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ABSTRACT

This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction
between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections
and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including
Shilnikov–Hopf, Belyakov, Bautin, and Bogdanov–Takens points, which play a pivotal role in organizing the complex bifurcation structure
of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity
regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast–slow dynamics
allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our
approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling
the intricate dynamical and bifurcation structures present in the system.
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This study investigates the intrinsic mechanisms underlying
widespread chaos in a biologically plausible model of a neu-
ron, specifically of the Hodgkin–Huxley type, driven by two
slowly oscillating currents. We focus on the role of homo-
clinic bifurcations in triggering and sustaining chaotic behavior
that extends well beyond typical expectations in neurodynam-
ics. By developing and implementing analytical methods and
simulation tools, we offer new approaches for studying high-
dimensional deterministic systems with structurally unstable
chaotic dynamics due to complex global bifurcations of saddle
equilibria and periodic orbits. Our findings deepen the under-
standing of the origins and universal nature of deterministic
chaos, with potential applications across a wide range of sys-
tems, including the life sciences. We aim to make these insights
and tools accessible to a broad, interdisciplinary audience, from

specialists to newcomers in dynamical systems and mathematical
neuroscience.

I. INTRODUCTION

Chaos in bursting neuronal systems can be compared to a
kaleidoscope, where a single object fractures into intricate, shift-
ing patterns—each rotation revealing new layers of complexity.1–12

This analogy reflects the central focus of our study: an unusually
broad region of chaos in a conductance-based neuronal model of
the Hodgkin–Huxley type. In our model, the topological structure
of the system amplifies chaotic dynamics, where a small seed of
chaos is repeatedly fragmented and replicated, leading to widespread
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complexity. This amplification is driven by the underlying geome-
try of spike generation, which propagates and multiplies the seeds
of chaos across a broad parameter space. We were intrigued by
the vastness of this chaotic region, which far exceeds the narrow
bands of chaos typically observed in both biologically realistic and
phenomenological models during transitions, such as spike-adding.
This finding challenges the prevailing view that chaotic behavior is
confined to narrow parameter ranges. By studying a region where
chaotic dynamics are naturally widespread and robust, we aim to
uncover new insights into the mechanisms enabling flexible and
adaptable oscillatory patterns, which may align more closely with the
variability observed in biological neurons. In this paper, we provide
a detailed exploration of this expansive chaotic region, emphasizing
the diverse pathways leading to chaos across its boundaries.

One of the key features of neuronal systems, including isolated
neurons in both normal and dysfunctional states, is the occur-
rence of self-sustained oscillations, regular or irregular, with vary-
ing recurrence times.13–17 These oscillations are typically stable in
the Lyapunov sense,18 whereas chaotic oscillations are inherently
unstable.19 Current mathematical models of neurons, however, often
struggle to reproduce the desired neuronal qualities, such as variabil-
ity and flexibility,20 due to the deterministic nature of the modeling
approach. Introducing noise into the model can address this limita-
tion, particularly when the system is positioned close to semi-global
bifurcations underlying transitions between activity types, such as
quiescent states (stable equilibria), tonic spiking, and bursting oscil-
lations (stable periodic orbits)—where the dynamics become sen-
sitive to small perturbations.21 In contrast, far from bifurcations,
mathematical models with exponentially stable (i.e., structurally
stable) solutions remain robust against noise and other small per-
turbations, persistently exhibiting the same activity patterns.22,23

The rigidity of most neuronal models arises from their classi-
fication as slow–fast systems with significant time-scale disparities
between variables. In such models, typically consisting of two slow
and one fast variable (or the reverse configuration), variability in
the dynamics is only observed within narrow intervals correspond-
ing to rapid transitions in parameter space.22 Although noise can
artificially widen these transition intervals, this approach remains a
synthetic approximation of the fluidity observed in biological sys-
tems. The absence of well-explored neuronal models that exhibit
flexible or widespread chaotic oscillations highlights the importance
of our study. By developing a comprehensive framework for study-
ing these chaotic oscillations, our work lays the groundwork for
in-depth studies of other neural models that more accurately capture
the adaptability and variability of neuronal activity. These insights
could prove invaluable in both theoretical neuroscience and in the
design of artificial systems that emulate biological flexibility.

The key to generating flexible self-oscillations in this neuron
model lies in the natural widening and overlapping of spike-adding
transitions as they approach a Shilnikov saddle-focus bifurcation in
the parameter space. This bifurcation is well known in the dynamical
systems community,24–29 but less familiar in the context of neuronal
modeling.30,31 The homoclinic bifurcation culminates in a more
exotic phenomenon, the codimension-2 Shilnikov–Hopf (ShH) or
Belyakov-I point,32 where the Shilnikov homoclinic saddle-focus
meets the subcritical Andronov–Hopf (AHsub) bifurcation in the
parameter space of the model. Globally, the homoclinic structure

interacts with the spiking manifold MPO, which expands, coils, and
folds the flow, generating a topological Smale horseshoe in the phase
space of the neuron model.

The interaction of the homoclinic structure with the tonic-
spiking manifold constitutes a rich bifurcation and dynamical
“Klondike” in the model under investigation: its codimension-1
(cod-1) and codimension-2 bifurcations far exceed the typical range.
These include other bifurcations of equilibria with characteris-
tic exponents (0, 0) (the Bogdanov–Takens point) and (0, ±iω)
(fold-Hopf due to Gavrilov and Guckenheimer), sub- and super-
critical Andronov–Hopf (AH) bifurcations, the codimension-2
Bautin point (BP), multiple homoclinic bifurcations,33,34 another
codimension-2 Belyakov-II bifurcation describing a homoclinic
saddle to saddle-focus transition,35 the blue-sky catastrophe,23,36–39

period-doubling cascades, likely a torus bifurcation with
1:2-resonance, and various hereto-dimensional cycles, among
others.

To explore this wealth of dynamical phenomena, we employ a
comprehensive set of topological and computational tools, includ-
ing slow–fast decomposition, MATCONT parameter continuation,
symbolic dynamics, conditional block entropy, templates, Lyapunov
exponents, and one-dimensional return maps.

This paper is structured as follows: it begins with a descrip-
tion of the model, followed by a theoretical background to provide
context and foundational concepts. The main results start with the
interpretation of three two-dimensional bifurcation diagrams, fol-
lowed by illustrations of the homoclinic structure arising from the
saddle-focus. Next, we illustrate the topology of the pseudo-attractor
using templates. Finally, we employ one-dimensional maps to inves-
tigate the routes to chaos through the Shilnikov–Hopf bifurcation,
the degeneration of spike-adding transitions, and homoclinic tan-
gencies. The paper concludes with an in-depth discussion of these
results, their implications, and future research directions.

II. MODEL DESCRIPTION

The model central to this study is a conductance-based neu-
ronal model consisting of five ODEs40–42 of the Hodgkin–Huxley
type. The original purpose of this Plant model was to demonstrate
the mechanism of endogenous bursting recorded in R15 cells from
sea slugs of the genus Aplysia.43,44 Over the decades, the model has
been adapted for various modeling and theoretical studies due to the
flexibility of its slow subsystem.45–47

We refer to this adapted version as the swim inter-neuron (SiN)
model, as substantial changes were made, including the introduction
of two new control parameters, to tailor it for studies of swim cen-
tral pattern generators in two specific sea slugs.48,49 This SiN model is
a slow–fast system with three fast variables governing spike genera-
tion and two slow variables on the timescale of endogenous bursting.
These slow variables, x and [Ca], create a hysteresis loop that can
be manipulated by altering their voltage response properties. This
manipulation reveals a range of dynamic behaviors, including burst-
ing, tonic-spiking, quiescence, and ultimately the onset of chaos,
which is the primary focus of this paper.

The fast subsystem, derived from the original Hodgkin–Huxley
model, represents the mechanism responsible for generating fast
spikes. It includes three currents: an inward sodium and calcium
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current, II, with dynamic inactivation gated by the h(t) variable and
instantaneous activation, m∞(V); an outward potassium current, IK,
gated by the probability n(t); and an instantaneous leak current, Ileak.
We also treat the voltage V(t) as a fast variable because it responds
quickly to perturbations, although it plays a crucial role in the slow
subsystem as well. The equations governing the fast subsystem are
given by

CmV′ = −II − IK − Ileak − IT − IKCa, (1)

h′ =
h∞(V) − h

τh(V)
, n′ =

n∞(V) − n

τn(V)
, (2)

with the membrane capacitance Cm = 1, and the currents defined as
follows:

II = gI h m3
∞(V) (V − EI), (3)

IK = gK n4 (V − EK), (4)

Ileak = gL(V − EL). (5)

Gradual spike frequency adaptation and post-inhibitory
rebound in the SiN model are due to the slow dynamics of two cur-
rents: the TTX-resistant inward sodium and calcium current (IT)
and the outward calcium-sensitive potassium current (IKCa). These
are defined as

IT = gTx(V − EI), (6)

IKCa = gKCa
[Ca]

0.5 + [Ca]
(V − EK), (7)

where the dynamic variables, calcium concentration [Ca], and the
voltage-gated probability x(t), evolve according to

x′ =
1

τx

[

1

1 + e−0.15(V+50−#Vx )
− x

]

, τx ≫ 1, (8)

[Ca]′ = ρ (Kc x (ECa − V + #[Ca]) − [Ca]) , ρ ≪ 1. (9)

Here, #Vx and #[Ca] are bifurcation parameters introduced to
control the slow dynamics of the SiN model. Our previous research
provides a detailed description of the properties of the SiN model as
they relate to our neuronal network modeling work.49 Further infor-
mation on the parameters, their biological interpretations, and the
corresponding activation functions is given in Appendix C.

The first bifurcation parameter, #Vx, represents a devia-
tion from the voltage value of −50 mV at which the TTX-
resistant Na+–Ca2+ current becomes half-activated [see Eq. (8)].
At this point, the corresponding activation function, x∞(V) = 1/
(

1 + e−0.15(V+50−#Vx)
)

, reaches a value of 1/2. The second bifurcation
parameter, #[Ca], introduced in Eq. (9), shifts the calcium reversal
potential from its hypothetically high value of +140 mV, a level that
cannot be experimentally validated due to the excessive current that
would deplete the cell.

A segment of the (#[Ca], #Vx) bifurcation diagram of the SiN
model is shown in Fig. 1. A high-level observation reveals that the

FIG. 1. (a) Close-up of the widespread chaotic region (red) in a bi-paramet-
ric sweep of #[Ca] and #Vx . The colormap illustrates the Lyapunov spectrum,
with each RGB component representing a different Lyapunov exponent. The red
channel corresponds to the positive largest Lyapunov exponents (LLEs). Green
and blue both correspond to negative second Lyapunov exponents, but at dif-
ferent magnitudes—green indicates values closer to zero, and blue represents
more negative values. Chaotic regions appear red, while non-chaotic regions are
blue. Representative voltage traces are overlaid on the parameter space: tonic
spiking (left), a hyperpolarized quiescent state (bottom), and regular bursting
(top-right). The chaotic region is centered around the bifurcation curve homSF
(yellow line) corresponding to a Shilnikov saddle-focus. This curve extends from
the codimension-2 Shilnikov–Hopf (ShH) bifurcation point located on the sub-
critical Andronov–Hopf (AHsub) bifurcation line (green dashed line). The homPOt

curve (orange line), which separates the chaotic region from the quiescent region
below, corresponds to a non-transverse homoclinic to a saddle periodic orbit (PO).
In the region marked by the orange dot, situated between the AHsub curve and the
homPOt curve, the model exhibits bistability between chaotic and hyperpolarized
quiescent attractors (see Fig. 15). Thin white lines within the chaotic region indi-
cate saddle-node bifurcations of periodic orbits, adjacent to stability windows. (b)
Chaotic voltage trace corresponding to the parameter values at the red diamond
in panel (a), showing the irregular bursting dynamics observed within the chaotic
region.

diagram can be locally divided into three peripheral regions corre-
sponding to distinct regular dynamics: quiescent, tonic spiking, and
bursting activity. The center of the diagram is dominated by what
we term informally as the “Bermuda triangle” of chaos, where the
model exhibits irregular chaotic bursting characterized by a variable,
non-repeating number of spikes in each successive burst.

The slow subsystem can be readily visualized, which is crucial
for interpreting 2D and 3D (including voltage) illustrations of the
slow phase space. Figure 2 shows a three-dimensional projection of
the phase space of the SiN model, highlighting two distinct two-
dimensional slow or critical manifolds. Trajectories of the model
typically converge to one of these two structures, which together
form the slow manifold.
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FIG. 2. 3D
(

V , [Ca], x
)

-phase space projection of the two critical manifolds that
globally determine the slow–fast dynamics in the phase space of the SiN model
at#[Ca] = −4.6 and#Vx = −2. A 2D spiking manifold MPO (yellow) is foliated
by fast, round periodic orbits of the fast subsystem and features a characteristic
fold. A 2D slow-motion (gray) manifold MQ, also referred here to as the “dune,”
consists of equilibrium states in the fast subsystem. Three orbits are shown here:
chaotic bursting (in blue) switching back and forth between MPO and MQ, a green
orbit converging to a stable equilibrium state, and a red saddle periodic orbit whose
stable manifold locally separates two coexisting attractors; see Figs. 4(a) and 4(b).

For slow subsystem states where the fast subsystem contains
a stable equilibrium, this equilibrium lies upon a slow manifold MQ

appearing like a bent sheet (shown as the gray surface in Fig. 2). This
slow manifold is referred to as the “quiescent manifold” or infor-
mally as the “dune.” This quiescent manifold corresponds to the
region where the fast dynamics are subdued, allowing the slow vari-
ables to dominate. When the fast subsystem instead contains a stable
periodic orbit (PO) representing tonic-spiking (TS) fast oscillations,
the slow spiking manifold MPO takes on a cylindrical shape (depicted
with yellow and orange stripes). This cylinder is constructed by
treating the state variable [Ca] as a parameter and allowing other
state variables to converge to the stable PO. As [Ca] is varied, the
stable spiking PO traces out MPO in the phase space.

The dune MQ wraps over the spiking manifold MPO and repeat-
edly coils around before returning to its own underside, where
tonic-spiking activity in the fast subsystem collapses into a hyper-
polarized steady state. Bursting trajectories alternate between MQ

and MPO, while tonic-spiking trajectories remain as stable orbits
on MPO. Quiescent trajectories and subthreshold oscillations are
confined to MQ.

III. BACKGROUND AND CONCEPTUAL FRAMEWORK

This section provides the necessary background and selectively
introduces theoretical insights into the role of homoclinic bifurca-
tions of two saddle equilibria in the onset of chaos in this neuron
model. Table I consolidates the abbreviations for the bifurcation
curves used in this study.

We first examine the local bifurcations of the equilibria. Two
equilibrium states persist throughout the chaotic region, playing a
central role in its dynamics. Both equilibria are key to the develop-
ment and resolution of chaotic behavior in the system. These equi-
libria emerge simultaneously through a saddle–saddle (SS) bifurca-
tion and will be referred to as the upper and lower saddles, with the
upper saddle characterized by higher [Ca]- and x-coordinates.

A. Saddle–saddle bifurcation

In a saddle-node (SN) bifurcation, one characteristic exponent
is zero, and all others are either positive or negative. In contrast, a
saddle–saddle bifurcation also has one zero characteristic exponent,
but the remaining exponents are split between positive and nega-
tive values, placing the equilibrium in a saddle state; see Ref. 50 for
further details on this bifurcation and its non-local implications.

This saddle–saddle (SS) bifurcation occurs on the far left of
the bifurcation diagram in Fig. 1, corresponding to small values of
the #[Ca] parameter, and is further illustrated in the bi-parametric
sweeps shown in Fig. 5. The first three panels of Fig. 3 qualitatively
illustrate the SS-bifurcation of a non-hyperbolic equilibrium state
with characteristic exponents λ1,2,3 < 0 = λ4 < λ5 [Fig. 3(a)]. This
bifurcation produces two saddles of two different topological types.

The upper saddle has 4D stable and 1D unstable manifolds
[Fig. 3(b)], while the lower saddle has 3D stable and 2D unstable
manifolds, corresponding to its characteristic exponents [Fig. 3(c)].
Note that the characteristic exponents λ4,5 arise from the slow
subsystem and, thus, remain small, located near the origin in the
complex plane.

TABLE I. Abbreviations used for bifurcations throughout the text.

