
Appendix C

EXAMPLES, PROBLEMS AND EXERCISES

We hope the examples presented in this appendix will provide some pedagogi-

cal illustrations and applications of the “qualitative” theory developed in this

book. The range of instances varies from phenomenological problems to appli-

cations. Since very few nonlinear systems can be analyzed without computers,

we will perform numerical computations where necessary. At some points,

our de facto presentation will bear a descriptive character, avoiding techni-

cal details of computations. The two packages which have been used in the

preparation of this appendix are Content [182] and Dstool [164].

C.1 Qualitative integration

C.1.#1. Classify the trajectories shown in Figs. 1.3.1, 1.3.2 and C.1.1 in

the following terms: non-wandering, Poisson-stable, periodic, and homoclinic.

What are the corresponding α- and ω-limit sets of these trajectories? ¤

C.1.#2. For different parameter values of a, construct the phase portraits

for the following planar systems

(a) ṙ = r(a− r2), ϕ̇ = 1 ;

(b)





ẏ = x− (y2 − 1)

(
x2

2
− y + y3

3
− 2

3

)
,

ẋ = 1− y2 − x
(
x2

2
− y + y3

3
− 2

3

)
;

(c) ẋ = y, ẏ = 1− ax2 + y(x− 2) ;
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(d) the van der Pol equation:

ẍ+ a(x2 − 1)ẋ+ x = 0 ;

(e) the Duffing equation:

ẍ+ aẋ+ x− x3 = 0;

(f) the Bogdanov-Takens normal form:

ẋ = y, ẏ = −x+ ay + x2 ;

(g) the Khorozov-Takens normal form:

ẋ = y, ẏ = −x+ ay + x3 . ¤

C.1.#3. Discuss the phase portraits of the cells shown in Fig. C.1.1.

What are the special trajectories here? ¤

(a) (b) (c)

Fig. C.1.1. Examples of cells.

C.2 Rough equilibrium states and stability
boundaries

C.2.1 Routh-Hurwitz criterion

Here we will formulate the rule that allows one to determine the structural sta-

bility of an equilibrium state and its topological type without solving explicitly

the characteristic equation.

The problem in question is how many roots of the characteristic equation

Ξ(λ) = a0λ
n + a1λ

n−1 + · · ·+ an
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lie to the left or to the right of the imaginary axis and how many roots lie

on that axis. The number of zero roots is determined easily: there are s zero

roots if and only if an = · · · = an−s+1 = 0 and an−s 6= 0. So, if we have a zero

root of algebraic multiplicity s, we can just divide the characteristic equation

by λs and proceed to the case where the last coefficient of the characteristic

equation is non-zero, as we will assume to be the case. The next step is to

compose the following Routh-Hurwitz matrix:




a0; a2; a4; · · ·
a1; a3; a5; · · ·

a1a2 − a0a3

a1
;

a1a4 − a0a5

a1
; · · · · · ·

a1a2 − a0a3

a1
a3 −

a1a4 − a0a5

a1
a1

a1a2 − a0a3

a1

; · · · · · · · · ·

· · · · · · · · ·




(C.2.1)

Let us describe the algorithm for constructing the above matrix in detail.

The entries of the first two rows are the coefficients of Ξ(λ) with even and odd

subscripts, respectively. The k-th row is built as follows: the entry rkj at the

j-th column is equal to the fraction

rkj =
rk−1,1rk−2,j+1 − rk−2,1rk−1,j+1

rk−1,1

whose numerator is taken with opposite sign of the determinant of the (2×2)-

matrix at the intersection of the two previous rows with the first column and

the (j+1)-th column, whereas the denominator is the entry located in the first

column of the previous row. The algorithm is subsequently applied until the

overall number of the rows in the matrix becomes equal to (n+ 1).

Such a construction for the matrix becomes possible only if all entries of

the first column do not vanish. This is the regular case. Here, the number of

the roots of Ξ(λ) (including multiplicity) with positive real parts, is equal to

the number q of sign changes of the entries in the first column. The polyno-

mial Ξ(λ) has no purely imaginary roots in the regular case. Therefore, the

corresponding equilibrium state O is structurally stable in the regular case,

and its topological type is given by (n− q, q).
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One can verify that the first column in (C.2.1) can be expressed through

the main minors ∆i of the Routh-Hurwitz matrix (2.1.10) as follows

a0, ∆1,
∆2

∆1
,

∆3

∆2
, . . . ,

∆n

∆n−1
.

In particular, if a0 > 0 and ∆i > 0 (i = 1, 2, . . . , n), then the Routh-Hurwitz

conditions hold (see Sec. 2.1).

While constructing the matrix (C.2.1) it may turn out that some entry

rm+1,1 (1 ≤ m ≤ n) of the first column vanishes. In this irregular case one

should find the first non-zero entry rm+1,k+1 in the (m + 1)-th row, as well

as the last non-zero entries rm,p and rm+1,s in the m-th and (m+ 1)-th rows,

respectively. Compute the deficiency number Sm+1 by the following rule:

Sm+1 =





k if k ≤ s− p
s− p if k > s− p and (−1)s−prm,prm+1,s < 0

s− p+ 1 if k > s− p and (−1)s−prm,prm+1,s > 0 .

Then, shift the (m+1)-th row to the left over k positions, so that the element

rm+1,k+1 becomes the first one in the line, and multiply all other entries of this

row through by (−1)k. Since the first entry is now non-zero, one proceeds as

in the regular case. Eventually, the number of roots of Ξ(λ) with positive real

parts will be equal to the number of sign changes in the first column added to

the sum of deficiency numbers over all irregular rows.

There still remains a special case where for some m the entire (m + 1)-th

row of the matrix consists of zeros, i.e. rm+1,j = 0 at all j. This is the only

situation when pure imaginary roots are possible. If this case is encountered,

we should replace the (m + 1)-th row by a row consisting of the following

numbers

(p− 1) rm,1; (p− 2) rm,2; (p− 3) rm,3; · · · ,

where p is the number of the last non-zero entry in the m-th row, and proceed

as before. Upon completing the construction (there may be other vanishing

rows that should be replaced too) we count the number of sign changes in the

first column plus the sum of deficiency numbers (if some irregular rows have

appeared). The result equals the number of roots with positive real parts. The

number of purely imaginary roots here is equal to 2(p− 1− l), where p is the

ordinal number of the last non-zero entry in the row which precedes the first
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vanishing one, and l is the number of sign changes in the first column plus

the sum of deficiency numbers computed after this row. The corresponding

equilibrium state will be structurally stable only if p = l + 1.

C.2.#4. Determine the stability and the topological type of an equilib-

rium state whose characteristic equation is given below:

Ξ(λ) = λ4 + 2λ3 + λ2 − 8λ− 20 = 0 .

Solution. The corresponding Rough-Hurwitz matrix is given by

1 1 −20
2 −8
5 −20 (p = 2)

5 (zero entry replaced by (p− 1)rm,1 = 5)

−20

Here there is one sign change in the first column, i.e. Ξ(ξ) has one root in

the right open half-plane. Let us count the number of purely imaginary roots:

2(p− 1− l) = 2(2− 1− 1) = 0. Thus, the equilibrium state O is structurally

stable, and its topological type is saddle (3,1). 2

C.2.2 3D case

Consider a three-dimensional system

ẏ1 = a
(1)
1 y1 + a

(1)
2 y2 + a

(1)
3 y3 + P1(y1, y2, y3),

ẏ2 = a
(2)
1 y1 + a

(2)
2 y2 + a

(2)
3 y3 + P2(y1, y2, y3),

ẏ3 = a
(3)
1 y1 + a

(3)
2 y2 + a

(3)
3 y3 + P3(y1, y2, y3) .

(C.2.2)

Here, the functions Pi contain no linear terms. The characteristic equation of

the system (C.2.2) is given by

Ξ(λ) =

∣∣∣∣∣∣∣∣

a
(1)
1 − λ a

(1)
2 a

(1)
3

a
(2)
1 a

(2)
2 − λ a

(2)
3

a
(3)
1 a

(3)
2 a

(3)
3 − λ

∣∣∣∣∣∣∣∣
= 0 . (C.2.3)

Equation (C.2.3) can be rewritten in the form of a cubic polynomial:

λ3 + pλ2 + qλ+ r = 0 , (C.2.4)
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where
p = −(a(1)

1 + a
(2)
2 + a

(3)
3 ) ,

q =

∣∣∣∣∣
a
(1)
1 a

(1)
2

a
(2)
1 a

(2)
2

∣∣∣∣∣+
∣∣∣∣∣
a
(1)
1 a

(1)
3

a
(3)
1 a

(3)
3

∣∣∣∣∣+
∣∣∣∣∣
a
(2)
2 a

(2)
3

a
(3)
2 a

(3)
3

∣∣∣∣∣ ,

r = −

∣∣∣∣∣∣∣∣

a
(1)
1 a

(1)
2 a

(1)
3

a
(2)
1 a

(2)
2 a

(2)
3

a
(3)
1 a

(3)
2 a

(3)
3

∣∣∣∣∣∣∣∣
.

(C.2.5)

Here, the Routh-Hurwitz stability condition reduces to the following

relation:

p > 0, q > 0, r > 0, and R ≡ pq − r > 0 . (C.2.6)

The boundaries of the stability region are two surfaces given by (r = 0,

p > 0, q > 0) and (R = 0, p > 0, q > 0). The characteristic equation has

at least one zero root on the surface r = 0, and a pair of purely imaginary

roots on the surface (R = 0, q > 0).

C.2.#5. Show that the characteristic exponents of the equilibrium state

on the bifurcation surface R = 0 are (−p, i√q,−i√q). ¤

The number of real roots of Eq. (C.2.4) depends on the sign of the discrim-

inant of the cubic equation:

∆ = −p2q2 + 4p3r + 4q3 − 18pqr + 27r2 . (C.2.7)

(1) If ∆ > O, the cubic equation has one real root and two complex-

conjugate ones;

(2) If ∆ < O, the cubic equation has three distinct real roots;

(3) When ∆ = 0, the equation has one real root of multiplicity 3 if q = 1
3p

2

and r = 1
27p

3, or two real roots (one of multiplicity 2).

The equation ∆ = 0 can be resolved as follows:

r =
1

3
pq − 2

27
p3 ± 2

27
(p2 − 3q)3/2, q ≤ p2

3
.

Hence, the characteristic equation has all the three roots real if and only if

q ≤ p2

3
and r−(p, q) ≤ r ≤ r+(p, q) , (C.2.8)
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where we denote

r± =
1

3
pq − 2

27
p3 ± 2

27
(p2 − 3q)3/2 .

When the equilibrium state is topologically saddle, condition (C.2.8)

distinguishes between the cases of a simple saddle and a saddle-focus. However,

when the equilibrium is stable or completely unstable, the presence of complex

characteristic roots does not necessarily imply that it is a focus. Indeed, if the

nearest to the imaginary axis (i.e. the leading) characteristic root is real, the

stable (or completely unstable) equilibrium state is a node independently of

what other characteristic roots are.

The boundary between real and complex leading characteristic roots is

formed by a part of the surface ∆ = 0 which corresponds to the double roots

and by the surface

r =
p

3

(
q − 2p2

9

)
, q ≥ p2

3
, (C.2.9)

which joins the surface ∆ = 0 along the line of triple roots. This surface

corresponds to the existence of a pair of complex-conjugate roots whose real

part is equal to the third root. When we cross this surface towards decreasing

|r| this pair is moved farther from the imaginary axis than the real root, so

the equilibrium state becomes a node. To the other side of this surface the

complex-conjugate pair becomes closer to the imaginary axis than the real

root, so that the equilibrium state becomes a focus.

When studying homoclinic bifurcations, an important characteristic of sad-

dle equilibria is the sign of the saddle value σ defined as the sum of the real

parts of the two leading characteristic exponents nearest to the imaginary axis

from the left and from the right.

In the case of a saddle, when both leading exponents λ1,2 are real, the

condition σ = 0 is a resonance relation λ1+λ2 = 0. In terms of the coefficients

of the cubic characteristic equation, this condition recasts as

R ≡ pq − r = 0, −p2 < q < 0 . (C.2.10)

Observe that when q > 0, the surface R = 0, corresponds to the Andronov-

Hopf bifurcation, whereas the part of the surface where q < −p2, corresponds

to the vanishing of the sum of one leading exponent and a non-leading one of

opposite sign.
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In the case of a saddle-focus of a three-dimensional system the condition

σ = 0 reads as λ1 + Reλ2 = 0 where λ1 is a real root and λ2,3 are the pair of

complex-conjugate roots. This can be written as

r = −p(q + 2p2), −p2 < q . (C.2.11)

When crossing this surface towards increasing r, the saddle value becomes

positive.

Another important characteristic of saddle equilibria of three-dimensional

systems is the divergence of the vector field at the equilibrium state. It is equal

to the sum of the characteristic roots, i.e. to −p.
Summarizing, we can classify the rough equilibrium states in R3 as

follows:

(1) The case p > 0 (div < 0) (See Table C.1).

(2) The case p < 0 (div > 0) (See Table C.2).

(3) The case p = 0 (div = 0) (See Table C.3).

C.2.#6. Draw the corresponding bifurcation diagrams on the (q, r)-plane

with fixed p. 2

Let us consider next a few examples. We will focus our consideration on

the Lorenz equation, the Chua’s circuit, the Shimizu-Morioka model and some

others.

The Chua’s circuit [179] is given by

ẋ = a(y − f(x)) ,
ẏ = x− y + z ,

ż = −by ,
(C.2.12)

with cubic nonlinearity f(x) = −x/6 + x3/6. Here, a and b are some positive

parameters. System (C.2.12) is invariant under the transformation (x, y, z)↔
(−x,−y,−z).

Let us find the equilibrium states in (C.2.12) by solving the following sys-

tem:
0 = a(y + x/6− x3/6),

0 = x− y + z,

0 = −by .
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Table C.1

Parameter regions Types of equilibria σ
Eigenvalues

λi, i = 1, 2, 3

0 < r <





r+(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Stable node

dimWs = 3

dimWu = 0

—
0 > λ1 > Reλi

(i = 2, 3)

pq > r >





r+(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Stable focus

dimWs = 3

dimWu = 0

— 0 > Reλ1,2 > λ3

r >

{
r+(p, q) for q ≤ 0

pq for q ≥ 0
Saddle-focus (1,2) σ < 0 Reλ2,3 > 0 > λ1

0 < r < r+(p, q), q < 0

Saddle

dimWs = 1

dimWu = 2

σ < 0 λ1 < 0 < λ2 < λ3

0 > r >

{
r−(p, q) for q ≤ −p2

pq for − p2 ≤ q < 0

Saddle

dimWs = 2

dimWu = 1

σ > 0 λ1 > 0 > λ2 > λ3

r−(p, q) < r <





pq for − p2 < q ≤ 0

0 for 0 ≤ q <
p2

4

Saddle

dimWs = 2

dimWu = 1

σ < 0 λ1 > 0 > λ2 > λ3

−p(q + 2p2) < r <





r−(p, q) for − p2 < q ≤
p2

4

0 for q ≥
p2

4

Saddle-focus (2,1) σ < 0 λ1 > 0 > Reλ2,3

r <

{
r−(p, q) for q ≤ −p2

−p(q + 2p2) for q ≥ −p2
Saddle-focus (2,1) σ > 0 λ1 > 0 > Reλ2,3
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Table C.2

Parameter regions Types of equilibria σ
Eigenvalues

λi, i = 1, 2, 3

0 > r >





r−(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Repelling node

dimWs = 0

dimWu = 3

—
0 < λ1 < Reλi

(i = 2, 3)

pq < r <





r−(p, q) for 0 < q ≤
p2

3

p

3

(
q −

2p2

9

)
for q ≥

p2

3

Repelling focus

dimWs = 0

dimWu = 3

— 0 < Reλ1,2 < λ3

r <

{
r−(p, q) for q ≤ 0

pq for q ≥ 0
Saddle-focus (2,1) σ > 0 Reλ2,3 < 0 < λ1

0 > r > r−(p, q), q < 0

Saddle

dimWs = 2

dimWu = 1

σ > 0 λ1 > 0 > λ2 > λ3

0 < r <

{
r+(p, q) for q ≤ −p2

pq for − p2 ≤ q < 0

Saddle

dimWs = 1

dimWu = 2

σ < 0 λ1 < 0 < λ2 < λ3

r+(p, q) > r >





pq for − p2 < q ≤ 0

0 for 0 ≤ q <
p2

4

Saddle

dimWs = 1

dimWu = 2

σ > 0 λ1 < 0 < λ2 < λ3

−p(q + 2p2) > r >





r+(p, q) at q ∈

(
−p2,

p2

4

)

0 at q ≥
p2

4

Saddle-focus (1,2) σ > 0 λ1 < 0 < Reλ2,3

r >

{
r+(p, q) for q ≤ −p2

−p(q + 2p2) for q ≥ −p2
Saddle-focus (1,2) σ < 0 λ1 < 0 < Reλ2,3
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Table C.3

Parameter regions Types of equilibria
Eigenvalues

λi, i = 1, 2, 3

Dimensions of

W s and Wu

0 < r <
2

9

√
3|q|3/2, q < 0 Saddle λ1 < 0 < λ2 < λ3

dimW s = 1

dimWu = 2

r >





2

9

√
3|q|3/2 for q ≤ 0

0 for q ≥ 0
Saddle-focus (1,2) λ1 < 0 < Reλ2,3

dimW s = 1
dimWu = 2

r <




−2

9

√
3|q|3/2 for q ≤ 0

0 for q ≥ 0
Saddle-focus (2,1) Reλ2,3 < 0 < λ1

dimW s = 2

dimWu = 1

0 > r > −2

9

√
3|q|3/2, q < 0 Saddle λ1 > 0 > λ2 > λ3

dimW s = 2

dimWu = 1

2

From these equilibrium equations, we find that y = 0, x = −z and x(1−x2) =

0. Thus, there are always three equilibria: O(0, 0, 0) and O1,2(±1, 0,∓1). The
Jacobian matrix at the origin is given by



a/6 a 0

1 −1 1

0 −b 0


 .

The characteristic equation at O(0, 0, 0) is

det



a/6− λ a 0

1 −1− λ 1

0 −b −λ


 = 0,

or

λ3 + (1− a/6)λ2 + (b− 7a/6)λ− ab/6 = 0. (C.2.13)

One can see that since the constant term is negative, it follows immediately

from the Routh-Hurwitz criterion that the origin is an unstable equilibrium

state. Furthermore, it may have no zero characteristic roots when a and b are

positive. The codimension-2 point (a = b = 0) requires special considerations.

We postpone its analysis to the last section, where we discuss the bifurcation

of double zeros in systems with symmetry.
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The condition R ≡ pq − r = 0 reads here as

b = 7a/6− 7a2/36 .

We have q = −7a2/36 < 0 at R = 0. This means that the point at the

origin cannot have a pair of purely imaginary eigenvalues. Thus, it is always

structurally stable when (a, b) 6= 0. In accordance to the above classification

table, its topological type is a saddle with a two-dimensional stable manifold,

and a one-dimensional unstable manifold.

C.2.#7. In the (a, b)-parameter plane, find the transition boundary:

saddle → saddle-focus for the origin, and equations for its linear stable and

unstable subspaces. Detect the curves in the parameter plane that correspond

to the vanishing of the saddle value σ of the equilibrium state at the origin.

Find where the divergence of the vector field at the saddle-focus vanishes. Plot

the curves found in the (a b)-plane. 2

Let us examine next the stability of the non-trivial equilibria O1,2(±1, 0,
∓1). First, we linearize the system at either O1 or O2. The associated Jacobian

matrix is given by 

−a/3 a 0

1 −1 1

0 −b 0


 .

