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Abstract— Origin of chaos in a simple slow-fast
2D map replicating the spiking and spiking-bursting
activity of real biological neurons is studied. The map
contains one fast and one slow variable. We study
the bifurcation scenarios which reveal the dynamical
mechanisms that lead to chaos through canards in al-
ternation of silence and spiking phases.

I. I NTRODUCTION

Spiking-bursting activity of biological neurons is
the result of high-dimensional dynamics given by
nonlinear dynamical processes of generation and in-
teraction of various ionic currents flowing through the
membrane channels of each neuron [7]. Numerical
studies of such neural activity are usually based on
either realistic channel-based models or phenomeno-
logical models. The channel-based models proposed
for a single neuron are designed to capture the physio-
logical processes in the membrane. These models are
usually given by a system of many nonlinear differen-
tial equations. Recently a similar type of phenomeno-
logical models, but based on a low-dimensional map,
was proposed. The interest in the map models is mo-
tivated by the studies of nonlinear mechanisms be-
hind the restructuring of the collective neural behav-
ior in large networks. Here we consider a map model
which is built following to the principles for construct-
ing a low-dimensional system of differential equation
which is capable of generating fast spikes bursts ex-
cited on top of the slow oscillations (see for exam-
ple [6], [11], [2], [8]). These two time-scale oscilla-
tions are captured using a system with both slow and
fast dynamics. In the case of map, such a system can

be designed in the following form [12]

xn+1 = f(xn, yn) , yn+1 = yn − µ(xn + 1− σ),
(1a)

wherexn is the fast andyn is the slow dynamical vari-
able as|µ| ¿ 1. The parameterσ is a control param-
eter which is used to select the regime of individual
behavior. The fast map is built to mimic spiking
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Fig. 1. Dynamics of fast map computed withα = 5.6
and fixed value ofyn = y = −3.75. The stable and
unstable fixed points of the map are indicated byxps

andxpu, respectively.

and silent regimes. This is achieved with the use of
discontinuous functionf(x, y) of the following form

f(x, y) =





α/(1− x) + y, x ≤ 0
α + y, 0 < x < α + y
−1, x ≥ α + y

(2)

whereα is a control parameter of the map.
Typical regimes of temporal behavior of the two-

dimensional map are shown in Fig 2. It was shown
in [12] that using approximate analysis of fast and
slow dynamics one can explain the regimes of silence,
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Fig. 2. Typical waveforms of spiking and spiking-bursting
behavior generated by the map computed for the fol-
lowing parameter values:(a) α = 5.6, σ = −0.25;
(b) α = 5.6, σ = 0.2; (c) α = 5.6, σ = 0.322; (d)
α = 4.6, σ = −0.1; (e) α = 4.6, σ = 0.16; (f)
α = 4.6, σ = 0.225; (g) α = 3.9, σ = 0.04; (h)
α = 3.9, σ = 0.15. The points of the consecutive
iterationsxn are connected with straight lines.

continuous spiking, and the generation of the bursts of
spikes occurred in the map (1). However such analy-
sis does not explain the dynamical mechanism behind
the chaotic spiking and chaotic spiking-bursting be-
haviors. Understanding of the origin of a chaotic be-
havior in the map is the focus of the given study.

A. Local Bifurcation of the Fixed Point

We restrict our consideration to the rectangular
{2 ≤ a ≤ 8; −2 ≤ σ < 1}. Here 1) has a sin-
gle fixed pointO(xo = −1 + σ, yo = xo − α

1−xo
.

The Jacobian matrixJ of the map at the fixed point

is given byJ =

(
α

(2−σ)2
1

−µ 1

)
. In the case of the

Andronov-Hopf (AH) bifurcation for maps the Jaco-
bian and the trace ofJ become1 and2 cos ψ, respec-
tively. Then one can find the equation of bifurcation
curveAH which is given byσ = 2 − √

α/(1− µ).
On it the fixed point has the following multipliers:
ρ1,2 = 2−µ

2 ± i
2

√
(4− µ)µ = cosψ±i sinψ. Observe

thatρ1,2 depend onµ only. The stability of the fixed
point onAH is determined by the sign of the first Lya-
punov coefficientL1. The point is stable whenL1 < 0
and repelling otherwise. The tedious calculations re-
vealL1 > 0.

