λ = 0.77, are presented in the bottom right panel
of Fig. 7. The latter map features a second smooth
critical point in addition to the cusp that will break
down the instability and lead to the occurrence of
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stable periodic orbits in the phase space and sta-
bility windows in the parameter space of the SM-
model. We note that at lower λ and α values there
are other curves similar to A = 0 [Shilnikov et al.,
1993]. Crossing down each such curve makes the
return map bend again to gain additional turns.
With every new turn, the map near the saddle starts
appearing like the Poincaré map near a Shilnikov
saddle-focus. The distinction though is that the spi-
raling saddle-focus map generates countably many
Smale horseshoes, whereas the map near such twist-
ing saddle has only a finite number of turns.

7. Shilnikov Flames

The geometry of the formation of homoclinic hooks
in Fig. 7 suggests a computational algorithm for
detecting the boundary in the parameter space of

the model beyond which the system may have sta-
ble orbits along with the Lorenz attractor [Bykov &
Shilnikov, 1989, 1992; Shilnikov, 1991, 1993]. The
algorithm takes into consideration the behavior of
two trajectories: the separatrix itself and close one
above it because the leading direction at the saddle
here is the z-axis. The (orange) curve of the hook
formation is denoted by A = 0 in Fig. 8, thus sym-
bolizing the original concept — the zero separatrix
quantity A [Shilnikov, 1967a]. Above (below) the
curve, A > 0 (A < 0) and hence all separatrix loops
that are orientable become nonorientable. Its inter-
section points with the corresponding homoclinic
curves correspond to codimension-two inclination-
switch bifurcations, the sequence of which begins
with the very first point on the curve, labeled
[10] in Fig. 8, standing for the double homoclinic
loops.

Fig. 8. Biparametric LE-sweep overlaid with homoclinic (black) and heteroclinic (red) bifurcation curves. Gray shades and
colors are associated with LE quantities: λ2 < λ1. Major Shilnikov flames containing stability windows adjacent to codimension-
two inclination-switch bifurcations (dots) on the (orange) curve, A = 0, demarcating the boundary of the existence region of the
Lorenz attractor in the (α, λ)-parameter plane; the SN, PF and PD labels identify saddle-node, pitch-fork and period-doubling
bifurcations. Superimposed black lines are several principal bifurcations curves of separatrix loops, which are obtained by the
parameter continuation. Note a bifurcation pathway connecting two T-points.
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In Fig. 8, we present a biparametric LP-sweep
of the SM-model near the primary T-point to study
the transition from the existence region of the
Lorenz attractor to the regions of quasi-chaotic
dynamics with inclusions of stability windows.
Areas with gray shadows stand for the regular
dynamics due to the presence of stable periodic
orbits, for which λ2 < 0, λ1 = 0. Here, dark
gray lines indicate bifurcations, saddle-node (SN),
pitch-fork (PF) and period-doubling (PD), where
λ2 approaches zero from below. The colored regions
stand for chaotic dynamics with λ1 > 0; particu-
larly, colors in the spectrum are associated with a
range of λ1 positive values. This diagram is super-
imposed with several homoclinic and heteroclinic
bifurcations curves obtained by the parameter con-
tinuation technique. The abbreviation SF stands
for the bifurcation curves of Shilnikov saddle-foci
around which (red zone) the Lyapunov exponent is
maximized. Labels [100], [10.01] based on kneading
notations, stand for bifurcation curves of homoclinic
loops spiraling toward the T-point. Several dots,
labeled A = 0, mark the locations of codimension-
two inclination-switch bifurcations on the (orange)
curve below the hook formation that gives rise to
the depicted homoclinic curves. The curve A = 0
demarcates the boundary of the existence region
of the Lorenz attractor leading to its termination
and giving rise to the emergence of stable periodic

orbits. Such orbits exist and bifurcate within sta-
bility windows, called Shilnikov flames. Each such
flame originates from a codimension-two homoclinic
bifurcation that occurs at the intersection point of a
homoclinic bifurcation curve with the curve A = 0.
Since the Lorenz attractor is structurally unsta-
ble, homoclinic bifurcation curves densely foliate its
existence region [Fig. 5(a)], and produces countably
many codimension-two inclination-switch points on
A = 0. Loosely speaking, the physical length of
homoclinic loops can be viewed as the order num-
ber of the Shilnikov flames, which are bigger the
lower the order number. Several such flames are
revealed in Fig. 8: the largest ones originate from
the inclination-switch bifurcations (on A = 0) cor-
responding to the shortest homoclinic loops, sym-
bolically encoded as [10], [100], [10.01], etc. The
left panel in Fig. 9 enlarges the Shilnikov flame
at the crossing of A = 0 and the [100]-homoclinic
loop, while the right panel presents a one-parameter
bifurcation diagram along the vertical (red) λ-
segment cross-cutting through the flame. Both
unambiguously reveal the inner bifurcation organi-
zation of the flame including saddle-node bifurca-
tions (Fig. 8) followed by a period-doubling cascade
and secondary bifurcations of homoclinic loops,
here [100.100] and [100.001]. One can see from
Fig. 8 that the homoclinic bifurcation curves spiral
up onto the matching T-points. The saddle-node

