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The methods of qualitative theory of slow-fast systems applied to biophysically realistic neuron models can describe
basic scenarios of how these regimes of activity can be generated and transitions between them can be made. We
demonstrate how two different codimension-one bifurcations of a saddle-node periodic orbit with homoclinic orbits can
explain transitions between tonic spiking and bursting activities in neuron models following Hodgkin-Huxley formalism.
In the first case, we argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with non-central
homoclinics is behind the phenomena of bi-stability observed in a model of a leech heart interneuron under defined
pharmacological conditions. This model can exhibit two coexisting types of oscillations: tonic spiking and bursting.
Moreover, the neuron model can also generate weakly chaotic trains of bursting when a control parameter is close to
the bifurcation value. In the second case, the transition is continuous and reversible due to the blue sky catastrophe
bifurcation. This bifurcation provides a plausible mechanism for the regulation of the burst duration which may increases
with no bound as 1/

√
α − α0, where α0 is the transitional value, while the inter-burst interval remains nearly constant.

1. Introduction

Stable periodic orbits have a very special role in nonlinear dynamics, and in computational neuroscience
in particular, where their topology is associated with specific, regular activities of neurons such as tonic
spiking and bursting.

Various patterns of bursting activities have been described in terms of the qualitative theory
of slow-fast systems [1, 2, 3, 4]. The classification of routes describing possible transitions between
tonic spiking and bursting activities is yet incomplete and remains a fundamental problem for both
neuroscience and the theory of dynamical systems [5, 6, 7, 8, 9, 10]. Qualitative description of a
transition yields quantitative information about changes of certain physical characteristics associated
with the transition. This approach has proven exemplary in neuroscience for studies of transitions
between silence and tonic-spiking activities. Applications of qualitative theory of slow-fast dynamical
systems to identification of transitions between tonic spiking and bursting can provide vital information
about the neuronal activity.

Some transitions are associated with the chaotic behavior, which is due to the shift dynamics
arising near a homoclinic bifurcation of a saddle (or saddle-focus) point of a singularly perturbed
system [8, 11]. One of such routes can be singled out by the following chain of bifurcations as a control
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parameter is varied; namely, the periodic spiking undergoes a series of period-doubling bifurcations
followed by a homoclinic bifurcation of a saddle equilibrium [8, 9]. Terman [8] gives a rigorous proof
of the existence of Smale horseshoes in this case, so chaos is a key signature for transitions of this
kind.

In this paper, we describe two novel, distinct mechanisms of the transition. Both are based on a
saddle-node bifurcation for periodic orbits with homoclinics orbits [12, 13]. Locally, either bifurcation
is of codimension one, i.e. the bifurcating saddle-node periodic orbit has a single multiplier equal
to +1. What make the bifurcation different is the global behavior of the unstable manifold which
becomes homoclinic, i.e. bi-asymptotic to the periodic orbit in both forward and backward time. The
feature of the first case is that homoclinic orbits to the saddle-node orbit are not central [14], i.e. they
come back to the bifurcating periodic orbit Lsn transversally to its strongly stable manifold Wu, as
shown in Fig. 1.

Fig. 1. Saddle-node periodic orbit Lsn with noncentral homoclinics: the unstable manifold Wu comes back to
Lsn crossing transversally the non-leading manifold Wss. The later separates the node region (from the right
of Wss) where the periodic orbit Lsn is stable from the saddle region containing the unstable manifold Wu

comprised of the trajectories converging to Lsn as time tends to −∞. (b) Same bifurcation in the singularly
perturbed system (3.1): tangency between the nullclines 〈ż〉 = 0 and 〈x〉 makes a saddle-node periodic orbit Lsn.
See description in the sections below.

At this bifurcation, a stable periodic orbit representing tonic spiking merges with a saddle periodic
orbit having transverse homoclinic trajectories. This mechanism is distinguished by a bi-stability in the
system such that either tonic spiking or bursting (periodic and chaotic) can be observed depending
on the initial conditions. As a control parameter α decreases to the transition value α0 the burst
duration can be as long as | ln(α − α0)|. Realization of this mechanism predicts that there exist
critical control parameter values for which the system exhibits intermittency so that the system can
generate a long train of bursts before it finally settles down into periodic spiking. This intermittency
is also a consequence of Smale horseshoe dynamics.

The dynamic feature of this bifurcation is bi-stability which means the co-existence of a pair
of attractors separated in the phase space. The bifurcation of a saddle-node periodic orbit with
homoclinic orbits provides a perfect explanation for this phenomenon. Namely, after the saddle-node
periodic orbit splits into a stable periodic orbit and a saddle one in the phase space, the stable
manifold of the latter can separate the attraction basin of the bursting from that of a stable periodic
orbit representing the tonic spiking. Furthermore, we identify a physiologically plausible parameter
in the neuron model (2.1) (introduced below) that can control duration of a burst, the time interval
between the first and last spikes in the burst.
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The second mechanism describing a reversible and continuous transition between spiking and
bursting activities in neuron models is based on a codimension-one bifurcation known as the blue sky
catastrophe [15, 16, 17]. Rigorous proofs and three scenarios of the blue sky catastrophe in singularly
perturbed systems can be found in [18]. In [17] this bifurcation was shown to occur in a modified
Hindmarsh-Rose model. The geometry of the bifurcation is illustrated in Fig. 2.

Fig. 2. Geometry of the blue sky bifurcation (a) resulting in the appearance of a large amplitude stable periodic
orbit of an infinitesimally long period (b).

At the bifurcation, there exists a saddle-node periodic orbit Lsn whose two-dimensional unstable
manifold Wu returns to the periodic orbit making infinitely many rotations in the node (attracting)
region from the left of the strongly stable manifold Wss. As a control parameter passes the critical
value, the saddle-node periodic orbit disappears. Endowed with the property of a strong contraction
in the transverse direction, the blue sky bifurcation results in the appearance of a new stable periodic
orbit of infinite period and length. The infinite period of the periodic bursting is due to the slow
passage of of the phase point through the “phantom” of the disappeared saddle-node orbit.