Labels Description of bifurcation curves in Fig. 5

SS Saddle–saddle bifurcation giving rise to 2 saddles
AHsub/sup Andronov–Hopf bifurcations: sub- and

super-critical
BP Codimension-2 Bautin point between AHsub and

AHsup

PD First period-doubling bifurcation of a stable TS orbit
ShH Codimension-2 Shilnikov–Hopf bifurcation of the

saddle-focus
homSF Shilnikov bifurcation of the lower saddle-focus
S–SF Codimension-2 transition between a saddle-focus

and a saddle
homSNPO Saddle-node PO with a homoclinic orbit

(blue-sky catastrophe)
homPOt Tangent homoclinic to a saddle PO

Forms the lower boundary of the chaotic region
homSD Homoclinic orbit to the upper saddle
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FIG. 3. Qualitative stability diagrams depicting the positions of characteristic
exponents in the complex plane for the two equilibrium states of the SiN model.
(a) A saddle–saddle bifurcation of an equilibrium state with characteristic expo-
nents λ1,2,3 < λ4 = 0 < λ5 gives rise to the onset of two saddles: an upper
saddle of the topological (4,1)-type (b) and a lower saddle of the (3,2)-type (c) on
the 2D slow-motion manifold (the dune) in the 5D phase space of the SiN model.
(d) After its positive eigenvalues merge and form a complex-conjugate pair next
to the imaginary axis in the right open half-plane, the lower saddle transforms
into the Shilnikov saddle-focus. (e)–(f) An Andronov–Hopf bifurcation (sub- or
super-critical) makes the saddle-focus a stable focus after its complex-conjugate
eigenvalues cross over the over imaginary axis to the left open half-plane.

The upper saddle, with its 1D unstable manifold, marks the ter-
mination of the spiking manifold MPO, and its unstable manifold
forms the outer boundary of the attractor. The homoclinic bifurca-
tions of the upper saddle are crucial in determining the positions of
spike-adding transitions in the parameter plane. The lower saddle,
with its 2D unstable manifold, transitions into a saddle-focus at low
#Vx-values.

The homoclinic bifurcation curve of the lower saddle, labeled
by homSF, runs through the center of the chaotic region and ter-
minates in a Shilnikov–Hopf (ShH) codimension-2 bifurcation. The
unfolding of this bifurcation defines the lower boundary of the
chaotic region, labeled homPOt, as shown in the bifurcation diagram
in Fig. 1.

B. Andronov–Hopf bifurcations and a Bautin
codimension-2 point

Andronov–Hopf (AH) bifurcations can be classified into two
types: sub-critical and super-critical. An AH bifurcation occurs
when a pair of complex-conjugate characteristic exponents, denoted
λ4,5 = α ± iω, cross the imaginary axis in the complex plane, as
illustrated in Figs. 3(d)–3(f). The type of the AH bifurcation is
determined by the sign of the leading Lyapunov coefficient.19

If the Lyapunov coefficient is positive, the AH bifurcation is
a sub-critical one. In this case, a stable focus [with characteristic
exponents as shown in Fig. 3(f)] becomes a saddle-focus with 2D
unstable and 3D stable manifolds [see Fig. 3(d)], as a saddle peri-
odic orbit collapses into it. If the Lyapunov coefficient is negative,
the AH bifurcation is a super-critical one, through which the stable

focus loses its stability and becomes a saddle-focus, accompanied by
the emergence of a stable periodic orbit.

The codimension-2 Bautin bifurcation occurs when the
Lyapunov coefficient changes sign at the AH bifurcation [for
(#[Ca], #Vx) = (27.41, −2.7) in the SiN model], marking the tran-
sition between sub-critical and super-critical AH behaviors. The
corresponding Bautin point (BP) separates two branches of the AH
curve in the parameter plane: sub-critical (dashed green, AHsub) and
super-critical (solid green, AHsuper), as shown in Figs. 1 and 5.

The unfolding of the Bautin bifurcation includes an additional
curve, homSNPO (shown in blue), corresponding to a saddle-node
periodic orbit, where the saddle and stable periodic orbits merge
and annihilate. The bottom three panels of Fig. 3 show how the
characteristic exponents of the lower saddle evolve through the
Andronov–Hopf bifurcation (on the green line in Fig. 1). Two real
positive exponents become complex conjugate [Fig. 3(d)], cross the
imaginary axis [Fig. 3(e)], and move into the left half-plane in the
complex plane [Fig. 3(f)].

C. Blue-sky catastrophe

The blue-sky catastrophe is a saddle-node periodic orbit with
a structurally stable homoclinic connection in three or more
dimensions.19 The key feature of this non-local bifurcation is that
it leads to the onset of a stable periodic orbit with an infinitely long
period and spatial extent. This bifurcation is common in slow–fast
systems,23,36 where it describes transitions between tonic-spiking and
bursting oscillations in neuronal systems.20,39 The bifurcation occurs
in the given neural model on the homSNPO curve in the bifurcation
diagrams presented in Fig. 5.

D. Shilnikov saddle-focus

A homoclinic saddle-focus was discovered and analyzed by
Shilnikov24–26 in the general case for Rn. He demonstrated that when
a complex-conjugate pair of characteristic exponents, λ4,5 = α ± iω,
is closest to the imaginary axis in the complex plane [as shown in
Fig. 3(d)], the neighborhood of the homoclinic orbit of the saddle-
focus contains countably many periodic orbits. This phenomenon
is a prerequisite for the onset of spiral chaos,27 which is directly
associated with the Shilnikov saddle-focus.19

Figure 4(d) illustrates such a homoclinic orbit in the phase-
space projection of the SiN model. This bifurcation occurs along the
curve labeled by homSF in the diagrams shown in Figs. 1 and 5.

E. Shilnikov–Hopf or Belyakov-I point of
codimension-2

The lower boundary of chaotic behavior can be understood
through the unfolding of the Belyakov type-I bifurcation, also
known as the Shilnikov–Hopf (ShH) bifurcation, occurring at
(#[Ca], #Vx) = (−34.32, −1.246). This codimension-2 bifurca-
tion occurs when a homoclinic orbit connects to a saddle-focus
undergoing a subcritical Andronov–Hopf bifurcation. Belyakov32

was the first to examine the case of a weak Shilnikov saddle-focus
in Rn, characterized by a pair of purely imaginary characteristic
exponents [see Fig. 3(e)]. In his analysis, Belyakov assumed that
the Andronov–Hopf bifurcation was subcritical, a key condition for
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FIG. 4. A sketch of the unfolding of the Shilnikov–Hopf (the ShH point in Fig. 1) or Belyakov-I codimension-2 bifurcation in a 3D phase space, where a saddle periodic orbit
(a red ring labeled by PO) with transversely intersecting 2D stable (light-red) and unstable (gray) manifolds,Ws

PO andW
u

PO, collapses into the Shilnikov saddle-focus through
a sub-critical AH bifurcation. The manifolds do not cross initially in panel (a), then form a tangency along a homoclinic orbit ' in (b). In (c), the manifolds cross transversally
along two homoclinic obits '1 and '2 allowing an access to the stable equilibrium state (green dot) within the region bounded by Ws

PO (a light-red cylinder). (d) 3D phase
projection depicting a Shilnikov saddle-focus with a (red) homoclinic orbit spiraling away and returning to it on the dune MQ (bent gray surface) from below; this homoclinic
bifurcation occurs along the corresponding curve homSF in the parameter plane (see Fig. 1 above) of the SiN model, at (#[Ca],#Vx)-parameter value (−35.98,−1.1).
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this scenario. This implies that, prior to becoming a saddle-focus,
the system possesses a stable focus enclosed by an unstable periodic
orbit on a local two-dimensional center manifold or by a saddle peri-
odic orbit (PO) with homoclinic trajectories in the full phase space.
The key stages of the ShH unfolding are illustrated in Fig. 4.

The local unfolding of the ShH point includes three
cod-1 bifurcation curves: AHsub, representing the subcritical
Andronov–Hopf bifurcation; homSF, representing the homoclinic
saddle-focus bifurcation; and homPOt, representing homoclinic
tangencies to a saddle periodic orbit surrounding the stable focus.
The AH curve divides the unfolding parameter plane, placing the
homoclinic saddle-focus curve on one side and the curve of homo-
clinic tangencies on the other. The homoclinic orbits to periodic
orbits form an “umbrella” shape in the parameter plane, featuring
a tangency at the codimension-2 ShH bifurcation point. Along this
umbrella, the unstable and stable manifolds of the saddle periodic
orbits form a tangent intersection, representing the boundary of pos-
sible chaos [see Fig. 4(b)]. The region between the AH curve and
the umbrella of critical tangencies contains no homoclinic orbits but
may still exhibit chaos, as well as stability windows [see Fig. 4(a)].

On the opposite side of the umbrella, there are two intersec-
tions between the stable and unstable manifolds. The segment of
the unstable manifold between these intersections belongs to the
stable basin that emerges through the subcritical AH bifurcation
[see Fig. 4(c)]. In this region, the system exhibits transient chaotic
behavior, but trajectories ultimately settle into the stable focus. The
bifurcation unfolding is depicted in the bifurcation diagrams in
Figs. 1 and 5 and further illustrated with one-dimensional return
maps in the results section VI A.

The stages of this global bifurcation unfolding involving a sad-
dle periodic orbit with structurally stable and tangent homoclinics in
the 3D case are illustrated in Figs. 4(a)–4(c). In a three-dimensional
phase space, a pair of two-dimensional invariant manifolds typi-
cally either do not intersect, as depicted in panel (a), or intersect
transversally, as shown in panel (c) of Fig. 4. In the transverse
case, intersections occur along two homoclinic trajectories denoted
by '1,2 in Fig. 4(c), which are bi-asymptotic to the saddle PO as
t → ±∞. Between these cases, there is a moment when the man-
ifolds become tangent along a single, non-transverse homoclinic
orbit ', resulting from the merging of '1 and '2, as shown in
Fig. 4(b).

The occurrence of transverse homoclinic orbits to the sad-
dle PO implies that, nearby, there exists a hyperbolic subset.
This subset includes countably many longer saddle periodic and
homoclinic orbits, along with a continuum of Poisson stable
trajectories;51–53 for more information, see the collections,19,28 and
references therein. When the saddle PO collapses into a stable focus
at the codimension-2 ShH point, it becomes a Shilnikov saddle-focus
with a homoclinic orbit, as shown in the phase-space projection in
Fig. 4(d).

F. Belyakov-II: Saddle to saddle-focus transition of
codimension-2

On the far side of the chaotic region along the bifur-
cation homSF curve, the seed of chaos begins with a sad-
dle to saddle-focus (S–SF) transition, occurring at (#[Ca], #Vx)

= (−53.49, 0.58) (see Figs. 1 and 5). This codimension-2 bifurca-
tion was separately investigated by Belyakov in Ref. 35 for a 3D
system, and to the best of our knowledge, his result has not yet been
generalized to the n-dimensional case, especially for the case when
the saddle has two, not just one positive characteristic exponent, as
in our system.

The transition from saddle to saddle-focus occurs when its two
positive real exponents, λ4,5 merge and become a complex-conjugate
pair [see Figs. 3(c) and 3(d)] on the homoclinic bifurcation curve.
As long as λ4,5 remain real and small, the homoclinic bifurcation
of such a saddle gives rise to the emergence of a single saddle peri-
odic orbit in the phase space. When the characteristic exponents λ4,5

form a complex-conjugate pair, there is a locus of bifurcation curves
branching out of the codimension-2 S–SF point and, therefore,
the local dynamics become of complex nature. Belyakov showed
that countably many secondary homoclinic orbits (homoclinics for
short) could arise on one side of the transition, distinguished by the
number of turns around the saddle-focus. Additionally, countably
many saddle-node of periodic orbits emerge through this bifur-
cation, which give rise to the onset stability windows, which is
a typical phenomenon associated with the Shilnikov saddle-focus
at least in the 3D case. These two families of curves coincide at
the codimension-2 transition point S–SF where the characteristic
exponents merge and split along the primary homoclinic curve.

In the case of the SiN model, this transition occurs in a region
dominated by stable bursting orbits, so while complex dynamics
may yet exist, they are not easily observable until they are revealed
as the globally stable orbits collapse.

IV. BIFURCATION SWEEPS

The triangular-shaped region of widespread chaos in the
parameter plane is located at the intersection of the bursting,
quiescent, and tonic-spiking regions, as shown in Fig. 1. Three
(#[Ca], #Vx) bifurcation diagrams presented in Fig. 5 illustrate the
boundaries of this chaotic region, revealed through bi-parametric
sweeps superimposed with key bifurcation curves continued using
the parameter continuation package MATCONT.54,55 In these dia-
grams, the bursting region is at the top-right, the quiescent region is
at the bottom, and the tonic-spiking region is on the left.

The first of these bifurcation diagrams, Fig. 5(a), represents a
bi-parametric sweep using the largest Lyapunov exponents (LLEs),
which are canonical indicators of chaos.18 In this diagram, a
triangular-shaped region of chaos is indicated by red color, repre-
senting the most positive LLE values, while yellow indicates smaller
positive LLEs. The light blue color stands for the periodic burst-
ing region with zero LLE. The tonic-spiking and quiescent regions
(where the LLE is negative) are colored light green and white,
respectively, for visual clarity. We will describe and discuss selected
bifurcation curves superimposed on the diagram.

The Lyapunov spectra from the 1000 × 1000-point scan in
Fig. 5(a) are calculated using the DynamicalSystems.jl package.56,57

Each trajectory runs for a fixed time interval 0 ≤ t ≤ 106 + 104, dis-
carding an initial transient of length 104; the integration tolerance is
set to 10−6 and the time step is fixed at 0.1.

The second bifurcation diagram in Fig. 5(b) illustrates the
spike-adding process through the bursting region from right to left

Chaos 35, 033120 (2025); doi: 10.1063/5.0248001 35, 033120-7

Published under an exclusive license by AIP Publishing

 07 M
arch 2025 17:08:47



Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Bi-parametric,
(

#[Ca], #Vx

)

-sweeps of
the SiN model revealing its dynamics with the aid
of three different approaches. Overlaid bifurcation
curves are computed using the MATCONT param-
eter continuation package. (a) Lyapunov exponent
sweep, with intensified chaos indicated with the yel-
low and red colors. (b) Colormap corresponds to the
inter-spike-interval (ISI) variance for periodic dynam-
ics (green), and to Lempel-Ziv complexity for chaotic
dynamics (red). (c) The symbolic sweep detects
homoclinic bifurcations of the upper saddle, with inset
panels illustrating the homoclinic U-shaped curves.
Numbers 1, 2, . . . in (b) and (c) indicate number of
spikes per burst in those regions.
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in various shades of green. Here, the color scheme shows the inter-
spike interval (ISI) variance for non-chaotic regions, with dark green
corresponding to high ISI variance and white corresponding to a
lack of spikes observed after an initial transient. The sharp bound-
aries between shades of green fall precisely on spike-adding transi-
tions, which become blurred approaching the large chaotic region.
Additional details on the route to chaos through a spike-adding
cascade will be provided later in the text. Related spike-adding bifur-
cation cascades are present in other models.5,6,58 In the large chaotic
region, the color of shading represents the Lempel–Ziv complexity59

computed from a particular kneading sequence, indicating the topo-
logical complexity of trajectories. A detailed explanation of this
procedure can be found in Sec. V.

The third bifurcation diagram in Fig. 5(c) shows the homo-
clinic bifurcation curves of the upper saddle, detected using a newly
developed symbolic representation technique. The shaded colors
represent the spike count associated with the unstable manifold
of the saddle, with the boundaries between colors marking homo-
clinic bifurcations of the upper saddle in the parameter plane.
Two inset panels show how these secondary curves bend into U-
shaped forms,60–62 except for the primary curve, which completes
the unfolding of a codimension-2 Bogdanov–Takens bifurcation
point located outside of the given parameter frame. This unfolding
includes three curves labeled SS, AH, and homSD, which originate
from the bifurcation point (see their descriptions in Table I).

The applied symbolic technique is justified by the observa-
tion that the largest subthreshold oscillation reaches a sharp voltage
maximum in the ([Ca], x) projection of the phase space of the SiN
model. This occurs as the trajectory passes near the stable mani-
fold of the upper saddle. If the voltage maximum exceeds this point,
the trajectory spikes and loops around the spiking manifold MPO,
as shown in Fig. 2. The largest subthreshold oscillations follow the
lower branch of the unstable manifold of the saddle, while spikes
(with the highest [Ca] value) follow the upper branch. Thus, a homo-
clinic orbit to the upper saddle lies between successive spike-adding
events along its unstable manifold. The spike-adding cascade is illus-
trated by the numbers 1, 2, . . . , in Fig. 5(c), corresponding to the
number of spikes per periodic burst in the color-mapped regions of
this bi-parametric sweep.

Based on these observations, a three-step computational
algorithm was applied to a regular grid over the (#[Ca], #Vx)-
parameter plane to detect the corresponding bifurcation curves:

1. Select an initial condition just beneath the saddle along its 1D
unstable separatrix (in the V and x directions). This point is
calculated from a small eigenvector associated with the positive
eigenvalue. If the eigenvector points upward, it is multiplied by
−ε instead of ε for scaling.

