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Abstract. We present a low-order system of ODEs exhibiting the blue sky
catastrophe—a new codimension one bifurcation of periodic orbits.

1. Introduction

The known boundaries of stability (or existence) regions of periodic orbits in
systems of differential equations can be classified by means of the following formal
criterion: whether a bifurcating periodic orbit on the boundary exists or not. The
codimension-one bifurcations listed below comprise the first group:

• A saddle-node (fold) bifurcation: two periodic orbits, one stable and one
unstable, coalesce on the stability boundary and annihilate beyond it;
• Period-doubling (flip) bifurcation: one multiplier of the bifurcating periodic

orbit equals −1;
• A bifurcation from a periodic orbit to a two-dimensional invariant torus; by

rephrasing A. Andronov: “a cycle loses its skin”.

All three cases above reduce to the analysis of stability of the corresponding fixed
point of the Poincaré map on a cross-section transverse to the periodic orbit.

The codimension-one bifurcations of the second group have much in common
with the situations in which a periodic orbit merges with an equilibrium state. The
enumeration begins with the Andronov-Hopf bifurcation in which a periodic orbit
shrinks into an equilibrium state with a pair of characteristic exponents ±iω, ω > 0.
It should be noted that the period T of such bifurcating orbit can be estimated as
T ∼ 2π/ω. In the other two cases the periodic orbit adheres to a homoclinic loop
to an unstable equilibrium state which can be either a saddle with characteristic
exponents in both open left and right half-planes, or a simple saddle-node with
one zero real exponent. Since the vector field vanishes at the equilibrium state,
the period of the bifurcating orbit tends to infinity as it approaches the homoclinic
loop, while its perimeter remains of finite length.
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One may ask if the list of bifurcations and the associated stability boundaries
is complete or not. This appeared to be the case until Shilnikov and Turaev [1] sug-
gested a new scenario for the saddle-node bifurcation of periodic orbits, which may
result in the appearance of a stable periodic orbit of an infinitely long period and
infinitely large perimeter. Due to this feature, a virtual bifurcation of this kind was
called, following R. Abraham, “a blue sky catastrophe”. Moreover, this boundary
may, under certain conditions, separate Morse–Smale systems from systems with
hyperbolic attractors in the parameter space [2].

Here we present an example of a three-dimensional system in which the blue
sky catastrophe develops in accordance with the phenomenological mechanism de-
vised by Shilnikov and Turaev. Let us first discuss its geometrically comprehensive
construction. The existence of the paper by Shilnikov and Turaev in this volume,
to which the reader is referred to for a deeper insight, allows us to give only a brief
explanation of the bifurcation setup.

It is assumed that there exists a saddle-node periodic orbit L∗ whose unstable
manifold W u

L∗ returns to L∗ as t → +∞, as shown in Figure 1; hence, the closure
of the unstable manifold is not a Hausdorff manifold.

Figure 1. Geometrical interpretation of a blue sky bifurcation

The second assumption concerns the global property of the vector field; namely,
the contraction of the phase volume in the direction transverse to the global part of
the unstable manifold is so strong that the disappearance of L∗ is smoothly followed
by the birth of a stable large-amplitude periodic orbit upon crossing the stability
boundary.
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2. The model

Example. Consider the family of systems



ẋ = x(2 + µ−B(x2 + y2)) + z2 + y2 + 2y ≡ P,
ẏ = −z3 − (1 + y)(z2 + y2 + 2y)− 4x+ µy ≡ Q,
ż = (1 + y)z2 + x2 − ε ≡ R,

(1)

where µ, ε, and B are parameters (we let B = 10). The system 1 for µ = ε = 0
has a closed integral curve given by (x = 0, z2 + (y + 1)2 = 1) in the phase
space. There are two equilibrium states on this curve: the low one O′(0,−2, 0) is a
saddle-node with one zero λ1 = 0 and two negative characteristic exponents found
from the equation λ2 + 40λ + 68 = 0; the upper equilibrium state O(0, 0, 0) has
one zero exponent λ1 = 0 and a pair of purely imaginary characteristic exponents
λ2,3 = ±2i (Figure 3a). Therefore, the point O′ is of codimension one because
Rzz 6= 0, whereas the point O is of codimension three because the two-dimensional
divergence σ(z) = P ′x+Q′y = −z2 + · · · at O starts with a quadratic term [4]. This
means that a double (semistable) cycle can be generated from O in the (x, y)-plane
because “an embryo” of the first Lyapunov value vanishes here.

The unfolding of the bifurcation diagram is shown in Figure 2. It includes three
bifurcations, all of codimension one.

Figure 2. The (µ, ε)-bifurcation diagram for B = 10.

