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We study the quasi-periodicity phenomena occurring at the transition between tonic spiking and
bursting activities in exemplary biologically plausible Hodgkin-Huxley type models of individual
cells and reduced phenomenological models with slow and fast dynamics. Using the geometric
slow-fast dissection and the parameter continuation approach, we show that the transition is due
to either the torus bifurcation or the period-doubling bifurcation of a stable periodic orbit on the
2D slow-motion manifold near a characteristic fold. Various torus bifurcations including stable and
saddle torus-canards, resonant tori, the co-existence of nested tori, and the torus breakdown leading
to the onset of complex and bistable dynamics in such systems are examined too. Published by AIP
Publishing. https://doi.org/10.1063/1.5042078

Neurons exhibit a multiplicity of oscillatory patterns such
as periodic, quasi-periodic, and chaotic tonic-spiking and
bursting oscillations including their various mixed modes.
The corresponding mathematical models fall into the class
of slow-fast systems, which are characterized by the exis-
tence and interaction of several characteristic timescales.
The study of typical transitions between these oscilla-
tory regimes, described in terms of the bifurcation theory,
is one of the scopes of the new field known as mathe-
matical neuroscience. Quasi-periodic oscillations, associ-
ated with frequency locking and synchronization of two
close or commensurable frequencies, typically occur in
coupled or periodically forced nonlinear dynamical sys-
tems. The phase space of the system with quasi-periodic
oscillations contains a resonant torus, whose dimension is
determined by the number of the interacting character-
istic frequencies. In autonomous slow-fast systems, quasi-
periodic oscillations emerge through nonlinear reciprocal
interactions when the fast subsystem experiences a bottle-
neck effect equating its timescale to that of the slow
subsystem. The torus breakdown, being one of the well-
known routes to the onset of complex dynamics in diverse
nonlinear systems, turns out to also underlie the typical
mechanism of transition from tonic-spiking to regular or
chaotic bursting in a particular class of slow-fast neuronal
models. The analysis of quasiperiodicity and torus bifur-
cation is a challenging task that requires the aggregated
use of computational approaches based on non-local bifur-
cation techniques. In this paper, we follow the so-called
bottom-up approach, starting with the highly detailed
Hodgkin-Huxley type models and ending with formal
reduced models. Our goal is to demonstrate how several
techniques, geometrical slow-fast dissection, parameter
continuation and averaging, and Poincaré return maps,
when combined, allow us to elaborate on all fine details
of the theory of torus bifurcations and breakdown in the
given illustrative applications.

We dedicate this paper to our dear colleague and
friend, Valentin Afraimovich, who passed away sud-
denly in February 2018. He made many fundamental

contributions to the theory of dynamical systems and
bifurcations, including his co-works on quasiperiodicity
that set the stage for the current understanding of this
phenomenon in nonlinear dissipative systems.

I. INTRODUCTION

Deterministic mathematical modeling of oscillatory cells
has been originally proposed within a framework of slow-fast
dynamical systems written in a generic form,

x′ = F(x, y, α), y′ = μG(x, y, α), (1)

where x ∈ Rn, n ≥ 2, and y ∈ R1 represent fast and slow
variables, respectively, |μ| � 1, and F, G are some smooth
functions with α being a parameter vector. For the sake of sim-
plicity and convenience, the functions in mathematical models
of cells are often chosen so that G(x, y) = [f (x) − y] to have
a Jordan block in the linearization matrix, with G being bi-
linear in its arguments. A geometric approach to the study of
three-dimensional (3D) models of bursting neurons was pro-
posed and developed by Rinzel.1 The essence of the geometric
understanding of neuronal dynamics is in the topology of the
so-called slow-motion or critical manifolds in the phase space
of the corresponding slow-fast model. The slow-fast dissec-
tion in the singular limit, μ = 0, freezes the slowest variable,
y, which is then treated as the control parameter to detect and
parametrically continue critical, slow-motion manifolds: one-
dimensional (1D) (given by F = 0) and two-dimensional ones
made, respectively, of equilibria (eq.) and periodic orbits (PO)
of the fast subsystem.

These manifolds, called quiescent Meq and tonic-spiking
MPO in the neuroscience context, as some backbones, shape
and determine the kinds of bursting activity in typical mod-
els of individual neurons both formal and derived through
the Hodgkin-Huxley formalism. Moreover, one can loosely
describe the particular bursting using the bifurcations that ini-
tiate and terminate these quiescent Meq and tonic-spiking MPO
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manifolds.2 For example, “square-wave” bursting shown in
Fig. 9 can be alternatively called “fold-homoclinic,” while
“square-wave” bursting depicted in Fig. 13 is due to two
saddle-node bifurcations: one for equilibria and the other for
periodic orbits that occur on the folds of the corresponding
manifolds, Meq and MPO.

The dissection method, allowing a clear geometric
description and understanding of the dynamics of low- and
even high-dimensional models, is also helpful to predict pos-
sible bifurcation transitions between activity types, e.g., tonic-
spiking and bursting. While the slow-fast dissection paradigm
works well for most models with distinct timescales, it pro-
vides less or even misleading insights to understand tran-
sition mechanisms between activity patterns, which are due
to nonlinear reciprocal interactions of slow and fast dynam-
ics in both subsystems even for small but finite μ-values,
which is typical for models of individual neurons discussed
below. Such reciprocal interactions become not only non-
negligible but pivotal for a comprehensive understanding
of both formal and biologically plausible models in ques-
tion when dynamics of the fast subsystem slows down to
the time scale of the slow dynamics. This occurs univer-
sally when the fast subsystem undergoes an Andronov-Hopf
(AH) bifurcation so that the rate of convergence to a critical
equilibrium state is no longer exponentially fast but logarith-
mically slow, or when its equilibria undergo a saddle-node
or fold bifurcation with a long dwelling time due to a bot-
tleneck effect near the ghost of vanished equilibria. More
complex yet very interesting cases include non-local bifur-
cations through which the fast subsystem possesses a stable
orbit of long period that is about to become a homoclinic
orbit to a saddle or to a saddle-node (SNIC), or when a
pair of periodic orbits, stable and unstable, merges and van-
ishes in the phase space through the saddle-node bifurcation.
One of the well-known examples of such slow reciprocal
interactions is related to the phenomenon of canard oscil-
lations of small amplitudes in a relaxation oscillator model
(also known as the FitzHugh-Nagumo model in computa-
tional neuroscience3). The canard oscillations emerge through
an AH bifurcation of an equilibrium state with characteristic
exponents close to zero in the norm (ω ∼ μ). The shape of
these small oscillations is defined by the fold on the charac-
teristic S-shaped branch (called the fast nullcline and given
by F = 0) of equilibria of the fast subsystem [see Figs. 20(a)
and 20(b)]. This equilibrium state of the full system is located
at the transverse intersection of the fast nullcline with the slow
(|μ| � 1) nullcline given by G = 0. [Note that if the intersec-
tion of the slow and fast nullclines is not transverse, i.e., when
∇F||∇G, then the equilibrium states in the full system bifur-
cate through a saddle-node]. The stability of the canard limit
cycle emerging from the persisting equilibrium state through
either a sub-critical or super-critical AH bifurcation is deter-
mined solely by the function in the right-hand side of the fast
subsystem in the singular limit, μ = 0. Specifically, the type
of AH bifurcation is determined by the sign of the first Lya-
punov coefficient l1,4 which is related to the smoothness of
the function f (x). More specifically, given that f ′ = 0 at the
fold, and the constant concavity of the graph of f (x) at the
equilibrium state in question, then the sign of l1 is related

to the sign of the coefficient of the cubic term in the Tay-
lor expansion of f (x) at the bifurcating equilibrium state. For
example, depending on the choice of the function, say x2, x3,
1/(x2 + 1), etc., whose all graphs have such a fold locally,
the AH bifurcation can be either subcritical, l1 > 0, or super-
critical if l1 < 0. As an illustration, the AH-bifurcation in the
fast subsystem of Eq. (6) is subcritical with the term v3/3 but
will become supercritical if it is replaced with v3 in the first
equation. The same holds true when one considers the differ-
ence equations with discrete time variable, t ∈ Z+, rather than
differential ones, written in a form similar to Eq. (1) to ana-
lyze the local stability of invariant circle-canards emerging
from a stable fixed point in the fold of the crucial manifold.5,6

It happens often too that the sign of l1 derived through the
fast subsystem in the singular limit μ = 0 changes to the
opposite in the full system even at small but finite μ val-
ues. This indicates that the first Lyapunov value l1 is near
zero and that the system is close to the codimension-2 bifurca-
tion, occurring at the so-called Bautin point given by l1 = 0,
in the parameter space. This implies also that the slow-fast
dissection in the singular limit should be only considered as
a first-order approximation for comprehensive understanding
of the dynamics of the full neuronal model with less desperate
time scales.

The feature of the Bautin bifurcation is that its unfolding
includes a saddle-node bifurcation curve corresponding to a
double periodic orbit that either disappears or de-couples into
stable and unstable orbits (repelling when x ∈ R2 and saddle
in higher dimensions). As a result, the tonic-spiking manifold
MPO in the phase space of the system has a distinct fold (like
the ones shown in Figs. 9, 12–15, 22, and 23) at a merger of
stable, MS

PO, and unstable, MU
PO, branches of the tonic spiking

manifold, MPO. In slow-fast systems with a single slow vari-
able, the existence of such a fold is a prerequisite, but not a
guarantee, for the torus bifurcation at the transition between
tonic-spiking and bursting activity.

A canard-torus emerges from a periodic orbit with a
pair of multipliers e±iφ (φ ∼ μ) on a unit circle. However,
the question about its stability is more challenging compared
to that of a limit cycle canard emerging from an equilib-
rium state with a pair of complex conjugate exponents ±iω
(ω ∼ μ), because the torus stability cannot be determined a
priori by a local stability analysis. En route to bursting the sta-
ble periodic orbit, associated with tonic spiking activity, may
lose its stability via a period doubling bifurcation (a single
multiplier eiπ = −1) initiating a cascade of such consecutive
bifurcations or through a torus bifurcation which is unknown
a priori whether it will be super- or subcritical.7,8

In the case of the torus bifurcation, the emerging stable or
unstable (repelling in 3D or saddle in 4D+ phase spaces) torus
can be resonant or ergodic, depending on the angle φ of its
multipliers on a unit circle. For example, strong resonances
such as 1:4 and 1:3 occur when φ = π/2 and φ = 2π/3,
respectively.4,9 The torus is born ergodic when φ is not com-
mensurable with π . The example of a resonant 3:1 torus with
a rational Poincaré winding number 3/1 is shown in Fig. 1.
In simple terms, this means that there is a pair of periodic
orbits, stable and unstable, on this 2D torus that correspond to
a pair of period-3 points on the stable closed invariant curve,
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FIG. 1. 3:1-resonant torus with a pair of periodic orbits, stable and repelling,
corresponding to stable and saddle period-3 points on a stable invariant circle
(IC) enclosing a repelling fixed point, of the Poincaré return map in a 2D
cross section.

or invariant circle (IC) for short, on a 2D local cross section
transverse to the torus. The winding number remains rational
and constant within a synchronization zone (see Fig. 2), also
known as an Arnold’s tongue, and takes varying irrational
values outside of the synchronization zone. In this example
of the resonant torus, the frequency locking ratio 3/1 means
that the “horizontal” oscillations are three times faster than
the “vertical” slow-components due to the timescales of x and
y-variables of Eq. (1).