2. Evolve the trajectory and count the number of voltage maxima
whenever the voltage exceeds that of the saddle.

3. Terminate the trajectory if any voltage maximum is less than that
of the saddle.

The spike counts, corresponding to voltage maxima along the
lower 1D separatrix '−

SD of the upper saddle equilibrium SD, are
plotted as a heat map in Fig. 5(c). There are two sets of homoclinic
orbits to the upper saddle. The first set includes orbits with an ini-
tial spike that follows the upper branch '+

SD of the unstable manifold

of SD up and over the spiking manifold MPO before initially reach-
ing the dune MQ. The second set consists of orbits that follow the
lower branch '−

SD of the unstable manifold of SD directly to the dune
MQ. Only the trajectories from the latter set, which follow the lower
branch '−

SD, are represented in Fig. 5(c). For some parameter values,
the two branches of the unstable manifold nearly merge, while for
others, they diverge significantly in the phase space.

This omission does not imply that homoclinic orbits along the
upper branch of the unstable manifold are less relevant to the sys-
tem. A complete analysis of the homoclinic structures of the upper
saddle could provide key insights for a deeper topological investiga-
tion, but we believe such an analysis would detract from the main
objectives of this study.

All three bi-parametric sweeps in Fig. 5 are superimposed with
several selected bifurcation curves detected by the parameter con-
tinuation package MATCONT, whose descriptions are provided in
Table I. The SS curve gives rise to two saddle equilibria to the
right of the curve. Following the SS curve downward, outside the
displayed parameter range, the SS curve hits a codimension-2 Bog-
danov–Takens (BT) bifurcation at (#[Ca], #Vx) = (−10.2, −10.8).
The AH curve finally folds into a codimension-2 zero-Hopf point at
(#[Ca], #Vx) = (−4.61, −13.8).

Below the AHsub bifurcation curve, the equilibrium state cor-
responding to hyperpolarized quiescence behavior becomes stable
as the system transitions into a resting state. As AHsub is fol-
lowed upward, it intersects with the curve of primary homoclinics
to the saddle-focus, homSF (red). This intersection occurs at the
Shilnikov–Hopf (ShH) point, a critical center of the global unfold-
ing. The AH bifurcation transitions from subcritical to a supercrit-
ical at the Bautin point, marking a shift in the behavior of the SiN
model. To the right of the Bautin point (BP), the AHsup (solid green)
curve gives rise to subthreshold oscillations, which occur above the
AHsup curve in the parameter plane.

The origin of the first bursting trajectory, a 1-spike burster, is
also associated with the Bautin point. This first spiking orbit is born
through a saddle-node of periodic orbits (SNPOs), homSNPO (blue),
where stable and saddle POs merge and annihilate. This saddle-node
has a homoclinic attachment, a feature characteristic of a blue-sky
catastrophe, where stable periodic orbits of increasingly long peri-
ods emerge. The homSNPO curve extends upward from near the
Bautin point and continues beyond the top of the frames in Fig. 5. A
more detailed unfolding of the Bautin point and its relationship to
the onset of bursting, including a cusp of periodic orbits, is explored
in Sec. VI A. Each spike-adding transition is accompanied by several
additional saddle-node bifurcations of periodic orbits, as discussed
in the spike-adding section VI B.

While the quiescent equilibrium begins along the AH curve,
this bifurcation curve alone does not bound the chaotic region
in the parameter space. The stable manifold of the saddle peri-
odic orbit (PO), which emerges from AHsub, creates a barrier that
prevents chaotic trajectories from reaching the stable equilibrium.
This barrier is destroyed when the unstable and stable manifolds
of the saddle PO form a non-transverse homoclinic trajectory in
the curve homPOt [orange in Fig. 5(a), dark-blue in Fig. 5(b)] in
the bifurcation diagram. This homoclinic tangency forms the lower
boundary of the chaotic region, originating at the codimension-2
Shilnikov–Hopf (ShH) point and extending outward below the AH
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curve in both directions. The points on the homPOt curve were
identified by manually recording and analyzing homoclinic trajec-
tories from 1D maps. More details on the computation and the
association of specific homoclinics with this homoclinic tangency
can be found in Sec. VI A.

The spike-adding sequence is punctuated by homoclinic orbits
to the upper saddle, occurring on the curve labeled homSD in the
(#[Ca], #Vx)-parameter place. These homoclinic bifurcations play
a central role in organizing the spike-adding process, as discussed
below. Four such homoclinic bifurcations were computed using
MATCONT, confirming the bifurcation diagram shown in Fig. 5(c).

The equilibria that arise through the saddle–saddle bifurcation
(SS) are the same as those involved in the AH bifurcation, as well
as in both sets of homoclinic orbits to saddle equilibria occurring

on the curves homSF and homSNPO in the parameter space. The
changes in the characteristic exponents of these equilibria as they
split into upper and lower saddles are illustrated in Fig. 3.

A. ![Ca]-routes across the bifurcation diagram

In this subsection, we discuss the sequences of bifurcations
that occur along three different pathways across the bifurcation dia-
grams in Fig. 5 for a fixed #Vx-parameter as #[Ca] is increased. The
first route illustrates the transition from tonic-spiking to quiescence,
avoiding the bursting region in Fig. 6. This occurs at #Vx = −2.7.
The existence of this route was the original purpose for introduc-
ing the #Vx and #[Ca] parameters in modeling studies. The second
route at Fig. 7 shows the homoclinic structure, period-doubling

FIG. 6. Six panels of the 2D ([Ca], x)-phase projections depicting several key stages of transformative bifurcations underlying simple dynamics of the SiN model. (a) A stable
tonic-spiking PO labeled as TSpo on the manifold MPO is the only attractor in the phase space at ([Ca], x) = (−44.0,−2.7). (b) At the moment of a saddle–saddle (SS)
bifurcation at ([Ca], x) = (−40.4,−2.7), occurring when the calcium nullcline Ca′

= 0 touches the x nullcline x′ = 0 above its top fold, two saddles emerge, with eigenvalues
shown in Figs. 3(b) and 3(c), respectively. (c) Increasing the [Ca] value to−36.95 shifts the nullcline [Ca]′ = 0 below the top fold on the nullcline x′ = 0, thus making the lower
saddle a stable focus through a subcritical AH bifurcation [see eigenvalues in Figs. 3(d)–3(f)]. Here, the system becomes bistable as there are two attractors: the tonic-spiking
PO TSPO and a newborn quiescent state (green dot). (d) Representative dynamics in the quiescent region of the parameter space (see Fig. 1) where a typical orbit converges to
a stable hyperpolarized equilibrium (green dot) at ([Ca], x) = (−20.0,−2.7) or at ([Ca], x) = (10.0,−2.7). (e) At ([Ca], x) = (−40.122,−1.6379), a primary homoclinic
orbit to the upper saddle (red dot) gives rise to a saddle PO. This PO collapses into the stable equilibrium (green dot) to make it a saddle-focus through a subcritical AH
bifurcation above the AH curve in the parameter space. (f) A subsequent 2-spike homoclinic orbit (in red) to the upper saddle occurring at ([Ca], x) = (−10.22,−2.77).
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FIG. 7. Superimposed is a one-parameter#[Ca] sweep (in blue) of the inter-spike
intervals (ISIs) in bursting voltage traces, courtesy of Dr. A. Neiman, and the
MATCONT parameter continuation (black curve), representing the period of the
tonic-spiking periodic orbit on a logarithmic scale. This periodic orbit becomes a
homoclinic orbit to the Shilnikov saddle-focus around #[Ca] = −35.98, at the
level #Vx = −1.1, transverse to the bifurcation curve homSF in the two-param-
eter sweep in Fig. 1. There is a close agreement between the positions of the
turning points, corresponding to saddle-node bifurcations at the edges of promi-
nent stability windows within the ISI diagram. An inset at the bottom left shows a
few initial stages of period-doubling bifurcations near each fold—a feature of the
Shilnikov saddle-focus.

bifurcations, and stability windows throughout the center of the
chaotic region at #Vx = −1.1. The third route in Fig. 8 illustrates
the possible existence of a small torus canard (of under-determined
stability) at #Vx = −3.5.

Figure 6 shows six inset panels, each representing a snapshot of
a pathway across the parameter plane with #Vx = −2.7. Each panel
shows the phase space projected onto the slow variables. Across all
panels, the red dashed line [Ca]′ = 0 represents the [Ca] nullcline,
and the black dashed line x′ = 0 is the nullcline for x. Blue tra-
jectories begin near the lower stable branch of the x nullcline and
flow onto the tonic-spiking manifold. The SNIC line (dotted gray)
corresponds to a saddle-node on the invariant-circle, which is a
homoclinic bifurcation to a saddle-node that separates tonic spiking
from bursting in the fast subsystem. The gray shaded region shows
a projection of the spiking manifold MPO. This manifold was calcu-
lated by the continuation of the periodic orbit in the fast sub-system
with the MATCONT package. The average, or “gravity center” of
this manifold is roughly approximated with a trajectory where the
timescale of x is slowed down. This approximation is illustrated with
a solid gray line labeled by ⟨x⟩, and it can be functionally interpreted
as an average x nullcline. The approximation of the manifold and

its average, ⟨x⟩, were calculated with #Vx = −2.7. For details on the
calculation of the nullclines, see Appendix A.

Figure 6(a) depicts a stable tonic-spiking periodic orbit labeled
by TSPO on the slow-motion manifold MPO on the left from the SS
curve. The average of this stable limit cycle is indicated by a blue dot,
which lies on the [Ca] nullcline. This point is located near an inter-
section of the average ⟨x⟩ curve and the [Ca] nullcline. The deviation
between the intersection and the blue dot is due to approximation
error.

In Fig. 6(b), as the #Vx parameter is increased, the [Ca] null-
cline [Ca]′ = 0 tilts to the right, causing the x and [Ca] nullclines to
meet tangentially. This corresponds to a saddle–saddle bifurcation
of equilibria with three negative, one positive and one zero char-
acteristic exponents [see Fig. 3(a)]. This saddle point with a zero
characteristic exponent is indicated by the red dot.

With a further increase in #[Ca], the saddle–saddle decouples
into two saddles, upper and lower, with characteristic exponents as
shown in Figs. 3(b) and 3(c), respectively. In a very small interval
thereafter, the lower saddle undergoes a subcritical AH bifurcation
to become a stable focus as the [Ca] nullcline intersects the knee
point of the x nullcline between the stable and unstable branches
as the complex-conjugate characteristic exponents of the saddle
move leftward across the imaginary axis in the complex plane [see
Figs. 3(d)–3(f)].

A snapshot of this case where the lower saddle-focus becomes
a stable focus is pictured in Fig. 6(c). The SiN model thereafter
becomes bi-stable within a narrow band in the parameter space, with
two co-existing attractors: the stable TS PO and the hyper-polarized
quiescent state. The quiescent state is illustrated with a green dot,
to which the unstable manifold of the upper saddle converges,
illustrated by a green trajectory.

At larger values of #[Ca], the stable quiescent state dominates
the dynamics of the SiN model [see Fig. 6(d)] after the stable tonic-
spiking periodic orbit (TS PO) disappears from the MPO manifold,
leaving only a monostable equilibrium. The mechanism behind the
termination of the tonic-spiking orbit is discussed in detail below,
along the sweep at #Vx = −3.5.

On the right side of the quiescent region, the pathway at the
level #Vx = −2.7 through the parameter plane intersects a series
of homoclinic curves to the upper saddle, homSD. The trajectories
that emerge from these homoclinic bifurcations ultimately become
bursting patterns (see also Sec. VI B). Each homoclinic orbit has a
distinct number of spikes in its separatrix loop. The 0-spike and 2-
spike cases are illustrated in Figs. 6(e) and 6(f), respectively, with red
trajectories indicating these unstable homoclinic orbits. A detailed
visualization of this fractal homoclinic structure in parameter space
is provided in Fig. 5(c).

During the breakdown of tonic spiking, a critical issue arises
with the localization of the slow-motion manifold when the tonic-
spiking orbit that defines it loses normal hyperbolicity, i.e., when
it approaches a bifurcation. This disrupts the entire framework of
slow–fast dissection, where slow-motion or critical manifolds are
approximated by sweeping through attractors of the fast subsystem
while treating the slow variables as parameters. According to the
slow–fast dissection, the manifold MPO should terminate at the top
knee point where the nullcline x′ = 0 intersects the SNIC. However,
this does not hold true in the full system, which is why the slow–fast
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FIG. 8. (a) A MATCONT-based one-parameter#Ca sweep of the spiking manifold MPO begins with a subcritical AH bifurcation of the depolarized equilibrium (EQ) in the SiN
model at the level #Vx = −3.5. Next, MPO folds back with a characteristic bend corresponding to a saddle-node bifurcation of two tonic-spiking periodic orbits (TS POs),
one stable and one unstable (saddle-type) (see Fig. 2). Closer to #Ca ≃ −37, the outer stable section merges with an inner unstable one, characterized by a saddle PO
that emerges from the primary homoclinic bifurcation (the line homSD in Fig. 5). Emergent slow quasi-periodic oscillations around this small fold on MPO are a prerequisite
for the formation of a saddle (canard) torus in the phase space of the model. (b) Period of the tonic-spiking PO is plotted against the #Ca parameter. The turning point near
#Ca ≃ −37 and the increasing period indicate, respectively, the folds on the manifold MPO shown in panel (a), and that the inner unstable PO becomes a flat homoclinic
orbit to the upper saddle [see Fig. 6(e)].

approach breaks down near bifurcations of the stable tonic-spiking
orbit. Such bifurcations typically occur when one or more Floquet
multipliers of the periodic orbit cross the unit circle outward, caus-
ing convergence to or divergence from the manifold to slow down,
aligning with the timescale of the slow subsystem. This can result
from various bifurcations: a saddle-node bifurcation with a multi-
plier of +1, a period-doubling bifurcation with a multiplier of −1, or
a torus bifurcation where a pair of multipliers crosses the unit cir-
cle. Additionally, this loss of normal hyperbolicity can occur when
a periodic orbit approaches a homoclinic bifurcation to a saddle or
saddle-node.19

Following the #[Ca]-sweep at the pathway #Vx = −1.1, the
stable tonic-spiking (TS) orbit loses its stability through a period-
doubling bifurcation cascade as the #[Ca] parameter increases.
The resulting chaotic pseudo-attractor occupies the red triangular-
shaped region, interspersed with numerous stability windows, as
shown in Figs. 1 and 5(a) and 5(b). Figure 7 illustrates how the orig-
inal TS orbit transitions into a homoclinic orbit of the saddle-focus
along the homSF curve in the bifurcation diagram. This transition
suggests that the terminal orbits, which initially converge to the
cylindrical manifold MPO, begin to resemble a “treble clef” as they
make a large global turn followed by smaller oscillations around the
saddle-focus.

Figure 7 superimposes a continuation diagram (in black) of
the original TS orbit, in which its period is plotted against the con-
tinuation parameter #[Ca], atop a uni-parametric #[Ca]-sweep
of inter-spike intervals (ISIs) (in blue). Both representations align
exceptionally well, showing that the period of the tonic-spiking

periodic orbit increases logarithmically (− log ε, 0 < ε ≪ 1) as the
homoclinic bifurcation is approached, as indicated by the large peri-
ods in the middle of the panel. The “stairway to heaven” pattern,
characterized by the tightening undulations of both curves, is a
hallmark of the homoclinic saddle-focus bifurcation.19,63,64 At each
switchback, where the curves reverse in the #[Ca] direction, a fold
occurs, resulting in the emergence of a stable and unstable pair of
periodic orbits. As the #[Ca]-parameter increases, each successive
fold introduces orbits with an additional turn around the saddle-
focus, accumulating to an infinite number of turns as its period
becomes arbitrarily large near the homSF curve in the parameter
space. For long periodic trajectories, the distribution of ISIs will be
finite after discarding transients. For chaotic trajectories, however,
the distribution of ISIs becomes dense.

The inset panel in Fig. 7 provides a close-up view of the first
two folds, each followed by miniature period-doubling cascades.
The 1D sweep also reveals stability windows (white stripes) adja-
cent to saddle-node (SN) bifurcations, cutting through all rungs of
the ladder. These stability windows are characteristic of the period-
doubling route to chaos and are visible as blue strips within the red
chaotic region in the bi-parameter sweep in Fig. 1, and as white strips
in the sweeps shown in Figs. 5(a) and 5(b).

The construction of the sweep in Fig. 7 is based on measur-
ing the inter-spike intervals (ISIs) of a long trajectory. At each value
of #[Ca], a single long trajectory is run, and the ISIs are recorded.
The final state of the current trajectory is used as the initial condi-
tion for the trajectory at the next #[Ca] value. The #[Ca]-sweep
at #Vx = −3.5 illustrates the fate of the tonic-spiking orbit below
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the 2:1 resonance point with two-parameter continuation curves in
Fig. 8.