We study these transitions in a model of a pharmacologically isolated heartbeat interneuron from
the medicinal leech. The activity of these neurons is well described under normal and pharmacolog-
ically modified conditions by mathematical models [19, 20] developed in accordance with Hodgkin-
Huxley formalism [21]. Below we introduce the model of a single leech neuron. Then we develop a
general geometrical framework for the analysis of periodic solutions of slow-fast dynamical systems.
It allows us to give a general phenomenological description for the Lukyanov-Shilnikov bifurcation of
a saddle-node periodic orbit with non-central homoclinics and the blue sky catastrophe in our sys-
tems. Throughout the presentation we draw parallels between the phenomenological description and
the accurate numerical bifurcation analysis of the model of the single leech neuron. The developed
technique is applicable to a broad class of neuron models. Our results make feasible predictions for
future experimental studies.

2. Neuron model

A bursting regime reflects complexity in the dynamics of various membrane ionic currents, operating at
different time scales. The ionic currents are commonly quantified through voltage-clamp experiments
and modeled according to a formalism introduced by Hodgkin and Huxley [21]. A complete neuron
model, including all currents identified experimentally, is rather complex for thorough studies. The
relatively small number of neurons in invertebrate nervous systems and possibility to identify most of
them from preparation to preparation, all make these identifiable neurons attractive for the dynamical
systems analysis. Here we exploit identified oscillator interneurons that are part of the leech heartbeat
central pattern generator.
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When isolated pharmacologically from the rest of the network these neurons show autonomous
bursting behavior [19]. In these neurons, eight voltage-dependent ionic currents have been well iden-
tified and characterized, see [22, 23] and references therein. Classified by their ionic specificity, these
currents are separated in four groups. The first group consists of two sodium currents: a fast sodium
current (INa) and a persistent sodium current (INaP). The second group consists of three potassium
currents: a delayed rectifier-like potassium current (IK1), a persistent potassium current (IK2) and a
fast transient potassium (IKa). The third group consists of two low-threshold calcium currents: one
rapidly (ICaF) and one slowly inactivating (ICaS). The last group consists of a single current, carried
by both sodium and potassium: a hyperpolarization-activated current (Ih). All these currents except,
for the fast sodium current, were quantified in voltage clamp experiments [23]. The model equations
for INa current were borrowed from the original work by Hodgkin and Huxley adjusted for leech ki-
netics. None of these currents is dependent on the intracellular concentration of any particular ion.
A canonical model of a single neuron has been constructed and tuned to reproduce experimentally
observed behaviors [23]. It consists of fourteen ordinary differential equations running at multiple
time scales which vary from a few milliseconds through seconds. As alluded to above a comprehensive
analysis of this model would be quite difficult and challenging.

Blockade of groups of currents in living heart interneurons simplifies neuronal dynamics, and elicits
characteristic behaviors. These characteristic behaviors present interesting phenomena for study from
the perspective of the theory of dynamical systems. One of the commonly observed characteristic
behaviors is observed under blockade of Ca2+ currents. In leech neurons, application of divalent
ions like Co2+, which block Ca2+ currents, along with partial block of outward currents, elicits slow
plateau-like oscillations with a period up to 60 seconds and plateau duration up to 20 seconds. This
phenomenon persists after a blockade of Ih.

Previously, in our modeling studies [19], we addressed the question of how these slow temporal
characteristics are produced by a system with dynamics based on much faster time scales (time con-
stants of the ionic currents involved do not exceed one second). We derived a simplified neuron model
by taking into account that the experimental conditions eliminated or reduced the contribution of
certain currents to the dynamics of the neuron. This simplified model, based on the dynamics of INa

and IK2 currents, is described as a system of three differential equations. We showed that the classical
model of the transient Na+ current is sufficient for the generation of long plateau behavior due to
the properties of a window current (a transient Na+ current can be a persistent “window” current
in a certain range of membrane potential values). The simplified model (2.1) can also produce slow
plateau-like oscillations with a sufficiently long plateau phase.

To bring the 14D canonical model developed in [23] in accordance with the experimental conditions
described above, we remove from the model the equations and terms describing blocked currents: ICaF,
ICaS, and Ih. For simplicity, we assume that the partial block of outward currents completely removes
IK1, as well as IKA, whereas it reduces IK2. The current INaP is ignored for simplicity. The resulting
model described in [19] reads as follows:

CV′ = −(ḡK2 m2
K2(V − EK) + gl (V − El)+

ḡNaf(−150, 0.0305,V)3hNa(V − ENa)),

m′
K2 =

f(−83, 0.018 + Vshift
K2 ,V)−mK2

τK2
,

h′Na =
f(500, 0.03391,V) − hNa

τNa
,

(2.1)

where the variables V, mK2, and hNa are the membrane potential, activation of IK2 and inactivation
of INa, respectively. The parameters are: C is the membrane capacitance, ḡK2 is the maximum
conductance of IK2; EK and ENa are the reversal potentials of K+ and Na+, respectively; ḡNa is
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the maximal conductance of INa; gl and El are the conductance and reversal potential of the leak
current, respectively; τK2 and τNa are the time constants of activation of IK2 and inactivation of INa,
respectively; Vshift

K2 is the shift of the membrane potential of half-inactivation of IK2 from its canonical
value; f is a Boltzman function: f(x, y, z) = 1/(1 + ex(y+z)). The values of the parameters used in
this study are C = 0.5 nF, ḡK2 = 30 nS, EK = −0.07 V, ENa = 0.045 V, ḡNa = 200 nS, gl = 8 nS,
El = −0.046 V, τK2 = 0.9 sec and τNa = 0.0405 sec. We use Vshift

K2 as a bifurcation parameter.
One of the features of the model (2.1) is the bi-stability where stable tonic spiking co-exists with

the bursting mode, as shown in Fig. 3.
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Fig. 3. Co-existence of spiking and bursting modes in the model (2.1) in the (mK2, V)-projection for Vshift
K2 =

= −0.02598 V. Initial conditions leading to tonic spiking and bursting are (V,mK2, hNa) = (0.0, 0.164, 0.08)
and (0.0, 0.165, 0.08), respectively. The small round periodic orbit in (A) corresponds to the tonic-spikes shown
in (B); the larger, bursting cycle corresponds to the waveform shown in (C). The topology of bursting is
illustrated in Figs. 4.