Andronov and Vitt10 were first to study synchroniza-
tion or phase-locking in the periodically forced van der Pol
equation.11 They showed that each wedge-shaped resonant
zone is bounded by the homoclinic saddle-node bifurcation
(SNIC) curves in the parameter plane so that having crossed
one, the resonant torus becomes ergodic with everywhere
dense covering (trajectory) on it. Later, Afraimovich and
Shilnikov12–15 proposed a phenomenological scenario of torus
breakdown. It is illustrated in Fig. 2, which depicts pivotal
evolution stages of the invariant circle of a 2D Poincaré
return map and fixed points on it inside and outside of the
resonant zone in the parameter plane. Here, μ2 = 0 corre-
sponds to the torus bifurcation, and μ1 controls the angle of
the multipliers, e±iφ of the bifurcating periodic orbit within
the range from zero through π . Outside the resonant zone,

FIG. 2. Torus breakdown unfolding including the resonance zone that origi-
nates from the torus bifurcation curve (μ2 = 0) and bounded by the saddle-
node (SN) bifurcation curves for fixed points (FP) on the invariant circle
(IC). At larger μ2, ICs become non-smooth first, causing the torus break-
down, followed by a period-doubling bifurcation (PD) of the stable fixed
point (FP), and formations of homoclinic tangles (HT) of the saddle FP, and
of the saddle-node FP on the SN-borders of the resonant zone.

the invariant circle (IC) (read the 2D torus) is initially smooth
and rounded at small μ2 values. It possesses a saddle-node
fixed point (FP) on the SN-curves such that the closure of
its 1D unstable set constitutes the IC. Inside the resonant
zone, there are two FPs, stable and saddle, on the IC. As
μ2 is increased, the IC becomes “non-smooth” and the sta-
ble FP undergoes a period-doubling bifurcation (on the PD
curves) that breaks the torus down. Next, the unstable sets
of the saddle FPs touch (on the HT-curves) start crossing
their stable sets thereby creating homoclinic tangles which
give rise to the onset of complex chaotic dynamics in the
system. The reader is welcome to consult with the review11

and the reference texts4 for more details about the torus
breakdown.

In-depth understanding of the universal mechanisms of
transitions between oscillatory activity patterns in single neu-
ron models is a challenge for the theory of bifurcations. It
requires the use of wide range of advanced apparatus of
the bifurcation theory, ranging from the blue sky catastro-
phe to various homoclinic bifurcations of saddle orbits and
equilibria.4,7,8,16–26

In what follows, we will present several examples of bio-
logically plausible and formal mathematical slow-fast models
to demonstrate the universality and complexity of the torus
bifurcations near the distinct fold on the tonic-spiking man-
ifold. We use the bottom-up approach, starting with highly
detailed models and ending with simple toy models, all fea-
turing similar and generic properties. These bifurcations can
result in the onset of stable, repelling, and saddle tori as well
as their coexistence in the phase space leading to bi-stability
of tonic spiking and bursting activities, as well as the onset of
complex dynamics in nonlinear systems. We will also discuss
the mechanisms of torus breakdowns through various reso-
nances and conditions for period-doubling bifurcations that
may alternatively occur near the same fold. In our first exam-
ple, we perform an original analysis of period-doubling and
torus bifurcations in a 12D hair cell model of the Hodgkin-
Huxley type (HH-type). Using various computational toolkits,
we demonstrate how stable tori break down after they become
resonant. In addition, we show how the stability of the emer-
gent torus can be changed by scaling down the changing rate
of the single slowest variable of the model that gives rise to
the bistability of coexisting tonic-spiking and bursting activi-
ties at the transition. The second occurrence of the stable torus
bifurcation takes place in another highly detailed, 14D HH-
type model describing complex dynamics in the pyramidal
cells.27 We argue that one can predict the torus-bifurcation
once the topology of the slow-motion manifolds is revealed
in the phase space by applying the parameter continuation
technique to the full model in question. The third example
is the 5D HH-type model of the Purkinje cells that features
the saddle (not stable) torus that makes the co-existence of
stable tonic-spiking and bursting activities possible in the
model. We also show that the model can exhibit a stable
torus bifurcation as was originally reported in Ref. 28. The
analysis of the 4D HH-type model of parabolic bursters29

reveals that the saddle-torus canard may unexpectedly occur
on the emergent fold near the homoclinic saddle-node bifurca-
tion (SNIC) of periodic orbits in the dissected fast-subsystem.
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Next, we consider a phenomenological slow-fast system that
can exhibit a saddle-node bifurcation of a pair of stable
and repelling tori coexisting in its 3D phase space. Using
this model, we demonstrate how the torus-canard can evolve
through a series of strong resonances up to the final 1:2-
resonance that is further followed by the period-doubling
bifurcation similarly to the hair cell model. The paper is con-
cluded by the consideration of several 3D slow-fast normal
forms derived to exhibit various torus bifurcations, stable and
repelling, on a route from tonic-spiking to bursting. Our novel
findings and computational approaches should be helpful for
generalization onto other systems, especially in the context
of life sciences, as well as should foster better understand-
ing of singular torus-canards occurring at transitions between
tonic-spiking and bursting in various slow-fast models of indi-
vidual neurons in mathematical neuroscience, see Refs. 22,
28, 30–35, and references therein.

II. A MODEL FOR SPONTANEOUS VOLTAGE
OSCILLATIONS IN A HAIR CELL

Our first example is a detailed Hodgkin-Huxley type
model, whose 12 ODEs describe spontaneous dynamics of the
membrane potential of a hair cell. Hair cells are peripheral
receptors which transform mechanical stimuli into electrical
signals in the senses of hearing and balance of vertebrates.
These sensors rely on nonlinear active processes to achieve
astounding sensitivity, selectivity, and dynamical range.36 In
particular, it was proposed that ciliary bundles of hair cells
may self-tune to operate on the verge of (degenerate) AH
bifurcations causing a sharpened selectivity to weak peri-
odic mechanical forcing.37,38 In amphibians, some hair cells
demonstrate various spontaneous oscillatory activities. In par-
ticular, several experimental studies have documented various
oscillation regimes of the membrane potential in the frog
saccular hair cells.39,40 In humans, the sacculus is a part of
the peripheral vestibular system, encoding linear accelera-
tion and head tilts in the vertical plane. The frog sacculus
detects low-frequency seismic vibrations and is a part of the
auditory system.41,42 Although physiological implications of
the membrane potential oscillations on sensory function of
hair cells are not yet clear, experimental study40 showed that
spontaneous voltage oscillations drive sensory neurons result-
ing in periodic firing. Furthermore, the membrane potential
of the hair cell affects the dynamics of its apical hair bundle
compartment, as documented experimentally43 and in model-
ing work.44,45 Modeling work44,46,47 predicted that oscillatory
dynamics of the membrane potential may lead to the improved
sensory performance of the hair cell.

A. Hair cell model

The model is based on several experimental stud-
ies of basolateral ionic currents in saccular hair cells in
bullfrog39,40,48,49 and is a modification of a model developed
in Ref. 49. It includes 6 ion currents plus a leak current
with corresponding equations for the kinetics of ion chan-
nels and for the dynamics of Ca2+ concentration, resulting
in a Hodgkin-Huxley type system of 12 coupled nonlinear
ordinary differential equations. A detailed description of the

model is available in an open access publication,34 and a code
for the right-hand sides of corresponding ODEs is provided in
the supplementary material.

The membrane potential dynamics in the hair cell model
is described by this equation:

CmV ′ = −IK1 − Ih − IDRK − ICa − IBKS − IBKT − IL. (2)

The six ionic currents in Eq. (2) can be sub-grouped accord-
ing to their activation patterns. The K+ inward-rectifier (IK1)
and the cation h-type (Ih) currents are hyperpolarization acti-
vated. The rest four currents are depolarization activated: the
voltage-activated K+ direct-rectifier (IDRK) and Ca2+ (ICa)
currents; the calcium-activated K+ steady (IBKS) and tran-
sient (IBKT) currents. Finally, the leak current (IL) stands
for the mechano-electrical transduction from the hair bundle
compartment of the cell. The previous computational study34

showed that a convenient choice of control parameters is the
maximal conductance of K1-current, gK1, and the strength of
the Ca2+-activated potassium currents, b.

Experimental work showed that depolarization-activated
currents are responsible for the so-called phenomenon of
electrical resonance, whereby the hair cell shows fast oscil-
latory responses when knocked by an external current
pulse.48,50–53 Furthermore, self-sustained voltage oscillations
were observed experimentally and in a model which contained
the voltage-activated Ca2+ and the Ca2+-activated potassium
currents.54 On the other hand, hyperpolarization-activated
currents give rise to slow (3–4 Hz) large-amplitude oscilla-
tions of the membrane potential, owing to slow kinetics of Ih

current.49 Taken together, the membrane potential of the frog
hair cells shows diverse patterns of oscillatory activity docu-
mented experimentally40 and well captured by the model.34 In
particular, the two distinct oscillatory mechanisms mentioned
above may lead to quasi-periodic oscillations, with a torus
bifurcation and torus breakdown,34 which will be studied here
in details.

B. Quasi-periodicity and period-doubling pathways

To unravel the dynamical mechanisms behind the
transition to quasiperiodic oscillations, we built a bifurcation
diagram of the model for two control parameters, gK1 and b.
The diagram shown in Fig. 3 was constructed using the com-
bined techniques of parameter sweeping and continuation.

In Fig. 3(a), the AH bifurcation (red curve) demarcates
the region of the quiescence state from the oscillatory dynam-
ics. The solid and dashed segments of the AH line correspond
to super- and sub-critical AH bifurcation. The criticality of the
bifurcation means that either a stable or a saddle periodic orbit
emerges and collapses into the stable equilibrium state after
the corresponding segment of the AH-curve is crossed. The
point, labeled BP, is where the criticality of the AH bifurca-
tion changes. This bifurcation was first studied by N. Bautin4

who found that its unfolding includes another curve corre-
sponding to a double, saddle-node periodic orbit around the
equilibrium state. The orbit results from a merger of stable
and saddle ones, which earlier originate from a stable depo-
larized equilibrium state through super- and sub-critical AH

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-035899
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FIG. 3. Dynamical regimes of the hair cell model. (a) (b, gK1) bifurcation diagram of the hair cell model is superimposed with a color-coded map indicating the
spike number per burst. It includes Andronov-Hopf (red) curves of supercritical (solid line) and subcritical (dashed line) bifurcations including a codimension-2
Bautin point (filled circle, BP) that bounds the region of oscillatory activity of the hair cell. Black dashed line corresponds to the torus bifurcation (TB), and
solid green line corresponds to a period-doubling (PD) bifurcation of the periodic orbit (PO). (b) Gallery of voltage traces for the indicated increasing gK1-values
at fixed b = 0.01.

bifurcations, respectively, upon crossing the solid and dashed
branches of the (red) curve, AH, in the diagram in Fig. 3(a).

This saddle-node bifurcation is associated with the char-
acteristic fold where two branches, foliated by stable and sad-
dle periodic orbits, merge, on the tonic spiking manifold, MPO,
in the phase space of the model. The shape of the manifold
can be revealed by the parameter continuation of the periodic
orbit in the full system.8 The notion of the fold is imperative
here, as it is where a tonic-spiking periodic orbit loses stability
that gives rise to the onset of bursting activity through either
a cascade of period doubling bifurcations or through a torus
bifurcation. These scenarios, first described in Ref. 7, have
happened to occur typically in various slow-fast systems with
such folds,55 particularly in neuronal models,30,32 including
the reduced model of Purkinje cells28 below.