The characteristic polynomial is given by

λ3 + (1 + a/3)λ2 + (b− 2a/3)λ+ ab/3 = 0 . (C.2.14)

Like O, the equilibria O1,2 cannot have a zero characteristic exponent for

ab 6= 0. The condition R = 0 reads here as

b =
2

9
a(3 + a) .

This bifurcation boundary is plotted in Fig. C.2.1. The corresponding expres-

sion for q is q = 2a2/9 > 0. Therefore, at R = 0, the equilibria O1,2 have a

pair of pure imaginary characteristic exponents, namely,

λ1,2 = ±ia
√
2

3
and λ3 = −(1 + a/3) .

This corresponds to the Andronov-Hopf bifurcation. When R > 0 the equi-

libria O1,2 are stable foci, and when R < 0, they are saddle-foci (1,2). The
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stability of O1,2 in the critical case depends on whether the corresponding

Andronov-Hopf bifurcation is sub- or super-critical (see Secs. 9.3 and 11.5),

i.e. whether the point O1,2 is a stable or unstable weak focus. To find out

what occurs here we will need to determine the sign of the first Lyapunov

value L1. When L1 < 0, O1,2 are stable, and they are unstable if L1 > 0. If

the Lyapunov value vanishes on the Andronov-Hopf bifurcation curve, the sign

of the next Lyapunov value L2 must be computed, etc.

Consider the Lorenz equation [87]

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ż = −bz + xy ,

(C.2.15)

where σ, r and b are positive parameters; we will assume, moreover, that σ >

b + 1. Notice that this equation is invariant under the involution (x, y, z) ↔
(−x,−y, z).

Let us find the equilibrium states of this equation by solving the following

system:

0 = −σ(x− y) ,
0 = rx− y − xz ,
0 = −bz + xy ,

We find that x = y, x(r − 1 − z) = 0 and bz = x2. Plugging the last relation

into the middle one, we arrive at the equation for the coordinates of equilibria:

x(b(r − 1)− x2) = 0 . (C.2.16)

One can see that the Lorenz equation always has one equilibrium state O at

the origin. When r > 1, along with O there are two more equilibrium states

O1,2(x1,2 = y1,2 = ±b1/2(r − 1)1/2, z1,2 = r − 1).

The Jacobian matrix at the origin is given by



−σ σ 0

r −1 0

0 0 −b


 .
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The characteristic equation

det



−σ − λ σ 0

r −1− λ 0

0 0 −b− λ


 = 0

has three real roots:

λ1 = −b and λ2,3 =
−(σ + 1)±

√
(σ + 1)2 + 4σ(r − 1)

2
.

Thus, when r < 1, the origin is a stable equilibrium state. When r = 1, the

equilibrium state has one zero root. When r > 1, the origin becomes a saddle

with a one-dimensional unstable manifold, and its stability is inherited by the

stable equilibria O1,2.

The unstable manifold W u
O is composed of the saddle point itself and two

trajectories Γ1,2 that come from O as t→ +∞. The stable manifoldW s
0 is two-

dimensional. The leading stable direction in W s
0 is given by the eigenvector

corresponding to the smallest negative characteristic root. In our case, this is

λ1 = −b, and the corresponding eigenvector is (0, 0, 1). Note that there is an

invariant line x = y = 0 in W s
O.

C.2.#8. Find the equations of EuO and EssO at the origin. 2

Let us carry out the stability analysis for O1,2. We can choose either one;

let it be O1. The Jacobian matrix at O1 is given by


−σ σ 0

r − z1 −1 −x1

x1 y1 −b


 .

The corresponding characteristic equation is given by

λ3 + (σ + b+ 1)λ2 + b(σ + r)λ+ 2bσ(r − 1) = 0 .

The stability boundary of the equilibria O1,2 is determined by the condition:

R ≡ b(σ + r)(σ + b+ 1)− 2bσ(r − 1) = 0 . (C.2.17)

Thus, provided σ > b+ 1, the equilibrium states O1,2 are stable when

1 < r <
σ(σ + b+ 3)

σ + b− 1
.
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Fig. C.2.1. A part of the (a, b)-bifurcation diagram of the Chua’s circuit; AH denotes the
Andronov-Hopf bifurcation curve; σ = 0 corresponds to the vanishing of the saddle value
when the origin is a saddle.

Fig. C.2.2. The Andronov-Hopf bifurcation curve AH and a pitch-fork curve r = 1 in the

(r, σ)-plane of the Lorenz model at b = 8/3.
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They become saddle-foci (1,2) when R ≤ 0. This happens on, and to the right

of the Andronov-Hopf bifurcation curve AH in the (r, σ)-parameter plane in

Fig. C.2.2.

The stability of the bifurcating equilibria O1,2 at the critical moment R = 0

is determined by the first Lyapunov value L1. We will derive its analytical

expression in Sec. C.5.

C.2.#9. Find a point in the (r, a)-parameter plane in Fig. C.2.3 where

an equilibrium state of the asymmetric Lorenz model [189]

ẋ = −10(x− y) ,
ẏ = rx− y − xz + a ,

ż = −8

3
z + xy

(C.2.18)

has a pair of zero eigenvalues. 2

Consider next the following third-order system from atmospheric physics

[128] and [183]
ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z ,
(C.2.19)

where (a, b, F,G) are positive parameters. To find its equilibrium states (x0, y0,

z0), we equate the right-hand side of (C.2.19) to zero:

0 = −y2
0 − z2

0 − ax0 + aF ,

0 = x0y0 − bx0z0 − y0 +G ,

0 = bx0y0 + x0z0 − z0 .
(C.2.20)

From the second and the third equations, we obtain

y0 =
G(1− x0)

1− 2x0 + (1 + b2)x2
0

,

z0 =
bGx0

1− 2x0 + (1 + b2)x2
0

.

(C.2.21)

Substituting (C.2.21) into the first equation in (C.2.20), we obtain

(1 + b2)x3
0 − [2 + (1 + b2)F ]x2

0 + (1 + 2F )x0 +

(
G2

a
− F

)
= 0 . (C.2.22)
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Next, we introduce the new parameters

B =
1

1 + b2
, G′ =

G2

a
− F

1 + b2
,

and make a translation

x0 = x̄+
2B + F

3
.

Then (C.2.22) transforms into the cubic canonical equation

x̄3 + sx̄+ t = 0 , (C.2.23)

where

t = B(1 + 2F )− (2B + F )2

3
,

s =
B(1 + 2F )(2B + F )

3
+G′ − 2(2B + F )3

27
.

The discriminant of Eq. (C.2.23) is given by

∆ =
t2

4
+
s3

27
.

The corresponding bifurcation curve determined by the condition ∆ = 0 is

plotted in Fig. C.2.4. It breaks the parameter plane (F,G) into regions where

system (C.2.19) possesses either one or three equilibrium states (inside the

wedge in Fig. C.2.4). The precise location of the cusp, where all three equi-

librium states coalesce, is determined by the simultaneous vanishing of s and

t (the point labeled CP ). This occurs when

G =
2
√
12b
√
ab

3(1 + b2)
, F =

1 +
√
3b

1 + b2
.

C.2.#10. Show that the system possesses an equilibrium state with char-

acteristic exponents (0,±iω) (Gavrilov-Guckenheimer bifurcation) at

F ∗ =
3a2 + 3a2b2 + 12ab2 + 12b2 + 4a

4(a+ ab2 + 2b2)

G∗ =

√
a(a2 + a2b2 + 4ab2 + 4b2)

4
√
a+ ab2 + 2b2

.
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Fig. C.2.3. A partial bifurcation diagram for the asymmetric Lorenz model. The point
CP is a cusp, at BT the system has a double-degenerate equilibrium state with two zero
characteristic exponents (see Sec. 13.2).

Fig. C.2.4. A fragment of the (F,G)-bifurcation portrait derived from a linear stability

analysis for a = 1/4 and b = 4.
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Hint: use the fact that at this bifurcation point the trace and the determinant

of the Jacobian matrix must vanish simultaneously. 2

C.2.#11. Carry out a linear stability analysis of the following system

ṙ = r(µ1 + az + z2) ,

ż = µ2 + z2 + br2 ,

ϕ̇ = ω + cz ,

where r, ϕ and z are cylindrical coordinates, µ1,2 are control parameters, and

a, b, c assume the values ±1. This is a truncated normal form for the Gavrilov-

Guckenheimer bifurcation. 2

C.2.#12. Find the transformation of coordinates and time which brings

the Lorenz system (C.2.15) to the following form

ẋ = y ,

ẏ = x− xz − ay +Bx3 ,

ż = −b′(z − x2) .

(C.2.24)

Hint: the corresponding relation between the parameters of both systems is

b′ =
b√

σ(r − 1)
, a =

1 + σ√
σ(r − 1)

, B =
b

2b− σ . 2

The system (C.2.24) is the asymptotic normal form appearing in the study

[129] of local codimension-three bifurcations of equilibria and periodic orbits

of systems with a symmetry (see Sec. C.4). When B = 0, system (C.2.24) is

the Shimizu-Morioka model [127], [191]

ẋ = y ,

ẏ = x− xz − ay ,
ż = −bz + x2 ,

(C.2.25)

which can be viewed as the approximation of the Lorenz equation for large

Raleigh numbers r. In a slightly different form, it can also be derived from

PDEs describing a weekly nonlinear magneto-convection in the limit of tall,

thin rolls [187].
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The Shimizu-Morioka model has three equilibria when b > 0. The origin

O(0, 0, 0) is a saddle of type (2,1) with the characteristic exponents

λ1,2 = −a/2± (a2/4 + 1)1/2, λ3 = −b .

The change of the leading direction in Es occurs on the curve a = (b2 − 1)/b

when λ2 = λ3. The saddle value σ = λ1 + λ3 vanishes on the curve a =

(1− b2)/b.

C.2.#13. Write down the equations of the eigenspaces E s, Eu, EsL for

the saddle at the origin. 2

The characteristic equation at the non-trivial equilibria O1,2(±
√
b, 0, 1) of

the Shimizu-Morioka model is given by

λ3 + (a+ b)λ2 + abλ+ 2b = 0 .

The Andronov-Hopf bifurcation curve AH in Fig. C.2.5 is given by (a +

b)a− 2 = 0. The characteristic exponents at O1,2 on it are

λ3 = −2/a, λ1,2 = ±i
√

2− a2 .

Above the curve AH the equilibria O1,2 are stable foci; they are saddle-foci of

type (1, 2) below the curve.

The equilibrium states in the Rössler system [172, 188]

ẋ = −y − z ,
ẏ = x+ ay ,

ż = bx− cz + xz ,

are O(0, 0, 0) and O1(c− ab, b− c/a, c/a− b). The characteristic equation at

O is given by

λ3 + (c− a)λ2 + (1 + b− ac)λ+ (c− ab) = 0 .

It has the roots (iω,−iω, λ) when

a =
(1 + c2) +

√
(1 + c2)2 − 4bc2

2c
,

√
c2 +

1

4
− 1

2
< b <

(1 + c2)2

4c2
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or

a =
(1 + c2)−

√
(1 + c2)2 − 4bc2

2c
, b <





√
c2 +

1

4
− 1

2
for c ≥

√
2 +
√
5 ,

(1 + c2)2

4c2
for c ≤

√
2 +
√
5 .

This equilibrium state has one zero root when a = c/b.

The characteristic equation at O1 assumes the form

λ3 + a(b− 1)λ2 +
(
1 +

c

a
− a2b

)
λ+ (ab− c) = 0 .

It has a pair of purely imaginary roots on the curve

c =
a

b
+ (b− 1)a3, a2 < 1 +

1

b
.

In addition, this equilibrium state may have a single zero root when a = c/b.

Thus, the equilibrium states O1 and O2 coalesce when ab = c. The two other

characteristic exponents of this degenerate point are given by

λ1,2 =
a(1− b)±

√
a2(b+ 1)2 − 4(b+ 1)

2
.

Hence, the exponents λ1,2 become pure imaginary when

b = 1, 0 < a <
√
2 .

The Rössler system and the new Lorenz system (C.2.19) are remarkable in

that both have a doubly degenerate equilibrium state with characteristic ex-

ponents equal to (0,±iω). The feature of this bifurcation is that the unfolding

may contain a torus bifurcation curve along with curves corresponding to ho-

moclinic loops to saddle-foci, and therefore non-trivial dynamics may emerge

instantly in a neighborhood of the bifurcating equilibria. 2

C.2.#14. Study the equilibria of the Hindmarsh-Rose model of neuronal

activity [177]
ẋ = y − z − x3 + 3x2 + I ,

ẏ = −y − 2− 5x2 ,

ż = ε(2(x+ 1.6)− z) ,
(C.2.26)
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Fig. C.2.5. The (a, b)-bifurcation diagram in the Shimizu-Morioka system derived from a
linear stability analysis. AH labels the Andronov-Hopf bifurcation curve; σ = 0 corresponds
to zero saddle-value; HB − H8 corresponds to the change of the leading direction at the

origin.

Fig. C.2.6. The x-coordinate of the equilibrium state versus z in the fast planar system at

I = 5 and ε = 0. AH and SN denote, respectively, the Andronov-Hopf and the saddle-node

bifurcations of the equilibria.
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where I and ε are two control parameters. Start with the case ε = 0 (see

Fig. C.2.6).

C.2.#15. Perform the linear stability analysis of the following systems

describing bifurcations of an equilibrium state with three zero characteristic

exponents in the case where the Jacobian matrix has a complete Jordan block

[162, 163]:

ẋ = y ,

ẏ = z ,

ż = ax− x2 − by − z;

ẋ = y ,

ẏ = z ,

ż = ax− x3 − by − z .
(C.2.27)

How does the cubic term change the symmetry properties of the system? 2

C.2.#16. The following “dimensional” perturbations of the Lorenz equa-

tion and the Shimizu-Morioka model are given by the following augmented

systems

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ẇ = z ,

ż = −bw − az + xy ,

ẋ = y ,

ẏ = −ay + x− xz ,
ż = −bz + µw + x2 ,

ẇ = −bw − µz ,

ẋ = y ,

ẏ = −ay + x− xz ,
ż = w ,

ẇ = −bw − µz + x2 + cz2 .

Find equilibrium states of these system and determine their types. 2

C.2.#17. What are the minimum dimensions of W s and Wu of the

equilibrium state shown in Fig. C.2.7? 2

Fig. C.2.7. Trajectory homoclinic to a saddle-focus (2,2).
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C.3 Periodically forced systems

Consider an n-dimensional system

ẋ = Ax+ f(t) , (C.3.1)

where f(t) is a continuous periodic function of period 2π.

C.3.#18. Construct a Poincaré map of the plane (x, y, t = 0) onto the

plane (x, y, t = τ = 2π).

Solution. According to the Lagrange method of variations of parameters,

the solution of (C.3.1) is given by

x(t) = eAtx0 +

∫ t

0

eA(t−τ)f(τ)dτ .

Assuming t = 2π, we obtain the mapping

x1 = e2πAx0 +

∫ 2π

0

eA(2π−τ)f(τ)dτ . (C.3.2)

2

C.3.#19. Determine the condition under which the above map has: (1) a

unique fixed point and, (2) no fixed points.

Solution. The equation for the fixed points is given by

[I − e2πA]x = C ,

where C denotes the integral in (C.3.2). The two cases possible here are:

(1) det(I − e2πA) 6= 0. In this case there exists only one fixed point.

(2) det(I − e2πA) = 0. Then, it follows from the Kroneker-Capelli

(consistency) theorem that if the rank of (I − e2πA) is equal to that

of the augmented matrix (I − e2πA|C), then there are infinitely many

fixed points. Otherwise, there are no fixed points. 2

C.3.#20. Show that the roots z1, . . . , zn of the characteristic equation

det(zI − e2πA) = 0 are given by e2πλ1 , . . . , e2πλn , where λ1, . . . , λn are the

eigenvalues of the linear system

ẋ = Ax . (C.3.3)
2
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C.3.#21. Prove that if the origin is a structurally stable equilibrium

state of the system (C.3.3), then the corresponding fixed point of the map

(C.3.2) is structurally stable as well. Furthermore, show that the topological

types of the equilibrium state of (C.3.3) and the fixed point of (C.3.2) are the

same. 2

C.3.#22. Show that det(I − e2πA) = 0 if only one of the eigenvalues

λ1, . . . , λn is zero or is equal to iω with integer ω. 2

C.3.#23. Determine the condition under which the two-dimensional

system
ẋ = −ωy + f(t) ,

ẏ = ωx+ g(t) ,
(C.3.4)

where f and g are continuous functions of period 2π, has an infinite number

of periodic orbits of period 2πq, where q ≥ 1 is some integer.

Solution. The mapping T : t = 0→ t = 2π can be written in the form

x1 = x0 cos 2πω − y0 sin 2πω + C1 ,

y1 = x0 sin 2πω + y0 cos 2πω + C2 ,

where

C1 =

∫ 2π

0

(f(τ) cosω(2π − τ)− g(τ) sinω(2π − τ))dτ ,

C2 =

∫ 2π

0

(f(τ) sinω(2π − τ) + g(τ) cosω(2π − τ))dτ .

When

det

(
cos 2πω − 1 − sin(2πω)

sin(2πω) cos(2πω)− 1

)
= (cos 2πω − 1)2 + sin2 2πω 6= 0

this map has a unique fixed point. This condition is violated when ω is an

integer. In the latter case, the map is recast as

x1 = x0 + C1, y1 = y0 + C2 .

Therefore, if C2
1 + C2

2 6= 0, it is clear that the map can have neither fixed nor

periodic points; and if C1 = C2 = 0, all points are fixed ones.
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Consider now the case where ω is not an integer. Let (x∗, y∗) be the

coordinates of the fixed point. Applying the transformation x = x∗ + ξ and

y = y∗ + ν we translate the fixed point to the origin. Introducing polar

coordinates, the map T assumes the form

ρ1 = ρ0 ,

θ1 = θ0 + 2πω mod 2π .

One can see that every circle r = constant is invariant here and that the map

on every circle is the same:

θ1 = θ0 + 2πω mod 2π .

The last one has no periodic points when ω is irrational. When ω = p/q with

integer p and q, all the points are periodic with period q. 2

Let us consider next a quasi-linear system

ẋ = Ax+ µf(x, y) ,

ẏ = By + µg(x, y) ,
(C.3.5)

where x ∈ Rn and y ∈ Rm. The spectrum of A is supposed to lie on the

imaginary axis, that of B lies in the left half-plane, and f, g ∈ Ck.

C.3.#24. Prove the following theorem, which is analogous to the center

manifold theorem:

Theorem C.1. For any R > 0 there is a µ0, such that for |µ| < µ0 the

sphere ‖(x, y)‖ ≤ R contains an attracting invariant Ck-smooth manifold

y = µϕ(x, µ). 2

It follows from the above theorem that the study of (C.3.5) is reduced to the

study of the n-dimensional system

ẋ = Ax+ µf(x, µϕ(x, µ)) = Ax+ µf̃(x) + o(µ)

where f̃(x) = f(x, 0).

C.3.#25. Consider the analogous case of quasi-linear maps. 2

C.3.#26. Prove the analog of Theorem C.1 for the following (n + m)-

dimensional system
ẋ = Ax+ h1(t) + µf(x, y, t) ,

ẏ = By + h2(t) + µg(x, y, t) ,
(C.3.6)
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where all functions are smooth and 2π-periodic. The spectra of A and B are

supposed to lie on the imaginary axes and to the left of it, respectively.

Note that the truncated equation

ẏ = By + h2(t)

has a unique 2π-periodic solution y = α(t). Thus, we can always make h2(t) ≡
0 (using the change ỹ → y + α(t)). 2

Let us consider the system

ẋ = µf(x, t) , (C.3.7)

where f(x, t) = f(x, t + 2π) is a continuous function with respect to t and

smooth with respect to x, x ∈ Rn.