3. Phenomenological description

In the model (2.1), the time constant of the activation of the current IK2 is more than 20 times larger
that those of the membrane potential V and inactivation of the current INa. Hence, we identify mK2 as
the slow phase variable and V and hNa as the fast ones. This allows us to consider (2.1) as a singularly
perturbed system written in the following form:

ẋ = F (x, z), ż = µG(x, z, α) ≡ µ(g(x, α) − z), (3.1)

where x ∈ R
n (n � 2) and z ∈ R

1 are the fast and the slow phase space variables, respectively, α is a
vector of control parameters, and 0 < µ � 1. Both functions F and G are considered smooth enough.

When µ = 0, the fast and slow subsystems are decoupled. Now, the variable z can be viewed as
a governing parameter for the fast subsystem. The function F is assumed to satisfy some conditions
typical for the system (2.1). They are illustrated in Fig. 4(a). The first one is that, depending on z,
the fast subsystem has either one or three hyperbolic equilibrium states.

The coordinates of equilibria of the fast system are found from the equation F (x, z) = 0 that
defines a nullcline Meq having a distinctive Z-shape in projection onto the (z, x)-plane. The two
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Fig. 4. (A) Geometry of bursting and bifurcation diagram of the fast subsystem in the (z, x)-extended phase
plane. The curve Meq consists of equilibrium points of the phase subsystem; its limit cycles span the surface
MLC. The curve 〈x〉 gives the average x-coordinate of the limit cycles. The nullcline ż = 0 crosses the unstable
branch of Meq at a single point corresponding to an unstable equilibrium state of the whole system. The arrowed
curves outline the start and the end of a burst. (D) Geometry (D1) and the waveform (D2) of attracting bursting
in the neuron model (2.1) at Vshift

K2 = −0.027 V. The intersection point of the nullclines mK2
′ = 0 and Meq

is the unstable equilibrium state of (2.1). The surface of MLC is composed of the periodic orbits continued
as the control parameter Vshift

K2 is varied. There is no intersection between the average nullclines 〈mK2
′〉 = 0

and 〈V〉. Accordingly, the trajectory shown coils around MLC translating rightwards and converges to the
bursting attractor.

turning points on Meq, at z1sn and z
2
sn, correspond to the saddle-node bifurcations in the fast subsystem

where a pair of equilibrium states coalesce. In the interval z1sn < z < z2sn, the system (3.1) has three
equilibria. The middle segment of Meq is comprised of saddle points. The upper and lower branches
of the nullcline Meq correspond to the depolarized and hyperpolarized states of a neuron, respectively.
The hyperpolarized (solid) branch of Meq is comprised of stable equilibria of the fast subsystem. It is
supposed that the stable focus on the upper branch becomes unstable through a generic (codimension-
one) Andronov-Hopf bifurcation when z passes the critical value zAH < z1sn. There are the two types
of this bifurcation: sub- and super-critical. In the subcritical case, the stable focus becomes unstable
when a repelling limit cycle collapses into it. If there are no other equilibrium states before zAH,
then this unstable cycle may only originate from a saddle-node bifurcation of limit cycles. This
saddle-node bifurcation also generates a stable limit cycle that surrounds both the equilibrium state
and the unstable limit cycle. In the supercritical case, the stable limit cycle emerges from the focus
as z increases through the bifurcational value zAH. In either case, the supercritical Andronov-Hopf
bifurcation or the saddle-node bifurcation for limit cycles gives rise to the surface Ms

LC comprised solely
of the stable limit cycles of the fast subsystem. The subsequent evolution of the stable limit cycle as
z increases further can develop in two different ways. For example, the branch Ms

LC may terminate at
a homoclinic bifurcation of the saddle point on the middle branch of Meq, like in [8, 9]; i.e., the stable
limit cycle becomes a homoclinic orbit of the saddle point with the negative saddle value, which is a
sum of the characteristic exponents of the saddle point of the fast subsystem. Oppositely, if the saddle
value is positive, then another, unstable limit cycle bifurcates from the homoclinic orbit as z increases
through zh, thereby constituting the “unstable” surface Mu

LC. Hence, as z approaches the value zlcsn ,
the stable and the unstable limit cycles get closer and merge finally into a double one at zlcsn.
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This value corresponds to a saddle-node bifurcation for the limit cycles in the fast subsystem.
The last scenario makes the united surface MLC = Ms

LC ∪Mu
LC look like it is turned inside out, see a

sketch in Fig. 4 and its numerical reconstruction in Fig. 4(right).
After the stable limit cycle has vanished in the saddle-node bifurcation at z > zlcsn, a neighboring

phase point starts seeking another attractor, see Figs. 4 and 5(B). Such an attractor is the stable
equilibrium state on the lower branch of Meq. As the parameter z is now decreased, the phase point
follows this hyperpolarized branch towards the low knee point at z1sn. The disappearance of this steady
state attractor for z < z1sn triggers the phase point to switch back to the stable limit cycle on Ms