The stable periodic orbit born through the supercriti-
cal AH bifurcation loses its stability either through a torus
bifurcation [TB, dashed black line in Fig. 3(a)] or through a
period-doubling bifurcation [PD, solid green line in Fig. 3(a)].
A region bounded by these lines is characterized by various
bursting patterns and by period-adding bifurcations. The col-
ormap presented in Fig. 3(a) and showing the number of
spikes per burst indicates that the number of spikes increases

toward the torus bifurcation. To the right of the PD-curve,
i.e., for 0.02 < b < 1, the model produces robustly tonic
oscillations,34 which underlines the stabilizing physiological
role of the Ca2+-activated potassium currents (IBKS,BKT).40

Next, we investigate the torus bifurcation and the torus
breakdown using the slow-fast manifolds and Poincaré return
maps on a route from tonic spiking to bursting. We also exam-
ine the transition to bursting on another route featuring a
cascade of period-doubling bifurcations and contrast the cor-
responding Poincaré return maps in both cases. The Poincaré
maps are well suited for exploration of complex oscillations
to reveal the mechanisms of underlying bifurcations and their
precursors. Since the voltage is the only observable variable
in many experimental setups, we will employ the Poincaré
return map T defined on consecutive minima of the mem-
brane voltage trace as follows: T : V (n)

min → V (n+1)

min . In the case
of a sparse map (insufficiency of various points Vmin), e.g.,
for periodic or weak chaotic bursting, a small random per-
turbation can be added to the model, resulting in variability
sufficient to obtain densely populated iterates, revealing some
key dynamical features. We point out that the sensitivity of
solutions to external perturbations is a common feature of
slow-fast neuronal models.56

FIG. 4. (a) Bifurcation diagram representing the gK1-parameter sweep of the Vmin-values reveals the stability loss of the tonic-spiking periodic orbit through a
torus bifurcation en route to bursting at level b = 0.01. Note that the ergodic torus becomes resonant before its breakdown giving rise to large-amplitude bursts.
(b) Diagram showing the cascade of period-doubling bifurcations of tonic-spiking orbits transitioning to bursting at level b = 0.015.
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The described two scenarios of the transition from tonic-
spiking to bursting (through the torus or period-doubling
bifurcations) can be differentiated with the aid of the Poincaré
maps for consecutive minimal values of the membrane volt-
age traces shown in Fig. 4.

C. From tonic spiking to bursting through
quasi-periodicity

Let us first examine the torus bifurcation scenario, as
gK1 increases with a fixed value of b = 0.01. Typical evo-
lution of the voltage traces is shown in Fig. 3(b). As the
parameter gK1 increases, small-amplitude periodic oscilla-
tions become quasi-periodic (slow amplitude modulation)
through the supercritical (stable) torus bifurcation. When the
torus breaks down, it gives rise to large-amplitude bursting
oscillations which may be chaotic or regular in alternation.
This is illustrated in the bifurcation diagram of Fig. 4(a),
which was built using the Poincaré return map of consecutive
voltage minima. In this diagram, a single point for a given
parameter value corresponds to a stable periodic orbit. Sev-
eral points per a single parameter value may correspond to
different regimes. Dense points above −70 mV correspond
to ergodic tori, whereas multiple extended branches corre-
spond to stable periodic orbit(s) on the resonant torus exiting
within its resonant zone. Points below −70 mV refer to burst-
ing orbits where the cell becomes strongly hyperpolarized.
Bursting orbits are stable when their several branches in the
bifurcation diagram are continued without interruption within
a stability window, followed by regions of chaotic bursting.

One can see from the bifurcation diagram in Fig. 4(a)
that the stable periodic orbit, earlier emerging through the
supercritical AH bifurcation, loses its stability when gK1 is
increased through 29.19 nS. This stability loss gives rise to
the emergence of a 2D stable torus, first appearing like ergodic
or very weakly resonant, as a widening parabola-shaped solid
region as the diagram suggests. In what follows, the break-
down of the torus comes along with the generic scenario
lines proposed by Afraimovich and Shilnikov.57 The torus
becomes resonant as gK1 increases through a synchroniza-
tion boundary (of an Arnold’s tongue).11,58 This assertion is
supported by the occurrence of several branches correspond-
ing to the local minima of a stable periodic orbit coexisting
with a saddle orbit on the torus after a saddle-node bifur-
cation at gK1 	 29.199 nS. Further increase of the control
parameter causes the torus breakdown, which leads to bursting
oscillations with modulatory (quasi-periodic) tonic spiking
episodes interrupted by slow hyperpolarized quiescent periods
[Fig. 3(b) at gK1 = 29.213 nS]. Figure 4(a) also reveals a num-
ber of spike adding bifurcations of bursting. The cascade of
spike adding ends on the upper branch of the green bifurcation
curve, which corresponds to a reverse period-doubling bifur-
cation [Fig. 3(a)]. To the right of the curve, the hair cell model
produces stably large-amplitude voltage oscillations [Fig. 3(b)
at gK1 = 40 nS]. The black dashed curve in Fig. 3(a) cor-
responds to the torus formation and therefore quasi-periodic
tonic spiking oscillations in the model.

Figures 5 and 6 represent the Poincaré return maps
depicting the characteristic stages of the torus formation and

breakdown. In Fig. 6(a), a family of invariant circles (ICs)
corresponds to the growing of the first smooth and later
non-smooth ergodic stable IC emerging from a tonic-spiking
periodic orbit, as the latter has lost “its skin” to the 2D torus
[Figs. 5(a) and 5(b)]. As gK1 increases, the torus becomes
resonant with a stable periodic orbit on it. The degree of
the resonance can be evaluated by the number (here 7) of
periodic points of the stable orbit, which equals the num-
ber of the “sleeves” originating from an unstable FP toward
the non-smooth invariant curve. This agrees well with the
theory of torus breakdown that causes the onset of complex
chaotic dynamics. In essence, the torus breakdown begins
with the emergence of two periodic orbits, stable and saddle,
on the torus when it becomes resonant through a saddle-
node bifurcation. Later, the torus becomes non-smooth after
the stable and unstable manifolds (sets) of the saddle orbit
start making wiggles transitioning to homoclinic tangles with
the stability loss of the counterpart periodic orbit through a
period-doubling bifurcation. This bifurcation can be identified
by end-branching on the resonant traces left by the periodic-
point as the control parameter gK1 is increased. One can
observe from Fig. 5(d) that the stable period-7 orbit has a lead-
ing pair of complex-conjugate multipliers, which indicates
the proximity of forthcoming period-doubling bifurcations (as
documented by the green branches indicated in Fig. 7).

We note that regular bursting can already co-exist with
the stable torus in the hair cell model. Bursting becomes
chaotic with the torus breakdown starting at gK1 = 29.213 nS.
The corresponding 1D Poincare return map T : V (n)

min →
V (n+1)

min is shown in Fig. 6(b). It has a distinct shape that is char-
acteristic for the square wave bursters.25,56 The map has three
components: the transient “toroidal” section revealing a ghost
of the disappeared non-smooth IC around Vmin = −65 mV, a

FIG. 5. Poincaré return maps: V (n)

min → V (n+1)

min depicting four pivotal stages of
the torus onset and breakdown on the pathway at b = 0.011. (a) Convergence
to a spiraling (resonant) fixed point (FP) corresponding to a tonic-spiking
orbit at gK1 = 28.335 nS. (b) Stable smooth IC corresponding to an ergodic
torus at gK1 = 28.345 nS with a repelling FP inside the IC. (c) A non-smooth
(distorted) IC for a yet ergodic torus at gK1 = 28.355 nS. (d) A stable period-7
orbit at gK1 = 28.3605 nS after the torus breakdown.
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FIG. 6. Poincaré return map, V (n)

min → V (n+1)

min , for the consecutive Vmin-
values in voltage traces generated by the hair cell model. (a) Evolution
of stable invariant circles (IC) from ergodic to resonant with further non-
smooth torus breakdown as the gK1 parameter is increased from 29.185
through 29.2073 nS. (b) Chaotic bursting after the torus breakdown at
gK1 = 29.213 nS. The flat, stabilizing section of the map corresponds to the
hyperpolarized quiescence, while multiple sharp folds reveal a ghost of the
non-smooth IC in the depolarized range.

dropping-down middle section, and a flat (contracting) section
corresponding to the slow hyperpolarized quiescence phase of
bursting reaching Vmin = −85 mV. The voltage trace generat-
ing this map at gK1 is depicted in Fig. 3(b) at gK1 = 29.213 nS;
it demonstrates slowly modulated chaotic tonic-spiking
phases alternating with hyperpolarized voltage sags.

The resonance of a torus is determined by its winding
number, calculated as the ratio of 2π and the angle φ of
the Floquet multipliers e±iφ on a unit circle.4 For example,
when the angle is π/2 [Fig. 7(a2)], the winding number is 4,
meaning that the resonance of the torus is 1:4. The irra-
tional and rational winding numbers correspond to ergodic
(quasi-periodic) and resonant (periodic) torus, respectively.
The cases 1:1, 1:2, 1:3, and 1:4 are considered as strong
resonances and others as weak.9,59 Figure 7 shows the emer-
gence, evolution, and breakdown of the 2D tori through three
strong resonances, namely, 1:2, 1:3, 1:4, and one weak case.
When the torus becomes resonant, the corresponding IC (gray
color) of the Poincaré return map possesses a stable orbit
[made of a specific number of periodic points, like the ones
shown as the blue branches in Figs. 7(a1) and 7(b1)]. The
resonant ICs become non-smooth and then starts breaking
down when the leading multipliers of the stable periodic orbit
become complex conjugate toward forthcoming PD bifurca-
tions (shown as green and orange dots in the return maps in
Fig. 7) with the increase of the parameter gK1 at the indicated
values of parameter b, so that the unstable sets of the sad-
dle periodic orbits no longer converge monotonically but
start spiraling onto the stable periodic points of the IC [see
Fig. 5(d)].

D. Period-doubling en route to bursting

Next, we consider the pathway at b = 0.015 passing
through the period-doubling curve (green line) in the 2D
parameter plane shown in Fig. 3(a). Having crossed this curve,
the stable periodic orbit (representing tonic-spiking oscilla-
tions) loses its stability to the one with the doubled period.
This bifurcation and the new periodic orbit correspond to
the branching in the diagram shown in Fig. 4(b). A cascade
of forthcoming period-doubling bifurcations develops rapidly

(this is a typical, like canard, phenomenon of slow-fast sys-
tems) as gK1 increases and terminates with the onset of regular
bursting in the hair cell model. Spike adding causes the onset
of chaotic bursting in the transition between stable 5-spike and
4-spike bursting as this bifurcation diagram reveals.