II. CANARDS AND CHAOTIC SPIKING

At the subcritical Andronov-Hopf bifurcation the
fixed point loses its stability when an unstable invari-

ant curve shrinks into it. To complete the picture of
qualitative behavior of the map near the threshold we
need to examine the evolution of this invariant curve
with the parameter change, and answer the question:
where does the unstable invariant curve come from?
A comprehensive answer to the question on the ori-
gin of the invariant curve requests an examination of a
special solution known asa canardor a French duck.
We will call it a Hopf-initiated canard for consistency
with the classification proposed in [5].

The mechanism underlying a canard can be reiter-
ated in our case as follows. Consider the curveSfp

of slow motions of map (1) atµ = 0. The slow
manifold lacks the normal hyperbolicity property near
the fold whereSps and Spu merge; this fold is the
saddle-node point of the fast map. As follows from
[4] that whenµ is small the normal hyperbolic pieces
of Spu and Sps will persist as some invariant criti-
cal manifoldsSu andSs, bothµ-close to the original
branches. As a control parameter of the system varies
the manifoldsSu andSs may touch each other, cross
(in maps) thereby forming the canard manifold break-
ing up as they swap over in further. Four snapshots
taking the critical manifolds near the fold are shown
in Fig. 3 illustrating the evaluation of the canard asσ
increases. The first picture shows the stable critical
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Fig. 3. Stages of canard formation:µ = 0.001 α = 4.1
andσ equal to -0.0262 in (a); -0.026113175787 in (b);
-0.02605 in (c); and -0.016 in (d). In panel (a)Ss con-
verges to the stable point whose basin of attraction is
determined byS∫ . (b) Critical canard manifold and
birth of the closed unstable invariant curve. (c) The last
bounds the basin of the stable point. (d) The unstable
critical manifold spirals out of the fixed point, stable in
backward time.

manifold Ss converging to the attracting fixed point
before the Andronov-Hopf bifurcation. The last fig-
ure 3(d) shows the unstable invariant manifoldSu spi-



raling out of the now unstable fixed point after the bi-
furcation. When the bifurcation curveAH is crossed
leftward, the fixed point becomes stable and its ab-
sorbing basin is bounded by the unstable invariant
curveLu. The latter is theα-limit set for the trajecto-
ries close toSu shown in Figs. 3(c). Asσ decreases
slightly further the size ofLu increases and at some
critical value ofσ the critical manifoldsSs andSu

touch or cross each other, see Fig. 3(b) . As they swap
over each other, the invariant curveLu vanishes, see
Figs. 3(a).

When the critical manifoldSS moves further in par-
allel to SU a neighboring trajectory will be dragged
along with it into the unstable region. Such a solution
is called acanard. The canard solutions are character-
ized by a high sensitivity to initial conditions which is
due to the blowing instability near the unstable critical
manifold that separates and repels the nearby trajecto-
ries on both sides in opposite directions. When this
instability lifts a trajectory up off the unstable critical
line, it is mirrored by the limiter built in the function
(2) downwards throughout linex = −1 towards sta-
ble critical manifoldSS , along which the trajectory
slides slowly to the right. Two distinct phase por-
traits reflecting this situation are shown in Fig. 4. Fig-
ure 4(a) illustrates the regime of bi-stability where the
canard initiated chaos coexists with the stable fixed
point whose local absorbing basin is surrounded by
the unstable invariant closed curveLu. Here, the
beam of the the phase trajectories first widens along
the canard and then gets split and mixed at the point
(x = 0, y = α) gluing the two piece-wise continu-
ous segments of nonlinear function (2) of the map (1).
The chaotic attractor shown in Fig. 4(a) is the image
of the continuous spiking characterized by irregular
inter-spike-intervals. As one can see from this fig-
ure this type of spiking activity can coexist with the
silence mode when the map is close enough to the
threshold of excitation.