LC.
Let us discuss the dynamics of the whole, singularly perturbed system (3.1) when 0 < µ � 1.

Introduce another nullcline ż = 0, which is the surface given by G(x, z, α) = 0, see Fig. 4. Let ż be
negative on Meq wherever it is below the nullcline, be positive above it. An intersection point of this
nullcline with the nullcline Meq (where ẋ = 0) is the equilibrium state of the whole system. To make
the system exhibit bursting behavior, let this equilibrium state be unstable, i.e. be on the unstable
(dotted) branch of Meq. It follows from the works by Fenichel [24] that both surfaces, Meq and MLC

will persist as invariant manifolds for small enough µ as well. Moreover, each remains µ-close to the
original wherever it is normally hyperbolic (e.g. far from bifurcations). Therefore, the phase point
of the whole system will follow the same path in the (z, x)-phase space. Namely, it translates slowly
along the lower branch of Meq leftward till the fold. Then, it makes a rapid, vertical jump up onto the
surface MLC. Afterwards, it moves slowly rightward coiling around MLC. Having reached the edge
of MLC at zlcsn, the phase point falls straight down onto Meq to start a new cycle. Such trajectory
behavior is associated with bursting in neuron models. The number of spikes in a burst is a number
of complete revolutions of the phase point around MLC.

In the following section we discuss the conditions under which the system has a stable periodic
orbit the surface Ms

LC that corresponds to tonic spiking. The presence of this orbit ma make Ms
LC

non-transitive for slow coiling passages of the trajectories of the system.

3.1. Average nullclines and periodic orbits

The surface MLC is composed of the limit cycles of the fast system at µ = 0. Let us introduce
the average value 〈x〉 of the x-coordinate of such a limit cycle ϕ(t; z) with period T (z) at given z:

〈x(z)〉 = 1
T (z)

T (z)∫
0

ϕ(t; z)dt. By varying z, we define the corresponding continuous curve in the (z, x)-

space, see Fig. 4. Evidently, it originates at the Andronov-Hopf bifurcation at zAH and terminates at
the homoclinic bifurcation at zh. The curve has a distinctive knee point at zlcsn corresponding to the
saddle-node bifurcation of the stable and unstable limit cycles of the fast subsystem.

In the first approximation, the dynamics of the singularly perturbed system around Ms
LC is

determined, by following “averaged” slow subsystem:

ż = µ〈G(z, α)〉 ≡ µ

T (z)

T (z)∫

0

G(ϕ(t; z), z, α) dt. (3.2)

Hence, if 〈G(z, α)〉 > 0 within z1sn � z � zlcsn at some α, then then surface MLC is transitive for
solutions of the system (3.1) that coil around MLC slowly (at the rate of ∼ µ) translating rightward.

Let some z0 between z1sn and zlcsn be a simple zero of the function 〈G(z, α)〉 for some fixed α. This
zero is also an equilibrium state of this averaged slow subsystem. This equilibrium state is stable if
〈G(z0, α)〉z < 0, or unstable otherwise. Then, as follows from Pontryagin-Rodygin theory [25], every
zero of 〈G〉 corresponds to a periodic orbit of the whole singularly perturbed system. The stability
of the periodic orbit in the x-direction is determined by that of the corresponding limit cycle MLC of
the fast subsystem at the given z0. Recall that the components Ms

LC and Mu
LC of MLC are comprised

of the stable and unstable limit cycle of the fast subsystem. Therefore, to study bifurcations of
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Fig. 5. (A) Intersection points of the average nullcline 〈x〉 = 0 with 〈x〉 yield one stable, Ln, and one saddle, Ln,
periodic orbits of the singularly perturbed system. The stable manifold Ws of the saddle periodic orbit Ls

bounds the attraction basin of Ln. This situation corresponds to Inset 4 in Fig. 6. (B) Intersection points of
the nullclines 〈mK2

′〉 = 0 and 〈V〉 yield the stable and saddle periodic orbits of the neuron system (2.1). The
waveform of the bursting and tonic activities are shown in Fig. 3.

stable periodic orbits of the singularly perturbed system, we need to examine the upper branch of the
curve 〈x〉 corresponding to the stable component Ms

LC.
Let us recall too that the function G is linear in z: G(x, z, α) = g(x, α) − z. Define an av-

erage nullcline 〈ż〉 = 0 as the parametrically given curve (z = 〈g(ζ)〉, x = 〈x(ζ)〉) with 〈g(ζ)〉 =

= 1
T (ζ)

T (ζ)∫
0

g(ϕ(t; ζ), α) dt and 〈x(ζ)〉 = 1
T (ζ)

T (ζ)∫
0

ϕ(t; ζ) dt. Any of its intersection point with the

curve 〈x〉 (comprised of pairs (z, 〈x(z)〉) ) corresponds to a zero z0 of 〈G〉, i.e. to a periodic orbit of
our system. Note that if G is linear in both x and z, then the average nullcline 〈ż〉 = 0 and the regular
nullcline ż = 0 are the same curve. Evidently, this is not the general case. Furthermore, in contrast
to the curve ż = 0, which can be found analytically, the analysis of the location and the shape of the
average nullcline 〈ż〉 = 0 in the (z, x)-space requires numeric simulations. The corresponding average
nullclines 〈V〉 and 〈mK2

′〉 = 0 of the neuron model (2.1) are shown in Figs. 3(b), 7 and 8 for different
values of the bifurcation parameter Vshift

K2 .
Next let us elaborate on how the average nullcline 〈ż〉 = 0 may depend on the control parameter α

in the slow equation of the system. Let α be introduced so that, the nullcline 〈x〉 = 0 crosses the upper,
stable branch of the curve 〈x〉 twice for some α > α∗. Then, these intersection points correspond to a
pair of periodic orbits, one stable, Ln, and one, Ls, of the saddle type, see Figs. 5 and 7. By decreasing
α, the distance between the orbit decreases, and when the average nullcline 〈x〉 = 0 has a tangency
with the curve 〈x〉 at some α∗, then the system possesses a saddle-node periodic orbit Lsn, which
vanishes for α < α∗, see Fig. 3(b). Additionally, we require that 〈G(z0, α∗)〉α �= 0. If it is so, the
distance between the bifurcating periodic orbits is evaluated as

√
α − α∗. When α < α∗, i.e. there

are no periodic orbits on Ms
LC that becomes transitive, and then the neuron exhibits solely bursting

activity.