C.3.#27. Find the Poincaré map up to the terms of order µ2.

Hint: the solution is found from the integral equation

x(t) = x0 + µ

∫ t

0

f(x(τ), τ)dτ

using the method of successive approximations:

1st approximation is given by x(t) = x0 ,

2nd approximation is given by x(t) = x0 + µ

∫ t

0

f(x0, τ)dτ ,

n-th approximation has the form xn+1(t) = x0 + µ

∫ t

0

f(x0, τ)dτ +O(µ2) .

Solution:

x1 = x0 + µ

∫ 2π

0

f(x0, τ)dτ +O(µ2) . (C.3.8)
2

Denote f0(x) =
∫ 2π

0
f(x0, τ)dτ .

C.3.#28. Show that the time 2π shift along the trajectories of the system

ẋ =
µ

2π
f0(x) (C.3.9)

coincides with (C.3.8) up to the terms of order µ2. The system (C.3.9) is called

an averaged system. 2
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C.3.#29. Prove the following theorem

Theorem C.2. Structurally stable equilibrium states of the averaged system

correspond to structurally stable periodic orbits of the original system: if x∗ is a

structurally stable equilibrium state in (C.3.9), then the Poincaré map (C.3.8)

for the system (C.3.7) has a structurally stable fixed point close to x∗ for all

sufficiently small µ. 2

Proof. Let x∗ be a structurally stable equilibrium state of the system (C.3.9);

i.e.

f0(x
∗) = 0

and the roots λ1, . . . , λn of the characteristic equation do not lie on the imag-

inary axis. Hence, we can seek them as λ = µ
2πσ:

det

(
∂f0
∂x

(x∗)− σI
)

= 0 . (C.3.10)

The fixed points of (C.3.8) can be found from the equation

f0(x) +O(µ) = 0 .

Since f0(x
∗) = 0 and |∂f0∂x (x∗)| 6= 0 because (C.3.10) has no zero roots, it

follows that there exists a fixed point x = x∗ + O(µ). The corresponding

characteristic equation at this point is written in the form:

det

(
I + µ

∂f0
∂x

(x∗) +O(µ2)− zI
)

= 0 .

We seek the roots of this equation in the form z = 1 + µσ. Then we find that

it recasts as

det

(
∂f0
∂x

(x∗) +O(µ)− σI
)

= 0 .

Therefore, for all small µ the roots σ will be close to those of (C.3.10). Thus,

the fixed point will be structurally stable. Moreover, it has the same topological

type as the equilibrium state of the averaged system. 2

C.3.#30. Prove that in the general case

ẋ = Ax+ µf(x, t) ,
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where f(x, t) is a continuous function of time, smooth with respect to x, the

associated Poincaré map is given by

x1 = e2πAx0 + µ

∫ 2π

0

eA(2π−τ)f(eAτx0, τ)dτ +O(µ2) . 2

C.3.#31. Verify that if det(e2πA − I) 6= 0, it follows that for any given

R, if µ is small enough, in the sphere of radius R there is a single fixed point

x∗(µ) such that x∗(µ)→ 0 as µ→ 0. 2

Let us examine the system of two equations

ẋ = −ωy + µf(x, y, t),

ẏ = ωx+ µg(x, y, t) .
(C.3.11)

C.3.#32. Compute the map up to the terms of order µ2.

Solution:

x1 = x0 cos 2πω − y0 sin 2πω + µΦ1(x0, y0) + µ2(· · · ) ,

y1 = x0 sin 2πω + y0 cos 2πω + µΦ2(x0, y0) + µ2(· · · ) ,
(C.3.12)

where

Φ1 =

∫ 2π

0

[f(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) cosωτ

+ g(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) sinωτ ]dτ

Φ2 =

∫ 2π

0

[−f(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) sinωτ

+ g(x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ, τ) cosωτ ]dτ . 2

C.3.#33. Write the system (C.3.11) in polar coordinates x = r cos θ,

y = r sin θ.

Solution:
ṙ = µR(r, θ, t),

θ̇ = ω + µΨ(r, θ, t) ,
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where

R = f(r cos θ, r sin θ, t) cos θ + g(r cos θ, r sin θ, t) sin θ

Ψ =
1

r
[−f(r cos θ, r sin θ, t) sin θ + g(r cos θ, r sin θ, t) cos θ] . 2

C.3.#34. Let

R(r, θ, t) =

∞∑

n=0

∞∑

m=0

anm(r)ei(mθ+nt)

Ψ(r, θ, t) =
∞∑

n=0

∞∑

m=0

bnm(r)ei(mθ+nt) .

Construct the Poincaré map up to O(µ2) for the case where ω is an integer.

Solution:

r1 = r0 + 2πµ
∑

mω+n=0

anm(r0)e
imθ0 + µ2(· · · )

θ1 = θ0 + 2πµ
∑

mω+n=0

bnm(r0)e
imθ0 + µ2(· · · ) . 2

If ω is an integer, the map (C.3.12) can be represented as follows

x1 = x0 + µΦ1(x0, y0) + µ2(· · · ) ,

y1 = y0 + µΦ2(x0, y0) + µ2(· · · ) ,

C.3.#35. Prove the following theorem:

Theorem C.3. (Averaging Theorem) If ω is an integer, then for suffi-

ciently small µ > 0 structurally stable equilibrium states of the system

ẋ =
µ

2π
Φ1(x, y) ,

ẏ =
µ

2π
Φ2(x, y)

will correspond to structurally stable fixed points of the Poincaré map.

Moreover, stable equilibria correspond to stable fixed points. 2
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In polar coordinates the averaged system is given by

ṙ = µ
∑

mw+n=0

anm(r)eimθ = µR0(r, θ),

θ̇ = µ
∑

mw+n=0

bnm(r)eimθ = µΨ0(r, θ) .

One should take into account that r = 0 is a singularity here.

C.3.#36. Find the associated averaged system for the van der Pol

equation

ẍ+ µ(1− x2)ẋ+ ω2x = µA sin t

provided that ω2 = 1+µ∆ (where ∆ is called a detuning). Examine the types

of equilibrium states as A and ∆ vary. 2

Consider now the case where ω is not an integer. According to C.3.#31,

the map (C.3.12) has a unique fixed point close to zero in this case.

C.3.#37. Find the periodic motion (x∗(t), y∗(t)) corresponding to this

fixed point and find the equations of the system after straightening this periodic

solution (translate the origin into (x∗(t), y∗(t))).

Solution:

ẋ = −ωy + µF (x, y, t) + µ2(· · · ) ,

ẏ = ωx+ µG(x, y, t) + µ2(· · · ) ,

where

F (x, y, t) = f(x, y, t)− f(0, 0, t) ,

G(x, y, t) = g(x, y, t)− g(0, 0, t) . 2

Assume now ω = p/q where p and q are integers, q > 1. In this case, one is to

find periodic motions of period 2πq that correspond to the fixed points of the

map T q. This map is written in the form

xq = x0 + µΦ1(x0, y0) + µ2(· · · ) ,

yq = y0 + µΦ2(x0, y0) + µ2(· · · ) ,
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where

Φ1 =

∫ 2πq

0

[f(·) cosωτ + g(·) sinωτ ]dτ ,

Φ2 =

∫ 2πq

0

[−f(·) sinωτ + g(·) cosωτ ]dτ ,

where (·) stands for (x0 cosωτ − y0 sinωτ, x0 sinωτ + y0 cosωτ) as above in

(C.3.12), and ω = p
q .

In the same manner as in the previous case, we can treat the averaged

system

ẋ =
µ

2πq
Φ1(x, y) ,

ẏ =
µ

2πq
Φ2(x, y) .

In polar coordinates, the map T q can be recast as

rq = r0 + 2πqµ
∑

mp+nq=0

anm(r0)e
imθ0 + µ2(· · · ) ,

θq = θ0 + 2πqµ
∑

mp+nq=0

bnm(r0)e
imθ0 + µ2(· · · ) .

Here, the averaged system is given by

ṙ = µR0(r, θ) ,

θ̇ = µΨ0(r, θ) ,

where R0 =
∑
mp+nq=0 anm(r)eimθ and Ψ0 =

∑
mp+nq=0 bnm(r)eimθ. It

should be noted that f(0, 0, t) ≡ 0 and g(0, 0, t) ≡ 0 in this case, i.e. the

averaged system in polar coordinates no longer has a singularity at r = 0. 2

C.3.#38. Consider the case of irrational ω. As above, one may assume

f(0, 0, t) ≡ 0, g(0, 0, t) ≡ 0 in (C.3.11). The system in polar coordinates takes

the form

ṙ = µ

∞∑

n=0

∞∑

m=0

anm(r)ei(mθ+nt), θ̇ = ω + µ

∞∑

n=0

∞∑

m=0

bnm(r)ei(mθ+nt)
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with non-singular (smooth) coefficients anm, bnm. Prove that for any given

N,M there exists a smooth coordinate transformation which brings the system

to the form

ṙ = µa00(r) +O(µ2) + µ

∞∑

n=N

∞∑

m=M

anm(r)ei(mθ+nt),

θ̇ = ω + µb00(r) +O(µ2) + µ
∞∑

n=N

∞∑

m=M

bnm(r)ei(mθ+nt) .

Note that since the series here tend to zero as N,M → +∞, it follows that for

an arbitrarily small δ the map T in appropriate coordinates can be written as

follows

r1 = r0 + 2πµa00(r0) + δO(µ) ,

θ1 = θ0 + 2πω + 2πµb00(r0) + δO(µ) . 2

C.3.#39. Examine the shortened map

r1 = r0 + 2πµa00(r0) ,

θ1 = θ0 + 2πω + 2πµb00(r0) .

Show that in addition to the trivial fixed point (0, 0), the above map may have

invariant closed curves determined by the zeros of the equation

a00(r0) = 0 . 2

C.3.#40. Prove that for small µ > 0, each root r∗ of the equation

a00(r0) = 0 ,

for which

a′00(r
∗) < 0

corresponds to the stable invariant closed curve r = r∗(µ) = r∗ +O(µ).

Direction: take δ sufficiently small and apply the annulus principle. 2

In the case of irrational ω, the averaged system is given by

ṙ = µa00(r) ,

θ̇ = ω + µb00(r) .
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Here r = 0 is an equilibrium state, while the non-zero roots of a00(r) = 0

correspond to the limit cycles.

C.3.#41. The next problem is almost equivalent to the previous one:

show that for small µ > 0 stable (unstable) limit cycles of the averaged system

correspond to stable (unstable) invariant tori of the original system. 2

Let us return to the resonant case (ω = p/q, q ≥ 1). The corresponding

averaged system can then be recast as

ṙ = µR0(r, θ) ,

θ̇ = µΨ0(r, θ) .

Assume that the system
ṙ = R0(r, θ) ,

θ̇ = Ψ0(r, θ)
(C.3.13)

has a structurally stable periodic orbit L : {r = α(t), θ = β(t)} of period τ ,

and let

λ =

∫ τ

0

[
∂R0

∂τ
(α(t), β(t)) +

∂Ψ0

∂τ
(α(t), β(t))

]
dτ < 0.

This implies that the averaged system has a periodic solution {r = α(µt), θ =

β(µt)} of period τ/µ.

C.3.#42. Prove that the original system has a stable invariant torus for

small µ > 0.

Hint: modify (C.3.13) first. Introduce the normal coordinates (u, ϕ) near

L (see Sec. 3.10). Then the system is written in the form

u̇ = A(ϕ)u+O(u2) ,

ϕ̇ = 1 +O(u) ,

where the right-hand side is a periodic function of period τ0. Note that

λ =

∫ τ

0

A(ϕ)dϕ ,

and therefore

A(ϕ) = λ+A0(ϕ) ,
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where
∫ τ
0
A0(ϕ)dϕ = 0. Having introduced v = ue−

∫
A0(ϕ)dϕ, the system as-

sumes the form

v̇ = λv +O(v2) ,

ϕ̇ = 1 +O(v) .

It follows from here that the averaged system in the new coordinates (v, ϕ) can

be recast as

v̇ = µ[λv +O(v2)] ,

ϕ̇ = µ[1 +O(v)] .

The corresponding shift map over 2πq is given by

v1 = v0 + µ[2πqλv0 +O(v2
0)] +O(µ2) ,

ϕ1 = ϕ0 + 2πqµ+O(µv0) +O(µ2) .

The same form has the 2πq-shift map of the original system (C.3.11). Introduce

v = µw, after which the Poincaré map becomes

w1 = w0 + 2πqµλw0 +O(µ2) ,

ϕ1 = ϕ0 + 2πqµ+O(µ2) .

To complete the solution, apply the annulus principle. 2

C.3.#43. Examine the Mathieu equation written in the following form

ẋ = y, ẏ = −ω2(1 + ε cosω0t)x . (C.3.14)

Show that the instability zones, which correspond to the parametric oscil-

lations, are adjoined to the points ω/ω0 = k/2 (k = 1, 2, . . .) in the plane

(ω/ω0, ε) on the surface ε = 0 [20].

The solution of (C.3.14) starting from an initial point (x0, y0) has the fol-

lowing form at ε = 0:

x(t) =
y0
ω0

sinωt+ x0 cosωt ,

y(t) = y0 cosωt− ωx0 sinωt .
(C.3.15)
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Next we construct the map of the plane (x, y, t = 0) onto the plane (x, y, t =

τ = 2π/ω0). To do this, we substitute t = 2π/ω0 into (C.3.15) and replace

(x(t), y(t)) by (x̄, ȳ), and (x0, y0) by (x, y). The resulting operator (x, y) 7→
(x̄, ȳ) is given by

(
x̄

ȳ

)
=




cos 2π
ω

ω0

1

ω
sin 2π

ω

ω0

−ω sin 2π
ω

ω0
cos 2π

ω

ω0



(
x

y

)
. (C.3.16)

The characteristic equation of (C.3.16) is

ρ2 + p ρ+ q = 0 ,

where

p ≡ tr T = −2 cos 2π ω
ω0

and q ≡ detT = 1 .

This is an area-preserving map. The multipliers of the fixed point O(x = y = 0)

satisfy the relations

ρ1 + ρ2 = −p and ρ1ρ2 = q = 1 .

Therefore, when |p| < 2, the above map is a rotation through the angle 2πω/ω0

such that all of its trajectories are stable.

Find a correction of the first order in ε to formula (C.3.15) (use C.3.#30).

Note that the origin of the perturbed map becomes a saddle when |p| > 2.

Furthermore, it is a saddle (+,+) or a saddle (−,−) if p > 2 and p < −2,
respectively. 2

C.3.#44. [166] Consider the system

ψ̇1 = ω1 ,

ψ̇2 = ω2 ,

where ω1,2 > 0, which can be interpreted as a pair of two non-interacting

harmonic oscillators.

The above system can be reduced to one equation

dψ1

dψ2
=
ω1

ω2
, r .
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We can always assume r < 1. The above system has the solution ψ1 = rψ2+ψ
0
2 .

Introducing the normalized coordinates θ = ψ0
2/2π and θ̄ = (r2π + ψ0

2)/2π,

one obtains the circle map

θ̄ = θ + r, mod 1 , (C.3.17)

which can also be represented by the following map on the interval [0, 1]:

θ̄ =

{
θ + r for 0 ≤ θ ≤ 1− r ,
θ − (1− r) for 1− r ≤ θ ≤ 1 ,

(C.3.18)

where the end points θ = 0 and θ = 1 are identified.

Let r be a rational number, i.e. r = p/q where p and q are some mutually

prime integers. Let us partition the segment [0, 1] into p intervals of length

1/p: [0, 1/p], [1/p, 2/p], . . . , [(p− 1)/p, 1]. Choose an initial point θ0 ∈ [0, 1/p].

The positive semi-trajectory of (C.3.17) starting from θ0 is the sequence of

iterates
(
θ0, θ1 = θ0 +

p

q
(mod 1), θ2 = θ0 +

2p

q
(mod 1), . . . , θi = θ0 +

ip

q
(mod 1), . . .

)
.

The cycle of period n is given by
{
θ0 = θ0 +

np

q
mod 1, θi 6= θ0, i = 1, 2, . . . , n− 1

}
.

Under the above condition imposed on p and q it follows that the minimal

period n = p. Therefore, there is only one point on the cycle on each interval

[(k − 1)/p, k/p], k = 1, . . . , p because the number of points on the cycle and

that of the intervals both equal p. Otherwise n < p, but this is impossible

because two iterates of the cycle cannot belong to the same interval. Since θ0

is an arbitrary point of [0, 1/p], it follows that the segment [0, 1] is filled in by

p-period cycles entirely. Thus, when the rotation number is rational there is a

continuum of coexisting cycles of period p in the system under consideration.

If the number r is irrational, it can be represented as

r = lim
l→∞

ql
pl

such that pl → ∞ as l → ∞. In addition, the number of intervals

[(k − 1)/pl, k/pl] on [0, 1] also increases without bound. Therefore, the length

of each interval decreases, and as l →∞ the whole segment [0, 1] is filled out

by a quasi-periodic covering. 2
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C.3.#45. Examine the circle map:

θ̄ = θ + ω + k sin θ mod (2π) , (C.3.19)

where ω is a frequency and k is some parameter.

Compute numerically the rotation number R(ω):

R =
1

2π
lim

N→+∞

1

N

N−1∑

n=0

(θn+1 − θn)

for ω ∈ [0, 2π].

Hint: compute the iterates of the following two-dimensional mapping

θn+1 = (θn + ω + k sinxn) mod 2π ,

Rn+1 =
1

n+ 1

(
nRn + ω +

θn+1 − θn
2π

)
,

(C.3.20)

as ω varies from 0 to 2π.

As n→ +∞, the iterates of Rn converge to the rotation number R at the

given ω. Next plot the bifurcation diagram of R versus ω as in Fig. C.3.1. 2

Fig. C.3.1. “Devil staircase” in (C.3.20).
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C.4 Derivation of normal forms

In this section, we will discuss some algorithms for constructing normal forms.

Due to the reduction principle, it is sufficient to construct the normal forms

for the system on the center manifold only. Therefore, in order to consider

bifurcations of an equilibrium state with a single zero characteristic root, we

need a one-dimensional normal form. If it has a pair of zero characteristic

exponents, one should examine the corresponding family of two-dimensional

normal forms, and so on.

In certain situations the global properties of the original system must be

taken into account. So, for instance, if the original system restricted to the cen-

ter manifold is symmetric, the associated normal form will inherit this property

as well. In essence, a normal form for a given bifurcation is a parameterized

system of differential or difference equations, depending on what the problem

under consideration is, whose right-hand sides are in the simplest form but

sufficient to describe the main bifurcations in the given family.

In order to study bifurcations near a stability boundary one must introduce

small governing parameters the number of which is at least equal to the order

of degeneracy of the linear problem, or this number may even be greater pro-

vided that there are extra degeneracies due to the nonlinear terms. Since the

unfolding parameters are small, the orbits on the center manifold may stay in a

small neighborhood of the equilibrium state for a rather long time (there is no

fast instability in the center manifold because all characteristic exponents of

the reduced linearized system are nearly zero). Thus, it is reasonable to rescale

the parameters and phase variables so that they assume finite values instead

of asymptotically vanishing ones; the time variable must then be rescaled too.

This approach is a rather general one. Its advantage is that when the rescal-

ing procedure has been carried out, many resonant monomials disappear. The

most trivial example is a saddle-node bifurcation with a single zero eigenvalue.

In this case the center manifold is one-dimensional. The Taylor expansion of

the system near the equilibrium state may be written in the following form

ẋ = µ+ x2 + l3x
3 + · · · ,

where µ is a small governing parameter. The rescaling x→
√
|µ|x, t→ t/

√
|µ|

brings the system to the form

ẋ = ±1 + x2 +O(
√
|µ|) ,

so that the second degree monomial only survives in the limit µ→ 0.
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An analogous algorithm can be applied to the multi-dimensional case. The

limit of the rescaled system as governing parameters tend to zero gives a de-

scription “in the main order” of the behavior of the system near a bifurcation

point. Such a limit system is called an asymptotic normal form.