(a) (b)

Fig. 9. (Left) LE-sweep magnification of a Shilnikov flame near the codimension-two point of the [100]-homoclinic loop
revealing the fine organization of the bifurcation unfolding and the stability windows. (Right) One-parameter cut through the
Shilnikov flame [depicted in panel (a)] disclosing cascades of saddle-node and period-doubling bifurcations within it, as well
as the occurrence of the secondary, [100.100] and [100.001], homoclinics.
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bifurcations bound the margins of the stability
windows, and a period-doubling cascade within,
which are all typical for quasi-attractors — where
a complex hyperbolic trajectory structure coex-
ists or becomes intermittent with stable periodic
orbits. These nonlocal bifurcation puzzles agree well
with the Bykov theory of T-points illustrated in
Fig. 2 and the theory of codimension-two homo-
clinic bifurcations [Shilnikov et al., 1993, 1998,
2001]. As such, the curve A = 0 sets a border-
line demarcating the existence region of the Lorenz
attractor from below in the (α, λ)-parameter space
[Shilnikov, 1993].

8. Wild Chaos in Phase and
Parameter Space

In the region below the curve A = 0, the dynam-
ics of the SM-model becomes wildly unpredictable.
Here, we use two senses of the term “wild.” One is
that the chaotic dynamics due to the Lorenz attrac-
tor are amplified by spiral chaos due to the Shilnikov
saddle-foci near the primary T-point pathway, SF,
in the LE-diagram in Fig. 8. This leads to onsets
of quasi-chaotic attractors, the paradigm of which
was introduced and developed by L. P. Shilnikov
within the framework of the mathematical chaos
theory [Afraimovich & Shilnikov, 1983; Shilnikov,
1997, 2002]. Such a chaotic set is impossible to
parameterize and hence to fully describe its mul-
ticomponent structure due to dense complexity of
ongoing bifurcations occurring within it [Bykov,
1993]. The complexity of the bifurcation struc-
ture of the Lorenz-like systems in regions of quasi-
attractors is a perfect illustration of this paradigm.
This is a second sense of the term wild: unlike the
well-foliated existence region of the Lorenz attrac-
tor by bundles of bifurcation curves, the region of
quasi-attractors is intricately stirred by T-points of
various scales, and mixed with stability windows
corresponding to stable periodic orbits emerging
and vanishing as the parameters are varied.

In terms of the Lyapunov exponents quantify-
ing instability of trajectory behaviors, the direct
indication of intensifying disorder is the presence
of a red(ish) zone around the pathway where the
positive (largest) LE is maximized, compared to
the cold (blue) chaos of the Lorenz attractor. In
the wild-chaos region, bifurcations of homoclinic
and periodic orbits become totally unpredictable
[Gonchenko et al., 1996]. One can see from Fig. 5(b)

showing the {12–22}-kneading scan of the SM-
model that the parameter region below the primary
T-point appears quite noisy. The “parameter tur-
bulence” created and stirred by homoclinic swirls
of various scales makes it hard to find two points
in this region with the same kneading value. Below
we will present and discuss a few cases of inter-
esting parameter structures revealed by this knead-
ing toolbox. We remind the Reader that these are
homoclinic structures made of separatrix loops of
finite lengths (no more than 50 kneadings).

The first in the list is an organization of a
fractal boundary between the regions of chaos and
simple dynamics due to stable periodic orbits; the
latter is color-coded with gray in Fig. 4 and in
light-blue in Fig. 5(a). Let us reiterate that the
kneading toolbox designed for homoclinic bifurca-
tions does not detect local bifurcations of stable
periodic orbits. As such, the region of trivial dynam-
ics looks solid blue without any trace of pitch-fork,

(a)

(b)

Fig. 10. Magnification of the vicinity of the T2-point at two
different resolutions: (a) {6–20} and (b) {17–20}-kneading
ranges revealing a fine structure and self-similarity of the
fractal border between the regions of simple dynamics (solid
color) and complex chaotic dynamics. White dots mark loca-
tions of saddles.
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Fig. 11. (a) Embedded centers and saddles (white dots) in the parameter plane fragment. Scan of {20–35}-kneading range.
(b) Magnification of the center region with a fine arrangement of self-similarity of long flip-flops of homoclinic bifurcations.
Scan of {25–40}-kneading range. (c) Long flip-flop homoclinic connection at (α = 0.1548, λ = 0.5843) corresponding to the
center point.