4. Bi-stability and homoclinic saddle-node bifurcation

In order to reveal the origin of bi-stability, we continue to draw the parallels between the phenomenolog-
ical description of bifurcations in the system (3.1) and the empirical studies of the neuron system (2.1).
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We will also discuss a mechanism that gives rise the onset of chaos in the system. In both cases pri-
mary roles are played by the homoclinic bifurcations of the saddle and the saddle-node periodic orbits.
Since the latter is the organizing center of our construction, let us start with its analysis first.

A spatial saddle-node periodic orbit has two unique manifolds, strongly stable Wss and unsta-
ble Ws, in the particular case of R

3 both are of dimension two [17]. The strongly stable manifold Wss

breaks a vicinity of the saddle-node periodic orbit Lsn into two regions: node and saddle. In the node
region, the saddle-node periodic orbit is stable, i.e. a trajectory converges to it as time tends to +∞.
In contrast, Lsn is repelling in the saddle region, where it has the unstable manifold Wu comprised
of orbits converging to the saddle-node in backward time. We are interested in the global behavior
of this unstable manifold, more specifically, whether it can be homoclinic, i.e. bi-asymptotic to the
saddle-node periodic orbit. Recurrent behavior of the solutions of the slow-fast systems depicted in
Fig. 3 supports this assertion.

In this paper, we consider a particular situation where the unstable manifold Wu of the saddle-
node periodic orbit comes back to the orbit along the strongly stable manifold Wss of the saddle-node
periodic orbit Lsn; see the sketch in Fig. 1.

1

2
3

4

SN

BB

Fig. 6. There are three principal bifurcation curves in the unfolding for the Lukyanov-Shilnikov bifurcation of a
saddle-node fixed point with non-central homoclinics (Inset 1 showing the Poincaré map). The two bifurcation
curves, B1 and B2, which are the boundaries of the darkened sector, correspond to the very first (Inset 4) and
last (Inset 2) homoclinic tangencies between the stable, Ws, and unstable, Wu, sets of the saddle fixed point.
The complex hyperbolic structure existing in this sector, is due to transverse homoclinic crossings of these sets
(Inset 3). This structure will persist also after the disappearance of the saddle-node point beneath the segment
indicated on the bifurcation curve SN.

The case where Wu comes back from the node region making infinitely many revolutions, the
so-called blue-sky catastrophe, will be discussed in the following section. Note that since an typical
intersection of two surfaces in R

3 is transverse, the presence noncentral homoclinic connections to the
saddle-node does not raise the codimension of the bifurcation. This bifurcation was first introduced
and studied by Lukyanov and Shilnikov [14]. Let us elaborate on its basic properties. The unfolding
of the bifurcation is sketched in Fig. 6. This bifurcation is best described by using a two-dimensional
Poincaré map which is defined on some cross-section transverse to the periodic orbits. The point
where a periodic orbit hits the cross-section is a fixed point of the Poincaré map. The stability of
each fixed point and the stability of the point corresponds to that of the periodic orbit. In the case of
the saddle-node periodic orbit, there is a single fixed point of the fixed point of the saddle-node type
with one multiplier equal +1. So, when the saddle-node periodic orbit Lsn splits into a stable, Ln,
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and a saddle, Ls, periodic orbit, the corresponding saddle-node fixed point breaks into two points too:
one stable and one fixed point of the saddle type. Let this occur above the corresponding bifurcation
curve SN in Fig. 6.

Let α be a parameter controlling the distance between the fixed points so that there is no one
when α > 0. Let U be a small neighborhood containing the double fixed point with the homoclinic
orbit, and let ΩU (α) denote the set of all trajectories lying entirely in U except for the stable orbit
when α < 0. Then we have the following two theorems.

Theorem 1 (Lukyanov–Shilnikov). There exist a small neighborhood U of the origin and
α1 < 0 such that for all α ∈ [α1, 0] the set ΩU (α) is homeomorphic with suspension over the Bernoulli
subshift on two symbols.

Theorem 2 (Lukyanov–Shilnikov). There exists a neighborhood U , ᾱ > 0 and a partition of
the interval (0, ᾱ]

0 < . . . < αk+1+k̄ < α′
k+1+k̄ < αk+k̄ < . . . < αk̄ = ᾱ,

such that for α ∈ (αk+1+k̄, αk+k̄ the set ΩU(α) contains an invariant subset Ωk
U (α) homeomorphic

with the suspension over a Bernoulli subshift on k̄ + k symbols, while ΩU(α) is homeomorphic with
Ωk

U(α) for α ∈ (α′
k+1+k̄

, αk+k̄). As α → 0 there arises an infinite set of bifurcation connected with the
appearance of Smale horseshoes.

Because the saddle-node fixed point has non-central homoclinic orbits generated by transverse
crossings of its unstable and strongly stable manifolds, it follows that after the splitting, the saddle
point inherits the transverse homoclinic structure which implies that the system possesses a complex
shift-dynamics above SN within the wedge bounded by two curves corresponding to the very first and
last contacts between the stable and unstable manifolds of the saddle fixed point (periodic orbit) and
below it. This dynamics is associated with the existence of the Smale horseshoes due to transverse
intersections of the stable and unstable manifolds of the saddle-fixed point. As the fixed point dis-
appears through the saddle-node bifurcation, the hyperbolic subset nevertheless persists so that the
complex dynamics is still observed in the parameter region beneath the indicated sector. It is the
main feature of saddle-node bifurcations of this kind.