The asymptotic normal forms that arise in the study of equilibria with

single or double zero eigenvalues are one- or two-dimensional, respectively.

The analysis of such forms is often very comprehensive so most effort is ap-

plied to establishing the rigorous correspondence between the dynamics in the

asymptotic normal form and that in the original system [20, 64]. However, the

analysis of bifurcations in two-dimensional normal forms may already require

consideration of some other global bifurcations, sometimes of codimension two.

Moreover, accounting for the dropped terms of higher order may also destroy

the idealized picture occurring in truncated normal forms. The most vivid

example is the bifurcations of an equilibrium state with exponents (0,±iω)
where the normal form possesses a rotational symmetry. If the original system

does not support this symmetry, the simple dynamics in the shortened normal

form may transform into chaos in the enlarged system.

The situation becomes different when one considers normal forms of higher

dimensions. Three- (and higher) dimensional asymptotic normal forms may

exhibit non-trivial dynamics by themselves. For example, a homoclinic loop

to the saddle-focus was found in the asymptotic normal form

ẋ = y ,

ẏ = z ,

ż = −z − by + ax− x2 ,

corresponding to the bifurcation of triple zero eigenvalues with a complete

Jordan box [163]. Notably, the equations in some asymptotic normal forms

coincide with some well-known models coming from different applications: the

third-order Duffing equation, the Chua’s circuit, the Shimizu-Morioka system

and the Lorenz equation.

C.4.#46. Derive the normal form for the Shimizu-Morioka equation in

the form [187]
ẋ = y ,
ẏ = ax− ky − xz ,
ż = −z + x2 ,

(C.4.1)

near the codimension-two point (k = a = 0).
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First we should determine the characteristic exponents at the origin. It is

easy to see that there is a pair of zero exponents and one equal to −1. The

eigenspace corresponding to the zero pair is given by {z = 0}. The center

invariant manifold, tangent to this plane at the origin, is written as

z = x2 − 2xy + 2y2 + · · ·

where the dots stand for the cubic and higher order terms in (x, y, z, a, k). The

system on the center manifold thus takes the form

ẋ = y ,

ẏ = ax− ky − x3 + 2x2y − 2xy2 + · · · ,
(C.4.2)

where the dots stand for the terms of the fourth order, at least.

Let us next rescale

(x, y, t, k, a)→ (εxnew, ε
2ynew, tnew/ε, εknew, ε

2anew) .

The system recasts as

ẋ = y ,

ẏ = ax+ ky − x3 + 2εx2y +O(ε2) ,
(C.4.3)

where the new parameters knew and anew can now be arbitrary. Observe that

the reflection symmetry (x, y) → (−x,−y) in (C.4.3) is inherited from the

original system (C.4.1). Due to this fact the Taylor expansion of the functions

in the right-hand side does not contain quadratic terms (and other terms of

even order) in (x, y). In contrast to the generic Bogdanov-Takens bifurcation,

which we analyze in Sec. 13.2, the bifurcations in the symmetric system are

somewhat different: the equilibrium state at the origin always exists, and it

undergoes a pitch-fork bifurcation instead of a saddle-node one. The bifurca-

tion unfolding of the symmetric system also contains an additional curve which

corresponds to the double semi-stable periodic orbit with multiplier equal to

+1. The signs of the Lyapunov values on the Andronov-Hopf stability bound-

ary for the origin and for the non-trivial equilibria are determined by the sign

of ε. Note that when ε = 0 and k = 0, the system (C.4.3) becomes integrable

with Hamiltonian

H(x, y) =
y2

2
− x2

2
+
x4

4
. 2
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C.4.#47. Let us consider next the following version of Chua’s circuit

[168]

ẋ = β(g(y − x)− f(x)) ,

ẏ = g(x− y) + z ,

ż = −y ,

where α, β and g are some positive parameters. Here f(x) = αx(x2 − 1) is

the cubic approximation for the nonlinear element, and therefore this system

possesses odd symmetry (x, y, z) → (−x,−y,−z). When g > α, there is a

single equilibrium state O at the origin. When g < α, there also exists a pair

of symmetric equilibrium states O1,2(±
√

1− g/a, 0,∓g
√

1− g/a). On the line

g = α, the characteristic equation at O has a single zero root when β 6= 1/g2,

and two zero roots at β = 1/g2 (the third root is equal to −g in this case).

Like the case of the Shimizu-Morioka system, the structure of the bifurcation

set in a plane transverse to this curve in the parameter space is determined

by the Khorozov-Takens normal form with reflection symmetry. The outline

of the reduction to this normal form on a two-dimensional center manifold is

discussed below.

The Jacobian matrix corresponding to two null roots is given by

D =




0 1 0

0 0 0

0 0 −α


 .

The linear part of the system reduces to the form


ξ̇

η̇

ζ̇


 = D



ξ

η

ζ




at α = g = 1/
√
β by means of the transformation


x

y

z


 = ξ




1

0

−g


+ η




0

g

g2


+ ζ




1

−g2

−g


 .
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It is easy to compute and verify that in these coordinates the system assumes

the form

ξ̇ = η +

(
1− 1

g2

)
F ,

η̇ =
1

g
F ,

ζ̇ =
1

g2
F ,

where

F = γ1ξ + γ2η + (γ1 − gγ2)ζ − βα(ξ + ζ)3 ,

and γ1,2 are small parameters:

γ1 = β(α− g), γ2 = βg2 − 1 .

The center manifold has the form

ζ =
γ1

g3
ξ +

(
γ2

g3
− γ1

g4

)
η + · · · ,

where the dots stand for the cubic and higher order terms with respect to

(ξ, η, γ1, γ2). The system on the center manifold is written as

ξ̇ = η

(
1 +

(
1− 1

g2

)(
γ2 + (γ1 − gγ2)

(
γ2

g3
− γ1

g4

)))

+ ξ

(
1− 1

g2

)(
γ1 + (γ1 − gγ2)

γ1

g3

)
− 1

g

(
1− 1

g2

)
ξ3 + · · · ,

η̇ = η
1

g

(
γ2 + (γ1 − gγ2)

(
γ2

g3
− γ1

g4

))
+ ξ

1

g

(
γ1 + (γ1 − gγ2)

γ1

g3

)

− 1

g2
ξ3 + · · · ,

where the dots denote terms of order higher than three with respect to

(ξ, η, γ1, γ2). Now the last step is to change the variable η so that the first

equation would become ξ̇ = η. The final form of the system is given by

ξ̇ = η ,

η̇ = ε1ξ + ε2η −
1

g2
ξ3 + 3

1− g2

g3
ξ2η + · · · ,
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where

ε1 =
γ1

g

(
1 + γ1

1

g3
+ γ2

(
1− 2

g2

))

and

ε2 = γ1 − (γ1 − gγ2)
g3 + 1

g5
− (γ1 − gγ2)

2 1

g5
. 2

C.4.#48. The equation of Chua’s circuit can be re-parametrized in a way

so that the system is written as

ẋ = a(y + c0x− c1x3) ,

ẏ = x− y + z ,

ż = −by .
(C.4.4)

Then, y becomes a fast variable in the limit (a, b)→ 0, and all the dynamics of

the original system (C.4.4) concentrates on the slow manifold y = x+ z. The

corresponding slow system is given by the following set of equations

ẋ = γ(x+ z + c0x− c1x3) ,

ż = −x− z ,
(C.4.5)

where γ = a/b is a parameter. Let us solve the first equation for z:

z = ẋ/γ − x− c0x+ c1x
3 ,

and substitute this expression into the second equation in (C.4.5)

ż = −ẋ/γ + c0x− c1x3 .

Since

ż = ẍ/γ − (1 + c0 − 3c1x
2))ẋ ,

we obtain

ẍ− (γ(1 + c0 − 3c1x
2)− 1)ẋ+ γ(c0x− c1x3) = 0 .

Letting ẋ = u, we can rewrite this equation in the form

ẋ = u ,

u̇ = c0x+ (γ − 1 + γc0)y − 3γc1x
2y − γc1x3 ,

which can be identified as the Khorozov-Takens normal form. 2
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C.4.#49. Derivation of the normal form for an equilibrium state with

three zero characteristic exponents in the model of a laser with saturable

absorber [191]:

Ė = −E + P1 + P2 ,

Ṗ1 = −δ1P1 − E(m1 +M1) ,

Ṗ2 = −δ2P2 − E(m2 +M2) ,

Ṁ1 = −ρ1M1 + EP1 ,

Ṁ2 = −ρ2M2 + βEP2 .

(C.4.6)

Here E, P1, and P2 are the slow envelopes of electric field and atomic polar-

izations in the active and passive media. M1 and M2 are the deviations of

the population differences in the active and passive medium from their values

m1 < 0 and m2 > 0 in the absence of a laser field. δ1 and δ2 (ρ1 and ρ2) are

transverse (longitudinal) relaxation rates in the active and passive media nor-

malized by the cavity relaxation rate, β is the ratio of the saturation intensities

of the intracavity media.

Linear stability of the trivial steady state

E = P1 = P2 =M1 =M2 = 0

is determined by the eigenvalues of the Jacobian matrix

J =




−1 1 1 0 0

−m1 −δ1 0 0 0

−m2 0 −δ2 0 0

0 0 0 −ρ1 0

0 0 0 0 −ρ2



,

which are the roots of the characteristic equation

(λ3 + a2λ
2 + a1λ+ a0)(λ+ ρ1)(λ+ ρ2) ,

where

a2 = 1 + δ1 + δ2 ,

a1 = m1 +m2 + δ1 + δ2 + δ1 δ2 ,

a0 = m2δ1 +m1δ2 + δ1δ2 .
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Let δ1 − δ2 > 0, then at the codimension-three point given by

m1 = m01 = −δ
2
1(1 + δ2)

δ1 − δ2
< 0 ,

m2 = m02 =
δ22(1 + δ1)

δ1 − δ2
> 0, ρ1 = 0 ,

(C.4.7)

the Jacobian matrix J has a triply degenerate zero eigenvalue with geometric

multiplicity two:

λ1,2,3 = 0, λ4 = ρ2, λ5 = −Λ = −(1 + δ1 + δ2) .

By introducing the linear transformation of the coordinates




x1

x2

x3

x4

x5




= U




E

P1

P2

M1

M2



,

where

U =




1 + δ2
δ1(1 + δ2)− δ2

δ21
1 0 0

δ2
δ2
δ1

1 0 0

0 0 0 1 0

−(1 + δ1)
1 + δ1
1 + δ2

1 0 0

0 0 0 0 1




is such that

UJU−1 =




0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −Λ 0

0 0 0 0 −ρ2



,
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the system (C.4.6) assumes the form

ẋ1 = x2 −
1

Λ2

[
δ1 − δ2(1− δ1)

δ1
2 (x3 + ξ1) + (x5 + ξ2)

]
S(x1, x2, x4) ,

ẋ2 = − 1

Λ2

(
δ2
δ1

(x3 + ξ1) + (x5 + ξ2)

)
S(x1, x2, x4) ,

ẋ3 = −ρ1x3 −
m01

Λ4
[Λx1 − (1 + Λ)x2 + x4]S(x1, x2, x4) ,

ẋ4 = −Λx4 −
1

Λ2

(
1 + δ1
1 + δ2

(x3 + ξ1) + (x5 + ξ2)

)
S(x1, x2, x4) ,

ẋ5 = −ρ2x5 −
β

Λ4

[
m02

δ22
(Λδ1δ2x1 − (Λδ1 − δ2)(1 + δ2)x2)−

δ22m01

δ21
x4

]

× S(x1, x2, x4) .

Here m01 and m02 are defined in (C.4.7), ξ1 = m1 −m01, ξ2 = m2 −m20 and

ρ1 are small parameters, and

S(x1, x2, x4) = δ1Λ(x1 − x2) + (1 + δ2)(x2 − x4) .

After reduction to center manifold (we simply substitute x4 = x5 = 0 into the

first three equations) we obtain (the dots stand for the terms of order 3 and

higher):

ẋ1 = x2 + ax1(x3 + ξ1) + bx2(x3 + ξ1) + ξ2s(x1, x2) + · · · ,

ẋ2 = −cx1(x3 + ξ1) + dx2(x3 + ξ1) + ξ2s(x1, x2) + · · · ,

ẋ3 = −ρ1x3 + ex2
1 + fx1x2 + gx2

2 + · · · ,

where

s(x1, x2) = −
δ1
Λ
x1 −

1 + δ2 − δ1Λ
Λ2

x2, a = −δ1 − (1− δ1)δ2
Λδ1

,

b =
(δ1 − (1− δ1)δ2)(Λδ1 − (1 + δ2))

Λ2δ21
, c =

δ2
Λ
,

d =
δ2(Λδ1 − 1− δ2)

Λ2δ1
, e = −δ1m01

Λ2
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and

f =
m01(δ1(1 + 2Λ)− 1− δ2)

Λ3
, g = −m01(1 + Λ)(Λδ1 − 1− δ2)

Λ4
.

Finally, applying the coordinate transformation

x1 = z1 ,

x2 = z2 − az1(z3 + ξ1)− bz2(z3 + ξ1)− ξ2s(z1, z2) ,

x3 = z3 +
f

2
z2
1 + gz2z1 ,

we obtain
ż1 = z2 + · · · ,
ż2 = ε1z1 + ε2z2 − cz1z3 + d′z2z3 + · · · ,
ż3 = −ρ1z3 + ez2

1 + · · · ,
(C.4.8)

where

c =
δ2
Λ
, e = −δ1m01

Λ2
, d′ = −1 + δ1

Λ2
,

and the small parameters ε1,2 are given by

ε1 = −ξ1δ2 + δ1ξ2
Λ

, ε2 = − (1 + δ1)ξ1 + (1 + δ2)ξ2
Λ2

.

We can rescale the small parameters as follows:

ε1 = ε2 ε2 = µε, ρ1 = ρε .

By neglecting the third order terms and rescaling the variables z1 = xε3/2/
√
ce,

z2 = yε5/2/
√
ce, z3 = zε2/c, we arrive at the following asymptotic normal form

dx

dτ
= y,

dy

dτ
= x+ µy − xz, dz

dτ
= −ρz + x2 (C.4.9)

which coincides with the Shimizu-Morioka model. 2

C.4.#50. Let a Jacobian of the system linearized at the equilibrium state

have three zero eigenvalues. In addition, let the system on the center manifold
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possess the symmetry (x, y, z) → (−x,−y, z), where y, z are the coordinate

projections on the eigenvectors and x is the projection onto the adjoined vector.

Then, generically, the system may be reduced to the following form

ẋ = y ,

ẏ = x[µ̄− az(1 + g(x, y, z))− a1(x
2 + y2)(1 + · · · )]

− y[ᾱ+ a2z(1 + · · · ) + a3(x
2 + y2)(1 + · · · )] ,

ż = −β̄ + z2(1 + · · · ) + b(x2 + y2)(a+ · · · ) ,

(C.4.10)

where ai 6= 0, i = 1, 2, 3 and b 6= 0. Here, µ̄, ᾱ and β̄ are small parameters, and

g and the dots denote the terms which vanish at the origin. Suppose ab > 0.

Let τ2 = µ+ a
√
β̄(1 + g(0, 0,−

√
β)) > 0, β̄ > 0. By scaling the time t→ s/τ ,

changing the variables

x→ x

√
τ3

ab
, y → τy

√
τ3

ab
, z → −

√
β̄ +

τ2

a
z

and defining the new parameters as ᾱ = ατ and β̄ = (βτ/2)2, we obtain the

following system

ẋ = y

ẏ = x(1− z)− αy +O(τ) ,

ż = −βz + x2 +O(τ) ,

(C.4.11)

where α and β are parameters which are no longer small. Dropping the terms

of order τ , we obtain the Shimizu-Morioka model. 2

C.4.#51. In addition to the conditions of the above case, let the sys-

tem be invariant with respect to the involution (x, y, z) → (x, y,−z), i.e. it

possesses two symmetries. The normalized system can then be recast as

ẋ = y ,

ẏ = x[µ̄− az2(1 + g(x, y, z2))− b(x2 + y2)(1 + · · · )]

− y[ᾱ+ a1z
2(1 + · · · ) + b1(x

2 + y2)(1 + · · · )] ,

ż = z(β̄ − cz2(1 + · · · ) + d(x2 + y2)(a+ · · · ) .

(C.4.12)



868 Appendix C

Suppose c > 0 and ad > 0. In the parameter region τ 2 = µ̄ − aβ̄c(1 +

g(0, 0, β̄/c)) > 0 and β > 0, let us introduce the renormalization:

t→ s/τ, x→ xτ

√
c

ad
, y → τ2y

√
c

ad
, z →

√
β̄

c
+
τ2

a
z

and ᾱ = τα, β̄ = τβ/2. Denoting B = bc
ad and omitting the terms of order τ

we arrive at the following system

ẋ = y ,

ẏ = x(1− z)− αy +Bx3 ,

ż = −β(z − x2) .

(C.4.13)

The above system is remarkable because the Lorenz equation can be reduced

to it when r > 1. The relations between the parameters of two systems are

given by

β =
b

σ(r − 1)
, α =

1 + σ

σ(r − 1)
, B =

b

2σ − b .

It follows from the above relations that the region of the positive parameters

(r, b, σ) in the Lorenz equation is bounded by the plane β = 0 and the surface
α
β = 1

2 (
1
B + 1), which tends to β = 0 as B → 0.

We should also note that the Shimizu-Morioka system is a particular case

(i.e. B = 0) of the Lorenz system in the form (C.4.13). 2

C.4.#52. The bifurcation of a periodic orbit with three multipliers +1.

On the center manifold we introduce the coordinates (x, y, z, ψ), where ψ is

the angular coordinate and (x, y, z) are the normal coordinates (see Sec. 3.10).

Assuming that the system is invariant under the transformation (x, y) →
(−x,−y), the normal form truncated up to second order terms is given by

ẋ = y ,

ẏ = x(µ̄− az)− y(ᾱ+ a2z) ,

ż = −β̄ + z2 + b(x2 + y2) ,

ψ̇ = 1 ,

(C.4.14)

where the periodic orbit is supposed to be of period 1. Because the first three

equations in the above system are independent of the fourth one, the resulting

normal form is analogous to the Shimizu-Morioka system. 2
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C.4.#53. Below we present (following [185]) a list of asymptotic normal

forms which describe the trajectory behavior of a triply-degenerate equilibrium

state near a stability boundary in systems with discrete symmetry. We say

there is a triple instability when a dynamical system has an equilibrium state

such that the associated linearized problem has a triplet of zero eigenvalues. In

such a case, the analysis is reduced to a three-dimensional system on the center

manifold. Assuming that (x, y, z) are the coordinates in the three-dimensional

center manifold and a bifurcating equilibrium state resides at the origin, we

suppose also that our system is equivariant with respect to the transformation

(x, y, z)↔ (−x,−y, z).
We note that the listed systems have a natural “physical” meaning and do

appear in some realistic applications, see for example the above laser equations.

Thus, this method may be viewed as a recipe for exclusion of irrelevant terms

in the nonlinearity as well as for selection of those nonlinear terms which are

responsible for specific details of such behavior.

In addition to the symmetry assumption, we will also suppose that the

linear part of the system near the origin O restricted to the invariant plane

z = 0 has a complete Jordan block. Then, the system in the restriction to the

center manifold may locally be written in the form





ẋ = y ,

ẏ = x(az + F (x2, xy, y2, z)) + yG(y2, z) ,

ż = H(x2, xy, y2, z) ,

(C.4.15)

where neither H(0, 0, 0, z) nor F (0, 0, 0, z) contain linear terms.