saddle-node or period-doubling bifurcations that
are known to occur there, as we can see from Fig. 4.
Figure 10 focuses on a fragment of the kneading
scan in the vicinity of the T2-point (Fig. 6) near
a border between the region of simple dynamics
(solid color), dominated by stable periodic orbits
and chaos. Its panels, presenting two resolution
scans of {6–20} and {17–20}-kneading range, reveal
self-similar structures that constitute a fractal bor-
der. On the border, a chaotic attractor undergoes
an intrinsic crisis and breaks into two asymmet-
ric ones emerging through period-doubling cascades
[Shilnikov, 1986, 1993], just like the Lorenz model at
large Rayleigh numbers [Robins, 1979; Franceschini,
1980]. In terms of the 1D bended maps depicted in
Fig. 7, this occurs when the critical points cross the
horizontal axis, which lets trajectories, which used
to be trapped on either side of the unimodal graph
of the map, switch between both branches thus fill-
ing in a symmetric chaotic attractor.

8.1. Elliptic islands and saddles

In the region of wild dynamics there are a vari-
ety of curious homoclinic bifurcation phenomena
that are revealed by the symbolic toolkit. They are
by-products of swirling patterns due to T-points,
which can be viewed as “dissipative” structures
in the parameter space. In contrast, “conserva-
tive” (looking) structures are comprised of elliptic
islands separated by saddles, as the ones shown in
Fig. 11. An elliptic island appears as a collection

of concentric rings. Unlike T-points, each ring is a
closed level curve corresponding to a long homo-
clinic loop with a kneading that does not change
along the ring. Increasing the kneading resolution
lets one obtain deeper insight into the organiza-
tion of elliptic islands in the parameter plane. It
turns out that, like T-points, there is another self-
similar organization of embedded saddles and non-
nested centers on smaller scales within which may
appear to be outer rings [Fig. 11(b)]. The closer
one approaches a center of the rings, the greater
the number of flip-flops and twists the outgoing
separatrix makes before returning to the saddle at
the origin. As in the case of conservative dynamics,
a saddle in the parameter plane sets a threshold
between level curves of constant kneadings.

9. “Saddle-Node” Bifurcations
in 3D-Parametric Sweeps

Homoclinic bifurcation curves disclosed by the com-
putational toolkit can be viewed as level curves
of constant kneading values. Recall that by con-
struction (not counting the very first “+1”), the
range of the kneading values is [0, 1]. Therefore, we
can look at the kneading bifurcation diagrams from
different angles, as in Fig. 12 depicting two frag-
ments of the kneading surface in a 3D (α, λ,K)-
parameter space; K from (3) denotes the kneading
value. Now, T-points are viewed as local maxima
and minima (vortices) separated by saddles. In the
given context a saddle in the parameter plane is a
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(a) (b)

Fig. 12. (a) Kneading surface depicting the vicinity of the primary T-point — A large vortex in the (α, λ, K)-parameter
space, whose basin is bounded by a saddle (white dot). (b) Magnified fragment of the bifurcation surface near the primary
T-point stirring the region of wild dynamics with multifractal organization; here is {5–15}-kneading range.

point at which two level curves corresponding to the
same kneading touch and next swap, loosely speak-
ing, such a surface can be visualized as a poten-
tial (in terms of physics) with noncrossing pathways

other than at singularities — saddles and T-points,
and other codimension-two points in the parame-
ter space. This interpretation is useful for a forth-
coming explanation of “bifurcations” of bifurcation

(a) (b)

Fig. 13. Two slices, at (a) B = 0.11 and (b) B = 0.125, of the 3D bifurcation diagram in the (α, λ, B)-parameter space,
showing “saddle-node” bifurcations eliminating T-points merging with nearby saddles (white dots). The kneading range is
{5–15}. Compare with Fig. 5 at B = 0.
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curves in the SM-model (1) as the third parame-
ter, B is varied. Recall that, up to now we have
presented the results for B = 0.

Figure 13 depicts two slices, at B = 0.05 and
B = 0.11, of the 3D bifurcation diagram in the
(α, λ,B)-parameter space. The panels demonstrate
the evolution of the original diagram in Fig. 5 as B
is increased. One can see T-points vanishing with
an increase of B through merges with nearby sad-
dles, so that the chaos region will eventually be foli-
ated by untwisting level curves originating from the
codimension-two point corresponding to the reso-
nant homoclinic saddle with a zero saddle value,
and terminating at (α = λ = 0), which corre-
sponds to a singular system with all three equi-
libria gathered at the origin. To draw a parallel
with a saddle-node bifurcation of equilibria in a
phase plane, one can speak of similar bifurcations
of saddle and T-point structures in the parame-
ter space that occur as the kneading surface rids
of vertices and becomes “more flattened.” Recall
that like phase trajectories, homoclinic bifurcation
curves do not cross and terminate at singularities —
codimension-two points, like T-points, and the ones
corresponding to resonant saddle and inclination-
switch bifurcations.