Let us return to the description of the dynamics of the system (3.1). Above the curve SN, the
stable Ln and saddle Ls periodic orbits co-exist on the tube Ms

LC. Of special interest here is the
the right boundary B1 (inset 4 in Fig. 6). This boundary corresponds to the first tangency between
the stable Ws and unstable Wu manifolds of the saddle periodic orbit. To the right from B1, the
stable manifold Ws of the saddle orbit bounds the attraction basin of the stable periodic orbit. This
situation corresponds to the co-existence of tonic spiking and bursting activities in the neuron, i.e.
to bi-stability. Geometrically, the bi-stability in dynamics of the system (3.1) takes place, when the
z1sn-coordinate of the left knee point on Meq is on to right from the saddle periodic orbit Ls on the
surface MLC

s, see Fig. 5.
Let us return to consideration of the behavior of the solutions of the system 3.1 in the bi-stability

sector between the bifurcation curves B1 and B2 in Inset 3 of Fig 6.
In our phenomenological description, we assume that the phase point makes momentarily vertical

jumps between the slow motion surfaces Meq and MLC. In the neuron model, the appearance of these
jumps may vary between projections of the phase space, compare for example Figs. 3 and 9(right),
presenting the (mK2,V)- and (mK2,−hNa)-phase portraits, respectively.

The bi-stability in the neuron model (2.1) is illustrated in Figs. 5. Depending on initial condition,
the system may generate tonic spiking, if the initial point is in the attraction domain of the stable
periodic orbit, or it generates bursting activity. The saddle periodic orbit separates these attraction
domains. The knowledge of the topology of the solutions of the slow-fast system gives a clear intuition
how different kinds of stimulations may switch operation of the neuron between the tonic spiking
and bursting modes. The influence of stimulation on the slow variable, mK2, is apparently most

290 REGULAR AND CHAOTIC DYNAMICS, V. 9, �3, 2004



HOMOCLINIC BIFURCATIONS OF PERIODIC ORBITS

w

C1

C2

0 0.1 0.2 0.3
−60

−40

−20

0

20

40

Ms
LC

Mu
LC

M
eq

<V>

 <m
K2
′ >=0

V
 (

m
V

)

m
K 2

−60

−30

0

30

5 s
Time (sec)

V
 (

m
V

)

Fig. 7. The stable manifold of the saddle periodic orbit no longer separates the basing of the bursting from the
basing of the stable periodic orbit corresponding to the tonic spiking activity at Vshift

K2 = −0.027 V . This type
of behavior takes place to the left of the bifurcation curve B2 (Inset 2) in Fig. 6.

important. For the parameter regime presented in Figs. 5, if mK2 is chosen below 0.16, the tonic
spiking is observed, while the bursting occurs for values exceeding a threshold 0.17, provided the
same initial values for V and hNa.

When the control parameter Vshift
K2 is decreased, the stable and unstable periodic orbits move

farther apart, so that the unstable manifold of the saddle orbit can no longer bound the attraction
basin of the stable orbit where the phase point tends to as it jumps off the hyperpolarized phase of
the bursting, as shown in Fig. 5. This situation corresponds to Inset 2 in Fig. 6 on the left of the
curve B2. Here, the neuron may only exhibit tonic spiking.

Observe that the duration of bursting phase may grow with no bound as the control parameter is
moved toward the transition value between the regimes, while the interburst interval remains nearly
constant, see Fig. 8. The estimate for the growth of the burst period is given by T (z, α∗)| ln(α−α∗)|,
where α∗ is a deviation of a control parameter from the boundary B1 into the bursting region, and
T (z, α∗) is the period of the limit cycle on the surface MLC of the fast subsystem at the given z. Note
also that the bursting behavior is not necessarily regular here but can be chaotic as well, especially
when the phase point may pass close by the stable periodic orbit, see Fig. 9(right).

On the left of the boundary B2, the bi-stability ends so that the tonic spiking becomes the
dominant regime. For the model (3.1), this situation occurs when the left knee point at z1

sn turns
out to be to the left of the saddle periodic orbit Ls on Ms

LC. Any trajectory starting on the right of
the stable manifold Ws of the saddle periodic orbit will get attracted to the stable one right after a
single cycle of bursting, see Inset 2 in Fig. 6. The corresponding phase space portrait of the neuron
system (2.1) is shown in Fig. 7.

The intermittency in the system takes place between the boundaries B1 and B2, as shown in
Inset 3 in Fig. 6. Here, the system may generate a train of bursting before it starts firing continuous
spikes. The exact number of bursts and duration of each burst in the train are impossible to predict.
This is another consequence of the complex shift dynamics due to homoclinic wiggles pictured in
Fig. 6 (inset 3). Figure 9 shows a chaotic train composed of four bursts. The width of the parameter
interval corresponding to the intermittency is small in a singularly perturbed system with |µ| � 1.
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Fig. 8. (left) Temporal characteristics of bursting en route to spiking. The burst period (top chart) increases
as ∼ | ln(Vshift

K2 + 0.2600866)|. Interburst interval (middle) and frequency of spikes (bottom) remain almost
constant. (right) Logarithmic fit of the dependence of the burst duration on the control parameter Vshift

K2 . Note
that the burst duration obeys the same law because the interburst interval hardly changes within the indicated
parameter interval. The logarithmic fit of the burst duration in given in on the left chart.