A. Chaotic bursting

Here we consider the soft transition from the
regime of continuous spiking to the bursting activity
that occurs within a wedge-shaped border originating
from the threshold(α = 4; σ = 0). The mecha-
nism of this transition in the case of finite values of
µ is illustrated in Fig. 5. Green trajectory, whose ini-
tial point is chosen by the stable critical manifoldSs,
tends to the attractiveω-limit set. One can see that
the map generates continuous spikes when the attrac-
tor is such as shown in Fig 5(a). In contrast, Fig-
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Fig. 4. (a) Example of instant chaos atα = 3.995, σ = 0.0
and µ = 0.001. Due to spontaneous jumps of the
phase point off the canard the number of its iterates
as it climbs up the plateau on nonlinear characteris-
tic differs every circulation. (b) The unstable invariant
curve does not bounds the ”local” attraction basin of
the stable fixed point;α = 4.1, σ = −0.03445 and
µ = 0.00749915834. By ”local” the attraction basin
of the stable fixed point of the locally invertible map is
understood.
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Fig. 5. Transformation of tonic spikes ((a)α = 5 , σ =
0.3) into bursts ((b)σ = 0.28 ) via the tangency of
the stable and unstable sets of the singularly perturbed
map. The appendix of the bursts phase grows as the
iterates lower belowSu.

ure 5(b) illustrates the regime of bursts. Here a burst
means that the continuous spiking phase is altered by
relatively long interval of silence while the trajectory
drifts along the stable critical manifold.

Consider the evolution of the shape of the attractor
on the path (α = 5; σ = 0.3 → 0.28). Fig 5a is
taken atσ = 0.3. At this moment the stable critical
manifoldSs makes a first touch with the unstable crit-
ical oneSu at some point on the linex = −1. This
situation is very similar to the canard formation dis-
cussed above. As then, the phase point can be dragged
along the unstable critical manifold which results in
a spontaneous jump up or down. This leads to high
sensitivity of the trajectories behavior on initial con-
ditions and brings a chaotic component into the dy-
namics of bursts. Asσ decreases further the attractor
descends belowSu so that the phase point starts mak-
ing the straight jumps down onto the stable critical
manifold, thereby forming a genuine burst in Fig. 5b.
The number of the spikes in a burst can be constant
or alternating depending on how close the attractor is



to the unstable critical line or, in other words, whether
the canard behavior is regular or complex.

Finally we discuss the mechanism of the genera-
tion of chaotic bursts through the homoclinic bifur-
cations of the repelling fixed point of the 2D map
(1). Such a bifurcation is one of the features of non-
invertible maps [10]. In our case the dimension of
the unstable setW u

O of the repelling fixed pointO is
two, whereas the stable setW s

O is null-dimensional.
A point p = W u

O ∩ W s
O is a homoclinic one if its

forward and backward iterates converge to the fixed
pointO. The fixed point is called a snap-back repeller
if its small neighborhood contains a homoclinic point
whose forward sequence of iterates ending up at the
fixed point is finite. The existence of a transverse ho-
moclinic orbit to the repeller implies the existence of a
scrambled set, introduced by Marotto [9]. The scram-
bled set is an analog of a hyperbolic subset which is
the closure of the transverse homoclinic trajectory in
a proper invertible map. It consists of countably many
repelling periodic orbits and a continuum of positive
Poisson stable trajectories. The presence of such tra-
jectories is a signature of chaos [13]. The snap-back
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Fig. 6. (a) Primary and secondary homoclinics to the re-
pelling point existing within[4.3339 ; 4.3679] at α =
4.3499; (b) shows the six-spike homoclinic orbit turn-
ing into a seven-spike one atα = 5.01.

bifurcations and, respectively, the homoclinic orbits
are distinguished by the number of spikes in a burst,
see for example Fig. 6. In particular, Fig. 6a shows the
map generating chaotic sequences of the single and
the double-pulse bursts.

Another, yet similar, way of waveform transforma-
tions is illustrated in Fig. 7 far from the homoclinic bi-
furcation. As above the core of the mechanism is the
interplay between the unstable manifoldSu and the
locus of the attractor. Recall that the direction of the
jump — up or down of the phase point landing onto
the linex = −1 is determined whether the its coordi-
nates are above or belowSu respectively. It is evident
that the duration and the length of such canard phase
depends on how close the phase point was picked up
or turns out intermediately to be next toSu.

Fig. 7. Canards computed withα = 6.30749986 and
σ = −0.513045789. The trajectory follows the un-
stable manifoldSu twice: near the original canard and
at the end of the burst.
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