The Poincaré return map of the chaotic bursting shown in
Fig. 8(a) has a wider drop-shaped section, compared to chaotic
bursting emerging through the torus scenario [Fig. 6(b)].
Quantitatively, the width of the drop indicates how fast the
model switches back and forth between tonic spiking and
hyperpolarized quiescence in bursting. The wider the drop
in the map is, the less rigid the switching is, or, alterna-
tively, the less contrast between fast and slow dynamics is.
Since the switches are quite loose, not constrained, there is
a wide variability in transitions that gives rise to multiple
branches of the return map depicted in Fig. 8(a). The mul-
tiple branches look like as they represent snapshots of some
return maps at several parameter values in progression. Each
branch reveals a generic unimodal (non-sharp) shape of the
return map that is needed for a cascade of period-doubling
bifurcations to occur. We note that other Hodgkin-Huxley
type models with the fold on the tonic spiking manifold can

FIG. 7. Poincaré return map, T : V (n)

min → V (n+1)

min , depicting strong-resonant
ICs (tori) as gK1-parameter increases at various fixed b-values. Insets (a)–(c)
illustrate the evolution of initially ergodic IC as it becomes strongly resonant,
1:4, 1:3, and 1:2 at b = 0.0125, 0.0128, and 0.013, resp. (d) Weak resonant
case at b = 0.0127. Positions of the Floquet multipliers (of the central FP)
on a unit circle determine the resonance number. [(a1)–(b1)] 3D extended
evolution of the ICs with increasing gK1; black contour lines represent the ICs
of the return maps at specific gK1-values; blue branches represent the resonant
period-3 and -4 orbits; green and orange branches reveal the PD bifurcations
of the resonant orbits. [(a2)–(b2)] Gray dots represent Vmin-values extracted
from voltage traces; blue dots are connected to show the iteration order.
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FIG. 8. Period-doubling cascade in the Poincaré return map: V (n)

min → V (n+1)

min ,
with multiple unimodal branches. (a) Chaotic bursting in the determinis-
tic model at gK1 = 26.1226 and b = 0.015. (b) Weak (σ = 5 × 10−4) noise
induces bursting that overshadows a period-2 orbit (shown by two green dots)
at gK1 = 25.972 and b = 0.015.

exhibit a period-doubling cascade leading to a chaotic tonic-
spiking attractor in the phase space.35 The progression of the
branches also suggests that the stable periodic orbit emerges
through a saddle-node bifurcation when the graph of the map
touches the 45◦ line. Recall that the corresponding bifurca-
tion comes out of the codimension-two Bautin point in the
parameter plane in Fig. 3(a). Next, as the map graph low-
ers further down and becomes steeper, the stable fixed point
becomes unstable, thus giving rise to a period-two orbit; its
points are indicated by two green solid circles in Fig. 8(b).
The bottom four branches of the map correspond to burst-
ing where each hyperpolarized voltage drop is followed by
chaotic tonic-spiking phases developed through all steps of
the period doubling cascade.

Precursors of bursting can be revealed by adding small
random perturbations to the model. Gaussian white noise
ξ(t) is injected into the right-hand side of Eq. (2) with the
term σξ(t), where σ is the standard deviation of random
perturbation. Figure 8(b) demonstrates that weak random per-
turbations can effectively reveal precursors of transition to
bursting. For the value of gK1, the model possesses a stable
period-2 orbit, which contains only two points in the Poincaré
return map. Weak noise induces bursting, resulting in the
map which has a similar shape as the deterministic chaotic
bursting.

We stop here to presume that without 1D Poincaré
return maps generated through voltage oscillations, it would
be virtually impossible to characterize the exact formation
mechanisms underlying transitions from simple tonic spik-
ing to bursting and back in this model as well as in other
Hodgkin-Huxley type neuronal models.25,56

E. Parameter continuation and slow-fast dissection

Bifurcations underlying the transitions between different
oscillatory patterns in the hair cell model can be explained
geometrically using the slow-fast dissection as illustrated in
Fig. 9. The essence of the approach is based on dissect-
ing the original dynamics of the model into slow and fast
components. In the model, the activation of the h-current,
mh, is the slowest dynamical variable, while all other vari-
ables are fast compared to it. In particular, we choose the

FIG. 9. (a) 3D (mh, mDRK, V)-phase space projection depicting a few exem-
plary tonic-spiking, quasi-periodic, and bursting orbits being superimposed
with the slow-motion manifolds: the 1D S-shaped quiescent Meq with two
knees/folds and the 2D tonic spiking MPO. The fold on MPO corresponds to
a saddle-node bifurcation giving rise to periodic and quasi-periodic tonic-
spiking (torus as dark-blue orbits) occurring on the outward branch of
MPO. The gray surface, m′

h = 0, is the slow nullcline above/below which
the slow variable increases/decreases during tonic-spiking/quiescent phases
of bursting. (b) Voltage traces with matching colors of the corresponding
orbits in (a).

membrane potential, V , and the activation of the K+ DRK-
current, mDRK, as representatives of the fast subsystem. The
feature of a slow-fast system that often reduces the complex-
ity of its dynamics is that the phase trajectory stays close to
the slow-motion manifolds of low dimensions: the 2D tonic-
spiking manifold, MPO, foliated by small-amplitude periodic
orbits corresponding to tonic spiking activity, and the 1D
S-shaped quiescent manifold, Meq, is comprised of hyper- and
depolarized equilibrium states of the model. This approach
implies that bursting, being a multiple-time-scale regime,
is interpreted as repetitive fast switching between these
manifolds at their terminal phases, followed by slow pas-
sages of trajectories turning around MPO and then shifting
along Meq, corresponding to alternating episodes of tonic-
spiking and slow hyperpolarized quiescence, respectively.
Figure 9 depicts the topology of these slow-motion mani-
folds for the parameters close to the torus (dark blue tra-
jectory) bifurcation, as well as shows several bursting orbits
superimposed (green, light blue, and brown trajectories)
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in the phase-space projection. These spiking and quiescent
manifolds are obtained by the parameter continuation of peri-
odic orbits and equilibria of the model with the auxiliary
parameter shifting the slow nullcline m′

h = 0 up and down.
In what follows, we outline how the manifolds are

detected in the 12D phase space of the hair cell model. We
use a new and practical way for localization of both slow
motion manifolds, 1D quiescent, Meq, and 2D tonic-spiking,
MPO, composed of equilibria and periodic orbits of the full
system. The method capitalizes on the slow-fast dissection
as well as on the parameter continuation technique.60 The
method supplements the conventional slow-fast dissection in
the singular limit with the slow variable frozen as a parame-
ter. The main essence is the parameter continuation technique
applied to the entire set of the model equations. The advan-
tage of our approach is that it yields the sought manifolds
themselves in the phase space of the intact model rather than
the manifolds of its fast subsystem without taking into account
slow, yet finite component of the overall dynamics. This
approach is especially valuable for complex models of higher
dimensions where slow-fast dissections could be problem-
atic because of multiple time-scales of various ionic currents
involved in complex dynamics especially at transitions. Fur-
thermore, this approach can detect and explain bifurcations,
often non-local due to reciprocal interactions of slow and
fast dynamical variables that underlie these transitions in the
model in question.

Specifically, we introduce a faux control parameter,
which is a voltage offset that affects only the slowest dynam-
ics of the model; this offset shifts the voltage threshold at
which the slow gating variable/channel is half-open. Geomet-
rically, its variations lift or lower the slow nullcline, m′

h = 0,
in the 3D phase-space projection depicted in Fig. 9. As the
voltage offset changes, the intersection point of the slow null-
cline (sigmoidal surface) with Meq (the equilibrium state of
the model) is shifted along Meq, thus tracing Meq down and
explicitly revealing its position and shape in the phase space.
The same is true for the other manifold MPO. More details on
this approach can be found in Ref. 35.

Like many neuron models, the quiescent manifold in the
hair cell system has a characteristic S-shape in the projection
onto the slow-fast (mh, V)-plane. The shape of Meq implic-
itly endows the model with a hysteresis required for dynamic
switching between hyper- and depolarized phases in large-
amplitude bursting. Reaching the low, hyperpolarized fold on
Meq indicates the beginning of a burst. In addition, the two real
bifurcation parameters, gK1 and b, of the model can shift the
position of the manifold Meq relative to that of the slow null-
cline, m′

h = 0 in the phase space, so that the intersection point
can move onto the stable upper or low section of Meq. In those
cases, the hair cell rests on the depolarized or hyperpolarized
steady state, respectively.

The hair cell model oscillates tonically when there is a
stable periodic orbit on MPO. This orbit emerges from the
depolarized equilibrium state through the supercritical AH
bifurcation (discussed above). Moving the slow nullcline by
varying the faux parameter makes the periodic orbit slide
along MPO, thus revealing its shape. The manifold terminates
through a homoclinic bifurcation occurring after the periodic

orbit of long period touches the middle, saddle branch of Meq

to become the homoclinic orbit of the saddle. This is a generic
configuration for square-wave bursters.

In the case where the stable branches of the tonic spik-
ing MPO and quiescent Meq manifold are not cut through by
the slow nullcline, m′

h = 0, i.e., both manifolds are freely
transient for trajectories passing by, and the hair cell model
exhibits bursting. Bursting is represented by solutions repeat-
edly switching between the low, hyperpolarized branch of Meq

and the tonic spiking manifold MPO. The number of complete
revolutions of the solution around MPO is that of spikes per
burst in the voltage traces. This number is used to classify
the bursting activity. The larger the number is, the longer the
burst duration lasts. The relative position of the torus to the
fold on MPO can be changed by varying the rate of the slow
variable mh. The slower the rate is, the closer the stable torus
emerges to the fold as shown in Figs. 10(a) and 10(b), as well
as the closer the torus bifurcation (TB) is detected near the
fold by the bifurcation package MATCONT.60,61 More inter-
estingly, when the rate of mh is about two times slower than
the original one, the torus bifurcation becomes sub-critical and
generates a saddle torus at the fold instead [see Fig. 10(c)].
This gives rise to bistability in the system, where both tonic
spiking and bursting can be produced by the model depending
on the initial conditions, as illustrated in Fig. 11. A small basin
of attraction of the stable tonic-spiking orbit is “bounded” by
the 2D saddle torus in the 12D phase space from that of the
stable bursting orbit. We note that similar bistability is also
found in the Purkinje cell model, parabolic burster model, and
FitzHugh-Nagumo-Rinzel (FNR) model (see Secs. IV–VI).

In a system with drastically distinct slow and fast time
scales, the tonic-spiking periodic orbit would lose its stabil-
ity to a 2D torus or through a period-doubling bifurcation
cascade right at the location of the fold.32 The type of the
bifurcation depends on nonlocal properties of the flow near
the fold. Specifically, depending on whether the phase space
volume contracts or not, the tonic spiking orbit undergoes

FIG. 10. Scaling down the change rate of the slow mh-variable shifts the
emerging torus closer to the fold and reverses its stability in the hair cell
model. [(a1)–(b1)] 3D (mh, mDRK, V)-phase space projection shows the stable
torus (blue line) emerging from a PO (yellow ring, detected by MATCONT)
on the stable section of MPO, for the original and 2-times slower rate of the
mh-gating variable, resp. (c1) Further decreasing the rate by the factor of
two makes the unstable torus (of the saddle type) emerge right at the fold
on MPO. The saddle torus creates bistability as it “bounds” the stable tonic
orbit (green circle) away from the dominant bursting activity (see Fig. 11).
Insets [(a2)–(c2)] depict the corresponding voltage traces of the corresponding
tonic-spiking attractors.
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FIG. 11. (a) 2D (mh, V)-phase portrait showing bistability of tonic spiking
orbit (green circle, PO) and bursting orbit (brown) which overlay the quies-
cent manifold, Meq, and the tonic-spiking manifold, MPO, when the mh-gating
variable of the hair cell model is two times slower than its original rate. These
two stable states are separated by a saddle torus, denoted here by the tran-
sient part of the tonic spiking orbit (pink). Inset (b) shows the voltage traces
corresponding to the tonic spiking and bursting orbits in (a).

period-doubling or torus bifurcation in the system under
consideration. While the verification of this condition seems
doable in 3D slow-fast systems (see the FNR section below),
the high-order models may present a challenge as one has to
identify the set of the variables (from a 3D subspace contain-
ing the central manifold in which the bifurcation takes place)
that are involved directly in the ongoing bifurcation.