Let us consider a three-parameter perturbation of the system in the form





ẋ = y ,

ẏ = x(µ1 + az + F (x2, xy, y2, z)) + y(−µ2 +G(y2, z)) ,

ż = −µ3z +H(x2, xy, y2, z) ,

(C.4.16)

where µ = (µ1, µ2, µ3) are small parameters, and the functions F , G and H

may also depend on µ.

Let us also suppose that

a 6= 0 . (C.4.17)
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It is then obvious that a change of the z-coordinate reduces (C.4.16) to the

following form (with some new functions G and H)





ẋ = y ,

ẏ = x(µ1 − z) + y(−µ2 +G(y2, z)) ,

ż = −µ3z +H(x2, xy, y2, z) .

(C.4.18)

Let us rescale the variables and time:

x→ δxx, y → δyy, z → δzz, t→ t/τ ,

where δx, δy, δz and τ are some small quantities. We assume µ1 6= 0 and let

δy = τδx, δz = τ2 = |µ1| .

Then (C.4.18) assumes the form





ẋ = y ,

ẏ = x(±1− z)− λy +O(τ) ,

ż = −αz +H(δ2x x
2, τδ2x xy, τ

2δ2x y
2, τ2z)/τ3 ,

(C.4.19)

where α and λ are new rescaled parameters, which are no longer small:

α = µ3/
√
|µ1|, λ = µ2/

√
|µ1| .

The asymptotic normal form is a finite limit of the system (C.4.19) as

µ → 0. Note that different choices of proportion between the scaling factors

δx and τ yield different normal forms.

In the last equation of (C.4.19), the terms which contain z2, y3 and yz, tend

to zero as τ → 0. Thus, by cutting out small terms, we transform (C.4.19) to





ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + δ2xx

2H1(δ
2
xx

2)/τ3 + δ2xxyH2(δ
2
xx

2)/τ2

+ δ2xy
2H3(δ

2
xx

2)/τ + δ2xzx
2H4(δ

2
xx

2)/τ .

(C.4.20)

The right-hand side in (C.4.20) is to be finite, i.e. if the Taylor expansions of

the functionsHi begin with x2mi for zero values of the perturbation parameters
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µ1, µ2, and µ3, then the following inequalities must hold

δ2(m1+1)
x /τ3 <∞ ,

δ2(m2+1)
x /τ2 <∞ ,

δ2(m3+1)
x /τ <∞ ,

δ2(m4+1)
x /τ <∞ .

Therefore, we can choose τ so that

τ ∼ δβx , (C.4.21)

where

β = min

{
2

3
(m1 + 1), m2 + 1, 2(m3 + 1), 2(m4 + 1)

}
. (C.4.22)

For example, in the most generic case where Hi(0) 6= 0 (i = 1, . . . , 4), the

exponent β = 2/3 in (C.4.21) and (C.4.22). Then, system (C.4.20) reduces to

the form 



ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2H1(0) +O(τ) .

(C.4.23)

In the limit τ → 0, this system becomes the Shimizu-Marioka model, where

the parameters α and λ may take arbitrary finite values.

Let us now consider an extra degeneracy: H1(0) = 0 and H ′1(0) 6= 0. In

order to study bifurcations in this case one should introduce a new independent

governing parameter which is the constant term of the Taylor expansion of H1.

If we set β = 1 according to relation (C.4.22), then system (C.4.20) reduces to

the following asymptotic form:





ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2h̃10 +H2(0)xy .

(C.4.24)

This is equivalent to the Lorenz equations. Here, h̃10 = H1(0)/τ is the third

rescaled governing parameter which may take arbitrary finite values.
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The next degeneracy H2(0) = 0, H ′2(0) 6= 0 modifies the third equation in

(C.4.24) in the following way:

ż = −αz + x2h̃10 + h̃20xy +H ′1(0)x
4 , (C.4.25)

where h̃10 = H1(0)/τ
3/2 and h̃20 = H2(0)/τ

1/2. Here, β = 4/3.

By repeating this procedure we can get a hierarchy of the asymptotic nor-

mal forms. Let us denote

Hi(x
2) =

∞∑

j

Hijx
2j .

We assume that at the moment of bifurcation the values of Hij for j =

0, . . . ,mi − 1 vanish. As before, we can treat these non-zero Hij as additional

independent small parameters.

It is obvious that in the rescaled system (C.4.20) there are non-zero co-

efficients in front of those terms which correspond to such mi for which the

minimum in (C.4.22) is achieved; all terms of higher order vanish in the limit

τ → 0. The terms of degree less then 2mi, which appear in Hi for non-zero

parameter values, also survive after the rescaling; their normalized coefficients

appear as the independent parameters that may assume arbitrary finite values.

Thus, if we get rid of all asymptotically vanishing terms, system (C.4.20)

takes the form




ẋ = y ,

ẏ = x(±1− z)− λy ,
ż = −αz + x2H̃1(x

2) + xyH̃2(x
2) + y2H̃3(x

2) + zx2H̃4(x
2) ,

(C.4.26)

where H̃i’s are polynomials of degree ni such that

max

{
2

3
(n1 + 1), n2 + 1, 2(n3 + 1), 2(n4 + 1)

}

=
1

β
< min

{
2

3
(n1 + 2), n2 + 2, 2(n3 + 2), 2(n4 + 2)

}
(C.4.27)

(if some H̃i vanish identically, then we let ni = −1). The coefficients of H̃ij

are defined as follows:

h̃ij = Hij/τ
si− 2(j+1)

β ,

where s1 = 3, s2 = 2, s3 = s4 = 1.
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It follows immediately from (C.4.27) that n3 = n4, i.e. the degrees of H̃3

and H̃4 are always equal. Hence, the list of asymptotic normal forms which

are given by (C.4.26) and (C.4.27) can be ordered as the common degree n(=

n3 = n4) increases.

The first in the list are the systems given by (C.4.23), (C.4.24) and (C.4.25),

which correspond to n = −1. For each of the greater values of n there are four

sub-cases below. Each consecutive case corresponds to additional degeneracies.

This is a cyclic list: after the fourth case, we return to the beginning with

n = n+ 1 and so forth.

(1) n1 = 3n + 2, n2 = 2n + 1; at the moment of bifurcation the first

(n− 1) coefficients vanish in both H3 and H4, the first 2n and (3n+1)

coefficients vanish in H2 and H1, respectively.

(2) n1 = 3n + 3, n2 = 2n + 1; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 1) and (3n + 2)

coefficients vanish in H2 and H1, respectively.

(3) n1 = 3n + 3, n2 = 2n + 2; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 1) and (3n + 3)

coefficients vanish in H2 and H1, respectively.

(4) n1 = 3n + 4, n2 = 2n + 2; at the moment of bifurcation the first n

coefficients vanish in both H3 and H4, the first (2n + 2) and (3n + 3)

coefficients vanish in H2 and H1, respectively. 2

C.5 Behavior on stability boundaries

C.5.#54. A stable limit cycle bifurcates from infinity in the system

ẋ = x− y − a(x2 + y2)x ,

ẏ = x+ y − a(x2 + y2)y ,
(C.5.1)

at a = 0. At this value, the system becomes linear

ẋ = x− y ,
ẏ = x+ y ,

(C.5.2)

and it has an unstable focus at the origin. One can compose the Lyapunov

function V (x, y) = x2 + y2 and verify that all the orbits diverge to infinity

(i.e. the infinity is stable) since the time derivative of the Lyapunov function
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(a) (b)

Fig. C.5.1. Limit cycle in (C.5.3) for a > 0 (b) and at a = 0 (a).

V̇ (x, y) = 2(x2 + y2) is positive, and hence each level (x2 + y2) = C is a curve

without contact and every trajectory must flow outside of every such curve C

as time increases.

When a 6= 0, we have

d (x2 + y2)

dt
= 2(x2 + y2)(1− a(x2 + y2)) .

It is apparent that V̇ (x, y) < 0 if x2 + y2 > 1/a, and V̇ (x, y) > 0 when

V < 1/a. Thus, x2 + y2 = 1/a is a stable invariant curve (a limit cycle), and

all trajectories (except for the equilibrium state at the origin) tend to it as

t→ +∞.

C.5.#55. [25] Explain how the stable limit cycle in Fig. C.5.1 of the

system
ẋ = y − x(ax2 + y2 − 1) ,

ẏ = −ay − y(ax2 + y2 − 1)
(C.5.3)

evolves as a→ +0. 2

C.5.#56. Find a Lyapunov function for Khorozov-Takens normal form

ẋ = y ,

ẏ = −x3 − x2y .
2
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C.5.#57. Reveal the role of the cubed y in making the following system

asymptotically stable: find a proper Lyapunov function.

ẋ = y ,

ẏ = ay + x− x3 − by3 .

Here a and b are some control parameters. 2

C.5.#58. Prove the global asymptotic stability of solutions of the Lorenz

equation
ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,
ż = −bz + xy ,

(C.5.4)

when r < 1, σ > 0 and b > 0.

The following function

V0(x, y, z) =
1

2
(x2 + σy2 + σz2)

is a Lyapunov function, since its time derivative

V̇0 = −σ(x2 − (1− r)xy + y2 + bz2)

is a negatively defined quadratic form. 2

C.5.#59. Prove that the infinity is unstable in the Lorenz system.

Solution. The time derivative of the function

V (x, y, z) =
x2

2
+
y2

2
+ (z − r − σ)2

is given by

V̇ (x, y, z) = xẋ+yẏ+(z−σ− r)ż = −σx2−y2− b
(
z − r + σ

2

)2

+
b

4
(r+σ)2 .

The condition V̇ = 0 determines an ellipsoid outside of which the derivative is

negative. Therefore, all “outer” positive semi-trajectories of the Lorenz system

flow inside the surface

σx2 + y2 + b

(
z − r + σ

2

)2

=
b

4
(r + σ)2 . 2
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C.5.#60. Prove that infinity is unstable in a Chua’s circuit modeled by

ẋ = a(y + x/6− x3/6) ,

ẏ = x− y + z ,

ż = −by .
(C.5.5)

Use the Lyapunov function

V0(x, y, z) =
x2

2a
+
y2

2
+
z2

2b
,

and analyze its time-derivative

V̇0 =
xẋ

a
+ yẏ +

zż

b
=

1

6
(x2 − x4) + 2xy − y2

for large x and y. 2

C.5.#61. Consider the following perturbation of the Bogdanov-Takens

normal form:

ẋ = y ,

ẏ = µy − ε2x+ a20x
2 + a11xy + a02y

2 +Q(x, y) ,
(C.5.6)

where µ and ε are small, and Q(x, y) starts with cubic terms. One can see

that the origin O(0, 0) is a weak focus for the above system at µ = 0 and

small ε 6= 0: the characteristic roots are ±iε. To determine the stability of the

weak focus, let us rescale first the variables x 7→ ε2x, y 7→ ε3y, and the time

t 7→ ε−1t. The system will take the form

ẋ = y ,

ẏ = −x+ a20x
2 + εa11xy +O(ε2) .

(C.5.7)

The following normalizing coordinate transformation

xnew = x− a20

3
(x2 + 2y2) +

ε

3
a11xy, ynew = ẋnew

brings the system to the form

ẋ = y ,

ẏ = −x+ 2a2
20

(
x3 − 4

3
xy2

)
+ εa20a11

(
5x2y − 4

3
y3

)
+O(ε2) + · · · ,
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where the dots stand for the terms of order higher than three. So, we eliminate

all quadratic terms (up to O(ε2)-terms) and now the first Lyapunov value

can be immediately computed. Thus, let us introduce the complex variable

z = x+ iy so that the system will recast as

ż = −iz +
(
ε

8
a20a11 + i

5

12
a2
20 +O(ε2)

)
z2z∗ + · · · ,

where the dots stand for negligible cubic and higher order terms. The first

Lyapunov value is the real part of the coefficient of z2z∗, i.e. it is equal to

L1 =
ε

8
[a20a11 +O(ε)] .

It follows that the weak focus is stable when a20a11 < 0, and unstable for

a20a11 > 0 for small ε. At ε 6= 0, only one limit cycle is born from the weak

focus, provided a20a11 6= 0. 2

C.5.#62. Let us give a general formula for the first Lyapunov value at a

weak focus of the three-dimensional system
...
ξ + P ξ̈ +Qξ̇ +Rξ = f(ξ, ξ̇, ξ̈)

where f is a nonlinearity, i.e. its Taylor expansion at the origin begins with

quadratic terms, and the coefficients P,Q,R satisfy the relation

PQ = R, Q > 0 .

Denoting y ≡ (y1, y2, y3) = (ξ, ξ̇, ξ̈) we can rewrite the above equation as

ẏ = Ay + f(y) ·




0

0

1


 ,

where

A =




0 1 0

0 0 1

−R −Q −P


 .

The eigenvalues of the matrix A are −P and ±iω, with ω2 = Q. The corre-

sponding eigenvectors are



1

−P
P 2


 ,




1

iω

−Q


 , and




1

−iω
−Q


 ,
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and the eigenvectors of the adjoint matrix are respectively given by


Q

0

1


 ,




Pω

ω − iP
−i


 , and




Pω

ω + iP

i


 .

Thus, we can introduce the new variables u ∈ R1 and z ∈ C1 as follows:

y = u




1

−P
P 2


+ z




1

iω

−Q


+ z∗




1

−iω
−Q


 .

The derivatives u̇ and ż are computed by the following rule

u̇ =
1

Q+ P 2
(Qẏ1 + ẏ3), ż =

1

2Pω
(Pωẏ1 + (ω − iP )ẏ2 − iẏ3) ,

so that we arrive at the system whose linear part is already diagonal

u̇ = −Pu+ α1z
2 + α2zz

∗ + · · · ,
ż = iωz + β1z

2 + β2zz
∗ − β∗1z∗2 + γuz − γ∗uz∗ + δz2z∗ + · · · ,

(C.5.8)

where the dots stand for the nonlinear terms which are negligible for the com-

putation of the first Lyapunov value. If we expand the nonlinearity up to the

third order in y:

f(y) =
∑

ckjyjyk +
∑

dkjlykyjyl + · · · , (C.5.9)

then the coefficients α, β, γ, δ in (C.5.8) are found as follows:

(Q+ P 2)α1 = 2iPωβ1 =
∑
ckj(iω)

k+j−2 ,

(Q+ P 2)α2 = 2iPωβ2 = −∑((−1)k + (−1)j)ckj(iω)k+j−2 ,

γ =
1

2

∑
ckj((−P )k−2(iω)j−2 + (−P )j−2(iω)k−2) ,

δ = − 1

2PQ2

∑
dkjl(iω)

k+j+l((−1)k + (−1)j + (−1)l) .

(C.5.10)

System (C.5.8) has a center manifold given by

u =
α1

P + iω
z2 +

α2

P
zz∗ + · · · .
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On the center manifold the system assumes the form

ż = iωz+β1z
2+β2zz

∗−β∗1z∗2+
(
γ
α2

P
− γ∗ α1

P + iω
+ δ

)
z2z∗+· · · . (C.5.11)

The normalizing transformation

znew = z + i
β1

ω
z2 − iβ2

ω
zz∗ + i

β∗1
3ω
z∗2

kills all quadratic terms, so that the system on the center manifold takes the

form

ż = iωz + (L1 + iΩ1)z
2z∗ + · · · ,

where

L1 + iΩ1 =
i

ω

(
β1β2 − |β1|2 −

2

3
|β2|2

)
+ γ

α2

P
− γ∗ α1

P + iω
+ δ . (C.5.12)

By definition, L1 is the first Lyapunov value. 2

C.5.#63. Let us apply the above algorithm to determine the stability of

the structurally unstable equilibria O1,2 in the Lorenz model, see Sec. C.2. To

find whether the corresponding Andronov-Hopf bifurcation is sub- or super-

critical on the stability boundary of these equilibria we will compute the ana-

lytical expression for the first Lyapunov value L1.

Following [165, 186], let us first bring the original system

ẋ = −σ(x− y) ,

ẏ = rx− y − xz ,

ż = −bz + xy

to a single third-order differential equation

...
x+(σ+b+1)ẍ+b(1+σ)ẋ+bσ(1−r)x =

(1 + σ)ẋ2

x
+
ẋẍ

x
−x2ẋ−σx3 . (C.5.13)

Then, we introduce the new variable ξ = x − x0, where x0 = ±
√
b(r − 1)

for O1,2, respectively. We stress that only quadratic and cubic terms in the

nonlinearity are needed and hence the first order terms of the expansion of
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(x0 + ξ)−1 are sufficient in order to find the first Lyapunov value. Taking into

account the needed terms, the equation (C.5.13) can be rewritten as follows
...
ξ + (σ + b+ 1)ξ̈ + [b(1 + σ) + x2

0]ξ̇ + [bσ(1− r) + 3σx2
0]ξ

= −3σx0ξ
2 − 2x0ξξ̇ +

1 + σ

x0
ξ̇2 +

1

x0
ξ̇ξ̈ − σξ3 − ξ2ξ̇

− 1 + σ

x2
0

ξξ̇2 − 1

x2
0

ξξ̇ξ̈ + · · · . (C.5.14)

The stability boundary for both O1 and O2 is given by

r = σ(σ + b+ 3)(σ − b− 1)−1 .

The first Lyapunov value computed by the above algorithm is

L1 = b[p3q(p2 + q)(p2 + 4q)(σ − b− 1)]−1B , (C.5.15)

where

B = [9σ4 + (20− 18b)σ3 + (20b2 + 2b+ 10)σ2

− (2b3 − 12b2 − 10b+ 4)σ − b4 − 6b3 − 12b2 − 10b− 3] .

On the stability boundary, the inequality σ > b+1 is fulfilled. Upon substitut-

ing σ = σ∗+b+1, the expression for B becomes a polynomial of σ∗ and b with

positive coefficients. Hence, if σ∗ > 0 and b > 0, then L1 > 0. Thus, both equi-

libria O1,2 are unstable (saddle-foci) on the stability boundary. The boundary

itself is dangerous in the sense of the definition suggested in Chap. 14. There-

fore, the corresponding Andronov-Hopf bifurcation of O1,2 is sub-critical. 2

C.5.#64. Compute the first Lyapunov value in the Chua’s circuit (C.5.5).

Verify that for c1 = c3 = 1/6 it vanishes at the point (a ' 1.72886,

b ' 1.816786), labeled by L1 = 0 on the Andronov-Hopf curve in Fig. C.2.1.

This is the point of codimension two from which a curve of saddle-node periodic

orbit originates. 2

C.5.#65. Find the expression for the first Lyapunov value in the Shimizu-

Marioka system (C.2.25) reduced to the following third order differential equa-

tion
...
x + (a+ b)ẍ+ abẋ− bx+ x3 − a

x
ẋ2 − ẋẍ

x
= 0 . (C.5.16)

Show that it is negative (positive) to the right (left) of the point (a ' 1.359, b '
0.1123) on the Andronov-Hopf bifurcation curve given by (a+ b)a− 2 = 0. 2
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C.6 Bifurcations of fixed points and periodic orbits

C.6.#66. Consider the logistic map

x̄ = ax(1− x) ≡ f(x) ,

with 0 < a < 4 and x ∈ I = [0, 1]. When 0 < a < 1, the origin is a unique

stable fixed point. It is semi-stable at a = 1 since f ′(0) = 1. It becomes

unstable as a increases, and another fixed point O1(x1 = (a− 1)/a) bifurcates

from the origin (hence we have a transcritical bifurcation here). The point

O1 is stable when 1 < a ≤ a1 = 3 [see Fig. C.6.1(a)]. It flip-bifurcates when

f ′(O1) = a − 2ax1 = −1 at a = 3. The first Lyapunov value at this point

is equal to − 1
6 (f

′′′(O1) +
3
2f
′′(O1)

2) = − 2
3a1 = −2. Since it is negative, the

point is asymptotically stable at a = 3. Thus, a stable cycle C2 of period 2

bifurcates from O1 as a exceeds 3, as shown in Fig. C.6.1(b).