Let us describe the bifurcation occurring while moving in the clock-wise direc-
tion around the origin on (µ, ε)-parameter plane. When ε becomes positive, the
saddle-node O′ disappears, while the equilibrium state O is decomposed into two
equilibria O1 and O2, where zO1,2 = ∓√ε + . . . . In the region b, the point O1 is
stable and O2 is a saddle-focus of type (2, 1) whose one-dimensional separatrices
converge to O1 as t → +∞ (Figure 3b). Upon entering the region c, the point
O1 loses its stability through a super-critical Andronov–Hopf bifurcation (this is
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guaranteed by the choice of large B > 0) on the curve AH1 and becomes a saddle-
focus (1,2). Here, both unstable separatrices of the saddle-focus O2 tend to a new
stable periodic L1, see Figure 3c. The equilibrium state O2 undergoes a simi-
lar Andronov–Hopf bifurcation on the curve AH2 and becomes a totally repelling
point in the region d. The unstable manifold of the just born saddle periodic orbit
L2 continues to tend to L1, as shown in Figure 3d. On the bifurcation curve SN ,
both periodic orbits coalesce, thereby composing a saddle-node cycle L∗ whose un-
stable manifold, due to continuity, is bi-asymptotic to L∗ as t → ±∞ , as shown
in Figure 3e. The cycle L∗ vanishes in the region f, but the local stability of the
system is inherited by a new, unique, stable large-amplitude periodic orbit Lbs,
which is not homotopic to either of the former cycles, see Figure 3f.

If one attains the curve SN from the region f, the number of scrolls of the orbit
Lbs increases uncountably near the “phantom” of the saddle-node orbit L∗ in the
phase space. Since both equilibrium states O1 and O2 are located at a finite distance
from the bifurcating periodic orbit, the infinite perimeter of the latter implies its
infinite length on the boundary SN , and vice versa; indeed, the flight time of any
trajectory passing close by the helix-like density of orbits, from which the saddle-
node limit cycle appears, tends to infinity as one gets closer to SN . Thus, we have a
mechanism for the blue sky catastrophe bifurcation of the desired codimension one
in the two-parameter family. It is worth noticing that the corresponding stability
boundary is classified as safe in the sense that the representing phase point does
not desert towards any other attractor after the bifurcation, which is apparently
invertible.

The stability analysis of this system in a small neighborhood µ = ε = 0 is
carried out analytically. The local consideration does not involve numeric compu-
tations unless we need to show that the one-dimensional stable manifold W s

O1
of

the saddle-focus O1 is not enclosed in the unstable manifold of the periodic orbit
Lbs, similarly to Figure 3d, but for parameter values on the curve SN . Otherwise,
this would lead to the appearance of a two-dimensional torus instead of the sta-
ble periodic orbit. To verify this condition, one should continue W s

O1
backward

in time in order to find its intersection point with some transverse cross-section
drawn nearby on the left from O1, and to check that this point is not surrounded
by the trace of the intersection of W u

Lbs
with the cross-section. This turns out to

be true indeed, because our construction follows the phenomenological scenario in
[3]; namely the presence of saddle-node point O′ on the integral curve at the initial
stage guarantees the further contraction in this region, so that by that time the
manifold W u

Lbs
passes by the hollow and reaches the cross-section, its trace finally

shrinks almost to a point distant from the corresponding intersection point of W s
O1

.
If we step back from a vicinity of the origin (µ = ε = 0), the unstable mani-

fold W u
O2

of the saddle-focus O2 may no longer follow along the prescribed global
pathway. Of special interest is the situation where W u

O2
becomes homoclinic to

O2. Provided that Shilnikov’s condition holds here, i.e., the saddle value is positive
at the saddle-focus near such a homoclinic loop, one should expect the onset of
dynamical chaos, as depicted in Figure 4.

Moreover, we should emphasize that the bifurcation of an equilibrium state with
eigenvalues (0,±iω) may, under some matching condition, generate “miniature”
chaos induced by heteroclinic connections between both saddle-foci, as well as by
homoclinic loops to either one. The associated chaotic limit set may be a strange
attractor or a strange repeller (an attractor as t → −∞), depending locally on
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Figure 3. Mechanizm of the blue-sky catastrophe. (f) A stable
periodic orbit at (µ = 0.3, ε = 0.021)

the sign of divergence of the vector field. There is a 3D-exotic example of this
bifurcation resulting in the co-appearance of the chaotic spiral repeller and attractor
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Figure 4. Spiral chaos in region b for (µ = −0.173, ε = 0.01).

which are the α- and ω-limit sets, respectively, for trajectories close in the phase
space to such a twice-degenerate equilibrium state [5].

3. Conclusion

To conclude, we note that the blue-sky catastrophe in action may be helpful for
a qualitative explanation of the frequently observed transition from low-amplitude
oscillations (spikes) to large-amplitude burstings in models for neuron activity, or
to flow surges in models of jet engines.
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