Note that #[Ca]-sweeps at larger #Vx values, such as at the
level #Vx = −1.1 throughout the chaotic region, all demonstrate
that the stability loss and termination of the tonic-spiking orbit on
the manifold MPO typically involves a cascade of period-doubling
bifurcation (see Fig. 7). However, at certain values of the #Vx

parameter, the tonic-spiking orbit undergoes a 2:1 resonance transi-
tion, where the period-doubling (PD) curve ends in Fig. 5 at #Vx

= −2.6. This codimension-2 point was identified using MAT-
CONT. The 2:1 resonance arises from a strongly reciprocal inter-
action between the tonic-spiking orbit on the spiking manifold MPO

and the unstable limit cycle emerging through the AHsub-bifurcation
on the underlying quiescent manifold MQ. There are several possi-
bilities for the unfolding of this 2:1 resonance point, where the TS
orbit has a pair of Floquet multipliers equal to −1. One scenario
involves the emergence of an invariant torus, which may be stable or
unstable.19 While we present some evidence suggesting the possible
existence of such a torus, a thorough investigation was not pursued,
as any invariant tori do not appear to play a significant role in the
onset of chaos in the SiN model.

The #[Ca] sweep at #Vx = −2.7, discussed above, occurs
below the 2:1 resonance point on the curve PD. To provide more
details, we specifically investigate the fate of the tonic-spiking orbit
for this case in a #[Ca] sweep at the lower pathway #Vx = −3.5
in Fig. 8. Its panel (a) shows the maximum and minimum voltage
values of the tonic-spiking orbit as #[Ca] is varied. At low #[Ca]-
values (far to the left of the parameter ranges shown in the figures
of this paper), the tonic-spiking orbit is born through a saddle-node
of periodic orbits (SNPO). This appears as a fold on the left side
of panel (a). The outer stable orbit becomes the tonic-spiking orbit,
while the inner unstable orbit contracts and terminates in a sub-
critical AH bifurcation. Note that this AH bifurcation occurs on a
completely different orbit from the one marked by the AHsub lines
in Figs. 1 and 5 and occurs at different #[Ca] values.

On the right side, the continuation of the tonic-spiking orbit
turns back on itself before terminating. The tiny fold, visible in the
zoomed-in inset panels, may suggest the existence of an invariant
torus. The unstable inner branch represents an unstable periodic
orbit, which emerges through this terminating fold on the far right
of Fig. 8(a).

Figure 8(b) shows that the period of this orbit can grow arbi-
trarily large after the fold, suggesting that the unstable orbit even-
tually becomes a homoclinic trajectory. The numerical difficulty of
continuing the unstable orbit beyond the final fold is evident from
the roughness of the continuation curve in panel (a).

B. Saddle-focus homoclinics near homSF

As previously noted, the curve of the primary homoclinic orbit
to the Shilnikov saddle-focus cuts through the center of the chaotic
region. Continuation analysis has identified this curve, shown in
yellow in the parameter diagram in Fig. 1 and in red in Fig. 5.
The curve originates at the codimension-2 ShH point and extends
upward through the codimensino-2 S–SF point, where the saddle-
focus transforms into a saddle with all real characteristic exponents
[see Figs. 3(c) and 3(d)], continuing beyond the depicted frame.

In phase space, the homoclinic orbit [see Fig. 4(d)] forms when
the saddle-focus intersects the reinsertion loop, where both slow-
motion manifolds, MQ and MPO, merge. To the right of the homo-
clinic curve, the saddle-focus rests on the slow-motion dune, while
to the left, it resides on the fast spiking manifold MPO.

In the SiN model, homoclinic orbits with different numbers of
spikes can exist along distinct trajectories of the unstable manifold of
the saddle-focus. These homoclinics are not secondary (or tertiary,
etc.) in the conventional sense,19 as they only return to a neighbor-
hood of the stable manifold once. Instead, these homoclinic orbits
are tightly clustered due to the strong contraction toward the spik-
ing manifold, a global feature of the flow. Each primary homoclinic
orbit induces secondary and higher-order homoclinics, with varying
numbers of turns around the unstable manifold of the saddle-focus
after each global excursion. These homoclinic structures can inter-
act significantly and even involve multiple bursts. For instance, a
secondary homoclinic orbit may exhibit three spikes during its first
global excursion, followed by a large number of turns, say seven,
around the saddle-focus, and finally four spikes on its second global
excursion before returning to the saddle-focus.

Figure 9 presents a numerical investigation into the nature
of these multiple homoclinics in the parameter plane. A one-
dimensional cut is taken through the parameter space with the #Vx

parameter fixed at −1.1, while varying the #Ca parameter. Since
the unstable manifold of the saddle-focus is two-dimensional, initial
conditions are sampled from a small circle around the saddle-focus.
This circle, x0, is constructed using the unstable eigenvectors u1 and
u2 and is parameterized by the variable θ as follows:

x0(θ) = (ε(u1 cos(θ) + u2 sin(θ)). (10)

Next, a 1000 × 1000 grid is sampled over the #Ca-parameter
and the angular variable 0 < θ < 2π . Each initial condition is
numerically integrated and events are captured at voltage maxima.
Voltage maxima above the value of the upper saddle are classified
as spikes, while those below are considered subthreshold oscilla-
tions. To focus on primary homoclinics, the trajectory is allowed
to continue until at least one spike occurs, excluding subthreshold
oscillations within the dune. Once a spike has occurred, the trajec-
tory is terminated at the next subthreshold oscillation. The number

of spikes and the L2-distance, (x2 + [Ca]2)
1/2

, from the saddle-focus
in the x- and [Ca] coordinates are recorded. For visual clarity,
distances in Fig. 9 are clipped at a maximum value.

The results from this scan reveal a single “V”-shaped pattern in
#[Ca] [Fig. 9(a)], indicating that the homoclinic bifurcation curves
corresponding to different numbers of spikes are packed extremely
closely together if they differ at all. Figure 9(b) illustrates how the
spike count of the first burst varies with θ- and #[Ca] parameters.

To further investigate this peak, we repeated the scan over
successively smaller ranges of #[Ca] values around the mini-
mum. Figures 9(c)–9(f) show the results of the high-resolution
scan with 2000 × 2000 points. Figure 9(e) provides a clear view of
the minimum across all θ values at each #Ca value, where a sin-
gular minimum is still observed. These figures demonstrate that
nearly homoclinic trajectories exhibit a full range of spike counts
depending on the initial θ value. This investigation confirms that
homoclinic orbits with different spike counts exist, and that their
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FIG. 9. A variety of homoclinic orbits with different numbers of spikes originate from different positions on the unstable manifold of the saddle-focus. The 2D (#[Ca], θ)
sweep is conducted at #Vx = −1.1, where the angular variable θ parameterizes a small circle around the saddle-focus. Trajectories flow for a single global turn, and
subsequently their distances to the saddle-focus in both the [Ca] and x directions are measured. Panel (a) shows a sharp V-shape where the distance is minimized at the
apex. The corresponding spike counts are more clearly seen from the top view in panel (b). Panels (c) and (d) show a zoomed-in view of the apex. Thick red lines mark the
values where homoclinic bifurcations occur. The black curves show the minimum distance over all θ values, and panel (e) displays this information as well. Panel (f) shows
that the apex of the V-shape comprises a variety of different spike numbers, corresponding to the color bars to the right.
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bifurcation curves are tightly packed together in parameter space.
An orbit returning to the neighborhood of the saddle-focus can, in
principle, pass through any θ value with a small perturbation as it
exits along the unstable manifold. This underscores the complexity
of the higher-order homoclinic structure, as the saddle-focus inter-
acts globally with the tight coiling of trajectories around the spiking
manifold.

It is surprising for a saddle-focus to produce multiple primary
homoclinic tangencies at the same parameter value, as this implies
that multiple tangencies exist between its unstable and stable man-
ifolds. Typically, if the manifolds of tangency move independently
in parameter space, this phenomenon would only occur at points of
high codimension. We hypothesize that, due to the coiled fast–slow
nature of the inertial manifold, tangencies may be packed together
extremely closely. This is difficult to demonstrate in numerical
simulations, especially in such a fast–slow system.

V. TOPOLOGICAL ORGANIZATION OF THE SiN MODEL

A. Attractor structure

Although chaos is known to exist near the Shilnikov saddle-
focus homoclinic, the relationship between this localized chaos and
the broader chaotic behavior across the parameter region remains
unclear. To better understand the chaotic behavior across the entire
region, we examine the topology of the model by constructing a
topological template. This involves projecting the chaotic attractor
onto a two-dimensional branched manifold called a template. The
template serves as a powerful analytical tool, enabling us to apply
techniques from symbolic dynamics to the study of complexity in
the SiN model. In order for the Birman–Williams projection65 of the
SiN system to project the phase space onto a two-dimensional tem-
plate, the Hausdorff dimension of the ω-limit set (i.e., the attractor)
must be less than three. To verify the applicability of the template
approach, we calculated the Lyapunov spectrum of trajectories on
the attractor at many parameter values using ChaosTools.jl.56

Let λ1, λ2, . . . , λ5 represent the Lyapunov spectrum. In every
case we examined, the Lyapunov dimension

sup
u∈K

dimL(ϕ
t, u) = sup

u∈K
2 +

λ1(u)

|λ3(u)|
(11)

of the flow ϕt with respect to the globally attracting set K is less
than three, typically only slightly above two due to the extreme
timescale separation between slow and fast subsystems. In accor-
dance with the Kaplan–Yorke conjecture,66 the attractor can there-
fore be expected to embed in a three-dimensional manifold, the
attractor itself having Hausdorff dimension less than three. Carrying
out numerical simulations of many trajectories near the attractor,
we find that a projection to the three variables, [Ca], x, and V, suf-
ficiently approximates the embedding to straightforwardly deduce
the topological structure of the attractor. Our motivation for choos-
ing this projection is that the slow dynamics in the [Ca] and x
variables exhibit expansion associated with the outward-spiraling
saddle-focus equilibrium, while the voltage V-value is of physiologi-
cal interest and is empirically observable in physical cells. Selecting a
three-dimensional inertial manifold projection of phase space fol-
lows the method described by Gilmore and Lefranc for studying

FIG. 10. An illustration of how layering occurs in phase space. At the bottom left,
a line on the dune MQ is indicated, terminating at the saddle-focus (SF) marked by
a red dot. Each color on the interval corresponds to a different layer, after a single
pass through MPO. The final layering is shown via the nested Smale horseshoe
at the bottom right. The blue surface represents the trajectories that spike twice
as they pass through MPO before returning to MQ. The heteroclinic connection
from the unstable manifold of the saddle-focus (red dot SF) to the upper saddle
(black dot SD) is shown as a black line. The reinsertion loop, where the rainbow
section returns to the dune, is colored purple and spans from the unstablemanifold
'−
SD ∪ '+

SD of the upper saddle SD to its furthest extent at the point marked T in
blue. T is the return point onMQ closest to SF. This point occurs at the crease of the
spike-count bands, marked by blue dots. The flow onto each layer is highlighted
by single trajectories with corresponding coloring. These trajectories are chosen
to overlap as they coil onto MPO, illustrating how the folding occurs.

strange attractors in dissipative systems with Lyapunov dimension
less than three,67 avoiding the need to carry out the intractable task
of explicitly performing the Birman–Williams projection.

Figure 10 illustrates the general structure of the chaotic attrac-
tor in a 3D phase space. To arrive at this understanding of the
topological structure of the phase space, we iteratively refined this
illustration by the use of four tools:

• MATCONT was used to locate equilibria, periodic orbits,
homoclinic structures, and bifurcations of each.

• Trajectories were numerically integrated via Differential
Equations.jl68 to interactively visualize flows in the phase space.

• One-dimensional return maps were calculated to study the
variety of bursting behaviors exhibited on the attractor.

• Paper models were constructed by hand to understand how
spiking trajectories layer atop one another.

The horizontal direction corresponds to the [Ca] variable,
while the vertical direction corresponds to the x variable. At the
bottom, trajectories on the dune MQ flow slowly and laminarly
clockwise around the saddle-focus equilibrium SF. At the top, tra-
jectories rapidly wind around the topological cylinder MPO as they

Chaos 35, 033120 (2025); doi: 10.1063/5.0248001 35, 033120-15

Published under an exclusive license by AIP Publishing

 07 M
arch 2025 17:08:47



Chaos ARTICLE pubs.aip.org/aip/cha

gradually progress to the right. The slow-motion manifolds MQ and
MPO come together in two locations: at left, the rainbow line labeled
with spike counts greater than 0 constitutes the region of transition
from quiescent or refractory behavior on MQ to fast spiking activity
on the spiking manifold MPO; at right, the purple “reinsertion loop”
constitutes the cessation of spiking activity on MPO and a transition
to slow subthreshold activity on MQ. Note that only those curves
with arrowheads are trajectories in the phase space; for example, the
reinsertion loop is not a trajectory.

The farther from the saddle-focus SF a trajectory is when it
transitions from MQ to MPO, the greater the number of spikes
observed in a burst—i.e., the number of times the trajectory winds
around MPO before returning to MQ via the reinjection loop. The
rainbow line at left in Fig. 10 is partitioned by segments of roughly
equal length, each corresponding to a different number of spikes.
We refer to these segments as “spike-count bands.” The points on
the boundary of each spike-count band belong to the stable mani-
fold of the upper saddle equilibrium SD; therefore, the trajectories
flowing forward from any two such boundary points are strongly
contracted against one another against the spiking manifold MPO.
In fact, the entirety of a spike-count band will flow forward and
layer underneath each band associated with a lesser number of
spikes, pressing against MPO so quickly that the flows of any two
bands cannot be visually distinguished in numerical integrations.
This outside-to-inside scrolling structure of the attractor is common
in neuronal models69 and has also been observed in laser models,70

obtaining a moniker of “gâteau roulé” or “Swiss-roll attractor.”
When transitioning from spiking activity on MPO to subthresh-

old activity on MQ, trajectories emanating from a given spike-count
band are folded and creased about the tangency point T as they
are pressed rapidly against the underside of MQ at the reinsertion
loop. Inside the reinsertion loop, the forward flows of the countably
many spike-count bands are tightly layered; the magnified callout
diagram at the bottom right in Fig. 10 shows this layering. The folded
spike-count bands subsequently flow clockwise along MQ back to
the rainbow line at left, producing several nested Smale horseshoes.

Notably, the attractor is bounded on MQ by the forward flow
of the tangency point T and whichever of the branches '±

SD of the
one-dimensional unstable manifold of the upper saddle equilibrium
SD lies furthest from the saddle-focus SF. After an initial transient
burst, all trajectories starting on the rainbow line at left in Fig. 10 will
begin winding around MPO between '±

SD and the forward flow of T
upon subsequent bursts. This implies that the quantity of spikes per
burst that may be observed in the SiN model for a given parameter
value—after relaxation—are limited to the range between that of the
first bursts observed in the forward flow of T and a neighborhood of
SD. Hence the placement of the reinsertion loop on MQ is the main
qualitative feature of the attractor in the SiN model, which varies as
parameters are manipulated.

Upon the homSF bifurcation curve, there exists a trajectory
homoclinic to the saddle-focus equilibrium SF. Thus, the tangency
point T of the reinsertion loop must lie exactly on the saddle-focus
SF at these parameter values. Figure 11 shows the movement of the
reinsertion loop in a parameter neighborhood of the homSF curve.
As #[Ca] is increased, T moves upward in the x variable, while
decreasing #[Ca] moves T downward. When #[Ca] is decreased
from the parameter value lying on homSF, T lies below SF and

FIG. 11. Illustration of the reinsertion loop passing through the saddle-focus (SF)
in phase space as the parameters cross the homSF bifurcation curve. The purple
curves indicate the location of the reinsertion loop—joining the spiking manifold
MPO to the dune MQ—at different values of the parameter #[Ca]. The tangency
point on the reinsertion loop, labeled Ti , is marked by blue dots (or upper half-dots
for T3,4). T1 is the location of the tangency point when #[Ca] is selected to the
right of the homSF bifurcation curve, while T2 occurs at the homSF bifurcation.
The positions of T3 and T4 occur to the left of homSF, where the tangency point
flows to the left initially. Trajectories just to the left of T3,4 will go for a long excursion
before reinsertion to MQ, whereas this was not the case for T1,2. This has the effect
of “erasing” a part of the original reinsertion loop, illustrated by dashed segments
between T3,4 and T

′
3,4. For T4, the trajectory spikes before its first return to the

reinsertion loop on MQ, completely occluding the orientation-preserving branch
from accessibility by any trajectory in the attractor.