The cycle of period two consists of a pair of period-two points

x
(1,2)
2 =

a+ 1±
√
a2 − 2a− 3

2a
,

which are the roots of the equation x = f 2(x) other than those corresponding

to O and O1. The direct computation of the multiplier of the cycle, which is

given by f ′(x
(1)
2 ) · f ′(x(2)

2 ), reveals that it is stable when 3 < a < 1 +
√
6.

Moreover, the multiplier is positive when 3 < a < 1 +
√
5, and negative

when 1 +
√
5 < a, but still less than 1 in absolute value. This cycle becomes

repelling when a > 1+
√
6, and its stability switches to the cycle C4 of period

4, shown in Fig. C.6.1(c). When this cycle goes through the flip bifurcation

at a = a3 ' 3.54, then a stable period-8 cycle is born, and so forth [see

Fig. C.6.2(d)–(f)].

Note that the first Lyapunov value is always negative for a flip-bifurcation

of any periodic orbit in the logistic map. Indeed, the Schwarzian derivative:

S(f)(x) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

is negative everywhere within the interval [0, 1] where the map is defined. It is

easy to check that if for some map S(f) < 0 everywhere, then S(f◦f◦· · ·◦f) < 0

everywhere too, i.e. it is negative for every power of the map. It remains to

note that 1
6S(f) coincides with the first Lyapunov value at the fixed point at

the moment of flip-bifurcation (when f ′(x) = −1).
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(a) (b)

(c) (d)

(e) (f)

Fig. C.6.1. Period doubling in the logistic map.
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(g) (h)

(i)

Fig. C.6.1. (Continued)

This sequence of period-doubling bifurcations ends up at approximately a '
3.569, after which the logistic map exhibits chaotic behavior, see Fig. C.6.1(g)

and (i).

Feigenbaum [170] noticed that the bifurcation values of an, n = 1, 2, . . .

increase asymptotically in geometrical progression with the multiplier

δ = lim
n→∞

an − an−1

an+1 − an
' 4.66920 . 2

C.6.#67. Find the critical value of a that corresponds to the situation

depicted in Fig. C.6.1(h). Can this map have stable orbits at this moment?

To answer this question reduce it first to a piece-wise linear map.
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Fig. C.6.2. (x versus a) bifurcation diagram of the logistic map in the period-doubling

process.

Evaluate the values of an that correspond to the flip bifurcations of the

orbits of period 16, 32, respectively. Find the corresponding maximal x-

coordinates of these cycles and plot them on Fig. C.6.2. 2

C.6.#68. Examine the map

x̄ = x+ x(a(1− x)− b(1− x)2) = f(x) ,

where a and b are some positive parameters. Find its fixed points, and detect

the corresponding stability boundaries. Determine the asymptotic stability of

the fixed points and period-2 cycle at critical cases. 2

C.6.#69. Examine the maps x̄ = µ1 +Ax1+µ2 and x̄ = µ1−µ2x
ν +x2ν ,

where 0 < ν < 1, and |µ1| ¿ 1. Consider the subcases 0 < ν < 1/2 and

1/2 < ν separately. What happens at ν = 1/2? Analyze bifurcations of

symmetric periodic points in the two maps x̄ = (µ1 + A|x|1+µ2) sign(x) and

x̄ = (µ1 − µ2|x|ν + |x|2ν) sign(x), |µ1,2| ¿ 1. Such maps appear in the study

of homoclinic bifurcations of codimension two (see Sec. 13). 2

C.6.#70. Consider the Hénon map:

x̄ = y , ȳ = a− bx− y2 .



C.6. Bifurcations of fixed points and periodic orbits 885

(a)

(b)

Fig. C.6.3. Horseshoe in the Hénon map for a = 2 and b = 0.4 and in its inverse.

This map is a canonical example illustrating the chaotic behavior. For certain

parameter values the Hénon map models the mechanism of the creation of the

Smale horseshoe as illustrated in Fig. C.6.3, for the map and for its inverse:

y = x̄ ,

x = (a− ȳ − x̄2)/b ,

defined for b 6= 0.
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The Jacobian of the Hénon map is constant and equal to b. Therefore, when

b > 0, the Hénon map preserves orientation in the plane, whereas orientation is

reversed when b < 0. Note also that if |b| < 1, the map contracts areas, so the

product of the multipliers of any of its fixed or periodic points is less than 1 in

absolute value. Hence, in this case the map cannot have completely unstable

periodic orbit (only stable and saddle ones). On the contrary, when |b| > 1, no

stable orbits can exist. When |b| = 1, the map becomes conservative. At b = 0,

the Hénon map degenerates into the above logistic map, and therefore one

should expect some similar bifurcations of the fixed points when b is sufficiently

small.

Next, let us find the fixed points in the Hénon map and analyze how they

bifurcate as the parameters a and b vary. The bifurcation portrait is shown

in Fig. C.6.4. It contains three bifurcation curves: SN : a = − 1
4 (1 + b)2, PD:

a = 3
4 (1 + b)2, and AH: b = 1,−1 < a < 3. For (a, b) ∈ SN the map has a

fixed point with one multiplier +1; when |b| < 1, this point is a saddle-node

with an attracting sector, while when |b| > 1, this is a saddle-node with a

repelling zone. For (a, b) ∈ PD the map has a fixed point with multiplier −1;
when |b| < 1, the other multiplier is less than 1 in absolute value and the first

Lyapunov value is negative, so the bifurcating point is stable. For |b| > 1,

Fig. C.6.4. Bifurcation portrait of the fixed points in the Hénon map.
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the other multiplier is greater than 1 in absolute value and the first Lyapunov

value is positive, so the bifurcating point is completely unstable. (Check the

equations for the bifurcation curves and compute the Lyapunov values.)

In the region D1 there are two fixed points, one of which is a saddle, and the

other one is stable for (a, b) ∈ Ds
1, and repelling when (a, b) ∈ Du

1 . Transition

from D1 to D2 is accompanied with the period-doubling bifurcations of the

fixed point, correspondingly, stable on the route Ds
1 → Ds

2, and repelling on

the route Du
1 → Du

2 . Meanwhile the point becomes a saddle (−), and in its

neighborhood a stable cycle of period two bifurcates from it when (a, b) ∈ Ds
2;

in the region Du
2 , this period-two cycle is repelling.

When b = 1, the Hénon map becomes conservative, as its Jacobian equals

+1. At b = 1 and a = −1, it has an unstable parabolic fixed point with two

multipliers +1; at b = 1 and a = 3, it is a stable parabolic fixed point with

two multipliers −1. In between these points, for −1 < a < 3 (i.e. (a, b) ∈ T ),
the map has a fixed point with multipliers e±iψ where cosψ = 1 −

√
a+ 1.

This is a generic elliptic point for ψ 6∈ {π/2, 2π/3, arccos(−1/4)} [167]. Since

the Hénon map is conservative when b = 1, the Lyapunov values are all zero.

When we cross the curve AH, the Jacobian becomes different from 1, hence the

map either attracts or expands areas which, obviously, prohibits the existence

of invariant closed curves. Thus, no invariant curve is born upon crossing the

curve AH. 2

C.6.#71. Let us consider the following map

x̄ = y + αy2 ,

ȳ = a− bx− y2 + βxy
(C.6.1)

with small α and β. This map can therefore be treated as a slight pertur-

bation of the Hénon map. We may wonder what bifurcations occur in some

bounded subregion in the (x, y)-plane which remains of finite size as both α

and β tend to zero. This question is typical in the study of bifurcations of

a quadratic homoclinic tangency between the stable and unstable manifolds

of a neutral saddle fixed point (with the multipliers |ν| < 1 < |γ| such that

|νγ| = 1) [175].

Let us derive the equations of the bifurcation curves S̃N , P̃D and ÃH

for (C.6.1) for small α and β; these curves correspond to the saddle-node,

period-doubling and torus creation, respectively.
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Consider the characteristic equation for (C.6.1)

det

(
−λ 1 + 2αy

−b+ βy −2y + βx− λ

)
= 0 .

Since x = y + αy2 at a fixed point, this equation recasts as

λ2 + λ(2y − βy − αβy2) + b+ y(2bα− β)− 2αβy2 = 0 . (C.6.2)

The equation for the coordinate y of a fixed point of (C.6.1) is given by

a− y(1 + b)− y2(1 + bα− β) + αβy3 = 0 . (C.6.3)

Let us derive the equation of the curve S̃N of saddle-node fixed points.

Since one of the eigenvalues of such points equals 1, plugging λ = 1 into

(C.6.2) yields

1 + b+ 2y(1 + bα− β)− 3αβy2 = 0 . (C.6.4)

This equation has only one solution in any fixed finite region, provided that

α and β are sufficiently small:

y = − 1 + b

2(1 + bα− β) +O(αβ) .

Substituting this in (C.6.3) gives the following equation for S̃N

a = − (1 + b)2

4
(1− bα+ β) +O(α2 + β2) . (C.6.5)

Analogously, the equation of the curve P̃D corresponding to a period-

doubling bifurcation is given by

a =
3

4
(1 + b)2

(
1 +

4

3
bα− β

3

)
+O(α2 + β2) . (C.6.6)

Note that the curves S̃N and P̃D are close to the curves SN and PD of the

original Hénon map.

Let us derive next the equation for the curve ÃH which corresponds to

the creation of an invariant curve (the Andronov-Hopf bifurcation for maps).

Since eigenvalues of such a point are λ1,2 = e±iϕ, it follows that the Jacobian
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of the map at the fixed point equals 1 and the trace of the Jacobian matrix

equals 2 cosϕ. This yields the following system for solving y and b:

2y − βy − αβy2 = −2 cosϕ
b+ y(2bα− β)− 2αβy2 = 1 .

(C.6.7)

We obtain from the first equation that

y = − cosϕ

1− β/2 +O(αβ) , (C.6.8)

and from the second one that

b = 1− (β − 2α) cosϕ+O(α2 + β2) . (C.6.9)

Finally, we find from (C.6.3) that

a = cos2 ϕ[1 + β − α]− 2 cosϕ[1 + β/2] +O(α2 + β2) . (C.6.10)

The curve ÃH is given by (C.6.9)–(C.6.10). Since the Jacobian of the

map (C.6.1) is no longer constant, one should expect that the corresponding

bifurcation of the birth of the invariant curve will be non-degenerate at the

fixed point. To make sure, let us compute the first Lyapunov value L1.

Let (a, b) ∈ ÃH. Then b = −1+O(α, β) and−1+O(α, β) < a < 3+O(α, β).

The bifurcating fixed point with multipliers e±iϕ has coordinates

x = − cosϕ(1 + β/2) + α cos2 ϕ+O(α2 + β2) ,

y = − cosϕ(1 + β/2) +O(α2 + β2) .
(C.6.11)

Let us translate the origin to the fixed point. The map (C.6.1) then assumes

the form

x̄ = y(1 + ρ) + αy2 + · · · ,

ȳ = −x/(1 + ρ) + 2y cosϕ− y2 + βxy + · · · .

where ρ = 2α cosϕ + O(α2 + β2) and the dots stand for nonlinear terms of

order O(α2 + β2). By rescaling the x-variable to (1 + ρ), the map is brought

to the form
x̄ = y + αy2 + · · · ,
ȳ = −x+ 2y cosϕ− y2 + βxy + · · · .

(C.6.12)
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Now, make a linear transformation x = ξ and y = (cosϕ)ξ − (sinϕ)η after

which the linear part of the map becomes a rotation through an angle ϕ:

ξ̄ = ξ cosϕ− η sinϕ+ α(ξ cosϕ− η sinϕ)2 + · · · ,

η̄ = ξ sinϕ+ η cosϕ+
1

sinϕ
(ξ cosϕ− η sinϕ)2(1 + α cosϕ)

− β

sinϕ
ξ(ξ cosϕ− η sinϕ) + · · · . (C.6.13)

Denoting z = ξ + iη, we obtain

z̄ = zeiϕ + c20z
2 + c11zz

∗ + c02(z
∗)2 + · · · , (C.6.14)

where z∗ is complex-conjugate to z and the coefficients cij are given by

c20 =
1

4
[−2 cosϕ− α+ β] +

i

4

[
cos 2ϕ

sinϕ
+

cosϕ

sinϕ
(α− β)

]
,

c11 =
α

2
+
i

2

[
1

sinϕ
+

cosϕ

sinϕ
(α− β)

]
,

c02 =
1

4
[2 cosϕ+ α(3 cos2 ϕ− sin2 ϕ)− β]

+
i

4

[
cos 2ϕ

sinϕ
+ α

cosϕ

sinϕ
(cos2 ϕ− 3 sin2 ϕ)− β cosϕ

sinϕ

]
.

(C.6.15)

According to Sec. 3.13, the quadratic terms are eliminated by the following

normalizing transformation (when ϕ 6= 2π/3):

znew = z − c20
e2iϕ − eiϕ z

2 − c11
1− eiϕ zz

∗ − c02
e−2iϕ − eiϕ (z

∗)2 + · · · . (C.6.16)

This transformation does not change the linear part and it is known to elimi-

nate all quadratic terms. Thus, we need only to collect the coefficients in front

of the cubic term z2z∗. This gives

z̄new = eiϕznew + eiϕz2
newz

∗
new(L+ iΩ) +O3(z) , (C.6.17)

where O3(z) stands for the remaining cubic and higher order terms, and

L+ iΩ = −c20c11e−2iϕ 1− 2eiϕ

1− eiϕ − |c11|
2 1

1− eiϕ − |c02|
2 2

1− e3iϕ . (C.6.18)
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Taking the real part of the right-hand side we arrive at the following formula

for the first Lyapunov value L1 [184]

L1 = Re(c20c11)
cos 3ϕ− 3 cos 2ϕ+ 2 cosϕ

2(1− cosϕ)

+ Im(c20c11)
sin 3ϕ− 3 sin 2ϕ+ 2 sinϕ

2(1− cosϕ)
− |c02|2 −

1

2
|c11|2 . (C.6.19)

When we plug (C.6.15) into the above formula, we finally obtain the following

expression:

L1 =
1

16(1− cosϕ)
[β − 2α] +O(α2 + β2) . (C.6.20)

Observe that L1 vanishes at α = β = 0 as it is to be identically zero in the

Hénon map.

Thus, when α and β are small, the sign of the first Lyapunov value equals

the sign of the difference (β−2α). If it is negative, the stable invariant curve is

born through the super-critical Andronov-Hopf bifurcation when crossing the

curve ÃH towards larger β. 2

C.6.#72. Using a computer, trace the evolution of the invariant curve

as b grows (choose α = β = 0.001).

Let us first discuss the case L1 < 0. In the region to the left of ÃH the point

O is stable, see Fig. C.6.5. The point O becomes unstable to the right of the

Andronov-Hopf bifurcation curve ÃH, and a stable invariant curve bifurcates

from it. The stable curve evolves in the following way: as the parameter

increases further, it “glues” to a homoclinic loop to the saddle fixed point O1.

By the term “gluing” we mean that the stable invariant curve becomes a part

of the non-wandering set of the complex homoclinic structure existing due to

intersections of the stable and unstable manifolds of the saddle fixed point O1.

As the parameters vary further, this non-wandering set vanishes as the result

of the homoclinic tangency.

Such a scenario of stability loss is often referred to in the literature as “soft”

(see Chap. 14). In the case L1 > 0, the loss of stability develops in a dangerous

way: the point O is stable initially; meanwhile an unstable invariant curve

“materializes” from the homoclinic tangles of O1, and shrinks to the origin as

the curve ÃH is reached. The fixed point at the origin becomes unstable upon

crossing ÃH, and all nearby trajectories escape from its neighborhood. 2
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Fig. C.6.5. Bifurcation portrait of the perturbed Hénon map.

C.6.#73. Examine the following map

x̄ = y ,

ȳ = µ1 + µ2y + dy3 − bx ,

where µ1, µ2, b are control parameters, and d = ±1. Such maps appear in

the study of the Lorenz attractor, as well as in modeling the behavior of the

periodic forced equations with cubic nonlinearity, like the Duffing system [176,

184].

The Jacobian of the map is equal to b, and therefore, when b 6= 0, it is a

diffeomorphism. The inverse is given by

ȳ = x ,

x̄ =
1

b
(µ1 + µ2x+ dx3 − y) .

One can easily see from the above formula that the cases |b| > 1 and |b| < 1 are

symmetric. When b = 0, the original map becomes “one-dimensional” in the
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sense that it has an invariant curve y = dx3+µ2x+µ1 to which any point of the

plane is mapped onto after one iteration. It should be noticed that the map is

invariant with respect to the transformation (x, y, µ1, µ2)→ (−x,−y,−µ1, µ2),

and hence bifurcations curves in the (µ1, µ2)-parameter plane are symmetric

with respect to the µ2-axis. 2

C.6.#74. Find analytically the equations of the basic bifurcation curves

of the fixed points and period-2 cycles of these maps.

Partial solution: the curve SN corresponding to a fixed point with multi-

plier +1 is given by

µ1 = ±2

3

(−1 + b− µ2

3d

) 1
2

;

that with multiplier −1 is given by

µ1 = ±2

3

(−1 + b− µ2

3d

) 1
2

(2 + 2b− µ2) .

The bifurcation curves of the period-2 cycle with multiplier +1 are given by

µ1 = ± 2

3
√
3
(−µ2 − 2(b+ 1))

3
2 , at d = +1 ,

µ1 = ± 2

3
√
3
(µ2 + 2b− 1)

3
2 , µ2 > −

2

3
(b+ 1), at d = −1 ,

Those corresponding to period-4 doubling are given by

µ2
1 =

1

216d
(b(b+ 1) + µ2 ± q)2(−5µ2 − 6(b+ 1)± q) ,

where q =
√

(3µ2 + 2b+ 2)2 − 8(b2 + 1). 2

C.6.#75. The following system is an asymptotic normal form for the

bifurcation of an equilibrium state with triple zero characteristic exponent

[162, 163]

ẋ = y ,

ẏ = z ,

ż = ax− x2 − by − z ,

in the case of complete Jordan block (continued from Sec. C.2). Here a and b

are control parameters. A fragment of the bifurcation diagram of this system
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Fig. C.6.6. A part of the bifurcation diagram. AH labels the Andronov-Hopf bifurcation
of the non-trivial equilibrium state O1; PD labels a flip-bifurcation of the stable periodic

orbits that generates from O1.

is shown in Fig. C.6.6. For a, b ≥ 0, this system has two equilibrium states:

O(0, 0, 0) and O1(a, 0, 0). The origin a = b = 0 corresponds to the Bogdanov-

Takens bifurcation of codimension two (see Sec. 13.4).

Let us describe the essential bifurcations in this system on the path b = 2 as

µ increases. On the left of the curve AH, the equilibrium state O1 is stable. It

undergoes the super-critical Andronov-Hopf bifurcation on the curve AH. The

stable periodic orbit becomes a saddle through the period-doubling bifurcation

that occurs on the curve PD. Figure C.6.7 shows the unstable manifold of

the saddle periodic orbit homeomorphic to a Möbius band. As a increases

further, the saddle periodic orbit becomes the homoclinic loop to the saddle

point O(0, 0, 0, ) at a ' 5.545. What can one say about the multipliers of

the periodic orbit as it gets closer do the loop? Can the saddle periodic orbit

shown in this figure get “pulled apart” from the double stable orbit after the

flip bifurcation? In other words, in what ways are such paired orbits linked in

R3, in R4? 2

C.6.#76. Using a computer detect the bifurcation curve in the (a, b)-

parameter plane that corresponds to the pitch-fork bifurcation of a symmetric
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Fig. C.6.7. Shown is a piece of the stable manifold of the saddle periodic orbit (dark circle)

at a = 3.2; courtesy of H. Osinga and B. Krauskopf [181].

periodic orbit in the Shimizu-Morioka model [191]:

ẋ = y ,

ẏ = x− xz − ay ,
ż = −bz + x2 ,

(C.6.21)

at a ' 0.4 and b ' 0.45. Can a symmetric limit cycle go through a period-

doubling bifurcation in this system? In the Lorenz equation? In a Chua

circuit? What makes the difference? 2

C.6.#77. Let us consider an example of a system with torus bifurcation.