III. TORUS IN A PYRAMIDAL CELL MODEL

Our next example is another highly detailed 14D
Hodgkin-Huxley type two-compartmental (for soma and den-
drite) model describing interactions of pyramidal cells and
fast-spiking inhibitory interneurons.62 The reader can find
details of all currents constituting the model in Ref. 27, which
describes how electrogenic properties of the Na+/K+ ATPase
control transitions between normal and pathological brain
states, specifically during epileptic seizures. The equations
describing the dendritic and somatic voltage dynamics are

CmV ′
d = −I int

d − I leak
d − αIpump

d − gc(Vd − Vs)

sd
,

gc(Vd − Vs)

ss
= −I int

s − I leak
s − αIpump

s , (3)

where subscripts s and d stand for soma and dendrite, respec-
tively, Cm is the capacitance of the dendritic compartment, V
is the membrane potential, Is are various ionic currents includ-
ing Na+/K+ pump current, variable s stands for the surface

FIG. 12. (a) 3D ([Ca2+]i, miNa, Vd)-phase space projection of the pyrami-
dal cell model shows the stable torus (light blue line) on the fold of the
tonic-spiking manifolds, MPO, superimposed on the 1D S-shaped quiescent
manifold, Meq, and the slow nullcline, [Ca2+]′i = 0 (yellow surface). The
Poincaré cross section transversal to the torus highlights the dark blue dots
constituting the stable IC on it. Inset (b) shows the slowly modulated voltage
trace corresponding to the torus in (a).

area of the corresponding compartment, gc is the coupling
conductance of the soma and the dendrite, and α is a scaling
coefficient. The parameters and a code of the right-hand sides
of corresponding ODEs are provided in the supplementary
material.

Unlike in the hair cell model, where the dynamics of
intracellular calcium concentration, [Ca2+]i, is relatively fast,
in the given pyramidal cell model [Ca2+]i is the slowest
dynamical variable. As before, we will use the 3D phase
projection to disclose the topology of the slow-motion mani-
folds that determine the shape of bursting oscillations in the
model. Figure 12 depicts a similarly shaped 1D quiescent
manifold Meq. Its lower, hyper-polarizing knee corresponds
to the homoclinic saddle-node bifurcation giving rise to the
stable (green) outer section of the 2D tonic-spiking manifold
MPO. This manifold wraps back inwardly so that its unsta-
ble (pink) shrinking section terminates on the depolarizing
branch of Meq through a sub-critical AH bifurcation. The
surface [Ca2+]′i = 0 (yellow) is the slow nullcline: [Ca2+]i

increases/decreases above/below it in the phase space. When
this nullcline is slightly below its position depicted in Fig. 12,
there would be a stable periodic orbit on the stable branch of
MPO that corresponds to tonic-spiking activity. As the null-
cline [Ca2+]′i = 0 is shifted up, the stable orbit moves closer
to the fold where it loses its stability through a supercritical

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-035899
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FIG. 13. (a) 3D (h, M, V)-phase space projection of the Purkinje cell model
at Iapp = −29.487 depicting the saddle (red) torus-canard slowly oscillating
back and forth between the stable (green) inward MS

PO and unstable (gray)
outward MU

PO branches merging at the fold of the 2D spiking manifold. The
yellow surface is the slow nullcline M′ = 0. The 1D quiescent manifold Meq

(black line) has stable (solid) and unstable (dashed) branches. (b) The mag-
nified saddle torus-canard TU (red) encloses a stable tonic-spiking PO (green
circle). The phase points at maximum and minimum voltage values trace out
two circles on the space. (c) Slowly modulated voltage trace in (a).

torus bifurcation. The phase point that moves along the orbit
on the surface of the stable newborn torus oscillates back and
forth between the stable and unstable branches of MPO near
the fold. The torus is stable because it lingers longer on the
stable branch than on the unstable one on average. Otherwise,
it would be of the saddle type, i.e., repelling in the mNa and
[Ca2+]i coordinates and stable in all the other dimensions. One
can observe from Fig. 12(a) that gaps between the successive
points filling in the stable invariant curve are large enough to
assume that dynamics of [Ca2+]i is not that slow compared to
the torus-canard observed Purkinje cell model discussed next.
After the torus breaks down as the slow nullcline is further
shifted up, the pyramidal cell model demonstrates bursting
activity; see Ref. 27.

IV. PURKINJE CELL MODEL

Purkinje cells are the main output of the cerebellum
and are involved in motor learning/conditioning.63 To study
these cells, several highly detailed models were constructed
based on experimental data.64,65 A reduced yet quantitatively-
similar 5D Hodgkin-Huxley type model was proposed and
studied in Ref. 28. Its generic representation reads as follows

V ′ = −Iapp − gKn4 (V + 95) − gNam0
3h (V − 50)

− gL (V + 70) − gCac2 (V − 125)

− gM M (V + 95) ,

x′ = (f∞ [V + �] − x) /τx [V ] , (4)

where the vector x represents the gating variables: fast n, h, c
and slow M, for the following four ionic currents: a delayed
rectifier potassium current, a transient inactivating sodium

FIG. 14. Bistability of tonic-spiking and bursting in the Purkinje cell model.
(a) Bifurcation diagram representing the bi-directional forward/backward
Iapp-sweeps of Vmin-values (green/blue dots, resp., and red box for saddle
torus-canard). White horizontal bar indicates the range of the co-existence
of stable tonic-spiking and bursting; red vertical line at Iapp = −29.4796 is
where MATCONT detects the torus bifurcation TB. (b) 2D (V, M)-phase
projection depicting the co-existing stable tonic-spiking (green) and bursting
(blue) orbits separated by the saddle torus-canard (red) orbit superimposed on
the manifold MPO (gray), the slow nullcline M′ = 0 (yellow), and the mani-
fold Meq (black line) at Iapp = −29.487. Insets (c) and (d) show the voltage
traces corresponding to the tonic-spiking and bursting orbits in (b), resp.

current, a high-threshold non-inactivating calcium current,
and a muscarinic receptor suppressed potassium current; here,
the external current Iapp is the bifurcation parameter of the
model. The reader is welcome to consult with the original
paper28 for a more detailed description of the model and the
supplementary material for its MATLAB code.

In this 5D model,the gating variable M is the slowest one.
A faux parameter, �, is introduced in the right-hand side of
the equation [see Eq. (4)] governing M ′ to perform the param-
eter continuation letting us sweep the slow-motion manifolds
using the package MATCONT.60

Figure 13(a) shows that the tonic-spiking manifold with
the distinct fold consists of two components: the inner sta-
ble (green) cylinder-shaped MS

PO and the outer unstable (red)
part MU

PO. Note that MU
PO vanishes via the homoclinic bifurca-

tion (HB) when it touches the middle, saddle branch of the
quiescent manifold Meq (S-shaped black line); see also 2D
phase-space projections in Figs. 14 and 15.

It was first reported in the original paper28 that during
the transition from tonic spiking to bursting, the Purkinje
cell model shows slow amplitude-modulation of tonic-spiking

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-035899
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FIG. 15. Averaging technique for the Purkinje cell model. [(a1–(b1)] (V, M)-
projection of the stable MS

PO (green) and unstable MU
PO (gray) sections of the

2D tonic-spiking manifold, the 1D S-shaped quiescent manifold Meq (black
line), slow nullcline M′ = 0 (yellow line), and the 1D curve 〈V〉 (brown)
made up of the averaged phase coordinates of the POs constituting MPO.
(a1) Basin of the stable tonic-spiking PO (dark green) is bounded by the sad-
dle torus, shown in (b1) (red), at Iapp = −29.487. Widening unstable (gray)
branch MU

PO bending outward from the fold terminates on the middle, saddle
branch of Meq after the homoclinic bifurcation (HB). Insets (a2)–(b2) disclose
the graph (black line) of the average function 〈M′〉 determining the dynamics
of the slow M-variable on MPO; inset a2, a single zero (dark green dot) of 〈M′〉
and its slope determine the position and the stability of the corresponding PO
in the M-direction. Inset b2, the IC (made up of red dots), calculated from the
2D torus in b1, oscillating around the fold on the graph of 〈M′〉.

activity in the voltage traces [Fig. 13(c)]. This modulation cor-
responds to a stable torus-canard that emerges around the fold
of the tonic spiking manifold MPO in the phase space of the
model [see Figs. 13(a) and 13(b)]. This torus-canard exists in
a rather narrow parameter window beyond which the model
quickly transforms into a square-wave buster.

A. Saddle torus-canard and bistability

To examine the stability of the torus in this model, we
tracked the stable state of the model by varying the applied
current Iapp in small incremental steps (∼ 1 × 10−4) in both
directions—increasing and decreasing. Simulations for each
applied current value were long enough for the model to reach
some steady states. We then represented the stable states by
minimal values, Vmin, of their voltage values as shown in
Fig. 14(a).

Interestingly, for Iapp ∈ [−29.4871, −29.4762] [denoted
by the white bar in Fig. 14(a)], the stable state in Iapp-
increasing direction is tonic spiking [green dots in Fig. 14(a)],
while in Iapp-decreasing direction is bursting (blue dots). That
is, the system is bistable within a small overlapping window
of Iapp. What “separates” the two stable states is a saddle
torus-canard detected at Iapp = −29.487 (red box), whose cor-
responding voltage trace shows slow amplitude-modulation
[Fig. 13(c)]. The phase-space trajectories corresponding to
the two stable states and the separating torus-canard are
shown in Fig. 14(b), and the corresponding voltage traces
are shown in Figs. 14(c) and 14(d). The vertical red line
[Fig. 14(a)] indicates the Iapp value where MATCONT detects
torus bifurcation.

FIG. 16. 3D (Ca, n, V)-phase space projection of the parabolic burster model.
(a) Saddle torus (red line), enclosing a stable tonic-spiking orbit (blue line),
as well as a stable bursting orbit (black line) orbit are superimposed on the 1D
quiescent manifold, Meq (dark blue line), and the 2D tonic-spiking manifold
with stable MS

PO (green surface) and unstable MU
PO (purple surface) sections

merging at the fold. The magnified inset depicts a local Poincaré cross section
(gray plane at n = 0.22) with a repelling (red) IC circle, TU, enclosing the
basin of the stable FP (light blue dot) corresponding to the tonic-spiking PO.
Inset (b) shows the corresponding voltage traces of the orbits in a; parameters
are given in the supplementary material.