SF is an unstable focus on MQ. Hence, to the left of the homSF
curve in the (#[Ca], #Vx)-parameter plane, no trajectory starting
on the reinsertion loop can return to the segment of the upper half
of the reinsertion loop between the tangency point T and the first
return T′ of the tangency point to the reinsertion loop. If the tra-
jectory starting at T exhibits one or more spikes before returning
to the reinsertion loop, the entire top half of the reinsertion loop
becomes inaccessible and the bottom half will become inaccessible
on the right side between T′ and the upper saddle equilibrium SD.
This occlusion is indicated by a dashed segment between T3,4 and
T′

3,4 on the reinsertion loops in Fig. 11. Later, we will show that this
occlusion causes one-dimensional return maps for the SiN model to
become discontinuous.

Figure 12 is the template obtained by the Birman–Williams
projection of the phase space when there are at most four spikes
observed in the attractor. The template comprises a gray branch
representing MQ and a rainbow-colored array of branches associ-
ated with the flow from the rainbow line of Fig. 10 around the
spiking manifold MPO to the reinsertion loop during a burst. The
branches are conjoined at two branch lines: the upper branch line
is associated with the rainbow line at left in Fig. 10 and the lower
branch line is associated with the reinsertion loop at right in Fig. 10.
This simplified representation of the dynamics as a semiflow on a
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FIG. 12. Template describing the dynamics of the SiN model including trajecto-
ries with up to four revolutions around the spiking manifold MPO. Labels on the
upper branch line correspond to the number of times trajectories wind around
MPO as they traverse the Swiss roll, i.e., the number of spikes that occur in a
burst. Lower spike counts are found on the outer layers of the reinsertion back
onto the dune MQ, while higher spike counts are nested deeper within the folded
sheets—this is reflected in the order in which branches insert into the lower branch
line. This template represents the fully expansive casewhere the attractor in phase
space includes a trajectory homoclinic to the upper saddle equilibrium, spiking four
times, as well as a trajectory homoclinic to the saddle-focus equilibrium for each
spike count.

branched-manifold template makes it much easier to understand
how trajectories on the attractor intertwine with one another, con-
strained to flowing clockwise around the template along its many
branches.

B. General template

The template of Fig. 10 can be greatly simplified. In param-
eter regions where the attractor contains bursts of up to n spikes,
the template requires 2n + 1 branches. No template of this kind can
serve as a general model for bursting dynamics, as permitting an
unbounded quantity of spikes per burst would make the template
non-compact. We introduce a recurrent branch, accommodating
an arbitrary number of spikes per burst in a single template. The
branches of this general template induce a partition for gener-
ating symbolic representations of the dynamics across parameter
space. The general template is related to the original through a tem-
plate inflation mapping the original template diffeomorphically onto
a subset of the general template and preserving the structure of
symbolic itineraries;71 however, we omit the details of this inflation.

FIG. 13. The general template may accommodate any number of spikes.
The branch labeled A corresponds to sub-threshold oscillations, while B wraps
over MPO. Branch D continues to spike, while C leaves the spiking manifold and
reinserts to MQ. Branch E corresponds to the orientation-preserving front seg-
ment of the reinsertion loop, while F corresponds to the orientation-reversing
back segment. The points SF and SD mark the saddle-focus and upper saddle,
respectively. The label T indicates the tangency point. Striped shading represents
subsets of the template that may be inaccessible for particular parameter values.

Figure 13 illustrates the general template, which is reduced to
six branches. The split between the A and B branches corresponds
to either completing a subthreshold oscillation on the dune MQ or
moving onto the spiking manifold MPO.

In the original template, each successive branch has an addi-
tional half-twist. This twisting action can be seen in the upper-right
portion of the template in Fig. 12. In the general template, corre-
sponding twists are accomplished during recurrent passes through
the branch labeled by D. Each pass through D represents an addi-
tional full twist corresponding to an extra spike. The branch C rep-
resents leaving the spiking manifold MPO. This branch is not strictly
necessary; the general template could be simplified by eliminating
branch C and consolidating the two branch lines at the bottom
of branches B and C into a single branch line from which three
branches (F, E, and D) emanate. This simplification would result in
a non-binary tree structure. Structuring the template as a binary tree
simplifies symbolic analysis. Additionally, the half-twist of branch C
makes the template easier for humans to understand by preserving
a clear correspondence between branches and recognizable features
of phase space.

Branches E and F serve to distinguish the orientation-
preserving branches associated with trajectories in the full phase
space, which reinsert to the dune MQ on the front side of the
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FIG. 14. Illustration of how symbols are generated from voltage traces. The sym-
bols correspond to the sequence of traversed branches on the general template.

spiking manifold MPO, and the orientation-reversing branches asso-
ciated with trajectories, which reinsert behind MPO, respectively.
The splitting point on the branch line from which E and F flow
corresponds to the tangency point of the reinsertion loop where
creasing of a spike band occurs, labeled T in Fig. 10. The lower
branch line stretches between the saddle-focus (SF) and whichever
of the branches '±

SD of the unstable manifold of the upper saddle
(SD) lies furthest from the saddle-focus equilibrium SF.

The symbolic itinerary of any trajectory is directly associated
with the sequence of traversed branches in the associated semiflow
on the template of Fig. 13. We use double brackets [[x]] to denote the
symbolic itinerary of a trajectory or point x in the phase space of the
SiN model, Birman–Williams projected onto the template of Fig. 13,
becoming a semiflow from an initial condition located on the upper
branch line.

From a small set of symbolic itineraries associated with specific
initial conditions, we can determine how to shade the template for
a particular parameter value and directly calculate the topological
entropy of the flow in the phase space of the SiN model. The remain-
der of this section specifies concrete computational procedures to
calculate an efficient proxy for the topological entropy, measuring
the complexity of the dynamics for a given parameter value.

We compute the symbolic representation of a trajectory in the
SiN model directly from a voltage time series and its time derivative.
Figure 14 provides an example of the qualitative features of a volt-
age trace corresponding to the sequence of branches traversed by a
semiflow on the template of Fig. 13. The symbols in the itinerary
correspond to the following features apparent in the voltage trace:

1. A: Subthreshold oscillation.
2. B: Final voltage minimum before a spike.
3. C: Final spike in a burst.
4. D: Non-final spike in a burst.
5. E: Post-burst repolarization, followed by depolarization.
6. F: Post-burst repolarization, followed by hyperpolarization.

In effect, each burst with n spikes produces a symbolic sequence
with one B-symbol, n − 1 many D-symbols, one C-symbol, and
either an E or F, all in that order. The final symbol is determined
by whether the voltage value increases (E) or decreases (F) immedi-
ately upon the end of the burst. Between bursts, the only symbolic
sequences, which may occur are due to subthreshold oscillations:
sequences [AA. . .AA] of any (potentially zero) length.

C. Inadmissible regions of the template

Although the compact template shown in Fig. 13 provides a
general characterization of the trajectories of the SiN model in a
neighborhood of its attractor, for a given parameter value of the
system it may be the case that certain trajectories on the general
template are inadmissible.

For example, in the region of stable 2-spike bursting, all but
finitely many itineraries must exhibit eventually periodic behav-
ior, converging under left-shifts to the periodic itinerary [BDCE
BDCE. . .].

To establish which portions of the general template are acces-
sible for a given point in the parameter plane, we construct an
ordering of trajectories such that trajectories which come first in the
ordering always fall to the left on the upper branch line compared to
trajectories on the right. For convenience, we construct this ordering
by assigning each sequence of symbols to a number in the interval
[0, 1]. We refer to this number as an “itinerary address.”

We assign the value 0 to the saddle-focus line and 1 to the upper
saddle point. To determine the coordinate of a trajectory, we succes-
sively bisect the interval (0, 1), choosing the left or right subinterval
at each step based on the branch the trajectory takes in the binary
tree of possible paths. A truncated binary tree of possible branches
and its relationship to the itinerary addresses between (0, 1) is shown
in Fig. 15.

The assignment of symbols to subintervals depends on the
accumulated orientation reversals in a subsequence. The accumu-
lated orientation of a subsequence changes sign every time an
orientation-reversing branch (C or E) is encountered. Therefore,
when we bisect an interval, we assign the left subinterval first in
alphabetical order if the total number of orientation flips in the sub-
sequence prior to that symbol is even. We assign in reverse alphabet-
ical order when the total number of orientation flips is odd. Trajecto-
ries that reach splitting points are identified with the midpoints. This
addressing scheme agrees with the signed lexicographical ordering
(≻) on itineraries.

FIG. 15. Diagram showing how symbolic sequences correspond to addresses
in the interval [0, 1]. The interval is successively bisected by the splitting points
of the template. At each binary choice as a trajectory flows through the template,
the left branch is assigned to the lesser subinterval, and the right is assigned to
the greater subinterval.
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For instance, consider a trajectory that passes over branch A,
revolves clockwise around the template upon the unlabeled branch,
traverses B, spikes twice by traversing D and C once each, and finally
returns to the dune, MQ, through E. To construct the corresponding
addressing subinterval of [0, 1], we follow the itinerary taken by the
trajectory:

• A: Select the left half,
(

0, 1
2

)

.

• B: Select the right half,
(

1
4
, 1

2

)

.

• D: Select the right half,
(

3
8
, 1

2

)

.

• C: Select the left half,
(

3
8
, 5

16

)

. Orientation flipped so that subse-
quent symbols are treated in reverse lexicographical ordering.

• E: Select the right half,
(

9
32

, 5
16

)

. Orientation flipped so that sub-
sequent symbols are treated in lexicographical ordering again.

Similarly, ignoring the first partial burst in Fig. 14 correspond-
ing to the symbolic subitinerary [DDDDCF], one can determine
from the itinerary corresponding to the depicted voltage trace that
this trajectory would have crossed the upper branch line of the
template at an address between 1,826,240

222 ≈ 0.435 409 5 and 1,826,241
222

≈ 0.435 409 8.
For the purpose of determining the shading of the template, it

suffices to calculate the addresses of the forward-iterated boundaries
of certain branches. By convention, we refer to these boundaries
as the “right” and “left” boundaries with respect to the semiflow
through the template. For a branch with zero twists, this means the
“left” boundary is on the right side of the illustration in Fig. 13. For
example, the left boundary of the A branch appears on the right-
hand side of the branch as depicted, while the left boundary of the E
branch appears at the top-right and bottom-left sides of that branch
in the figure.

The particular branch boundaries that are shaded are chosen to
constrain trajectories on the template in accordance with the topol-
ogy of the attractor in phase space. There are generally two different
ways in which the behavior of trajectories on the attractor is con-
strained: (1) The maximum number of spikes per burst for any
trajectory is finite, bounded by the number of spikes observed in the
first burst of the maximal itinerary max {[['−

SD]], [['+
SD]]}, associated

to a branch of the unstable manifold of the upper saddle, under the
signed lexicographical ordering. (2) Trajectories in the attractor can-
not reach the saddle-focus in parameter regions that are far from the
saddle-focus homoclinic bifurcation curve, homSF; this is governed
by the placement of the tangency point T of the reinsertion loop on
the dune MQ in relation to the saddle-focus equilibrium SF.

The maximum number of spikes per burst is limited by the two
outgoing separatrices ('−

SD and '+
SD) of the upper saddle SD. Every

branch boundary that terminates at the right side (away from the SF)
of the lower branch line is affected: these are the left side of A, the
right side of E, and the left side of F. The shading of left boundary
of A and the right boundary of E are associated with the itinerary
of '−

SD, [['−
SD]], while the shading on the left boundary of F is associ-

ated with [['+
SD]]. There is no way to know a priori which of [['−

SD]]
or [['+

SD]] is lesser; these may appear in either order, or in the same
place, on the lower branch line.

To represent in the context of semiflows on the template the
inaccessibility of parts of the dune MQ near the saddle-focus SF by
the attractor, we shade branches E and F at those boundaries, which

terminate at the lower branch line at the point labeled SF. On the
right side of the saddle-focus homoclinic curve homSF in the param-
eter plane, the entire upper and lower halves of the reinsertion loop
are fully accessible to trajectories in the attractor, as shown by the
purple curve touching the point labeled as T1 in Fig. 11. In this case,
the shadings for the left boundary of E and the right boundary of
F agree; they correspond to the same itinerary address, calculated
from the forward iterates of the tangency point T1. Upon passing
over homSF from right to left, the two boundaries separate. Just
to the left of the homSF curve, the shading at the right boundary
of branch F still corresponds to [[T3]], but the shading at the left
boundary of branch E corresponds to [[T′

3]], which is the same as
the itinerary [[T3]] without the first burst—the initial subitinerary of
[[T3]] is removed up to and including the first occurrence of branch
A, E, or F to obtain the itinerary [[T′

3]]. In practice, this alleviates the
requirement of computing an additional trajectory to determine the
shading of the template.

For parameter values far to the left of homSF, branch E
becomes entirely inadmissible, so we shade the entirety of E so that
the left half of branch C is inadmissible (one can also explicitly shade
the left side of branch C so that only neighborhoods of boundaries
of branches are shaded). In this case, the entire upper half of the
reinsertion loop (in this case touching T4 in Fig. 11) becomes inac-
cessible. The bottom half of the reinsertion loop is occluded to the
right of T4

′, so that no spiking trajectory returns to the dune MQ

further away from the saddle-focus SF than this point. Hence, the
left side of branch F must be shaded at least up to the address asso-
ciated to the itinerary [[T′

4]]. However, recall that the shading at the
left boundary of F is also associated with [['+

SD]]. This conflict is rec-
onciled by shading the left boundary of F at the address of the lesser
of [['+

SD]] and [[T′
4]] under the signed lexicographical ordering.

D. Quantifying complexity

So far, we have described the paths under the semiflow on the
template of Fig. 13 associated to trajectories in the phase space of
the SiN model by encoding these trajectories as symbolic itineraries
on branch labels from the template. An equivalent, yet more con-
cise symbolic encoding of a bursting trajectory will be referred to
as a signed spike-count sequence (SSCS). This encoding applies for
any itinerary beginning with A or B, so that initial conditions on
the upper branch line are assigned a unique SSCS according to their
forward semiflows.

The number 0 is assigned to a subthreshold oscillation, which
flows through branch A. For a burst, the total number of spikes is
recorded, corresponding to the number of occurrences of symbols
C and D. If the burst ends with an E-symbol, the number of spikes
observed during the burst is committed to the SSCS; this value is
positive, associated with the fact that the branches traversed preserve
orientation in the signed lexicographical ordering. On the other
hand, if the burst ends with an F-symbol, the negation of the num-
ber of spikes occurring in the burst is committed to the SSCS; the
fact that this value is negative indicates that the branches traversed
are in total orientation-reversing. Then, again omitting the initial
partial bursting subitinerary in Fig. 14 corresponding to the sym-
bolic subsequence [DDDDCF] as well as [BDDD] for the incomplete
final burst, the symbolic sequence [ABDCEBDDCEBDCEBDCF]
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FIG. 16. Signed spike-count sequence (SSCS) in red corresponding to a long, chaotic voltage time series. Depicted in black is the V time series of the '−
SD trajectory at

value (−38.285,−0.9) in the (#[Ca],#Vx)-parameter plane.

corresponds to the SSCS [0, 2, 3, 2, −2]; the remainder of the
itinerary for this trajectory, if integration and encoding were con-
tinued indefinitely, would produce an infinite SSCS. Of course, the
SSCS encoding scheme cannot represent trajectories which converge
to a tonic-spiking regime with itinerary [DDD. . .].

Figure 16 depicts a long, chaotic voltage time series having
SSCS [1, 0, 4, 1, 0, 1, −1, 1, 0, 2, −2, −1, −14, . . .]. The events
detected in the time series V(t) corresponding to the recognition of
a new signed spike count in the SSCS are marked in red.

Appendix D describes the encoding algorithm for converting
voltage time series data from numerically integrated trajectories to
SSCSs.

Because we are able to determine the symbolic itineraries asso-
ciated with each of the critical trajectories '±

SD and those flowing for-
ward from T and T′—each corresponding to the itinerary of a critical
point of the one-dimensional return map described in Sec. VI—it is
possible to calculate the topological entropy of the SiN model for a
particular parameter value from the SSCSs associated with each of
these trajectories; this approach to quantifying the dynamical com-
plexity of the model comes from the Milnor–Thurston kneading
theory.72 However, because the upper saddle equilibrium is highly
unstable and the branches '±

SD of its unstable manifold each tend to
traverse the entire attractor (including near the tangency point T), it
is possible to simplify the calculation of the topological entropy by
eliminating its dependence on the symbolic itinerary associated to
initial conditions T and T′.