Our example here is the following model coming from meteorology [128, 183]

ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z .
(C.6.22)

It follows from the linear stability analysis (see Sec. C.2) that the (a, b)-

parameter plane has a codimension-two point corresponding to an equilibrium

state with characteristic exponents (0,±iω). Therefore, the dimension of the

center manifold in such a case must be equal to 3 at least. For the complete

account on this bifurcation the reader is referred to [51, 64]. Below, we will

give its brief outline.

Observe that at such a codimension-two point the Andronov-Hopf and

saddle-node bifurcations occur simultaneously. Let µ1 and µ2 be the same
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parameters that govern these bifurcations in each versal family, respectively:

{
ṙ = r(µ1 + L1r

2) + · · · ,
ϕ̇ = ω(µ1) + Ω(µ1)r

2 + · · · ,
ż = µ2 − z2 + · · · ,

where ω(0) 6= 0, Ω(0) 6= 0, and L1 denotes a Lyapunov value. Taking the

interaction into account, the resulting normal form can be written as

ṙ = r(µ̃1 + L1r
2 + az + z2) +O(|(r, z)|4) ,

ż = µ̃2 + z2 + br2 +O(|(r, z)|4) ,

ϕ̇ = ω + cz +O(|(r, z)|2)) ,

where a, b may be set ±1. Note that if we drop the O(|(r, z)|4)-terms, the

system becomes invariant with respect to rotation around the z-axis, so its

trajectories lie on integral surfaces determined by trajectories of the planar

system consisting of the first two equations, which are decoupled from the

third one. In this planar system, equilibrium states with r = 0 correspond to

equilibrium states of the three-dimensional normal form, those with r 6= 0 cor-

respond to periodic orbits, and a structurally stable limit cycle will correspond

to an invariant torus. Depending on the signs of a and b, there may be four

essentially different cases. We will focus on the case a = −1 and b = 1 only

where the torus-bifurcation takes place, and leave the other ones for exercises

on linear stability analysis. The corresponding bifurcation diagram is shown

in Fig. C.6.8. Let us describe next the corresponding bifurcations in terms

relevant to the original three-dimensional system (C.6.22).

The point O1 is repelling in the region to the right of AH. On the left of AH

it becomes a saddle-focus (2,1) and a repelling periodic orbits generates from

it. This periodic orbit is the edge of the stable manifold of O1 (Fig. C.6.9(a)).

This periodic orbit becomes stable upon crossing TB, and a repelling two-

dimensional invariant torus bifurcates from it (see Fig. C.6.9(b)). This torus

becomes the heteroclinic connection between both saddle-foci (Fig. C.6.9(c))

on the curve H in Fig. C.6.8.

The bifurcations described above are subject to the condition of invariance

with respect to rotation around the z-axis. The straight-line r = 0 is then

an integral curve, and in the case where O1 and O2 are both saddles, this is
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Fig. C.6.8. Unfolding of the planar system with a = −1 and b = 1.

their common one-dimensional separatrix. Moreover, in such symmetrical sys-

tems, both two-dimensional stable and unstable invariant manifolds of these

saddles may either coalesce or have no common points. In generic systems

which are not rotationally invariant, one-dimensional separatrices of the sad-

dles may coincide at particular (codimension-two) parameter values, whereas

two-dimensional manifolds of the saddles may cross transversely each other

along some trajectories for an open set of parameters. Taking into account the

terms destroying the rotational symmetry may significantly change the struc-

ture of the heteroclinic connection, namely it may split. If this is the case, the

situation is likely where a one-dimensional separatrix becomes bi-asymptotic

to either saddle-focus shown in Fig. C.6.9(d). Moreover, if the saddle value is

positive at either saddle-focus, the separatrix loop will give rise to a homoclinic

explosion when the neighborhood is filled by infinitely many saddle periodic

orbits (see Sec. 13). 2

C.6.#78. The Medvedev’s construction of the blue-sky catastrophe on

the torus [95] is illustrated by Fig. C.6.11. It is supposed that there exists a pair
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(a) (b)

(c) (d)

Fig. C.6.9. Phase portraits of system (C.6.22): (a) (F = 1.77, G = 1.8); (b) (F = 1.8, G =
1.65); (c) (F = 1.8, G = 1.5); (d) (F ' 1.416, G ' 2.195).

of saddle-node cycles C1 and C2 on the torus at some µ = 0. By introducing

the direction of the motion of the torus, one can assign that one cycle rotates in

the clockwise direction whereas the other one spins in the opposite direction.

Discuss the way on how the blue-sky catastrophe may flow in. How many

cycles of what stability can appear through this bifurcation? Let n1(µ) and

n2(µ), µ > 0 be the number of gyrations which a closed trajectory on the torus

makes near the ghosts of C1,2. What is limµ→+0 n1,2(µ)? 2

C.6.#79. Challenge: following the underlying idea on the development

of the blue-sky catastrophe in a two time scales system which is discussed in



C.6. Bifurcations of fixed points and periodic orbits 899

Fig. C.6.10. Part of the bifurcation diagram of the system (C.6.22).

Fig. C.6.11. Blue-sky catastrophe on a torus.

Sec. 12.4, find the blue-sky catastrophe in the modified Hindmarsh-Rose model

of neuronal activity

ẋ = y − z − x3 + 3x2 + 5 ,

ẏ = −y − 2− 5x2 ,

ż = ε(2(x+ 2.1)− z)− A

(z − 1.93)2 + 0.003
,

(C.6.23)

where A and ε are two control parameters. Figure C.6.12 represents the bifur-

cation diagram of the slow system. Prove the stability of the resulting periodic
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Fig. C.6.12. Plot of the x-coordinate of the equilibrium state versus z at ε = 0. The
symbols xmin, xmax and 〈x〉 denote, respectively, the maximal, minimal and averaged values
of the x-coordinates of the stable limit cycle which bifurcates from a stable focus at AH
and terminates in the separatrix loop to the saddle O (see the next figure) at the point H:
z ' 2.086.

Fig. C.6.13. A separatrix loop to the saddle O at z ' 2.086 and ε = 0.
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(a) (b)

Fig. C.6.14. Shift map over 2π/ω: ideal bifurcation puzzle (a) and numeric result (b) for

a = 0.4, ω = 0.893, and at β = 0.0, 0.37, 0.37409, 0.375, 0.376, 0.3761. Both figures are
courtesy of B. Krauskopf and H. Osinga [180].

orbit. How can you explain the delayed loss of stability of the equilibrium

state O1: contrast the corresponding diagram at zero and small nonzero ε.

The curious reader is advised to consult [21] for more details concerning this

phenomenon. 2

C.6.#80. Study a mechanism of the appearance and breakdown of an

invariant torus in the periodically forced Van der Pol equation

ẋ = y ,

ẏ = −x− a(x2 − 1)y + β cosωt ,

ṫ = ω ,

(C.6.24)

as β increases from zero; Start with the Andronov-Hopf bifurcation of the

origin in the unperturbed equation. What occurs with the limit cycle at a =

2? The phenomenological scenario of the evolution of the torus is shown in

Fig. C.6.14. What bifurcations precede its breakdown, and when does it lose

its smoothness? Attention should be drawn to the behavior of the separatrices

of the saddle near the stable resonant cycle. 2

C.7 Homoclinic bifurcations

Homoclinic bifurcations are a priori not a local problem. The detection of a

homoclinic bifurcation in a specific set of ODE’s is an art in itself. Besides,
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it often requires performing rather sophisticated numerical computations.

However, as we have seen in our study of the Bogdanov-Takens normal form,

in some specific cases one can prove analytically the existence of a homoclinic

loop. This concerns systems close to integrable ones. Another instance is that

of systems with piece-wise linear right hand sides, as well as by two time scales

systems with slow and fast variables. Nevertheless, these examples are excep-

tions. As for generic nonlinear dissipative systems are concerned, the situation

is quite non-trivial, especially if the saddle in question has unstable and sta-

ble manifolds of dimensions equal or exceeding two (so far, the known regular

numerical methods are applied well to saddles with one-dimensional stable or

unstable separatrices). What really simplifies the problem is that there are

not so many bifurcation scenarios that usually precede the appearance of the

homoclinic loop. We will illustrate some of them below. However, this list is

undoubtedly incomplete, and we hope that the lucky reader will run into novel

bifurcations in further research.

A homoclinic bifurcation is a composite construction. Its first stage is based

on the local stability analysis for determining whether the equilibrium state is

a saddle or a saddle-focus, as well as what the first and second saddle values

are, and so on. On top of that, one deals with the evolution of ω-limit sets

of separatrices as parameters of the system change. A special consideration

should also be given to the dimension of the invariant manifolds of saddle

periodic trajectories bifurcating from a homoclinic loop. It directly correlates

with the ratio of the local expansion versus contraction near the saddle point,

i.e. it depends on the signs of the saddle values.

C.7.#81. Following the same steps as in the study of the generic

Bogdanov-Takens normal form, analyze the structure of the bifurcation set

near the origin µ1 = µ2 = 0 in the Khorozov-Takens normal form with reflec-

tion symmetry:

ẋ = y ,

ẏ = µ1x+ µ2y ± x3 − x2y .

The rescaling

x→ εu, y → ε2v, |µ1| → ε2, µ2 → ε2ν, t→ t/ε
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gives

u̇ = v ,

v̇ = γu+ νv ± u3 − εu2v ,

where γ = sign µ1 = ±1. Then, at ε = 0, the system becomes a Hamiltonian

one

u̇ = −∂H
∂v

,

v̇ =
∂H

∂u
,

with the first integral

H =
v2

2
+ γ

u2

2
± u4

4
.

The most interesting case is when the sign of γ is opposite to the sign of the

coefficient of the fourth-order term in H, so let us assume further

H =
v2

2
+ γ

u2

2
− γ u

4

4
.

This integrable system has three equilibrium states O(0, 0) and O1,2(±1, 0).
When γ = 1, the origin is a center while O1,2 are the saddles [see Fig. C.7.1(a)].

The saddles have a closed symmetric heteroclinic connection at the level

H = 1/4. The equations of the trajectories connecting the saddles can be

found explicitly, and for the upper one it is given (verify this) by

u =
e
√

2t − 1

e
√

2t + 1
, v =

2
√
2e
√

2t

(e
√

2t + 1)2
.

In the case γ = −1, the origin becomes a saddle and O1,2 are centers [see

Fig. C.7.1(b)]. The distinguishable figure-of-eight lies at the zero level of the

associated Hamiltonian. The equation of its right lobe is given by

u(t) =
2
√
2et

1 + e2t
, v(t) =

2
√
2et(1− e2t)
(1 + e2t)2

.

The heteroclinic connection or the homoclinic-8 in a perturbed system persists

on the curve µ2 = νµ1 +O(µ2
1), where ν is found from the condition

∫ +∞

−∞

∂

∂ε

d

dt
H(u(t), v(t))dt

∣∣∣∣
ε=0

= 0 .
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(a) (b)

Fig. C.7.1. Integral curves of the Hamiltonian systems: cases γ = 1(a) and γ = −1(b).

The latter can be rewritten as

ν =

∫ +∞
−∞ u2(t)v(t)dt
∫ +∞
−∞ v(t)dt

,

which gives

ν =
1

5
, and

4

5
,

respectively, for each case. Compute the saddle value on the curve H8 in the

case γ = −1. Show that the stable symmetric limit cycle cannot terminate

in the homoclinic-8 on this curve. See the complete bifurcation diagrams in

Fig. C.7.2.

C.7.#82. Apply the Shilnikov theorem and explain what kind of behavior

one should anticipate in the Rössler system [172, 188]

ẋ = −y − z ,

ẏ = x+ ay ,

ż = 0.3x− cz + xz ,

near the homoclinic loops of the saddle-foci O shown in Fig. C.7.3. Determine

the corresponding characteristic exponents, and evaluate the saddle values.
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(a)

(b)

Fig. C.7.2. Bifurcation diagrams of the Khorozov-Takens normal form.
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(a) (b)

Fig. C.7.3. Homoclinic loops to the saddle-foci O and O1 in the Rössler model for

(a = 0.380, c = 4.820) and (a = 0.4853, c = 4.50), respectively. Initial conditions are

chosen on the unstable manifolds at a distance of about 0.47 from O on the plane y = 0,
and about 0.14 from O1, respectively.

Direct computation reveals that for the given parameters the saddle-focus

O has the exponents λ1,2 ' 0.1597 ± i0.9815 and λ3 ' −4.7594. Since the

complex exponents λ1,2 are nearest to the imaginany axis, the homoclinic loop

implies the emergence of infinitely many saddle periodic orbits. Moreover,

since the second saddle value σ2 = λ3 + 2Reλ1,2 is negative (here it is equal

to the divergence of the vector field at O), it follows that near the homoclinic

loop there may also exist stable periodic orbits along with saddle ones. These

stable orbits have long periods and weak attraction basins, and therefore they

are practically invisible in numerical experiments.

In the second case, the equilibrium stateO2 has the characteristic exponents

(−0.0428 ± 3.1994, 0.4253). In contrast to the first case, there are no stable

periodic ordits in a small neighborhood of the loop, because the divergence of

the vector field at O2 is positive. 2

C.7.#83. Consider the following Z2-symmetric Chua’s circuit with cubic

nonlinearity [179]:

ẋ = a

(
y − x

6
+
x3

6

)
,

ẏ = x− y + z ,

ż = −by ,

(C.7.1)
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Fig. C.7.4. Bifurcation diagram for the Chua’s circuit.

where a ≥ 0 and b ≥ 0 are control parameters. When a = b = 0, the bifur-

cation unfolding of (C.7.1) is the same as that of the Khorozov-Takens nor-

mal form. In particular, it includes the bifurcation of a homoclinic-8. Thus,

the corresponding bifurcation curve, labeled H8, starts from the origin in the

(a, b)-parameter plane in Fig. C.7.4. Of special consideration here are the four

codimension-two points on this curve at which the following resonant condi-

tions hold (after Sec. C.2):

(1) NS (a ' 1.13515, b ' 1.07379) corresponds to the saddle (at the origin)

with zero saddle value σ. Below this point, σ is positive.
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(2) The point S → SF (a ' 1.20245, b ' 1.14678) corresponds to the

transition from a saddle to a saddle-focus (2,1). It is important that

σ < 0 at this point.

(3) The abbreviation NSF stands for the neutral saddle-focus at which

the saddle value σ vanishes.

(4) Introduce the second saddle value σ2 as the sum of the three leading

characteristic exponents at the saddle-focus. In the three-dimensional

case, it is the divergence of the vector field at the origin. Here, the

curve σ2 = 0, given by the equation a = 6, intersects H8 at (a = 6, b =

7.19137). Above this point, σ2 > 0.

These points break the bifurcation curve H8 into the four segments the tra-

jectory behaviour on which is described next.

Segment (0, NS):

On this interval, the homoclinic-8 bifurcates in the same way as in the

Khorozov-Takens normal form. Both loops, which form the homoclinic-8 are

orientable. The dimension of the center homoclinic manifold is equal to 2. The

third dimension does not yet play a significant role. Therefore, it follows from

the results in Sec. 13.7 that on the right of H8, there are two unstable cycles

(cycles 1 and 2 in Fig. 13.7.9). To the left of H8, a symmetric saddle periodic

orbit (cycle 12) bifurcates from the homoclinic-8 (see also Fig. C.7.5).

The point NS. This point is of codimension two as σ = 0 here. The

behavior of trajectories near the homoclinic-8, as well as the structure of the

bifurcation set near such a point depends on the separatrix value A (see formula

(13.3.8)). Moreover, they do not depend only on whether A is positive (the

loops are orientable) or negative (the loops are twisted), but it counts also

whether |A| is smaller or larger than 1. If |A| < 1, the homoclinic-8 is “stable”,

and unstable otherwise. To find out which case is ours, one can choose an

initial point close sufficiently to the homoclinic-8 and follow numerically the

trajectory that originates from it. If the figure-eight repels it (and this is the

case in Chua’s circuit), then |A| > 1. Observe that a curve of double cycles with

multiplier +1 must originate from the point NS by virtue of Theorem 13.5.

On the segment between NS and NSF , the saddle value is negative, i.e.,

σ < 0. Moving up along H8, we go through the point above which the ori-

gin becomes a saddle-focus. By virtue of Theorem 13.11, in either case (i.e.,

when the origin is a saddle, or a saddle focus with σ < 0), only two stable

cycles, or a single symmetric stable cycle bifurcate from the homoclinic-8 on
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Fig. C.7.5. Period T of the periodic orbit born through a sub-critical Andronov-Hopf bifur-

cation versus the parameter a (b = 1), as the cycle approaches the homoclinic loop. The
origin is a saddle with σ > 0.

the opposite sides from H8. Therefore, the point S → SF is not a bifurcation

point. However, by introducing a small perturbation, that breaks down the

symmetry of Chua’s circuit, one can make the resulting bifurcation unfolding

essentially different (see the contrast in Figs. 13.7.5 and 13.7.9). It should

be merely noted that the transition from saddle to saddle-focus would cause

dramatical changes in the dynamics of the system if σ were positive at such a

point. Taking into consideration one homoclinic loop only, this would cause a

homoclinic explosion from a single saddle periodic orbit in the case of a saddle

to infinitely many ones in the case of a saddle-focus (see Theorems 13.7–10

and [29]).

The point NSF : σ = 0 corresponds to a neutral saddle-focus. At this

codimension-two point the dynamics of the trajectories near the homoclinic

loops to the saddle-focus becomes chaotic. This bifurcation indeed preceeds

the origin of the chaotic double scroll attractor in Chua’s circuit. In the general

case, this bifurcation was first considered in [29]. The complete unfolding of
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Fig. C.7.6. Dependence of period T of the periodic orbit generating via a super-critical

Andronov-Hopf bifurcation on the parameter a (b = 6) as the cycle approaches the homoclinic
loop to a saddle-focus with σ > 0.

such bifurcation is unknown. The brief outline of [29] is as follows: there is

an infinite series of codimension-1 bifurcation curves that accumulate to the

curve H8 above the point NSF . These curves correspond to subsequent ho-

moclinic bifurcations, saddle-node and period doubling bifurcations of periodic

orbits close to the primary homoclinic one. To understand this phenomena

(homoclinic explosion) one may examine a simplified picture of the evolution

of the one-dimensional map with the saddle index ν > 1 (corresponding to

σ < 0), and ν < 1 (σ > 0) shown in Fig. C.7.6. Recall that in the case

under consideration, ν = |Reλ∗|/λ1, where λ1 > 0 and λ∗ is the real part of

the complex-conjugate pair of the exponents at the saddle-focus. One can see

from this figure that the period of the periodic orbit tends to infinity as the

parameter converges to the critical value. In the saddle-focus case with ν < 1,

it has a distinctive oscillatory component. Every turning point, corresponds

to the saddle-node bifurcation which is followed by a period-doubling bifur-

cation. Therefore, there takes place an infinite sequence of such bifurcations

accumulating to the homoclinic one [173].
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Thus, in a neighborhood of the homoclinic loop to the saddle-focus with

ν < 1, there may exist structurally unstable periodic orbits, in particular

saddle-nodes. This gives rise to the question: does the saddle-node bifurcations

of periodic orbits result in the appearance of stable ones?