B. Averaging technique

As for most slow-fast systems, the location of the tonic-
spiking periodic orbit on the manifold in the phase space in the
Purkinje cell model at various parameters can be accurately
predicted by the averaging technique; see Ref. 35 for details.
The approach is illustrated in Fig. 15(a). Its core is the use of
the parameter continuation to detect periodic orbit(s) on MPO

where the average derivative of the slow variable vanishes
as well as to find the corresponding function in the right-
hand side of the average slow equation to predict forthcoming
bifurcations like the blue sky catastrophe.35 Specifically, for
the Purkinje cell model, first, 〈M′〉 and 〈M〉 are calculated for
each periodic orbit on the tonic-spiking manifold based on the
continuation data; then 〈M′〉 is plotted against 〈M〉 (which rep-
resents each periodic orbit on the tonic spiking manifold) to
pin down where the stable tonic spiking occurs [Fig. 15(a2)].
The prediction from the averaging technique showing where
〈M′〉 = 0 [dark green dot in Fig. 15(a2)] is quite precise, as it
matches very well the result of the simulations [dark green PO
in Fig. 15(a1)].

It is obvious though that the averaging technique cannot
explicitly establish the occurrence of the torus bifurcation in
a system with a single slow equation. Note, however, that the
averaging approach illustrated in Fig. 15(a2) is done at the
parameter values (Iapp and �) when the saddle-torus separates
two stable oscillatory states: spiking and bursting. Although
the averaging approach is only applicable to detect tonic-
spiking state orbits, it can be yet helpful to locate the torus
on the spiking manifold [Fig. 15(b1)]. Actually, the averaging
applied to the torus orbit in the phase space does reveal the

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-035899
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corresponding invariant circle in the 〈M′〉 − 〈M〉 projection
as shown in Fig. 15(b2).

V. 4D PARABOLIC BURSTER MODEL

The same kind of bistability due to a saddle torus at the
fold, separating the stable tonic spiking and bursting, is also
observed in a simpler 4D model of a parabolic burster. This
Hodgkin-Huxley type model is given by

CmV ′ = −IL − IK − ICa − IKCa − ICaS + Iapp,

n′ = φ[n∞(V) − n]/τn(V),

[Ca2+]
′ = ε(μICa − [Ca2+]),

s′ = ε[s∞(V) − s]/τs, ε = 0.0005; (5)

see its complete set of equations in the supplementary mate-
rial. This model for an endogenously parabolic burster, i.e.,
with the inter-spike frequency being maximized in the mid-
dle of each burst, was proposed and examined in Ref. 29. Its
key feature is the homoclinic saddle-node bifurcation (SNIC)
in the fast 2D subsystem that should demarcate the entry and
exit points of the corresponding tonic-spiking and quiescent
phases of bursting activity in the full system. Figure 16 shows
the topology of the slow-motion manifolds in the phase-space
projection of the model. Here, the 2D cylinder-shaped man-
ifold MPO originates from the depolarized branch of the 1D
quiescent manifold Meq through a subcritical Andronov-Hopf
bifurcation. Next, the unstable (purple) section MU

PO merges
with the stable (green) section MS

PO through the saddle-node
bifurcation at the first fold. The second fold on MPO takes
place at the higher values of the [Ca2+]-variable, where the
torus bifurcation occurs in the full system. Here, the saddle
torus (red) bounds the attraction basin of the tonic-spiking
orbit (hidden inside the saddle torus) from that of the stable

bursting orbit (black). Inset 16(a) depicts a local transversal
cross section with a repelling IC, representing the saddle-
torus, that surrounds a light blue fixed point corresponding
to the stable tonic-spiking orbit next to the right fold of the
spiking manifold MPO.

VI. FITZHUGH-NAGUMO-RINZEL MODEL

The FitzHugh-Nagumo-Rinzel (FNR) system is a formal
mathematical neuron model of an elliptic buster32

v′ = v − v3/3 − w − y + Iext,

w′ = δ(0.7 + v − 0.8w),

y′ = μ(c − y − v), (6)

where v and w represent the fast “voltage” and “gating” vari-
ables, while y is the slow variable due to the smallness of μ =
0.002. Here, we fixed Iext = 0.3125 and use the parameter c in
the slow equation to continue and reveal the topology of the
slow-motion manifolds of this system; the other bifurcation
parameter δ is used to demonstrate how time scales of the vari-
ables in the model can determine the bifurcations (torus and
period-doubling) of periodic orbits of this model. Figure 17(a)
shows the tonic-spiking manifold of the FNR model consist-
ing of an unstable inner layer MU

PO (purple surface) emerging
through a subcritical Andronov-Hopf bifurcation from the 1D
quiescent manifold, Meq, and a stable outer layer MS

PO (green
surface), both merging at a fold.

The (c, δ)-bifurcation diagram [Fig. 18(a)] of the FNR
model is obtained using the parameter continuation pack-
age MATCONT.60 It includes several bifurcation curves: AH
stands for the Andronov-Hopf bifurcation of the only equilib-
rium state of the FNR model; TB stands for the torus bifurca-
tion; along this curve, the multipliers, e±iφ , of the bifurcating

FIG. 17. (a) 3D (y, w, v)-phase space of the FNR model at δ = 0.08 showing the 2D tonic-spiking manifold with its unstable inward (purple surface), MU
PO,

merging with stable outward section (green cylinder-shape), MS
PO at the fold, as well as the 1D quiescent manifold Meq with stable and unstable (solid/dashed)

branches separated by the sub-critical AH bifurcation. Shown are trajectories of period doubling (magenta circle PD at c = −0.6191), elliptic bursting (blue
line at c = −0.94), and tonic spiking (dark green circle PO at c = −0.5); their corresponding v-traces are presented in (b). (c) 2D repelling torus (gray, TU)
containing the nested stable torus (blue, TS) enclosing a repelling periodic orbit (red circle POU) at c = −0.944. (d) 2D cross section (orange plane) depicting
the nested repelling, stable ICs, and repelling FP [matching colors in (c)]. (e) Slowly modulated voltage traces of the tori in (c).

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-035899
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FIG. 18. (a) Bifurcation diagram of the FNR model depicts the curves for the following bifurcations: Andronov-Hopf (AH, black line), period-doubling (PD,
green line), saddle-node (SN, purple line) and torus bifurcation (TB, blue line) with indicated strong resonances 1:4, 1:3 and 1:2 (red dots). Dashed gray lines:
c-parameter pathways at δ = 0.08 and δ = 0.3, presented in [(b) and (c)] and in [(d)–(f)]. [(b) and (c)] Parameter continuations of vmax, vmin and 〈v〉 plotted
against the c-parameter at δ = 0.08 and δ = 0.3, resp., with red vertical lines indicating ongoing bifurcations. [(d) and (e)] The c-parameter sweeping diagrams
for vmax at δ = 0.08 and δ = 0.3, resp., reveal: (d) PD-cascade en route to elliptic busting, and (e) the torus emergence, evolution and breakdown through 1:3-
resonance. [(f1)–(f4)] 2D (y, v)-phase projections depicting a stable PO (green) with a whirlpool born after AH at c = −0.743; loss of its stability (red circle) to
a stable ergodic torus (TB at c = −0.7405); a weakly resonant torus at c = −0.6 and a 1:3 stable PO at c = −0.47; light-blue highlighted are intersection points
of the trajectories with a local transverse plane.

periodic orbit run through strong resonances detected at points
labeled as R∼1:4 with φ = π/4, R∼1:3 with φ = 2π/3, and
the final resonance R∼1:2 where φ completes the arch of the
unit circle and reaches π . The last point is also included in the
PD-curve corresponding to the period doubling bifurcation
through which the periodic orbit loses its stability. The dia-
gram also includes two bifurcation curves, SN, of saddle-node
periodic orbits. These curves follow the PD-curve closely.
They cannot be further continued in the c-parameter any fur-
ther down the bifurcation diagram for the given slope of the
slow nullcline v = c − y (being a 2D plane in the 3D phase
space) because it becomes tangent to the 2D spiking mani-
fold MPO. We hypothesize that the bifurcation curves, SNs
and PD, will terminate at the corresponding resonances, 1:1
and 1:2, occurring near the point labeled as a red dot R
(with δ 	 0) in the (c, δ)-parameter plane. Geometrically, this
point corresponds to a cusp underlying the transition from
the hysteresis to the monotone, increasing dependence of the
Vmax/min-values and 〈V〉-coordinates of the periodic orbits on

the c-parameter in the bifurcation diagrams in Figs. 18(b) and
18(c), respectively.

Depending on the level of the δ-parameter, the periodic
orbit can undergo two supercritical torus bifurcations, forward
and backward, when it loses stability to the torus and re-gains
for δ = 0.3 (along the upper dashed gray line, observe the
∩-shape of the TB-curve) or go through the forward torus
bifurcation followed by the period-doubling bifurcation as c
is increased for δ = 0.08 (lower dashed gray line).

The bifurcation diagrams in Figs. 18(b) and 18(c), rep-
resenting the maximum, vmax, and minimum values, vmin,
of the voltage plotted against the c-parameter, illustrate how
the tonic-spiking manifold is shaped and where the periodic
orbits that constitute it, bifurcate (indicated by vertical red
lines) as c-parameter is varied for fixed values of δ = 0.08
and δ = 0.3, respectively. One can clearly see that at a rather
large value δ = 0.3, the torus bifurcations do not occur close
to the fold of MPO unlike the period-doubling bifurcation that
occurs between two saddle-node bifurcations [indicated by
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FIG. 19. Sweeping diagram of the attractors in the FNR model, repre-
sented by their Vmin-values (green/blue dots) plotted against the c-parameter
being increased/decreased. Within the bistability window (horizontal black
bar), tonic-spiking and bursting attractors co-exist and are separated by
the repelling torus. Vertical (red) line at c = −0.944145 indicates the torus
bifurcation detected in MATCONT.

the vertical lines labeled as SNs in Fig. 18(b)] corresponding
to the two folds on MPO at δ = 0.08.

To verify the bifurcations detected by the parameter
continuation in the FNR-model, we ran straight-forward c-
parameter sweeping simulations of the limiting solutions of
the model when δ = 0.08 and when δ = 0.3. The corre-
sponding sweeping diagrams are represented in Figs. 18(d)
and 18(e).

At δ = 0.3, after crossing AH-line in the bifurcation
diagram of Fig. 18(a), trajectories of the FNR-model are
attracted into a whirlpool stirred by a stable PO in the phase
space shown in Fig. 18(f1). After crossing the left branch
of the TB-curve, this stable PO loses stability (red circle)
to a stable (ergodic and round) torus in the phase space
depicted in Fig. 18(f2). The sweeping bifurcation diagram
in Fig. 18(e) shows that with a further increase of c, the
torus becomes resonant [Fig. 18(f3)] and its shape becomes
more complex giving rise to the so-called mixed-model oscil-
lations (MMO) of alternating small-amplitude sub-threshold
and large spiking ones. Once crossing the right branch of
the TB line, the torus goes into a strong resonance 1:3
before it breaks down at larger values of the c-parameter giv-
ing rise to the stable period-3 orbit in the phase space; see
Fig. 18(f4).

At δ = 0.08, after crossing the left branch of the
TB-curve in the bifurcation diagram in Fig. 18(a), the PO
loses stability [red line in Fig. 17(c)] to a stable torus (blue
line) in the phase space. Interestingly, at c = −0.94415, this
small stable torus bounding the unstable PO is nested inside
a larger repelling unstable torus (gray line). The coexistence
of both tori is better seen in a local Poincaré cross section (an
orange plane) chosen transversally to these orbits as shown
in Fig. 17(d). Note that in a 3D system, a repelling torus
can be detected and traced down in the backward time when
it becomes attracting, which is impossible for saddle tori
occurring in high-dimensional systems.