While it is possible to perform this simplified calculation
explicitly, to do so would extend beyond the scope of this paper;
we will instead use an auxiliary method to illustrate the dynami-
cal complexity throughout the (#[Ca], #Vx)-parameter plane. This
auxiliary method will be to consider the entropy rates of symbolic
itineraries [[T]], [[T′]], [['−

SD]], [['+
SD]] of critical trajectories in the

phase space associated to the shading in the template of Fig. 13; there
is not a direct correspondence between these individual entropy
rates and topological entropy of the SiN model, but they should
be highly correlated. Because the trajectory '−

SD tends to lie close
to '+

SD by virtue of both the fast–slow timescale separation and the
observation that '−

SD tends to eventually traverse most of the attrac-
tor in the phase space, we consider only the symbolic itinerary of
the trajectory '−

SD. As symbolic itineraries are in one-to-one corre-
spondence with SSCSs, we suggest that the entropy rate of the SSCS
associated with '−

SD is an effective measure of the complexity of the
dynamics.

Past literature has indicated the suitability of the Lempel-Ziv
1976 (LZ76) complexity59 in approximating the entropy rate of neu-
ronal voltage traces,73 although such studies considered the entropy

rate of sequences encoding spiking behavior in fixed time bins in lieu
of a generating partition for neuronal bursting dynamics. To esti-
mate the entropy rate of the SSCS, we calculate the LZ76 complexity
of the SSCS of '−

SD in parameter scans.
Figure 5(b) shows in red the LZ76 complexity (above a cer-

tain threshold value) of the SSCS associated with '−
SD in a scan over

the (#[Ca], #Vx)-parameter plane. These LZ76 complexities appear
to highlight the parameter regions, which have positive leading
Lyapunov exponent, as seen in Fig. 5(a); thus, the LZ76 complexi-
ties of these SSCSs effectively locate chaotic parameter values, with
some false positives between successive period-doubling curves near
spike-adding transitions. Many of the stability windows observed in
the Lyapunov scan can be clearly observed in the LZ76 scan as well.
This close agreement between the Lyapunov and LZ76 scans serves
as evidence that the SSCS symbolic encoding of trajectories is an
effective representation of dynamical behavior, further supporting
the use of templates in finding a partition for the phase space of the
SiN model.

VI. 1D RETURN MAPS OF AN INTERVAL

The onset of chaos to the right of the central homoclinic curve
homSF (see Figs. 1 and 5) can be analyzed using one-dimensional
return maps that map a cross section of the slow-motion dune back
onto itself. The construction of these maps is detailed in Fig. 17(a).
The chosen cross section is placed along a straight line connect-
ing the origin to the saddle-focus (lower saddle), which sufficiently
approximates the [Ca] nullcline. Note that using calcium minima,
determined by the conditions [Ca]′ = 0 and [Ca]′′ > 0, will yield
similar return maps. Regardless of how the cross section is selected,
its essential property is that it should be nowhere tangent to the
trajectories on the dune MQ.

We note that in Ref. 47, which analyzed a multi-bursting neu-
ronal model, a similar cross section for generating 1D point-wise
return maps was chosen along a line corresponding to a saddle-node
bifurcation of the fast subsystem. This bifurcation line demarcates
the boundary separating tonic-spiking from quiescent states in the
2D slow phase subspace.

Maps for this study are taken from a straight line connecting
the origin, [Ca] = 0, x = 0, to the saddle-focus. The construction
process of the computed 1D return maps includes the following
steps:

1. Create a sample by linearly interpolating 500 ([Ca], x)-pairs
between the origin and the saddle-focus, ([Ca]SF, xSF).
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FIG. 17. Panel (a) shows the construction of a typical 1D return map of an interval of phase-space trajectories that originate and terminate on a cross section drawn
between the origin and the position of the saddle-focus (red diamond at the crossing of the x and the [Ca] nullclines) in the slow ([Ca], x) projection. The range of the map is
determined by the one-dimensional outgoing separatrices from the upper saddle (marked with a black star). Panel (b) depicts the one-dimensional return map f : Vn → Vn+1

of an interval with 13 self-similar structures for#Vx = −1.08 and#[Ca] = −36.3, populated with chaotic transient iterates (red dots). The crossings of the dashed 45◦ line
with the map graph indicate (mostly unstable) fixed points. The coloring of the 1D map corresponds to the coloring of the phase-space trajectories in panel (a). Three panels
below present the corresponding time series of a chaotic trajectory: voltage trace in panel (c), [Ca] trace in panel (d), and the angle θ trace, used for calculating return events
on the cross section, in panel (e). Zeroes of the θ -variable closely approximate the position of the [Ca] nullcline, as marked by the red dots where the trajectory intersects
the cross section from below in the projection shown in panel (a).

2. Estimate the fast subsystem variable initial conditions by solving
for fast subsystem equilibrium. This places the initial conditions
near MPO.

3. Integrate trajectories from these initial points for at least 50 ms
and until they intersect they cross section after one global excur-
sion.

4. This crossing is computed with low-to-high zero-crossings of the

test function θ = tan−1
(

x(t)
[Ca](t)

)

− tan−1
(

xSF
[Ca]SF

)

.

5. Solve again for the fast subsystem equilibria at the final state of
the [Ca]- and x-variables. This resolves error that arises due to
the fact that the initial conditions are not exactly on MQ.

The return map plots are generated by plotting the initial
condition voltage values against the return voltage values, yield-
ing the map f : Vn 1→ Vn+1. This choice of coordinate is chosen
only because voltage is commonly observable in neural systems. In
general, any coordinate, such as [Ca], will produce a topologically

Chaos 35, 033120 (2025); doi: 10.1063/5.0248001 35, 033120-21

Published under an exclusive license by AIP Publishing

 07 M
arch 2025 17:08:47



Chaos ARTICLE pubs.aip.org/aip/cha

map, so long as it regularly parameterizes the return section as a
one-dimensional submanifold of the dune.

The return maps have a characteristic structure consisting of
a succession of “arches” [see Fig. 17(b)], each corresponding to a
burst with a distinct number of spikes. Depending on the parame-
ter values, the chaotic bursting traces and the corresponding maps
will have a smaller number of accessible arches. See the bifurcation
diagram in Fig. 5(c), which is partitioned into zones indicated by the
largest possible numbers of spikes per burst within.

The maximum of each arch occurs when trajectories are located
closest to the saddle-focus along the return section. The minima
between arches correspond to unidirectional heteroclinic connec-
tions from the saddle-focus to the upper saddle. The unstable man-
ifold of the upper saddle forms the boundary of the dune in phase
space and, thus, bounds from below the range of the return map
as well. On the saddle-focus homoclinic curve, homSF, the saddle-
focus lies on the reinsertion loop where the spiking manifold MPO

curls beneath and merges back onto the dune MQ. To the left of
the homoclinic curve, the saddle-focus moves across the tangency
point of the reinsertion loop further away from the spiking manifold,
downward on the dune.

To illustrate how to interpret these maps, we consider Fig. 17(b)
as an example. This map represents the SiN model in the chaotic
region, specifically on the homoclinic homSF curve. Starting from
the right, the first fixed point (FP) on the map occurs where it
becomes tangent to the 45◦ line (bisectrix); by construction, this
fixed point corresponds to the saddle-focus, depicted as a thick red
diamond on the dune in Fig. 17(a). The red dotted line at the top
of the frame represents the pre-images of the saddle-focus; thus, any
point on the map that intersects this dotted red line is associated
with a homoclinic orbit to the corresponding fixed point. The first
monotonically increasing segment of the map, before the first local
minimum on the left, corresponds to the oscillatory flow on the slow
dune near the saddle-focus, terminating at the sub-threshold (i.e.,
zero-spike) heteroclinic connection to the upper saddle. The first
arch to the left of the subthreshold monotonic section, characterized
by a single local maximum, corresponds to regular or chaotic volt-
age traces with a single spike. The next arch to the left corresponds
to two-spike bursting trajectories, and so forth, as reflected in the
voltage trace shown in Fig. 17(c), where the number of spikes per
burst varies unpredictably. At each local minimum (cusp-shaped)
between arches, the map exhibits a discontinuity due to slight differ-
ences in how the upper and lower outgoing separatrices of the unsta-
ble manifold of the upper saddle return to the section. These two
unstable separatrices in phase space are plotted as green curves in
the ([Ca], x) phase-space projection in Fig. 17(b). The point where
the two separatrices hit the return section is illustrated at the bottom
of Fig. 17(b) by a dotted green line marked with a green star. Note
that at these parameter values within the chaotic region, the sepa-
ration between the upper and lower branches is too small to notice,
but this is not always the case. Each arch of the one-dimensional
interval map is composed of two orientation-preserving branches:
one monotonically increasing and one decreasing. Each branch cor-
responds to a separate strip of the topological template shown above
and is twisted once for each spike (see Fig. 12).

The sequence of repeated arches continues to the left of the plot
frame in Fig. 17(b). However, these additional branches or arches

may not be accessible because they extend beyond the reach of the
unstable separatrices of the upper saddle. The point where the dotted
green line meets the identity line marks the most extreme accessi-
ble value. Additional details on how to interpret key features of the
map relevant to specific bifurcations are included in their respective
sections below.

A. Homoclinic tangencies of periodic orbits

The lower boundary of the chaotic region in the (#[Ca], #Vx)
parameter plane (Figs. 1 and 5) is delineated by the homPOt

curve. This curve signifies the onset of homoclinic tangen-
cies, where the tubular stable manifold of a saddle periodic
orbit—emerging from the subcritical Andronov–Hopf bifurcation
(AHsub)—first contacts its unstable manifold (see Fig. 4). Below
the AHsub bifurcation curve, a stable equilibrium state (focus)
exists, which can coexist with chaotic dynamics above the homPOt

curve.
In this region, the stable manifold of the saddle periodic orbit

separates the basin of attraction of the chaotic attractor from that of
the stable focus within the five-dimensional phase space. The unsta-
ble manifold of this saddle periodic orbit extends into the chaotic
attractor over time. As the saddle periodic orbit increases in size
farther from the AHsub curve, its stable manifold eventually inter-
sects the basin of the chaotic attractor along the homPOt curve. For
parameter values below this curve, chaotic behavior becomes tran-
sient, and the system ultimately settles into the basin of attraction of
the stable equilibrium state.

Figure 18 presents several panels that showcase matching
return maps and corresponding phase portraits of the slow dynam-
ics near the codimension-2 Shilnikov–Hopf (ShH) point in the
parameter space. In the one-dimensional maps, the height of each
arch indicates the closest approach to either the saddle-focus or the
stable fixed point (FP)—depicted by the red dot—that is accessible
from the chaotic attractor.

Figures 18(a1) and 18(a2) illustrate the formation of two homo-
clinic orbits associated with the Shilnikov saddle-focus at parameter
values #[Ca] = −36.6 and #Vx = −1.078. In these panels, the
unstable fixed point (FP), corresponding to the saddle-focus, is
located in the upper corner of the one-dimensional map. The homo-
clinic orbits can be identified by the alignment of the peaks of the
arches with the dotted red line, which represents the preimages of
the saddle-focus.

As we move downward along the red homSF curve in param-
eter space, the derivative of the map at the saddle-focus FP
increases to +1. At this critical point, the map becomes tangent to
the 45◦ identity line, marking the Shilnikov–Hopf (ShH) bifurca-
tion. Below this tangency point, at the subcritical Andronov–Hopf
bifurcation (AHsub), a new FP (orange dot) emerges in the map.
This FP represents a saddle periodic orbit formed through the
Andronov–Hopf bifurcation.

Directly below the ShH bifurcation point, the Andronov–Hopf
bifurcation immediately suppresses chaotic behavior, leading to a
stable, hyperpolarized state that dominates this region. On either
side of the homSF curve, after transitioning through the AHsub bifur-
cation, the saddle periodic orbit has room to grow before interacting
with the chaotic attractor. In the maps, the available space for the

Chaos 35, 033120 (2025); doi: 10.1063/5.0248001 35, 033120-22

Published under an exclusive license by AIP Publishing

 07 M
arch 2025 17:08:47



Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 18. Unfolding of the codimension-2 Shilnikov–Hopf bifurcation illustrated with selected phase-space trajectories and corresponding one-dimensional (1D) return maps.
The central panel is an unfolding sketch including three principal bifurcation curves—AH, homSF, and homPOt (for reference, see the sweep in Fig. 1). The outer panels are
organized in pairs labeled (a1)–(d2); each pair corresponds to a single parameter value and is represented by the corresponding return map along with the ([Ca], x)-phase
portrait. In the maps, the dotted red line marks the position of the fixed point (FP) (red dot), representing either the Shilnikov saddle-focus when the latter is unstable or a
stable focus when the red FP is stable. The dotted orange line marks the location of the unstable FP (orange dot), representing the saddle periodic orbit (PO) emerging
through the subcritical AH bifurcation. Sampled trajectories are shown in gray in the maps and phase portraits. For the phase-space trajectories pictured in the corner panels,
red portions of the trajectory indicate convergence to the stable focus. The [Ca] and x nullclines in the phase planes are drawn as dotted red and black curves, respectively.
Panels (a1) and (a2) illustrate the homoclinic orbit of the Shilnikov saddle-focus occurring on the bifurcation homSF curve. Panels (b1) and (b2) demonstrate the coexistence
of a chaotic attractor and a stable equilibrium state, separated by the unstable PO (orange FP) that arises below the AHsub curve in the parameter space. Panels (c1) and (c2)
illustrate the onset of homoclinic tangencies on the homPOt curve. Panels (d1) and (d2) show how chaos begins to vanish after the homoclinics to the saddle PO become
transverse (above the orange FP), and transient trajectories find their way toward the stable focus (red dot).

saddle periodic orbit to expand without interfering with the chaotic
attractor is reflected by the vertical separation between the peaks
of the arches and the dotted red line, which indicates the height
corresponding to the saddle-focus.

The pre-images of the emerging FP in the maps are highlighted
by a dotted orange horizontal line, representing the stable manifold
of the saddle periodic orbit. Intersections between the map and the
dotted orange line indicate homoclinic orbits to the saddle periodic
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orbit (orange FP). If the critical points of the arches do not reach
the height of the saddle-focus (unstable red FP), homoclinic con-
nections to the saddle periodic orbit are absent, and the chaotic
attractor persists. However, when the critical points of the arches
surpass this threshold, the dynamics of the system change, allowing
trajectories to escape the chaotic attractor and converge to the stable
focus (stable FP), leading to the suppression of chaos.

Figures 18(b1) and 18(b2) computed at #[Ca] = −2.75 and
#Vx = −2.04 depict the region situated below the AHsub curve and
above the homPOt curve, where bistability between chaotic dynam-
ics and a quiescent stable focus occurs. In this region, the height of
the fixed point (indicated by the orange dashed line) is above the
peaks of the arches in the map, resulting in no interaction between
the chaotic attractor and the stable focus.

Along the homPOt curve, the peaks of the arches in the
map become tangent to the dashed orange line, as illustrated in
Figs. 18(c1) and 18(c2). This represents the critical case where the
stable and unstable manifolds of the saddle periodic orbit (PO)
form a non-transverse intersection. Intersections between the map
and the dashed orange line indicate homoclinic orbits to the sad-
dle periodic orbit (orange fixed point). The example in Figs. 18(c1)
and 18(c2) is calculated at #[Ca] = −1.69 and #Vx = −16.56.

In Figs. 18(d1) and 18(d2), computed at #[Ca] = −1.54 and
#Vx = 23.12, respectively, each arch of the map forms two inter-
sections with the dashed blue line, each corresponding to a trans-
verse homoclinic orbit to the saddle periodic orbit. The portions
of the map lying above the dashed line converge rapidly to the
saddle-focus.

We emphasize the importance of these interval maps, such as in
Fig. 18(c2), which were used to compute the edge-of-chaos bound-
ary (homPOt) in the bifurcation diagrams shown in Figs. 1 and 5.
Accurately determining this boundary would be impossible rely-
ing solely on trajectory computations in the five-dimensional phase
space of the SiN model.

B. Route from bursting to chaos through widening
spike-adding transitions

In the following, we analyze various global transitions that
occur in the SiN model as the parameter value exits the wide chaotic
region over its upper-right boundary toward regular bursting activ-
ity (see Fig. 19). Along this boundary, multiple thin regions of spike-
adding chaos expand and merge into one another. The nature of
these transitions can be clearly understood through the use of one-
dimensional (1D) interval maps. These maps reveal a transitional
zone where the spike-adding transitions blend together, organized
by a sequence of codimension-2 cusp points of periodic orbits.

To understand the transition from bursting to chaos, we
first explain the sequence of bifurcations that occur along each
spike-adding transition, moving from right to left in the bifurcation
diagram in Fig. 19. The shape of the maps in the bursting region can
be seen in Fig. 19(a). At high values of the #x-parameter, the map
is compressed vertically: the arches are flat, but the valleys between
the arches remain steep, although they are shortened. As the #[Ca]-
parameter decreases, the maps compress horizontally, which has the
effect of “pulling” each arch rightward across the 45◦ line (dotted
gray line).