10. Precursor of
Inclination-Switching

In this final section we will try to rationalize the
cause of inclination-switch bifurcations in the SM-
model. An evidence or, vice-versa, a consequence
of such a bifurcation is various cascades of period-
doubling bifurcations that occur in flows, which,
loosely speaking, generate bending return maps.

Let us consider the SM-model, at B = 0 for
simplicity, in the singular limit α = 0, where the
z-variable becomes a control parameter:

ẋ = y, ẏ = x − λy − xz, z ≥ 0. (5)

The stability of the only equilibrium state of this
linear system (fast subsystem at α � 1) depends
on the height of z: s1,2 = [−λ±√

λ2 − 4(1 − z)]/2.
For z < λ2/4 + 1, the origin is a saddle, while
it becomes a stable focus at larger z-values. This
will determine the dynamics of the system close
to the z-axis when α is small. So, whenever the
saddle has a homoclinic loop, depending on how
high the returning separatrix Γ+ climbs up in
the phase space, it may turn around the leading
stable direction — the z-axis. The number of turns

Fig. 14. Slow-fast dynamics around as a precursor of
inclination-switch bifurcations in the SM-model. Sketch of a
twisting flow making the separatrix of the saddle turn around
the stable leading direction, the z-axis, and hence the return
map, T , taking a cross-section Π into itself, looks like the
genuine map near the Shilnikov saddle-focus.

depends on how long the separatrix Γ+ follows the
“spiraling” segment of the z-axis and on how strong
the twisting flow is nearby, see the sketch in Fig. 14.
Multiple inclination-switches help the homoclinic
saddle pretend to be a genuine Shilnikov saddle-
focus. This phenomenon, called extra-twisting, was
also observed in the Lorenz model at small param-
eter values [Sparrow, 1982]. Such a twisting in
the limiting case is a precursor of the inclination-
switch bifurcations in the SM-model and other
alike systems. An indirect answer to the question
of whether a homoclinic loop is oriented or non-
oriented (twisted) is basically determined by how
high the returning separatrix goes while approach-
ing the leading z-axis on the stable manifold of the
saddle at the origin.

11. Conclusions

This paper presents a case study on organiza-
tions of homoclinic bifurcations in the parame-
ter space segment corresponding to the Lorenz
strange attractor in the Shimizu–Morioka model.
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It sheds a light on the pivotal role of homoclinic
and heteroclinic bifurcations as emergent centers
for pattern formations in parameter spaces cor-
responding to complex dynamics. It also reveals
universal principles of chaotic dynamics in deter-
ministic systems with Lorenz-like attractors, which
include the Lorenz equation itself and similar mod-
els [Barrio et al., 2012, 2013; Xing et al., 2014a;
Xing et al., 2014b]. All these systems feature var-
ious codimension-two heteroclinic and homoclinic
bifurcations such as Bykov T-points, resonant sad-
dles and inclination-switching. We have demon-
strated mechanisms generating Shilnikov flames,
which underlie the bifurcation transitions from the
Lorenz attractor to wildly chaotic quasi-attractors,
and outline multifractal organizations of the cor-
responding regions in the parameter space. Our
numerical experiments with kneading-based scans
of several Lorenz-like systems have unambiguously
revealed a wealth of multiscale swirling and saddle
structures occurring in intrinsically fractal regions
corresponding to strange chaotic attractors with
Shilnikov saddle-foci in diverse systems. This orig-
inal computational method based on kneading
invariants will greatly benefit in-depth studies of
an array of other systems with homoclinic chaotic
dynamics, that support the introduction of sym-
bolic partitions.

On a technical side, we note that with the use
of GPU parallel simulations and optimized Tay-
lor expansion ODE integrators, the time needed
for completion of exhausting bi-parametric knead-
ing scans of extra high-resolutions can be feasibly
reduced by an order.

The Reader can find multimedia versions of
the evolution of the bifurcation diagrams of the
SM-model at this link https://www.youtube.com/
watch?v=P-X5vpyHTJ4. A gallery of knead-
ing scans c© of the Shimizu–Morioka, Lorenz,
Homoclinic Garden and other models is located
at http://www.ni.gsu.edu/˜ashilnikov/chaosquest.
Copyrighted high-resolution images are available
upon request.
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