Again, we note that the tori emerge in the FNR model
near the smooth cone-shaped end of MU

PO instead of around
its fold [Fig. 17(a) inset]. Figure 17(e) shows the slowly-
modulated “voltage” traces corresponding to the two tori.
As c-parameter further increases to c = −0.94, elliptic burst-
ing becomes dominantly stable in the phase space shown in
Figs. 17(a) and 17(b). The period-doubling cascade starts at
the left branch of the PD-curve and ends at its right branch
in the bifurcation diagram in Figs. 18(a) and 18(d) [magenta
line in Figs. 17(a) and 17(b), c = −0.6191]. After that, tonic
spiking (PO in phase space) becomes stable [dark green line in
Figs. 17(a) and 17(b), c = −0.5]. Note that in the FNR model,
PD instead of TB occurs at the fold.

The same approach employed to detect bistability in the
Purkinje cell model due to a hysteresis effect is used to visu-
alize bistability in the FNR-model as its solutions are swept
in the opposite directions of the c-parameter. The obtained
bifurcation diagram, with vmin-values (as green/blue dots)
plotted against increasing/decreasing c-values, is represented
in Fig. 19. Here, a single dot for the given c-value corre-
sponds to a stable periodic orbit of a single vmin-value, while
several vertical dots correspond to co-existing busting orbits.
The basins of these orbits are bounded by the repelling torus
enclosing the stable tonic spiking orbit in the 3D phase space
of the FNR-model.

A. Origin of slow-fast torus bifurcation

Let us outline a possible origin and stability of the torus
bifurcation in the FNR-model. It starts with a saddle-node

FIG. 20. [(a) and (b)] 2D (v, w)-projection depicting the stable (green) MS
PO and unstable (purple) MU

PO branches of the tonic-spiking manifold of the FNR
system at δ = 0.08 that are overlaid with (a) the saddle-node limit cycle [which then bifurcates into a stable (blue) limit cycle LCS and an unstable (red) limit
cycle LCU] of the fast subsystem at y = 0.0117, and (b) limit-cycle canards following the stable and unstable branches of the cubic fast nullcline at y = 0.0149.
(c) 3D phase space depicting MS

PO and MU
PO being superimposed with stable and unstable LC-canards in (a) and (b). Inset (d) magnifying the cone-shaped end

of MU
PO in (c): the unstable torus (TU, gray), the unstable limit cycle (LCU, red ring) at y = 0.0149, and the torus bifurcation (TB) detected by MATCONT

(yellow ring).
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(fold) bifurcation of two limit cycles, stable and repelling,
that occurs in and due to the 2D fast (v, w) sub-system of the
model, i.e., whenever the slow y-variable is frozen and used
as a parameter. Specifically, the value y = 0.0117 is the crit-
ical one at which the stable (blue circle) LCS and unstable
(red circle) LCU limit cycles emerge through a saddle-node
(fold) bifurcation in the (v, w)-subspace; see Fig. 20(a). While
the stable limit cycle LCS increases in its size to become the
large-amplitude orbit of the relaxation oscillator, the unstable
limit cycle LCU keeps shrinking as y increases; see the cor-
responding (v, w)-phase portrait in Figs. 20(b) and 20(c). As
a result, in the full model, the slow increase/decrease of the
y-variable makes the trajectories drag around LCU back and
forth to form the 2D repelling torus in the 3D phase space of
the model; see Fig. 20(d).

B. Divergence-sign test to predict TB or PD

Either the torus bifurcation (TB) or the period-doubling
bifurcation (PD) can underlie the stability loss of the peri-
odic orbit existing on the attracting cylinder-shape section
of the tonic-spiking manifold MPO in the phase space of
the FNR-model when it reaches the fold; see Fig. 17.
We have already noticed that depending on the value of the
δ-parameter, this large amplitude orbit loses stability through
either the torus bifurcation followed by its resonances and
breakdown for δ ≥ 0.3 or a period doubling bifurcation at
smaller values like δ = 0.08. This indicates wherever the time
scales of the v- and w-variables become of a similar order, the
torus bifurcation case prevails over the period doubling one;
and wherever both w, y-variables become much slower than
the v-variable, the period doubling one prevails.

To predict what bifurcation, torus or period doubling, the
stable orbit will next undergo, without computing its multi-
pliers, we can evaluate the sign of the divergence given by

∇ =
[

∂v′(t)
∂v + ∂w′(t)

∂w + ∂y′(t)
∂y

]
along the periodic orbit on the

fold of the slow-motion manifold in the 3D phase space of
the FNR model. The arguments are similar to the well-known
Bendixson-Dulac criterion for the existence of a closed orbit,
like a limit cycle and a separatrix loop of a saddle in a sys-
tem on a 2D plane; note, the Dulac’s argument follows from
the Green’s theorem.66 Loosely speaking, it can be directly re-
iterated as follows: no closed orbit exists in a domain of the
2D phase plane where the vector field divergence is of a con-
stant sign. This implies that no 2D torus cannot emerge in the
3D phase space of a dissipative system with the divergence
of some constant sign. For example, a negative divergence
of the vector field would collapse phase volumes. As such,
for a torus bifurcation to occur in the system in question,
divergence must be phase-coordinate dependent and hence
sign-alternating. This is a partial explanation why the torus
bifurcation is a part of bifurcation unfolding of an equilib-
rium state with the characteristic exponents (0, ±iω) (the sum
of the exponents vanishes), which is also referred to as the
codimension-two Gavrilov-Guckenheimer or fold-Hopf bifur-
cation; see Refs. 4, 59, 67, and 68. Such a bifurcation may
also occur in the FNR-model near the tip of the cone-shaped
manifold MPO crossed out by the slow nullcline y′ = 0 with
μ � 1.

Thus, if the averaged divergence, 〈∇〉, i.e., all ∇-values
summed up along the periodic orbit and averaged over its
period, on the fold of the manifold MPO, is close to zero, then
the stable periodic orbit may undergo the torus bifurcation
at the stability loss. Otherwise, if 〈∇〉 < 0, which is typical
for most 3D dissipative systems, the periodic orbit will lose
stability through the period-doubling bifurcation. The calcu-
lation of 〈∇〉 in the FNR model at various points on the PD-
and TB-curves supports our hypothesis. Figure 21 shows how
∇ varies over the normalized period of the orbit losing the
stability through the period-doubling and torus bifurcations.
Its 〈∇〉-value is about ∼ 0.56 and close to 0 in the period-
doubling and torus cases, respectively, at δ = 0.08. This de
facto validates the divergence-based approach and that it can
be used to predict the type of the bifurcations that will occur
at the loss of stability of periodic orbits on the distinct fold of
the slow-motion manifold in the phase space of 3D slow-fast
systems.

VII. NORMAL FORMS FOR TORUS-CANARDS

The amplitude modulation phenomenon that happens in
various complex and realistic neuron models inspires us to
build a simple and adjustable mathematical model to gener-
ate and analyze torus bifurcations using evident geometric
constraints. Since such tori emerge near the fold of the tonic-
spiking manifold, the first step is to create the desired number
of such folds in the 2D normal-form fast subsystem given by

x′ = ωy + xQ(x, y, ε),

y′ = −ωx + yQ(x, y, ε) (7)

with a polynomial function Q = ε + ∑∞
n=1 ln(x2 + y2)n.

When Q ≡ 0, Eq. (7) describes a linear harmonic oscillator
that has a single equilibrium state—the center at the origin
in the (x, y)-phase plane. When Q = ε < 0, this linear sys-
tem has a stable focus at the origin, which becomes unstable
when ε > 0. When Q(x, y, ε) is negatively/positively defined,
the nonlinear system has yet a single equilibrium state that
globally attracts/repels all other spiral-shaped trajectories. A
closed level curve given by Q(x, y, ε) = 0 (other than the
origin) corresponds to a limit cycle of the system. Such a sin-
gle curve would correspond to a double or saddle-node limit
cycle (LC). Two such nested curves would correspond to two

FIG. 21. Divergence ∇ = [
∂v′
∂v + ∂w′

∂w + ∂y′
∂y

]
along the periodic orbit

(with period normalized to 1) superimposed with the blue level-curve for the
average divergence 〈∇〉 (its value is shown below) for the PD-bifurcation
scenario (a) or for the TB scenario (b) at δ = 0.08.



106317-17 Ju, Neiman, and Shilnikov Chaos 28, 106317 (2018)

FIG. 22. The (z, y, x)-phase space of the 2-layer model [Eq. (8)] depicting the tonic-spiking manifold with an outward stable part MS
PO (green surface) merging

with the inward unstable section MU
PO (red surface) at the fold and the quiescent manifold Meq (black line) with stable (solid) and unstable (dashed) sections

on the z-axis. The slow nullcline z′ = 0 is represented by the gray cylinder as its radius at selected �-values: −0.01, −0.3803, −0.9. An outside trajectory
(blue line) in (a1) quickly spirals onto Meq, then gets “sucked” into the cylinder (where z′ > 0), and after a delayed loss of stability past the subcritical AH
point, it spirals away toward MS

PO outside the cylinder where (z′ < 0), on which it converges to a periodic orbit (black arrows indicate the trajectory direction).
The stable torus-canard in (b1) transitions into an elliptic burster in (c1). Other parameters: ω = 2, l1 = 1, l2 = −0.8. Insets (a2)–(c2) show the corresponding
“voltage” traces.

limit cycles surrounding the origin. Specifically, if the origin
is stable for ε < 0, then the inner LC is repelling, whereas
the outer one is stable or vice versa for ε > 0. In the special
case ε = 0, the stability of the limit cycles is determined by
the sign of the corresponding Lyapunov coefficient ln of the
bifurcating equilibrium state at the origin.

This basically describes the algorithm for devising the
desired systems. Let us first consider the model with a single
fold. Its equations are given below

x′ = ωy + x
[
z + l1(x

2 + y2) + l2(x
2 + y2)

2]
,

y′ = −ωx + y
[
z + l1(x

2 + y2) + l2(x
2 + y2)

2]
,

z′ = μ
(
1 − x2 − y2 + �

)
, (8)

with (x, y) being the fast variables and z being a slow (as μ

is small) dynamic variable replacing fixed ε. When μ = 0,
the first two equations present a normal form for the Bautin
bifurcation of the equilibrium state at the origin in the case
when ε = 0 and first Lyapunov coefficient, l1 = 0, of the
cubic terms (note that l2 can be scaled to equal −1, for sim-
plicity). The last constraint implies that the outer LC will be
stable and a nested inner one will be repelling as l1 > 0. The
equilibrium state at the origin is stable as long as z < 0 and
becomes unstable when z ≥ 0 after the repelling LC collapses
onto it through a sub-critical AH bifurcation at z = 0. This
ends up bi-stability in the fast subsystem and the stable LC
is the only global attractor. The left boundary for bistability is
given by zsn = −[

l1(x2 + y2) + l2(x2 + y2)
2]

that corresponds
to the double, saddle-node LC in the (x, y)-plane. This double

FIG. 23. The (z, y, x)-phase space of the 3-layer (relaxation torus) model [Eq. (9)] showing the tonic-spiking manifolds with two folds connecting its inner and
outer stable (green surfaces, MS

PO) and the middle unstable (red surface, MU
PO) branches. The quiescent manifold, the z-axis (black line) has two sections: stable

(z < 0, solid) and unstable (z > 0, dashed). The slow nullcline z′ = 0 is a pair of parallel (gray) planes between which z′ > 0 and z′ < 0 outside. [(a1)–(c1)]
Rearrangements of MPO with l2-variations at indicated values reshape modulations of voltage traces shown in (a2)–(c1) at l2 = 1.36, 1.4, and 1.45; other
parameters: l1 = −4.9, l3 = −0.1, ω = 10, μ = 0.5.
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FIG. 24. Torus-canard transformations in the 3-layer (relaxation-torus) model [Eq. (9)] as �-parameter is decreased at indicated values. 3D (z, y, x)-phase space
depicts the tonic-spiking manifold MPO (gray surface) with two folds connecting its stable inner, outer, and middle unstable sections. The quiescent manifold
is the z-axis (black line) with stable (z < 0, solid) and unstable (z > 0, dashed) sections. The slow nullcline z′ = 0 is a pair of parallel (yellow) planes between
which z′ > 0. [(a1,2) – (e1,2)] Stable PO (green circle) loses stability to a torus-canard (blue IC on a Poincaré cross section given by y = 0) near the left fold
that becomes wider and weakly resonant. [(f1,2)–(h1,2)] Unstable PO (red cycle/FP) regains stability via a sub-critical TB generating a small repelling torus (red
IC, TU) that grows in size, merges with the stable torus-canard TS, and both annihilate, leaving the stable PO on the inner branch of MPO. Other parameters:
l1 = −4.9, l2 = 1.4, l3 = −0.1, ω = 10, μ = 0.5.

orbit vanishes for smaller negative z-values, making the origin
the only global attractor in the phase space.