FIG. 19. Fragment of the bifurcation diagram illustrating the transition between
regular bursting (top blue region) and chaotic bursting dynamics (red chaos-land).
A transition occurs when the arches of the 1Dmap increase in height, as illustrated
by the contrast between inset panel (a) (stable bursting) and panel (b) (chaos).
A transitory zone exists between these two cases, as represented in panel (c).
Along the upper and lower boundaries of the transition region, cusp points of the
map occur, marked by “*” and “+” respectively. These cusps occur when an inflec-
tion point on the map forms a cubic tangency with the 45◦ bisectrix line. Inside the
transition region, three points with derivative equal to +1 exist labeled by α,β , and
γ in inset panel (c). When these points touch the bisectrix, saddle-nodes occur,
corresponding to saddle-node bifurcations of periodic orbits in the SiN model.
The coloring of the Lyapunov spectrum is the same as in Fig. 1.

The sequence of bifurcations that occurs in spike adding from
n to n + 1 spikes can be inferred from the sequence of geomet-
ric features of each arch that crosses the identity line as #[Ca]
decreases:

1. Homoclinic to the upper saddle: The minimum on the right side
of the arch crosses the identity line, signifying a homoclinic orbit
to the upper saddle. Only after this homoclinic bifurcation does
the new arch become accessible, in the sense that the unstable
manifold of the saddle-focus contains trajectories that spike an
additional time at precisely this point.

2. Saddle-node of periodic orbits (SNPO): As the left side of the n-
spike arch of the map becomes tangent to the 45◦ line, the saddle
periodic orbit—which previously emerged from the homoclinic
orbit to the upper saddle—merges and annihilates with the sta-
ble bursting orbit. This saddle-node of periodic orbits leaves no
remaining stable periodic trajectories, leading to a brief window
of chaos. The chaotic trajectories in this window will undergo a
mix of both n-spike and n + 1-spike excursions. Note that the
derivative of the map at this tangency must equal one.
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3. Period-doubling cascade: As the derivative of the map at its
intersection with the 45◦ bisectrix decreases past −1, a period-
doubling cascade occurs in reverse.

4. Stabilization of the bursting orbit: When the derivative equals −1,
the new n + 1-spike bursting orbit becomes stable and dominates
the long-term dynamics.

As the arches of the map grow taller, the expanding proportion
of the map increases, making chaos more common toward the bot-
tom of each spike-adding transition. This stretching of the map is
illustrated by the contrast between Figs. 19(a) (bursting) and 19(b)
(chaos). When the arches of the map are either very short or very

tall, there is precisely one point on each arch where df
dVn

= 1, and

one point where df
dVn

= −1. These two points separate the contract-

ing and expanding regions in the 1D interval map. As the map
is perturbed by horizontal compression, the relative sizes of the
expanding and contracting regions reveal why stretching the map
spreads chaos in the parameter plane. When the map is short, the
expanding regions are very small, leading to predominantly burst-
ing behavior. When the map is tall, the expanding regions are very
large, leading to predominantly chaotic dynamics.

A transitional zone exists between the short bursting and tall
chaotic cases, illustrated by the region between the dotted and solid
lines in the bifurcation diagram in Fig. 19. In this zone, there are

not one, but three points on each arch where df
dVn

= 1, and each

arch gains an additional region of expansion. The transitional zone
is interspersed with a large number of cod-1 SNPO bifurcations that
can be separated into three classes based on the order in which they

occur in the domain of the map. These classes correspond to df
dVn

= 1

points on the map labeled as α, β , and γ in order of increasing
Vn, as seen in Fig. 19(c). The corresponding SNPOs are labeled as
SNPO − α, SNPO − β , and SNPO − γ , respectively.

The boundaries of the transitional zone are defined when two
df

dVn
= 1 points merge to form an inflection point with derivative

one. The α and β points come together to form the lower bound-
ary toward chaos (solid line), and the β and γ points come together
to form the upper boundary toward bursting (dotted line). When-
ever the bisectrix line passes through these points, a cusp bifurcation
occurs involving two periodic orbits. The cusps formed from α and
β are labeled with an asterisk (“*”), and the cusps formed from β and
γ are labeled with a plus sign (“+”) in both Figs. 19 and 20. The map
and corresponding phase space trajectories for this cusp are shown
in Figs. 20(d) and 20(e). The saddle cusp orbit is red, superimposed
over the chaotic attractor in blue.

In the maps, these cusps appear as cubic tangencies that
unfold into two saddle-node bifurcations. In the ODE system,
each of these codimension-2 cusp bifurcations of periodic orbits
unfolds into two saddle-node bifurcations of periodic orbits (SNPO).
Figure 20(a) shows a magnified portion of the bifurcation diagram
from Fig. 19, revealing the first few spike-adding transitions, includ-
ing the SNPO − α, SNPO − β , and SNPO − γ curves, which appear as
dotted yellow, green, and yellow lines, respectively. Wedges of stabil-
ity begin at the α, β cusps, marked with “+” symbols. The map and
corresponding phase-space trajectories for this cusp are shown in
two panels of Fig. 20(d). The stable cusp orbit is red, with a transient
shown in blue.

All three SNPO bifurcations appear to be blue-sky catastrophes.
In each case, a homoclinic saddle-node bifurcation of periodic orbits
leads to the emergence of a stable periodic orbit with infinite period
and length. This occurs because the saddle-node periodic orbits pos-
sess a homoclinic appendage that becomes stable as the point of
intersection is approached (see the background section for more
theoretical discussion).

We examined various “ghost” periodic orbits of the saddle
node near the bifurcation point and found that, in all cases we
investigated, these orbits eventually become stable. Computing the
stability at the saddle-node bifurcation point can be challenging
because it depends on the global features of the map. To assess stabil-
ity, we tested these orbits by iterating the one-dimensional interval
map using linear interpolation between sample points. For example,
Fig. 20(c) illustrates how iterates of the 1D interval map converge to
a stable blue-sky trajectory shown in red. One potential drawback of
this method is that false positives for stability are possible due to the
finite precision in numerical simulations.

Additionally, there are multiple bistable regions within each
wedge. These bistable bursting patterns exist near SNPO − γ when
the bisectrix (45◦ line) intersects the return map in two places: just
to the right of the γ point and in the contracting region between α
and β . Since the peaks near γ are rather steep, the γ point is close

to the adjacent point where df
dVn

= −1. This proximity means that

when the map is perturbed by horizontal compression, the period-
doubling cascade closely follows SNPO − γ . This region of bistability
begins near the “*” cusp where the rightmost fixed point (FP) of the
map emerges, as shown in Fig. 20(e1). The bistable behavior ends
when the leftmost FP of the map disappears through SNPO − α. This
map is visually indistinguishable from the one shown in Fig. 20(f1),
with the saddle-node orbit marked by the leftmost “o” point (at α).
The steepness of the peaks is evident at the rightmost “o”-marked
point (at γ ).

The map shown in Fig. 20(e1) corresponds to the point in the
bifurcation diagram [in Fig. 20(a)] where SNPO − β and SNPO − γ
coalesce (marked with “o”). At this point, two saddle-node bifurca-
tions of periodic orbits occur simultaneously. The homoclinic struc-
ture here is unique because a “blue-sky heteroclinic” cycle occurs,
where the unstable and stable manifolds of two saddle-node periodic
orbits meet. This heteroclinic cycle appears to coexist with homo-
clinic trajectories to each of these cycles. Figures 20(e) and 20(f)
display the map and the corresponding slow phase projections of
the phase space of the SiN model. The ghosts of two saddle-node
orbits (in red) are highlighted in Fig. 20(f2), indicating that bistabil-
ity is nearby. This heteroclinic point forms a corner of chaos in the
parameter space, which separates the strongly chaotic (red) region
in Fig. 20(a) and the weakly chaotic spike-adding region.

At the end of the spike-adding cascade—where the 1-spike
bursting behavior transitions into 0-spike or subthreshold
oscillations—the boundary of chaotic dynamics is defined by
an SNPO curve. This curve originates near the codimension-2
Bautin point [the red dot labeled BP in Figs. 20(a) and 20(b)],
which separates the subcritical and supercritical branches of the
Andronov–Hopf (AH) bifurcation curve in the parameter plane.
We refer to this curve as SNPO − 0 or homSNPO to emphasize
the homoclinic appendage. Upon meticulous examination of the
maps, we observe that the Bautin point actually unfolds downward
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FIG. 20. Exploration of the spike-adding route to chaos using 1D return maps and slow phase portraits. (a) A magnified two-parameter sweep displays the first and second
largest Lyapunov exponents, overlaid with bifurcation curves derived from manual inspection of the maps. These curves highlight the loss of stability of the stable two-spike
burster. The curves SNPO − α (yellow), SNPO − β (green), and SNPO − γ (orange) are shown. SNPO − γ is closely shadowed by a period-doubling (PD) curve, which
extends beyond the right edge of the parameter frame, marked by a dotted white line. SNPO − α and SNPO − β coincide at the cusp point marked “+,” located at (#Ca, #Vx )
= (18.2, −2.42). This cusp is illustrated in panels (d1) and (d2): the map is shown in (d1), and the slow phase plane in (d2), with the cusp orbit highlighted by a red trajectory
and transients in blue. SNPO − β and SNPO − γ coincide at the cusp point marked “*,” located at (#Ca, #Vx ) = (28.9, −2.57). Panels (e1) and (e2) illustrate this cusp
formation. The two SNPO orbits meet at the point marked “o,” with (#Ca, #Vx ) coordinates = (20.83,−2.45), where a blue-sky heteroclinic cycle exists. This case is illustrated
in panels (f1) and (f2), with the blue-sky connections in blue and the two saddle-node orbits in red. (b) A sketch of a zoomed-in bifurcation diagram around the Bautin point
at (#Ca, #Vx ) = (25.9, −2.67) (shown as a red dot), which gives rise to a saddle-node of periodic orbits curve that turns around at a nearby cusp. The red curve SNPO − 0
begins at this cusp and defines the loss of stability of subthreshold oscillations. Panel (c) demonstrates the stability of the blue-sky orbit at SNPO − α via a long trajectory on
the map. Panel (g) shows a voltage trace near a blue-sky orbit exhibiting long episodes of subthreshold oscillations interrupted by single spikes.

into the tonic-spiking region—adjacent to the bottom-left corner
in Fig. 20(a)—where it intersects the SNPO − 0 curve at a cusp. An
exaggerated sketch of this small region of the bifurcation diagram is
provided in Fig. 20(b).

C. Transformation of the interval maps through
homSF

On the left side of the saddle-focus homoclinic bifurca-
tion curve, homSF, the saddle-focus lies on the spiking manifold
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MPO. Identifying a suitable return section that yields faithful one-
dimensional maps—maps where the trajectories are directly inter-
pretable as corresponding trajectories in the system of differential
equations—is more challenging in this case. These difficulties make
it impractical to numerically compute one-dimensional maps for
this region of the parameter plane. However, by utilizing qualitative
insights from the topological model, we are able to create sketches
of the maps and the corresponding slow phase-space trajectories.
The problem that arises on the left side of the parameter plane
is that obvious choices for a return section—such minima of the
[Ca]-variable—inevitably become tangent to the flow. This tangency
occurs as the return section crosses the junction where MPO squeezes
back onto the manifold of stable equilibria in the fast subsystem, MQ.
As a result, the map becomes discontinuous at these points of tan-
gency, making it problematic to interpret the trajectories. Choosing
a return section through phase space that entirely avoids tangency
between the section and the discontinuity is not possible. However,
there is a natural choice of section that allows the trajectories of the
map to be reasonably interpreted.

This section can be constructed by ensuring that the return
section intersects the tangency point of the reinsertion loop, such
that the discontinuity occurs at local maxima of each arch in the 1D
map. This tangency point is referred to as T in Sec. V, as illustrated
in Fig. 10.

Figure 21 shows four qualitative sketches at snapshots of the
transition from the right side of homSF to the left side of the
bifurcation diagram. The movement of the tangency point T, and
the associated occlusion of the reinsertion loop (corresponding to
truncated arches in the map), is shown in Fig. 11, and there is a
close connection between these figures. The solid part of the pur-
ple reinsertion loop in Fig. 11 forms the arches of the return map,
while the dotted section of the loop corresponds to the discontinu-
ities. Figures 21(a1) and 21(a2) illustrate the configuration to the
right of homSF where the saddle-focus is on MQ; this situation is
detailed throughout the one-dimensional maps section of the paper.
Here, trajectories that flow in close proximity on either side of the
tangency point (near the blue trajectory) will intersect the return
section in near proximity. Panels (a2) and (b2) of Fig. 21 depict the
homoclinic-to-saddle-focus case (on homSF), where the tangency
point T coincides with the saddle-focus SF as it reaches the reinser-
tion loop where MQ and MPO meet. Panels (c1) and (c2) of Fig. 21
show the configuration to the left of the curve homSF. The blue tra-
jectory lands at the point T on the return section. Trajectories that
begin just to the left of the blue trajectory will narrowly miss the
section near T (upper semicircle) before eventually intersecting the
section at T′ (lower semicircle). Trajectories that begin just to the
right of the blue trajectory will hit the section in a neighborhood
of T. This separation is reflected by a discontinuity in the interval
return map on the right. Eventually, at lower #[Ca], the tangency
point T will flow directly onto the upper saddle SD. At this stage,
the positively sloped, orientation-preserving branches of the map
are completely eliminated, except for the first branch adjacent to the
saddle-focus. This corresponds to an absence of spiking trajectories
that flow off the front of the dune; after spiking, all trajectories return
to the dune from the back side of MPO, following the upper branch
of the unstable manifold of the upper saddle. Panels (d1) and (d2) of
Fig. 21 display the configuration after the tangency point T reaches

FIG. 21. Sketch of the transition in return maps across homSF. The 2D phase
space is illustrated on the left, with four snapshots of the return maps shown on
the right. The scaffolding of the dynamics is represented by a cylinder correspond-
ing to MPO, and the persistent connection between the saddle-focus (red dot) and
the upper saddle (green dot) is shown as a black line. The unstable manifold of
the upper saddle is depicted with green lines. A trajectory that hits the tangency
point T is shown in blue. A neighborhood of T projected onto the map is marked by
a blue dot. To the right of the homSF bifurcation curve, this neighborhood remains
connected, as shown in panel (a1). Panel (a2) shows the configuration on homSF.
To the left of homSF, the neighborhood splits into two, as seen in panels (a3) and
(a4). In this case, the upper semicircle shows T, and the lower semicircle shows
the first forward iterate of T. The bottom of MPO represents the reinsertion loop
where MPO meets MQ (white region below). The return section is represented
by a dashed gray line. Corresponding interval return maps are shown in pan-
els (b1)–(b4). The locations of the saddle-focus SF, tangency point T, and upper
saddle SD are marked, along with their pre-images indicated by dashed lines.
The bisectrix is shown as a dashed gray line.
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the upper saddle SD. The orientation-reversing, negatively sloped
branches begin to shrink and become flatter, eventually undergoing
reverse period-doubling as the slope reaches −1 and the branches
become stable.

VII. DISCUSSION

The key finding of our study is that the breadth of the triangu-
lar chaotic region at the intersection of bursting, tonic-spiking, and
quiescent activity in the SiN model is primarily driven by the inter-
action between the global topological structure of the homoclinic
framework surrounding a Shilnikov–Hopf bifurcation. Central to
this understanding is the geometry of spiking activity, or the “Swiss-
roll” dynamics about the spiking manifold MPO, which we have
modeled using multimodal, self-similar, one-dimensional interval
return maps. Notably, these maps exhibit increasing steepness at
their maxima as both the Shilnikov homoclinic and the subcriti-
cal Andronov–Hopf bifurcations are approached in the parameter
space. This vertical stretching of the map in these regions can
be interpreted as increased expansion across the two-dimensional
slow-manifold surface—i.e., the dune MQ, containing the local
unstable manifold of the saddle-focus—a common feature critical
to understanding spiral chaotic dynamics.

In the classical theory of Shilnikov saddle-focus systems, the
principal tool used to demonstrate the presence or absence of chaos
is a map capturing distances from the 2D stable or unstable man-
ifold of the saddle-focus upon first returns to a neighborhood of
the saddle-focus equilibrium, sometimes referred to as the Shilnikov
map.60–62,74 In contrast, the one-dimensional interval maps in our
study originate directly from first returns to a section of the 2D
unstable manifold of the saddle-focus, or more precisely the dune
MQ. These maps do not measure distances from the dune MQ as
would the Shilnikov map, as the SiN system is highly dissipative;
accordingly, the Shilnikov chaos is confined in parameter space
to a small region about the homSF bifurcation curve, while the
broader chaotic region is principally caused by Swiss-roll mixing of
trajectories.