To answer it, one must examine the two-dimensional Poincaré map instead

of the one-dimensional one, and evaluate the Jacobian of the former map. If

its absolute value is larger than one, the map has no stable periodic points,

and hence there are no stable orbits in a neighborhood of the homoclinic tra-

jectory because the product of the multipliers of the fixed point is equal to

the determinant of the Jacobian matrix of the map. One can see from formula

(13.4.2) that the value of the Jacobian is directly related to whether 2ν−1 > 0

or 2ν − 1 < 0, or, equivalently, ν > 1/2 or ν < 1/2. Rephrasing in terms of

the characteristic exponents of the saddle-focus, the above condition translates

into whether the second saddle value σ2 = λ1 + 2Reλ∗ is positive or negative.

It can be shown [100] that if σ > 0 but σ2 < 0 (a < 6 in Fig. C.7.4), there

may be stable periodic orbits near the loop, along with saddle ones. However,

when σ2 > 0 (σ > 0, automatically), totally unstable periodic orbits emerge

from the saddle-node bifurcations.

The last comment on the Chua circuit concerns the bifurcations along the

path b = 6 (see Fig. C.7.4). Notice that this sequence is very typical for

many symmetric systems with saddle equilibrium states. We follow the stable

periodic orbit starting from the super-critical Andronov-Hopf bifurcation of the

non-trivial equilibrium states at a ' 3.908. As a increases, both separatrices

tend to the stable periodic orbits. The last ones go through the pitch-fork

bifurcations at a ' 4.496 and change into saddle type. Their size increases and

at a ' 5.111, they merge with the homoclinic-8. This, as well as subsequent

bifurcations, lead to the appearance of the strange attractor known as the

double-scroll Chua’s attractor in the Chua circuit. 2

C.7.#84. Homoclinic bifurcations in the Shimizu-Morioka model [127]:

ẋ = y ,

ẏ = x− ay − xz ,
ż = −bz + x2 .

(C.7.2)

We will be seeking homoclinic bifurcations by starting from the Andronov-Hopf

bifurcation at the non-trivial equilibria O1,2 that takes place on the curve AH:

b = (2−a2)
a (see Sec. C.2). This bifurcation can be super-critical — the first
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Lyapunov value is negative to the right of the point GH, and it is subcritical to

the right of the point GH. Let us consider next the evolution of the behavior of

the separatrices of the saddle O at the origin as the parameter a decreases while

keeping b = 0.9 fixed. Above AH the separatrices tend to the stable equilibria

O1,2 which looses stability via an Andronov-Hopf bifurcation at a ' 1.0341.

In the region between AH and HB the separatrices are attracted to the new-

born stable periodic orbits. As a decreases further, the amplitude of the stable

orbits increases, and they both merge with the origin at a ' 0.8865, thereby

forming a homoclinic butterfly. Such a symmetric homoclinic bifurcation with

σ < 0 is often called a gluing bifurcation regardless of the geometry the ho-

moclinic configuration which can be a butterfly or a figure-eight. One can see

that the leading direction at the saddle in the given parameter values is the

z-axis corresponding to the eigenvalue λ2 = −b. Therefore, in our classification

we are dealing with a homoclinic butterfly: both separatrices enter the sad-

dle touching each other. The homoclinic butterfly transforms into a figure-8

when the separatrices enter the saddle from the opposite direction given by

the eigenvector of the other negative eigenvalue which becomes leading when

λ2 < λ3 = −a/2 −
√
a2/4 + 1 on HB. In both cases, upon exiting from the

homoclinic bifurcation a stable symmetric periodic orbit appears. Thus, the

results of the homoclinic metamorphosis is always the same if σ < 0. This is

not the case when σ > 0 where the geometry of the homoclinics is a key factor.

The more important resonant condition on HB takes place at (a ' 1.044,

b ' 0.608) where the saddle value σ vanishes (see Sec. 13.6). Near such a point

the local consideration reduces to the corresponding truncated“normal form”

— a one-dimensional Poincaré map

x̄ = (−µ+A|x|1+σ) sign(x) , (C.7.3)

where ‖µ, σ‖ ¿ 1, A is a separatrix value. In our interpretation, the fixed

point at the origin at µ = 0 corresponds to the homoclinic butterfly. It fol-

lows from Sec. 13.6 that the structure of the bifurcation unfolding near such a

codimension-two point counts strongly on the magnitude and the sign of A. We

have earlier emphasized the role of A, but it is worth repeating that the sign

of A determines the orientation of homoclinic loops. Moreover, in the “linear

case” (i.e. at σ = 0), the value of A also determines the stability of the homo-

clinic butterfly. There is almost no way to find the value of A in the specific

set of ODE’s without computer simulations. The simplest way to do that is to

carry out a numerical experiment analogous to that we have already used in the
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Fig. C.7.7. Fragment of bifurcation diagram of the Shimizu-Morioka model.

analysis of the Chua’s circuit. The separatrix value will satisfy |A| < 1 if the

separatrices of the saddle remain in a small neighborhood of the homoclinic

butterfly after it splits. The other issue is how to determine the “orientation”

condition, i.e., to find whether A is positive or negative; and we will return to

this question later.

It is not hard to conclude from numerical experiments, which reveal the

manner in which the separatrices converge to the homoclinic butterfly that A

must be within the range (0,1). In this case, when σ < 0, everything is

simple: the homoclinic butterfly splits into either two stable periodic orbits

(Fig. C.7.8(g)), or just one stable symmetric periodic orbit (Fig. C.7.8(i)).

It follows from Sec. 13.6 that when σ > 0, two bifurcation curves originate

from this codimension-two point. They correspond to the saddle-node bifur-

cation (Fig. C.7.8(d)) and to the double homoclinic loop (Fig. C.7.8(f)). The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. C.7.8. Bifurcations in one-dimensional map near the codimension-two point σ = 0;

(a)–(f) corresponds to the case σ > 0, whereas (g)–(i) correspond to σ < 0.

symmetry adds to the problem a plethora of other bifurcation phenomena. Of

very special interest is the bifurcation shown in Fig. C.7.8(c). It leads to the

formation of the closed interval which is mapped onto itself. Furthermore,

since the derivative of the map is larger than 1 on this integral, it contains no

stable periodic points but infinitely many unstable ones. This is the moment

of the appearance of the invariant attractive set without stable trajectories —

a Lorenz-like attractor. In terms of the flow, this bifurcation occurs when the

one-dimensional separatrices of the saddle at the origin lie on two-dimensional
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Fig. C.7.9. The Lorenz-like attractor in the Shimizu-Morioka model near the point σ = 0.

Fig. C.7.10. The Lorenz attractor does not appear if A < 0 on the curve LA.

stable manifolds of the saddle periodic orbits that have earlier bifurcated from

each loop (see an analogous bifurcation for the Lorenz equation shown in

Fig. C.7.14). Since A > 0, these manifolds are homeomorphic to a cylinder.

This bifurcation occurs on the curve LA in Fig. C.7.7. Near the codimension-

two point σ = 0, the Lorenz attractor is very thin, and looks like a stable

periodic orbit (see Fig. C.7.9). Note that one should verify that the separatrix

value A does not vanish anywhere on the curve LA. If so, there may arise the

situation sketched in Fig. C.7.10 which shows schematically how the primary

bifurcation of the Lorenz attractor can be ruined when the separatrix value A

becomes negative. We will discuss this possibility below.

So far an important conclusion: since there is a homoclinic butterfly with

|A| < 1, the region of the existence of the Lorenz attractor adjoins to the

codimension-two point in the parameter space. The interested reader is ad-

vised to consult [127, 129, 187] on the bifurcations of Lorenz attractor in the
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Fig. C.7.11. Twisted (A < 0) and orientable (A > 0) double homoclinic loops. The two-

dimensional Poincaré map has a distinctive hook-like shape after the separatrix value A

becomes negative.

Shimizu-Morioka model, and [114, 115, 117, 161] for the original Lorenz and

some other Lorenz-like equations. 2

C.7.#85. Consider the bifurcations of the symmetric cycle as σ evolves

from positive to negative values. Can it undergo a period-doubling bifurcation?

saddle-node one? Exploit the symmetry of the problem. For the map (C.7.3),

find the analytical expression for the principal bifurcation curves. Does the

saddle-node bifurcation here precede the appearance of the Lorenz attractor

(i.e. can chaos “emerge through the intermittence”)? Vary A from positive to

negative values. Examine the piece-wise linear map with A > 1, and determine

the critical value of A, after which the Lorenz attractor emerges. 2

Another codimension-two homoclinic bifurcation in the Shimizu-Morioka

model occurs at (a ' 0.605, b ' 0.549) on the curve H2 corresponding to

the double homoclinic loops. At this point, the separatrix value A vanishes

and the loops become twisted, i.e. we run into inclination-flip bifurcation [see

Figs. 13.4.8 and C.7.11]. The geometry of the local two-dimensional Poincaré

map is shown in Fig. 13.4.5 and 13.4.6. To find out what our case corresponds

to in terms of the classification in Sec. 13.6, we need also to determine the

saddle index ν at this point. Again, as in the case of a homoclinic loop to the

saddle-focus, it is very crucial to determine whether ν < 1/2 or ν > 1/2. Simple

calculation shows that ν > 1/2 for the given parameter values. Therefore,
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the bifurcation unfolding for each of the homoclinic loops in the butterfly

is the same as in Sec. 13.6. The following four bifurcation curves originate

from such a point. They correspond to a saddle-node bifurcation (labeled

“+1” in Fig. C.7.7), the period doubling (“−1”), and to two curves of the

doubled separatrix loops (these curves end up spiraling to T -points in the

(a, b)-plane). The dashed curve in the (a, b)-plane corresponds to the A = 0-

axis in the bifurcation diagram in Fig. 13.6.4. Above this curve all homoclinic

loops of the origin are orientable, and they are twisted below it. At each

point of intersection of the curve A = 0 and a homoclinic bifurcation curve the

structures of the bifurcation sets are similar, unless ν < 1/2. The importance

of this ratio becomes evident upon studying the one-dimensional Poincaré map

x̄ = (µ+A|x|ν + |x|γ) sign(x) , (C.7.4)

where |µ,A| ¿ 1, ν = |λ2|/λ1, and γ = |max{2λ2, λ3}|/λ1; here λ1,2 are,

respectively, the leading unstable and stable characteristic exponents at the

saddle, and λ3 is a non-leading stable characteristic exponent.

When A = 0, the stability of the trajectories of the above map is determined

by the third term. It is clear that depending on γ, the map for the parameter

values on the curve A = 0 may be either a contraction if γ > 1, or an expansion

if γ < 1. Assuming 2λ2 > λ3, the condition on γ reduces to either ν < 1/2 or

ν > 1/2. Thus, it is not hard to see that the map may have the form shown

in Fig. C.7.8(a) at ν < 1/2 and in Fig. C.7.8(h) at ν > 1/2. If ν < 1/2, there

can be no stable points for zero values of A.

The structure of the bifurcation set of the truncated map (without the

term |x|γ) with 1/2 < ν < 1 and A > 0 is the same as in the above resonant

case ν = 1. The case A < 0 is presented in Fig. C.7.12(a)–(c). The reader is

challenged to examine the bifurcations in this map. The feature of the case

A < 0 is that the map may have an invariant attracting interval, which is

mapped onto itself (Fig. C.7.12(c)). We can identify the chaotic behavior on

this interval with a “non-orientable Lorenz attractor” [127, 129].

In terms of the flow, this means that for the parameter values from an

exponentially narrow region in the parameter space, which adjoins to the point

A = 0 on H8 from the side of A < 0, there exists a Lorenz-like attractor

containing infinitely many saddle periodic orbits whose stable and unstable

manifolds are homeomorphic to a Möbius band.

The one-dimensional map (C.7.4) has, when A < 0, a parabola-like graph

shown in Fig. C.7.12(d)–(f). Obviously, one should foresee the period-doubling
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(a) (b) (c)

(d) (e) (f)

Fig. C.7.12. Transformations of the map (C.7.4) near A ≤ 0.

Fig. C.7.13. Homoclinic doubling cascade in the Shimizu-Morioka model, as the parameter a

varies (b = 0.40). Using the shooting approach, find the corresponding values of parameter a.
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cascades (Figs. C.7.12(c) and C.7.11(e)) similar to those that appear in the

study of the purely quadratic map in Sec. C.11. The contrast is the infinite

derivative at the discontinuity point that guarantees strong expansion near the

origin.

The period-doubling cascade is closely related here to the homoclinic dou-

bling cascade [71, 120, 126], see Fig. C.7.13.

The two-dimensional map has the shape of a distinguishable “hook” for

the parameter values along the curve H8 in the region A < 0, as shown in

Fig. C.7.10. In fact, this observation suggests the simplest recipe for computing

the orientation of the homoclinic loop; namely, having chosen a point on the

cross-section close to the stable manifold and computing the corresponding

trajectory, one verifies if the initial and the final points of the trajectory lie on

the same side from W s on the cross-section. If this is the case, then A > 0,

and A < 0 otherwise. The initial point should be reasonably close to W s

because when A changes its sign one more time and becomes positive again,

the loop becomes twice twisted and so forth. Figure C.7.7 shows two such

secondary bifurcation curves which originate from the point A = 0 and end

up spiraling to two T -points in the (a, b)-parameter plane (examine the fine

structure of T -point in [35, 174]). Such codimension-two point (approximately

a ' 0.781, b ' 0.39 in Fig. C.7.7) corresponds to a heteroclinic cycle involving

the saddle at the origin and the non-trivial saddle-foci. It follows from [35]

that near the primary T -point there is an accumulating series of similar ones

that lie within a sector bounded by the bifurcation curves corresponding to

homoclinics and heteroclinics to these saddle-foci. This, in part, explains why

the separatrix value A alters its sign here, and as a result, the loops change

orientation (remember the 2D Poincaré map near a saddle-focus).

C.7.#86. Assume there is a homoclinic loop to a saddle-focus in the

Shimizu-Morioka model (like a T -point). Without computing the characteristic

exponent of the saddle-focus, what can we say about the local structure: is it

trivial (one periodic orbit), or complex (infinitely many periodic orbits)? 2

The classical Lorenz equation

ẋ = −σ(x− y) ,
ẏ = rx− y − xz ,

ż = −8

3
z + xy .

(C.7.5)
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Fig. C.7.14. Famous path to the Lorenz attractor. The T -point is located at (r ' 30.4,

σ ' 10.2, b = 8/3).

A fragment of its (r, σ) bifurcation diagram is shown in Fig. C.7.14. Detect

the points where the path σ = 10 intersect the curve HB of the homoclinic

butterfly and the curve LA on which the one-dimensional separatrices of the

saddle tend to the saddle periodic orbits. Find the point on the curve LA

above which the Lorenz attractor does not arise upon crossing LA towards

larger values of r. The dashed line passing through the T -point in Fig. C.7.14

corresponds to the moment of the creation of the hooks in the two-dimensional

Poincaré map when the separatrix value varishes: A = 0 (see discussion on the

Shimizu-Morioka model). 2

We have seen that homoclinic bifurcations in symmetric systems have much

in common. Let us describe next the universal scenario of the formation of

a homoclinic loop to a saddle-focus in a “typical” system. In particular, this

mechanism works adequately in the Rössler model, in the new Lorenz models,

in the normal form (C.2.27), and many others.



C.7. Homoclinic bifurcations 921

Fig. C.7.15. An attracting whirlpool.

The first step on the route to such a homoclinic bifurcation is a super-critical

Andronov-Hopf bifurcation: the stable equilibrium states losses its stability

and becomes a saddle-focus. The edge of its two-dimensional unstable mani-

fold is the new-born stable periodic orbit. Next, let a real leading multiplier of

the stable periodic orbit coalesce with the other one after which they become

a complex conjugate pair remaining inside the unit circle. Then, the unstable

manifold of the saddle-focus starts winding to the stable periodic orbit thereby

forming an attractive “cup” or “a whirl-pool”, as shown in Fig. C.7.15. As a

parameter of the system varies further, the sizes of the scrolls increase, and

eventually the unstable manifold of the saddle-focus touches its stable mani-

fold. Usually, this homoclinic bifurcation follows the preceding stability-loss

bifurcations of the periodic orbit via either a flip- or a torus-bifurcation. More-

over, if the saddle value is positive at the saddle-focus, then the whirlpool will

contain an attracting set of non-trivial structure.

Let us visualize these steps using the example of the new Lorenz model [128]

ẋ = −y2 − z2 − ax+ aF ,

ẏ = xy − bxz − y +G ,

ż = bxy + xz − z ,
(C.7.6)

where (F,G) are control parameters and (a = 1/4, b = 4.0) (see Fig. C.7.16).

The new Lorenz model is very rich in the sense of bifurcations. One of them

is a non-transverse homoclinic saddle-node bifurcation. In Sec. C.2, we have
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Fig. C.7.16. Creation of a whirlpool in the new Lorenz system.

already found the regular saddle-node bifurcation curve SN . Figure C.7.17

is the enlargement of the bifurcation diagram of the system near the upper

branch of SN , compare with Figs. C.6.10 and C.2.4. This branch corresponds

to a structurally unstable equilibrium state with one zero characteristic expo-

nent, the other two have a negative real part. To the left of SN , this critical

equilibrium disappears, whereas to the right of SN it splits into two: a stable

one and and a saddle-focus (2,1). The curve H1 corresponds to the homoclinic

loop of the saddle-focus. The points where H1 merges with SN correspond

to the non-transverse homoclinic saddle-node bifurcations of codimension two.
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Fig. C.7.17. Enlargement of the bifurcation diagram in Fig. C.6.10. The marked points
correspond to the non-transverse homoclinic saddle-node bifurcation.

At such a point the unstable manifold of the saddle-node returns to the equi-

librium state along the strongly stable manifold. The rest of the curve SN is

a bifurcation surface of codimension-one broken by these points into alternat-

ing intervals of two types. Bifurcation sequences on the route from the right

to the left over these intervals differ significantly. In the first case, this is a

plain saddle-node bifurcation: two equilibrium states coalesce and vanish. A

point on the second type segments corresponds to the saddle-node equilibrium

state with a homoclinic orbit which becomes an attractive limit cycle after

the saddle-node point disappears on the left of SN . It is curious to note that

this bifurcation sequence is reversible: having crossed over SN from the left to

the right, the stability of the periodic orbit returns to the attractive equilib-

rium state. In this connection, see the discussion on “safe” and “dangerous”

bifurcations in Chap. 14. 2

Let us complete this section by an illustration corresponding to the homo-

clinic butterfly of the saddle-focus in the four-dimensional case. Let us consider
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Fig. C.7.18. Homoclinic explosion caused by a homoclinic butterfly to a saddle-focus in
system (C.7.7) at a = 2, b = 0.5, µ = 1.2.

a four-dimensional perturbation of the Lorenz equation

ẋ = −10(x− y) ,

ẏ = rx− y − xz ,

ż = −8

3
z + µw + xy ,

ẇ = −8

3
w − µz ,

and that of the Shimizu-Morioka model

ẋ = y ,

ẏ = −ay + x− xz ,
ż = w ,

ẇ = −bw − µz + x2 ,

(C.7.7)

where a new parameter µ ≥ 0 is introduced so that the saddle equilibrium

state at the origin restricted to the (z, w)-subspace becomes a stable focus.
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C.7.#87. Find the stable, strongly stable and unstable linear subspaces

of the equilibria at the origin. Detect numerically the primary homoclinic

loops to the origin (µ = 0 is a good initial guess). Classify them in terms of a

homoclinic butterfly or a figure-eight. What are the first and the second saddle

values at homoclinic bifurcations? What can you say about the dimensions of

the stable and unstable manifolds of the periodic orbits that appear through

a homoclinic explosion in both models? Construct the Poincaré maps. 2