Furthermore, it is proportional to the diameter of the tube of the unstable manifold Wu, which is
shrinking while it gets back to the saddle-node periodic orbit, see the sketch in Fig. 1. Recall that
the low hyperpolarized branch of Meq is comprised of the stable equilibria of the fast subsystem. In
virtue of Liouville’s theorem, a low estimate for volume compression can be given by e(divF+µ)τ , with
τ � (zlcsn − z1sn)/µ and divF < 0 on the low branch of Meq. So, if µ is small, so is the diameter of the
tube of the unstable manifold Wu and, hence, is the size of the intermittency interval in the parameter
space. This makes this kind of intermittency transition hard to find in a singular perturbed system.
On the other hand, its presence can serve as indirect evidence that the system does not run on multiple
time scales.

5. Blue sky catastrophe

In this section we discuss another novel mechanism describing a reversible and continuous transition
between spiking and bursting activities in neuron models. The geometry of the bifurcation in the
singularly perturbed system (3.1) and the neuron model (2.1) is illustrated in Fig. 10. Recall from the
introduction that we seek a saddle-node periodic orbit with the unstable manifold returning to the
periodic orbit making infinitely many rotations in the node region. Besides the vector field is supposed
to possess the property of a strong transverse contraction. If it is so, the blue sky bifurcation gives rise
to a stable periodic orbit of infinite period and length. The infinite period of the periodic bursting is
due to the slow passage of of the phase point through the “phantom” of the disappeared saddle-node
orbit.

292 REGULAR AND CHAOTIC DYNAMICS, V. 9, �3, 2004



HOMOCLINIC BIFURCATIONS OF PERIODIC ORBITS

A

B

0 0.1 0.2 0.3 0.4 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

m
K2

−h
N

a

0
−60

−30

0

30

10 s

V
 (

m
V

)

A

B

C

0 0.1 0.2 0.3 0.4 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

m
K2

−h
N

a

0
−40
−20

0

1 s

V
 (

m
V

)

0
−60

−30

0

30

10 s

V
 (

m
V

)

Fig. 9. (left) Intermittent transition to tonic spiking. A number of bursts are generated before the stable
periodic orbit captures the phase point as illustrated in a projection to the (−hNa,mK2)-phase plane (top) and
as a voltage-time series (bottom) at Vshift

K2 = 0.03367 V. This intermittency corresponds to region (3) in Fig. 6.
(right) Chaotic bursting at Vshift

K2 = 0.0336709 V presented in a projection on the (−hNa,mK2) plane and as a
voltage-time series. Adjusting Vshift

K2 regularizes bursting as shown on the left.

Suppose that the function 〈G〉 has a pair of zeros on the interval [z1sn; zlcsn] at some z0
i (α), i = 1, 2.

It follows from Pontryagin-Rodygin’ theory [25] that each zero corresponds to a periodic orbit of the
whole, singularly perturbed system. Stability of a robust periodic orbit is determined by two factors.
First, its stability in the x-space follows from the stability of the corresponding robust limit cycle in
the phase space of the fast sub-system for the given z0

i (α). Second, it is stable in z if ∂〈G〉/∂z < 0
at z0

i (α), and unstable otherwise.
Let the distance between the zeros be controlled by a parameter α so that it vanishes at some

α = α0. Then, a plain saddle-node bifurcation occurs at α0 provided that ∂2〈G〉/∂z2 �= 0 at the
critical point, and hence the distance between points is evaluated as ∼ √

α − α0.
Introduce next an averaged nullcline 〈ż〉 = 0 as the graph defined by the following points (〈g〉; 〈x〉),

where 〈g(z, α)〉 = 1/T (z)
∫ T (z)
0 g(ϕ(t; z), α)dt; note that both components depend parametrically on z.

If for given α this nullcline 〈ż〉 = 0 crosses transversally the curve 〈x〉, then the z-coordinate of
such an intersection point is evidently a simple zero of the function 〈G(z)〉, i.e. equals z0

i . Recall
that 〈G(z0

i )〉=0 means 〈g(z, α)〉 − z0
i = 0 as follows from (3.1). This observation lets one visualize

effectively the locations of the periodic orbits in the phase space of the singularly perturbed system,
as well as determine their possible bifurcations. The approach is used for the neuron model (2.1)
to create partition of its phase space shown in Fig. 10b, with 〈V〉 and 〈mK2

′〉 = 0 standing for the
corresponding nullclines.

Variations of the parameter α translate the curve 〈ż〉 = 0 in the (z, x)-space, so that one may
make both curves have a quadratic tangency for some α = α0. This saddle-node bifurcation for the
periodic orbits constitutes the first component in the blue-sky catastrophe in slow-fast systems. A plain
saddle-node periodic orbit in Rn, n � 3, has two unique manifolds. The strongly stable manifold Wss

divides locally a vicinity of the saddle-node orbit into two regions: node and saddle, see Fig. 10a.
In the node region, a trajectory is attracted to the periodic orbit. In the saddle region, the periodic
orbit is repelling. The unstable manifold Wu consists of the trajectories which are attracted to the
saddle-node periodic orbit in backward time. As for the forward time, a trajectory on Wu follows
the path of the bursting regime, i.e. moves leftwards along the lower, hyperpolarized branch of Meq,
and provided that zsn < zbs, returns to the saddle-node orbit from the left, as seen in Fig. 10b. Thus,
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Fig. 10. Phenomenological sketch (a) and the matching numerical portrait (b) of the neuron model (2.1) at the
blue sky catastrophe. A saddle-node periodic orbit Lbs is depicted in (a) for the slow-fast system (2) in the
(z, x)-phase space combined with the bifurcation diagram of its fast subsystem, (b) for the neuron system (1)
in (mK2,V)-phase space for Vs

K2 = 24.5 mV. The blue z-shaped line, Meq, consists of the equilibrium states of
the fast subsystem (dotted and solid segments represent unstable and stable ones). The point of its intersection
with the regular nullcline mK2

′ = 0 is a single equilibrium state of (2.1). The green cylinder-shaped surface
MLC = Ms