On the other hand, near the subcritical Andronov–Hopf bifur-
cation, the expansion associated with the saddle-focus weakens,
resulting in a more coiled spiraling in the outward flow of tra-
jectories on the dune MQ. As we move above the subcritical
Andronov–Hopf bifurcation curve AHsub and enter the bursting
region in the parameter space of the SiN model, the saddle-focus
“flings” trajectories outward more vigorously, as the positive real
part of its complex-conjugate eigenvalues increases.

However, in this system, trajectories cannot spiral indefinitely
due to the bounded nature of the x variable, which is confined within
the [0, 1] range and possesses a stable branch in the slow-dune
projection. This effectively creates a boundary that prevents trajec-
tories from expanding infinitely downward in phase space. Trajec-
tories approaching this stable branch of the x nullcline encounter
regions of contraction on the quiescent slow-motion manifold MQ.
A strongly expanding saddle-focus directs more trajectories into
this contracting region surrounding the lower stable branch of the
x nullcline, whereas a weak saddle-focus allows for more uniform
expansion across MQ.

Our findings suggest that neural systems with bounded gat-
ing variables, such as the slow x variable in the SiN model, can
support a large stable bursting region coexisting with a Shilnikov
saddle-focus possessing a two-dimensional unstable manifold. If the
outward spiraling on the unstable manifold of the saddle-focus (and,
thus, on MQ) were to extend infinitely downward into negative x
values, and if the spiking manifold MPO extended infinitely to the
left into unrealistically negative [Ca] values, we would expect the
boundaries of the chaotic region to expand outward, far from the
Shilnikov–Hopf bifurcation. Investigating such a scenario may bet-
ter clarify the role of this codimension-2 bifurcation (S–SF), also
referred to as the Belyakov type-II bifurcation, describing the tran-
sition between homoclinic saddle and saddle-focus, in the onset
of chaos which is currently obscured by the dominance of stable
bursting occurring in the SiN model.

Variations of this configuration are conceivable in both phys-
ically plausible models and mathematically or phenomenologically
motivated systems. One possibility is that the beginning of the slow
spiking manifold MPO is accessible from the unstable manifold of the
Shilnikov saddle-focus. Typically, such a slow two-dimensional sta-
ble manifold is initiated and terminated as a result of homoclinic
bifurcations of a saddle or saddle-node, or through subcritical or
supercritical Andronov–Hopf bifurcations, as well as saddle-node
bifurcations of periodic orbits (PO) in the fast subsystem, any of
which eventually give rise to a stable tonic-spiking PO. Note that
a delayed loss of stability can substantially alter all routes to chaos
that a system may undergo.

Another possible variation, following the earlier work on multi-
rhythmic bursting,47 involves weakening the contraction toward the
spiking manifold MPO, possibly by slowing down the gating x vari-
able or by introducing appropriate bifurcation parameters into the
slow subsystem of the SiN model. In one-dimensional maps, this
would result in different heights among the arches of the multimodal
return map. In the SiN model, however, the saddle-focus homo-
clinic bifurcations corresponding to different numbers of spikes may
occur at parameter values up to or even exceeding numerical preci-
sion. In contrast, we anticipate that in the multi-rhythmic bursting
model, the homoclinic bifurcations appear as distinct events, reveal-
ing intricate connections as the periodic orbits originating from dif-
ferent Shilnikov homoclinics interact. We expect that each Shilnikov
homoclinic orbit will terminate through a unique Shilnikov–Hopf
bifurcation in this scenario. Studying this configuration may fur-
ther illuminate the homoclinic structure responsible for the chaos
examined in this paper.

Furthermore, interactions between the saddle-focus and the
upper saddle may form hetero-dimensional cycles at discrete points
along the homoclinic Shilnikov saddle-focus curve (the homSF
curve). The existence of such cycles guarantees the presence of
blenders in some small neighborhoods, which could give rise to
wild chaos, analogous to how Smale horseshoes give rise to classi-
cal chaos.28,29,75 However, several lines of evidence make us skeptical
about the existence of wild chaos in the SiN model as currently
studied. Stability windows appear to be densely packed through-
out the parameter space, as shown in Figs. 1 and 5. Zooming in
around the homSF curve does not reveal any obvious regions of
persistent chaos. This may not be surprising since blenders and
hyper-chaos are inherently higher-dimensional phenomena, and the
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Lyapunov dimension of the attractor in our system is just over
two. The fact that the system can be effectively modeled with one-
dimensional maps suggests that wild chaos is unlikely to exist in this
context. Reducing the timescale separation in at least one variable
might allow wild chaos to emerge near the Shilnikov homoclinic
bifurcation and near non-transverse homoclinics to periodic orbits.

From biological and neuroscience perspectives, the presence
of large chaotic regions could offer advantages for understand-
ing evolution, development, and homeostasis through mathematical
modeling. In a chaotic system, small changes in the parameters
of a neural model lead to small changes in its statistical behavior,
providing a smoother optimization landscape for feedback mech-
anisms and evolutionary processes. In contrast, a stable bursting
system with narrow chaotic zones might respond to small parame-
ter changes with either negligible qualitative change or drastic shifts,
which could be less favorable in biological contexts. Therefore, the
chaotic SiN model offers a useful framework for studying the role of
chaos in evolution and development in future research.

VIII. CONCLUSION

In this study, we unveiled and examined the structure of a
broad region of chaotic dynamics present in the given conductance-
based neuronal model. By exploring the interplay between tonic
spiking, saddle-focus equilibria, and saddle structures, we demon-
strated how intricate homoclinic and heteroclinic connections give
rise to widespread chaos. Our bifurcation analysis reveals that the
chaotic behavior occupies a much larger parameter region than the
narrow bands typically associated with mode transitions, such as
spike-adding cascades.

Reducing the complex dynamics to a one-dimensional map
allowed for a precise characterization of the observed chaos and its
underlying mechanisms. Our findings highlight the robustness and
generality of the SiN model within the chaotic region, which persists
across a wide range of parameter values, challenging the conven-
tional perception of neuronal models as being rigid. This broad
chaotic region may have significant implications for understand-
ing the variability and adaptability of neuronal behaviors, both in
healthy and pathological states.

The templates utilized in this study serve to model and explain
the underlying topology of the chaotic region, offering a struc-
tured approach to understanding the complex dynamics within the
neuronal system. Unlike traditional methods that emphasize bifur-
cation analysis, these templates enable the application of kneading
sequences, which are instrumental in characterizing the symbolic
dynamics of the system. By providing a detailed representation of
the topological structure, the templates allow for an accurate map-
ping of transitions and invariant sets within the chaotic regime.
This approach not only facilitates the identification of chaos but
also supports a deeper exploration of the dynamical behavior of
the system across different parameter spaces, ensuring that the
observed chaotic patterns are consistent with the broader theoretical
framework of neuronal dynamics.

Future work will focus on extending these analyses to other
neuronal models and exploring the potential functional roles of such
widespread chaos in neural computation and information process-
ing. The methods developed here, combining continuation analysis,

symbolic dynamics, and Lyapunov exponents, provide a power-
ful toolkit for investigating complex dynamical systems beyond the
context of neuronal modeling.

In conclusion, this work contributes to the growing body of
knowledge on chaos in biological systems by providing new theo-
retical insights and suggesting directions for future exploration. The
interplay between global topological structures and local bifurca-
tions, as elucidated in this study, offers a rich avenue for further
research, with potential applications that extend across multiple
scientific disciplines.
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APPENDIX A: SLOW NULLCLINES

To locate the positions of the slow nullclines x′ = 0 and
[Ca]′ = 0 in the ([Ca], x)-phase plane in the figures above, we first
parameterize the membrane voltage Vn within an equilibrium range
[−70; +20] mV with some step-size. Next, solve the equilibrium
state equation V′ = 0 for the IKCa current,

IKCa = −II − IK − IT − Ileak,

with the corresponding static functions h∞(Vn), n∞(Vn), and
m∞(Vn) for equilibria in the currents above, and next using
Eq. (C22) to define the parameterized array,

[Ca](Vn) = 0.5
IKCa

gKCa(Vn − Ek) − IKCa

.

The ordered pairs {[Ca(Vn)], x∞(Vn)} then populate the sought
x nullcline x′ = 0. To determine the position of the nullcline
[Ca]′ = 0, first solve the equation V′ = 0 for the IT current,

IT = −II − IK − IKCa − Ileak,

and then find

x(Vn) =
IT

gT(EI − Vn)
,

and then from Eq. (C23), find

[Ca](Vn) = Kc x(Vn) (ECa − Vn + #[Ca]),

and use the ordered pairs {[Ca(Vn)], x∞(Vn)} to locate the calcium
nullcline [Ca]′ = 0 in the slow ([Ca], x)-phase subspace.

APPENDIX B: MATCONT CONTINUATION DETAILS

For the numerical bifurcation analysis, we used the Matlab
toolbox (version 2022b) MATCONT version 7p4,54,55 including the
homotopy method to initialize connecting orbit continuation. Local
bifurcation curves (saddle-node and Andronov–Hopf) were com-
puted with standard settings. This identifies the codimension-2
Bautin point (BP), as well as a Bogdanov–Takens (BT) bifurcation
at (#[Ca], #Vx) = (−10.81, −10.24) The saddle–saddle curve SS
and the Andronov–Hopf curve subAH meet at the BT-point. We
could not connect the homoclinic curves in the region of inter-
est to this BT-point and, hence, do not display this. The dark-blue
curve homSNPO corresponds to a saddle-node bifurcation of a
sub-threshold periodic cycle. This branch is computed by branch-
switching from the BP-point directly.

For the bifurcations of periodic orbits near #[Ca] ≈ −40, we
used a simulation at (#[Ca], #Vx) = (−60, −1.2) as initial data to
start the continuation of periodic orbits in the #[Ca]-parameter.
We then detected a first period-doubling bifurcation and several
saddle-node bifurcations of cycles oscillating back and forth with
increasing period, toward a homoclinic solution. Continuation of
the first bifurcation yielded the light blue PD curve. The contin-
uation of the limit cycles for increasing #Vx all approached the
Belyakov point, while in the other direction, they split, either to
the homoclinics with spiking or toward the BT-point. The number
of discretization points ntst was about 100–200 depending on how

many spikes an orbit contained. Maximal step-size was increased to
10 instead of 0.1, while other settings were kept at default values.

Next, we used the homotopy method to initialize the homo-
clinic orbits. We continued this branch in two parameters, where
MATCONT detected another codimension-2 Belyakov-II point,
where the leading stable directions change (saddle–saddle-focus
transition), and finally the codimension-2 Shilnikov–Hopf point or
Belyakov-I one where the branch terminates. The orange curves are
homoclinics to a saddle corresponding to a state in depolarization
block (the red dot in Fig. 5). The difference is in the number of spikes
each orbit exhibits. Using that information, we were able to initial-
ize the homoclinic continuation at #Vx = 0.7, where we ensured
the final distance to the equilibrium was small (determined by two
continuation variables ε1 = 0.1, and ε0 = 0.01), as that difference
mostly corresponds to the potential.

Finally, we noticed that the transition from the region with one
spike to two spikes also involved a saddle-node bifurcation curve.
Here, the branch of periodic orbits originating from the homoclinic
orbit becomes stable. For #Vx = 0.7, these bifurcations happen for
nearly identical parameter values. Continuation for decreasing #Vx

shows that near the AH curve they split. The connecting orbits cross
the AH curve and get closer and then appear to get closer to the
AHsub branch. Instead, the saddle-node curves remained above the
AH curve. Near the BP-point, they have a swallow-tail structure and
then get closer to the Belyakov II-type S–SF point. We could not
reach the S–SF point with continuation. Not all connecting orbits
could be continued toward the lower left corner of the parameter
region due to convergence errors. We recomputed some curves with
a collocation number ntst=300 of points on each and smaller step-
sizes, but as each curve takes long several hours in MATCONT, we
did not pursue this further.

APPENDIX C: THE CELLULAR SiN MODEL
DESCRIPTION

The dynamics of the membrane potential, V, are governed by
the following equation:

CmV′ = −II − IK − IT − IKCa − Ileak. (C1)

The fast inward sodium and calcium current II is given by

II = gI h m3
∞(V)(V − EI), (C2)

with the reversal potential EI = 30 mV and the maximal conduc-
tance value gI = 4 nS, and

m∞(V) =
αm(V)

αm(V) + βm(V)
, (C3)

αm(V) = 0.1
50 − Vs

−1 + e(50−Vs)/10
, (C4)

βm(V) = 4e(25−Vs)/18, (C5)

the dynamics of its inactivation gating variable h is given by

h′ =
h∞(V) − h

τh(V)
, (C6)
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where

h∞(V) =
αh(V)

αh(V) + βh(V)
(C7)

and

τh(V) =
12.5

αh(V) + βh(V)
, (C8)

αh(V) = 0.07e(25−Vs)/20, (C9)

βh(V) =
1

1 + e(55−Vs)/10
, (C10)

and

Vs =
127V + 8265

105
mV. (C11)

The fast potassium current IK is given by the equation

IK = gKn4(V − EK), (C12)

with the reversal potential EK = −75 mV and the maximal con-
ductance set as gK = 0.3 nS. The dynamics of inactivation gating
variable are described by

n′ =
n∞(V) − n

τn(V)
, (C13)

with

n∞(V) =
αn(V)

αn(V) + βn(V)
(C14)

and

τn(V) =
12.5

αn(V) + βn(V)
, (C15)

where

αn(V) = 0.01
55 − Vs

e(55−Vs)/10 − 1
, (C16)

βn(V) = 0.125e(45−Vs)/80. (C17)

The leak current is given by

Ileak = gL(V − EL), (C18)

with EL = −40 mV and gL = 0.003 nS. The sub-group of slow cur-
rents in the model includes the TTX-resistant sodium and calcium

current IT given by

IT = gTx(V − EI), (C19)

with EI = 30 mV and gT = 0.01 nS, while the dynamics of its slow
activation variable are described by

x′ =
x∞(V) − x

τx

, (C20)

where

x∞ =
1

1 + e−0.15(V+50−#Vx)
, (C21)

and the time constant τx set as 100 or 235 ms in this study. The
slowest outward Ca2+ activated K+ current given by

IKCa = gKCa
[Ca]i

0.5 + [Ca]i

(V − EK), (C22)

with EK = −75 mV and gKCa = 0.03, while the dynamics of the
intracellular calcium concentration is governed by

[Ca]′ = ρ (Kc x (ECa − V + #[Ca]) − [Ca]) , (C23)

with the Nernst reversal potential ECa = 140 mV, and small con-
stants ρ = 0.0003 ms−1 and Kc = 0.0085 mV−1.

APPENDIX D: SSCS ENCODER ALGORITHM

Much of our analysis of the SiN model involves performing
large-scale scans of the parameter space, numerically integrating
one or more trajectories at every sampled parameter value. Because
numerical integration of the SiN model equations produces large
amounts of data in the form of trajectory time series, we designed
an algorithm to encode trajectories as SSCSs during integration.

This encoding scheme permits us to discard trajectory data
when we wish to study only the symbolic dynamics of the template
associated with the SiN model, so it confers a large improvement
in memory efficiency for symbolic scans. The encoding algorithm
involves keeping track of the relative sequential ordering of the
occurrences of certain local maxima observed in V(t) and V′(t) time
series. These maximum events are denoted as follows:

• I: A local maximum in V′.
• V−: A local maximum in V not exceeding the voltage value VSD

of the upper saddle equilibrium point.
• V+: A local maximum in V exceeding VSD.

In general, the value V+ corresponds to the maximum voltage value
attained during a spike, while V− is used to detect the refractory
rebound after a spike-train burst. A DONE event is used to signify
that the integration has terminated. The SSCS encoding is carried
out as described in Algorithm 1.

Because the events used in this algorithm only depend on
the local maxima of V and V′ (the latter of which is an explicit
function of the current position in state space so that it can be com-
puted directly from the governing equations of the SiN model), it
is inexpensive to detect these events with very high accuracy. In
practice, we use the VectorContinuousCallback event callbacks from
DifferentialEquations.jl to detect these events and trigger the cor-
responding subroutines rather than a blocking NextEvent function
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ALGORITHM 1. Signed spike-count sequence encoder.

and while loop; however, the basic encoding algorithm is the same
as described here.

One caveat of Algorithm 1 is that it may, for certain choices
of system parameters, misclassify bursting trajectories that return
to the dune MQ extremely closely to the tangency point T; in this
case, one of the nonzero signed spike counts returned in the SSCS
list would have incorrect sign. However, it is remarkably accurate,
and in most cases—especially near the homSF bifurcation line in
the chaotic parameter region—this weakness is exceedingly rare and
may be disregarded. We have not observed any parameter value for
which this encoding error occurs with appreciable severity.
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