The slow equation in (8) is designed here as follows: the
slow nullcline, where z′ = 0 is a cylinder given by x2 + y2 =
1 + � of radius

√
1 + � in the 3D phase space of the system.

Inside this cylinder, z′ > 0 and z′ < 0 outside of it. The use of
� is twofold here: as a bifurcation and sweeping parameter to
locate the 2D manifold MPO in MATCONT.

Now, let us put all components together in the full sys-
tem. Figure 22 shows the 3D phase space of the 2-layer model

[Eq. (8)]: the 1D quiescent manifold Meq (the z-axis) with sta-
ble (z < 0) and unstable (z > 0) branches. The subcritical AH
bifurcation gives rise to the unstable (red) branch MU

PO that
folds back and continues further (rightwards) as stable (green)
branch MS

PO. The slow nullcline is represented as a gray cylin-
der parallel to the z-axis. Let us pick an initial point to the left
quite far away from the fold on MU

PO in the 3D phase space.
Then, the trajectory spirals fast onto the stable branch (solid
line) of Meq inside the slow nullcline/cylinder along which it
will be slowly dragged to the right toward the AH bifurcation
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in the fast subsystem. Passing through it, the phase point keeps
following the unstable branch of Meq (the so-called delayed
loss of stability) before it spirals away to converge to the sta-
ble, outer branch MS

PO. Provided that the radius of MS
PO is

larger than that of the slow nullcline, the phase point, turn-
ing around MS

PO, will slide leftward toward the fold on the 2D
spiking manifold. If � controlling the radius of the slow null-
cline is large enough, then the phase point will converge to
a stable and round periodic orbit on MS

PO. Varying � makes
this periodic orbit slide along MPO thus revealing its shape,
including the fold. This is the essence of the parameter contin-
uation approach to localize slow-motion manifolds of the full
system by varying the control (faux) parameter of the slow
subsystem in the phase space. By decreasing �, the stable PO
slides down toward the fold below which the orbit continues
as repelling both unstable in the z-direction and in the fast
(x, y)-coordinates. As we pointed out earlier, the transverse
intersection of MPO with the slow nullcline/cylinder guaran-
tees that the PO does not vanish but loses stability at the fold
through a super-critical torus bifurcation that results in the
emergence of the stable torus-canard (provided μ is small
enough) switching back and forth between the stable and
unstable branches of the tonic spiking manifold near its fold;
see Figure 22(b1). Further decreasing � makes the stable torus
morph into the “elliptic” buster with amplitude modulations
and episodes of quiescent meta-states.

Our last 3-layer (torus-relaxation) model below

x′ = ωy + x
[
z + l1(x

2 + y2)

+ l2(x
2 + y2)

2 + l3(x
2 + y2)

3]
,

y′ = −ωx + y
[
z + l1(x

2 + y2)

+ l2(x
2 + y2)

2 + l3(x
2 + y2)

3]
,

z′ = μ(1 − x2 + �) (9)

is designed to have two folds between two stable, inner (l1 <

0) and outer (l3 < 0) and middle unstable (l2 > 0) branches
of the 2D tonic spiking manifold MPO; see its phase space
in Fig. 23. The distinction of the slow equation in Eq. (9) is
that its slow nullcline is represented by two parallel planes
x = ±√

1 + �. The planes, located below and above the z-
axis, functionally provide the same slow dynamics and means
of its control by varying � in the full system.

Like in the 2-layer model, by varying � one can set the 3-
layer model to demonstrate various tonic spiking oscillations
and torus-canards. In addition, by calibrating values of l1 and
l2, one can shift the relative positions of the folds to shape
and produce various types of elliptic bursters generated by this
system, as Fig. 23 demonstrates. Let us describe the torus-
canard transformations as � is decreased. The principal stages
of the transformation are documented in Fig. 24.

At the initial stage, the stable PO exists on the outer sur-
face MS

PO at some large enough �; see Fig. 24(a). With an
initial decrease, this stable PO slides down off the left fold and
loses stability to a torus-canard, TS [Fig. 24(b)]. With further
decreasing �, the repelling PO slides down along the middle
branch MU

PO to the right fold; meanwhile, the stable relax-
ation torus-canard with a head grows in size expanding the

whole space between the inner and the outer layer [its stages
are shown in Figs. 24(c)–24(e)]. Next, via a subcritical TB,
a repelling torus, TU, emerges at the right fold from the PO
that regains the stability; see Figs. 24(f) and 24(g). At this
point, there are two tori: stable (blue) and unstable (red IC
in the cross section). Note that the repelling torus separates
the attraction basins of the stable torus from the stable PO,
thereby creating bistability in the system. Finally, the stable
and the unstable tori merge and annihilate through a saddle-
node bifurcation so that the stable PO at the right fold remains
the only attractor in the phase space; see Fig. 24(h).

VIII. CONCLUSION

Following the bottom-up approach, we have considered
and analyzed a collection of chosen exemplary slow-fast
models, starting off with the biologically plausible Hodgkin-
Huxley ones up to light mathematical toy systems that all
feature the torus bifurcations occurring on the characteristic
fold on the slow-motion tonic-spiking manifold. Unlike the
flat canards occurring in 2D slow-fast systems whose stability
can be evaluated analytically as it is dictated by the analyt-
ical properties of the function on the right-hand side of the
fast equation in the singular limit, the question concerning the
stability of emergent tori is yet to be fully understood. We
have shown all kinds of tori in the model list, from stable and
repelling (made stable in the backward time in 3D systems) to
saddle ones with 3D unstable manifolds and XD stable mani-
fold, where X is determined by the phase space dimension of
the model in question. The fact that the torus emerges locally
next to the fold of a low-dimensional surface lets one use
one’s skills to choose a suitable Poincaré cross section and
to find two initial conditions on it to demonstrate that one tra-
jectory goes inside such a torus to converge to a nested stable
periodic, while the other converges to another attractor in the
phase space. This bistability is a de facto proof of the exis-
tence of 2D saddle tori in the phase space and can be further
supported by bi-directional parameter sweeps to reveal the
hysteresis due to the overlapping interval of the co-existence
of two attractors, like tonic-spiking and bursting orbits in the
Purkinje cell model and the FNR-model.

While parameter continuation packages like MATCONT
and AUTO can be handy to detect torus bifurcations, one
has to use additional computational tools to analyze reso-
nant torus bifurcations and breakdowns to demonstrate that
they follow up with the existing mathematical theory. One
such reduction tool, especially in the context of neuroscience
and neurophysiological models, is to construct reduced return
maps from time series. This can be done using the map:
V min

n → V min
n+1 for minimal or maximal values found in voltage

traces. Using this approach, we have shown that the emer-
gence evolution of invariant circles corresponding to tori in
the phase space and slow modulations in voltage traces in our
simulation match very well with the non-local theory pro-
posed in the classical works by V. S. Afraimovich and L.
P. Shilnikov.12–15,57 Namely, such an invariant circle, born
smooth and round, first becomes non-smooth, resonant, and
next gets distorted by developing homoclinic tangles of unsta-
ble sets of resonant saddle periodic orbits on the torus. The
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FIG. 25. Poincaré return maps: τn → τn+1, for recurrent time intervals
between consecutive spikes in the voltage traces. (a) Unstable (red) IC
(corresponding to the saddle torus-canard TU) encloses a stable (blue) FP
(corresponding to tonic-spiking orbit POS) in Purkinje cell model at Iapp=
–29.487. (b) Stable (blue) IC (TS) bounding the unstable (red) FP (POU) in
the 2-layer normal-form model [Eq. (8)]. Inset (c) shows a quasi-periodic
voltage trace with recurrent time intervals τn employed in the return map in
(a) for Purkinje cell model.

latter leads to the torus breakdown and to the onset of emer-
gent hyperbolic dynamics. This prerequisite for deterministic
chaos competes with regular dynamics due to the presence
of stable periodic orbits overshadowing its host, i.e., the res-
onant torus. Weakly resonant tori exist in narrow ranges in
the parameter space of the system. The same holds true for
ergodic tori as they quickly become non-smooth between res-
onant zones densely populating the parameter space of such
systems.

The other option for the visualization and analysis of tori
is to use the 1D return map: τn → τn+1, for recurrent time
intervals between consecutive spikes in the voltage traces.
This approach is illustrated in Fig. 25. The map in Fig. 25(a)
shows the saddle IC (red, TU) enclosing a stable FP (blue,
POS) corresponding to robust and periodic tonic spiking in
the Purkinje cell model. The return map in Fig. 25(b) depicts
the stable IC (blue, TS) encircling a repelling tonic-spiking FP
(red, POU) in the 2-layer normal-form model [Eq. (8)]. This
demonstrates that both amplitude- and frequency-modulation
approaches suit the study of quasi-periodicity using the
observables like recordings of voltage traces.

We note that transitions from tonic-spiking to bursting
in the given family of slow-fast models can also be caused
by a cascade of period-doubling bifurcations, instead of the
torus bifurcation. We proposed and tested the divergence-
sign assessment to predict the type of bifurcation. The test
works well for 3D model, while its applicability is problem-
atic for higher dimensional systems, as one has to single out
a 3D subspace in restriction to which the analogous diver-
gence should be evaluated. It has become more or less clear
that the choice between these two bifurcations is implicitly
determined by multiple or just two time-scale reciprocal inter-
actions of dynamic variables of the slow-fast model, as well
as by the smoothness of the fold in the averaged system. The

smoother such a fold is and the closer the system is to the sin-
gular limit, the more likely the periodic orbit will undergo the
torus bifurcation, which yet remains a priori unclear whether
it will be sub- or super-critical. Last but not least, we note
that the bi-stability of the coexisting tonic-spiking and burst-
ing orbits in the phase space of high dimensional models of
neurons is likely a de facto proof of the occurrence of a 2D
saddle-torus “separating”69 their basin attractions in the phase
space.

SUPPLEMENTARY MATERIAL

See supplementary material for the MATLAB (MAT-
CONT) codes of the biological realistic models studied in this
paper.
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