LC ∪Mu
LC is comprised of the stable and unstable limit cycles of the fast subsystem. The line 〈x〉 shows

the dependence of the x-coordinate of the limit cycle averaged over its period on z, and 〈V〉 vs. mK2 in (b).
The dashed, blue line is the average nullcline 〈ż〉 = 0 in (a) and 〈mK2

′〉 = 0 in (b). The contact point between
〈V〉 and 〈mK2

′〉 = 0 corresponds to the saddle-node periodic orbit, Lbs. The gray disk Wss in (a) is its strongly
stable manifold. The part of Ms

LC to the right of Lbs is locally the unstable manifold, Wu of the saddle-node
periodic orbit. In (a), the red line outlines rapid transitions of the phase point between the hyperpolarized
phase and tonic spiking phase of bursting. In (b), the red curve represents a trajectory homoclinic to Lbs. This
trajectory transforms into a closed periodic orbit representing bursting as parameter Vs

K2 passes a bifurcation
value and Lbs disappears.

globally the unstable manifold Wu is homoclinic to the periodic orbit, which is the second component
of the blue sky catastrophe.

When the bifurcation parameter α > α0, i.e. the average nullcline is lifted up, the saddle-node
orbit decouples into stable and unstable ones. The former corresponds to tonic spiking in a neuron.
When the nullcline is lowered, the saddle-node periodic orbit vanishes and gives rise to a new stable
periodic orbit of a large period and amplitude. This orbit could be considered as consisting of two
phases, silent (interburst) and spiking. The spiking phase represents a burst. This orbit corresponds
to bursting in a neuron. The burst duration, the time interval that the phase point needs to pass
by the phantom of the saddle-node, is estimated as 1/

√
α − α0. Hence, by adjusting the deviation

of the parameter α from the critical value α0 one may control the burst duration without changing
the interburst interval, see Figs. 2 and 3. Thus, a continuous transition from the bursting into tonic
spiking is achieved by a single parameter variation. This transition is demonstrated in the neuron
model (2.1) in Fig. 11. The parameter Vs

K2 plays the role of the control parameter α. Variations of
Vs

K2 determine the position of the corresponding average null-cline 〈mK2
′〉 = 0. As the parameter

Vs
K2 approaches critical value 24.25 mV the duration of bursting interval increases with no bound

as predicted. The standard deviation of the period of bursting oscillations remains zero while the
parameter is varied thereby confirming that the observed regime is indeed represented by a stable
periodic orbit. If one changes the parameter backwards, then the system will regain the round, stable
periodic orbit corresponding to spiking, so that the segment of MLC between ∼ mK2 ∈ [0.02; 0.32] of
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the bursting phase, becomes no longer transitive (Fig. 10b). This kind of the boundary between the
regimes can be called safe following the terminology introduced in [17].
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Fig. 12. Dependence of the period of bursting on the control parameter Vs
K2. The numerically obtained points

are marked by ×-s. The approximating curve is given by 0.31/√|(Vs
K2 + 24.25)|, where 24.25 mV is the critical

value of the transition.

Asymptotic estimates of the dependence of temporal characteristics of bursting on the control
parameter are in a good agreement with the numerically obtained data for the neuron model (Fig. 12).
The burst duration is well approximated by the following estimate ∼ 1/

√
Vs

K2 + 24.25, where Vs
K2 < 0

and is presented in mV. The period of bursting suffices the same estimate, because the interburst
interval remains almost constant. As the control parameter changes from -22.20 mV to -24.25 mV the
interburst interval decreases from 6.16 s to 5.51 s, compared to the burst duration growing from 5.66
s to 957 s. The spike frequency remains constant ∼ 5.5 Hz which is a physiologically observable value.
It is worth noticing that the number of spikes in a burst is directly proportional to the duration of
the burst.
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6. Conclusion

We propose two new general scenarios of transitions between tonic spiking and bursting. The first
mechanism also explains bi-stability in the system, where bursting mode co-exists with tonic spiking
so that either mode can be attained by appropriate choice of initial conditions. The core of the
mechanism is based on a bifurcation of codimension one for a saddle-node periodic orbit with non-
central homoclinic orbits. We identified this scenario in a leech neuron model (2.1). For the first time
this bifurcation has been shown to occur in a autonomous model describing the dynamics of a physical
entity. We argue that it is typical for slow-fast systems based on the Hodgkin-Huxley formalism. Since
the key bifurcation of the scenario is of codimension one, it may be revealed in electrophysiological
experiments. The signatures of the key bifurcation are (1) coexistence of tonic spiking and bursting;
(2) smooth transition between the two regimes; (3) logarithmic growth of the burst duration en route
toward to tonic spiking; (4) chaotic intermittency of transient bursting turning into tonic spiking.

The second mechanism of the continuous transition between tonic spiking and bursting regimes in
a model of a pharmacologically treated leech heartbeat interneuron is based on the bifurcation of the
blue sky catastrophe. It is also is generic for a broad class of neuronal models utilizing Hodgkin-Huxley
formalism. Its key features are (a) the bursting activity is periodic; (b) the period grows without a
bound and obeys a universal law T ∼ 1/

√
α − α0 as the control parameter α decreases to the critical

value α0; (c) beyond α0 the system exhibits periodic spiking; (d) the transition is reversible as the
parameter is changed backward. These features describe a biophysically plausible control mechanism
for regulation of bursting activity. Our study is the first application of this novel bifurcation to realistic
neuron models and to any physical system in general.

In this work we have employed the technique of Pontryagin’s averaging and made it easy to
comprehend in the computational neuroscience context. Our description is not restricted to the given
three-dimensional neuron model and holds for higher dimensions as well. The developed geometrical
framework for an averaging method can be applied to studies of singularly perturbed systems of the
given type. It constitutes a powerful tool for effective detection and bifurcation analysis of periodic
orbits in neuron models.
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